summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp2278
1 files changed, 1798 insertions, 480 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
index ce4a2c9..1835ec0 100644
--- a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
@@ -15,6 +15,7 @@
#define DEBUG_TYPE "arm-isel"
#include "ARM.h"
#include "ARMAddressingModes.h"
+#include "ARMCallingConv.h"
#include "ARMConstantPoolValue.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
@@ -28,9 +29,11 @@
#include "llvm/Function.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instruction.h"
+#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -41,6 +44,7 @@
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/VectorExtras.h"
+#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
@@ -50,6 +54,7 @@
using namespace llvm;
STATISTIC(NumTailCalls, "Number of tail calls");
+STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
// This option should go away when tail calls fully work.
static cl::opt<bool>
@@ -57,14 +62,7 @@ EnableARMTailCalls("arm-tail-calls", cl::Hidden,
cl::desc("Generate tail calls (TEMPORARY OPTION)."),
cl::init(false));
-// This option should go away when Machine LICM is smart enough to hoist a
-// reg-to-reg VDUP.
-static cl::opt<bool>
-EnableARMVDUPsplat("arm-vdup-splat", cl::Hidden,
- cl::desc("Generate VDUP for integer constant splats (TEMPORARY OPTION)."),
- cl::init(false));
-
-static cl::opt<bool>
+cl::opt<bool>
EnableARMLongCalls("arm-long-calls", cl::Hidden,
cl::desc("Generate calls via indirect call instructions"),
cl::init(false));
@@ -74,28 +72,6 @@ ARMInterworking("arm-interworking", cl::Hidden,
cl::desc("Enable / disable ARM interworking (for debugging only)"),
cl::init(true));
-static cl::opt<bool>
-EnableARMCodePlacement("arm-code-placement", cl::Hidden,
- cl::desc("Enable code placement pass for ARM"),
- cl::init(false));
-
-static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State);
-static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State);
-static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State);
-static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State);
-
void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
EVT PromotedBitwiseVT) {
if (VT != PromotedLdStVT) {
@@ -111,8 +87,7 @@ void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
EVT ElemTy = VT.getVectorElementType();
if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
- if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
- setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
if (ElemTy != MVT::i32) {
setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
@@ -122,7 +97,7 @@ void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
- setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
if (VT.isInteger()) {
@@ -131,6 +106,10 @@ void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
+ for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
+ setTruncStoreAction(VT.getSimpleVT(),
+ (MVT::SimpleValueType)InnerVT, Expand);
}
setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
@@ -177,6 +156,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
: TargetLowering(TM, createTLOF(TM)) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
RegInfo = TM.getRegisterInfo();
+ Itins = TM.getInstrItineraryData();
if (Subtarget->isTargetDarwin()) {
// Uses VFP for Thumb libfuncs if available.
@@ -260,13 +240,157 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setLibcallName(RTLIB::SRL_I128, 0);
setLibcallName(RTLIB::SRA_I128, 0);
- // Libcalls should use the AAPCS base standard ABI, even if hard float
- // is in effect, as per the ARM RTABI specification, section 4.1.2.
if (Subtarget->isAAPCS_ABI()) {
- for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
- setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
- CallingConv::ARM_AAPCS);
- }
+ // Double-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 2
+ setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
+ setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
+ setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
+ setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
+ setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
+
+ // Double-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 3
+ setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
+ setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
+ setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
+ setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
+ setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
+ setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
+ setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
+ setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
+ setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
+ setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
+ setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
+ setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
+ setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
+ setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
+ setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
+ setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
+ setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
+
+ // Single-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 4
+ setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
+ setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
+ setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
+ setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
+ setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
+
+ // Single-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 5
+ setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
+ setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
+ setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
+ setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
+ setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
+ setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
+ setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
+ setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
+ setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
+ setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
+ setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
+ setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
+ setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
+ setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
+ setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
+ setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
+ setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
+
+ // Floating-point to integer conversions.
+ // RTABI chapter 4.1.2, Table 6
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
+ setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
+ setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
+ setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
+ setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
+ setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
+
+ // Conversions between floating types.
+ // RTABI chapter 4.1.2, Table 7
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
+ setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
+
+ // Integer to floating-point conversions.
+ // RTABI chapter 4.1.2, Table 8
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
+ setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
+ setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
+ setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
+ setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
+ setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
+
+ // Long long helper functions
+ // RTABI chapter 4.2, Table 9
+ setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
+ setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
+ setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
+ setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
+ setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
+ setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
+ setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
+
+ // Integer division functions
+ // RTABI chapter 4.3.1
+ setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
+ setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
+ setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
+ setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
+ setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
+ setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
+ setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
}
if (Subtarget->isThumb1Only())
@@ -330,9 +454,16 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ // Custom handling for some vector types to avoid expensive expansions
+ setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
+ setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRL);
@@ -341,6 +472,10 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::BUILD_VECTOR);
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::STORE);
}
computeRegisterProperties();
@@ -397,7 +532,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
// These are expanded into libcalls.
- if (!Subtarget->hasDivide()) {
+ if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
// v7M has a hardware divider
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
@@ -423,14 +558,15 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
- // FIXME: Shouldn't need this, since no register is used, but the legalizer
- // doesn't yet know how to not do that for SjLj.
- setExceptionSelectorRegister(ARM::R0);
+ setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
+ setExceptionPointerRegister(ARM::R0);
+ setExceptionSelectorRegister(ARM::R1);
+
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
// the default expansion.
if (Subtarget->hasDataBarrier() ||
- (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
+ (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
// membarrier needs custom lowering; the rest are legal and handled
// normally.
setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
@@ -474,6 +610,8 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
+ setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
+
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
if (!Subtarget->hasV6Ops()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
@@ -484,7 +622,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
// iff target supports vfp2.
- setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
+ setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
}
@@ -493,6 +631,7 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
if (Subtarget->isTargetDarwin()) {
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+ setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
}
setOperationAction(ISD::SETCC, MVT::i32, Expand);
@@ -547,8 +686,10 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::MUL);
- if (Subtarget->hasV6T2Ops())
+ if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
setTargetDAGCombine(ISD::OR);
+ if (Subtarget->hasNEON())
+ setTargetDAGCombine(ISD::AND);
setStackPointerRegisterToSaveRestore(ARM::SP);
@@ -557,16 +698,26 @@ ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
else
setSchedulingPreference(Sched::Hybrid);
- maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
+ //// temporary - rewrite interface to use type
+ maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
// On ARM arguments smaller than 4 bytes are extended, so all arguments
// are at least 4 bytes aligned.
setMinStackArgumentAlignment(4);
- if (EnableARMCodePlacement)
- benefitFromCodePlacementOpt = true;
+ benefitFromCodePlacementOpt = true;
}
+// FIXME: It might make sense to define the representative register class as the
+// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
+// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
+// SPR's representative would be DPR_VFP2. This should work well if register
+// pressure tracking were modified such that a register use would increment the
+// pressure of the register class's representative and all of it's super
+// classes' representatives transitively. We have not implemented this because
+// of the difficulty prior to coalescing of modeling operand register classes
+// due to the common occurence of cross class copies and subregister insertions
+// and extractions.
std::pair<const TargetRegisterClass*, uint8_t>
ARMTargetLowering::findRepresentativeClass(EVT VT) const{
const TargetRegisterClass *RRC = 0;
@@ -580,6 +731,12 @@ ARMTargetLowering::findRepresentativeClass(EVT VT) const{
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
RRC = ARM::DPRRegisterClass;
+ // When NEON is used for SP, only half of the register file is available
+ // because operations that define both SP and DP results will be constrained
+ // to the VFP2 class (D0-D15). We currently model this constraint prior to
+ // coalescing by double-counting the SP regs. See the FIXME above.
+ if (Subtarget->useNEONForSinglePrecisionFP())
+ Cost = 2;
break;
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
@@ -602,6 +759,8 @@ const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case ARMISD::Wrapper: return "ARMISD::Wrapper";
+ case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN";
+ case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
@@ -612,7 +771,6 @@ const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
- case ARMISD::AND: return "ARMISD::AND";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::CMPZ: return "ARMISD::CMPZ";
case ARMISD::CMPFP: return "ARMISD::CMPFP";
@@ -633,25 +791,33 @@ const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
case ARMISD::RRX: return "ARMISD::RRX";
- case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
- case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
+ case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
+ case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
+ case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
-
+
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
- case ARMISD::SYNCBARRIER: return "ARMISD::SYNCBARRIER";
+ case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
+
+ case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
case ARMISD::VCEQ: return "ARMISD::VCEQ";
+ case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
case ARMISD::VCGE: return "ARMISD::VCGE";
+ case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
+ case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
case ARMISD::VCGEU: return "ARMISD::VCGEU";
case ARMISD::VCGT: return "ARMISD::VCGT";
+ case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
+ case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
case ARMISD::VCGTU: return "ARMISD::VCGTU";
case ARMISD::VTST: return "ARMISD::VTST";
@@ -693,6 +859,28 @@ const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
case ARMISD::FMAX: return "ARMISD::FMAX";
case ARMISD::FMIN: return "ARMISD::FMIN";
case ARMISD::BFI: return "ARMISD::BFI";
+ case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
+ case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
+ case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
+ case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
+ case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
+ case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
+ case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
+ case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
+ case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
+ case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
+ case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
+ case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
+ case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
+ case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
+ case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
+ case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
+ case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
+ case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
+ case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
+ case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
+ case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
+ case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
}
}
@@ -735,6 +923,8 @@ Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
for (unsigned i = 0; i != NumVals; ++i) {
EVT VT = N->getValueType(i);
+ if (VT == MVT::Glue || VT == MVT::Other)
+ continue;
if (VT.isFloatingPoint() || VT.isVector())
return Sched::Latency;
}
@@ -746,25 +936,29 @@ Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
// is not available.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
- if (TID.mayLoad())
- return Sched::Latency;
- const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData();
- if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2)
+ if (TID.getNumDefs() == 0)
+ return Sched::RegPressure;
+ if (!Itins->isEmpty() &&
+ Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
return Sched::Latency;
+
return Sched::RegPressure;
}
+// FIXME: Move to RegInfo
unsigned
ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
+ const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
+
switch (RC->getID()) {
default:
return 0;
case ARM::tGPRRegClassID:
- return RegInfo->hasFP(MF) ? 4 : 5;
+ return TFI->hasFP(MF) ? 4 : 5;
case ARM::GPRRegClassID: {
- unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
+ unsigned FP = TFI->hasFP(MF) ? 1 : 0;
return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
}
case ARM::SPRRegClassID: // Currently not used as 'rep' register class.
@@ -829,136 +1023,6 @@ static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
#include "ARMGenCallingConv.inc"
-// APCS f64 is in register pairs, possibly split to stack
-static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- CCState &State, bool CanFail) {
- static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
-
- // Try to get the first register.
- if (unsigned Reg = State.AllocateReg(RegList, 4))
- State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
- else {
- // For the 2nd half of a v2f64, do not fail.
- if (CanFail)
- return false;
-
- // Put the whole thing on the stack.
- State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
- State.AllocateStack(8, 4),
- LocVT, LocInfo));
- return true;
- }
-
- // Try to get the second register.
- if (unsigned Reg = State.AllocateReg(RegList, 4))
- State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
- else
- State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
- State.AllocateStack(4, 4),
- LocVT, LocInfo));
- return true;
-}
-
-static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
- return false;
- if (LocVT == MVT::v2f64 &&
- !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
- return false;
- return true; // we handled it
-}
-
-// AAPCS f64 is in aligned register pairs
-static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- CCState &State, bool CanFail) {
- static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
- static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
- static const unsigned ShadowRegList[] = { ARM::R0, ARM::R1 };
-
- unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList, 2);
- if (Reg == 0) {
- // For the 2nd half of a v2f64, do not just fail.
- if (CanFail)
- return false;
-
- // Put the whole thing on the stack.
- State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
- State.AllocateStack(8, 8),
- LocVT, LocInfo));
- return true;
- }
-
- unsigned i;
- for (i = 0; i < 2; ++i)
- if (HiRegList[i] == Reg)
- break;
-
- unsigned T = State.AllocateReg(LoRegList[i]);
- (void)T;
- assert(T == LoRegList[i] && "Could not allocate register");
-
- State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
- State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
- LocVT, LocInfo));
- return true;
-}
-
-static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
- return false;
- if (LocVT == MVT::v2f64 &&
- !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
- return false;
- return true; // we handled it
-}
-
-static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo, CCState &State) {
- static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
- static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
-
- unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
- if (Reg == 0)
- return false; // we didn't handle it
-
- unsigned i;
- for (i = 0; i < 2; ++i)
- if (HiRegList[i] == Reg)
- break;
-
- State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
- State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
- LocVT, LocInfo));
- return true;
-}
-
-static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
- return false;
- if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
- return false;
- return true; // we handled it
-}
-
-static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
- CCValAssign::LocInfo &LocInfo,
- ISD::ArgFlagsTy &ArgFlags,
- CCState &State) {
- return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
- State);
-}
-
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
/// given CallingConvention value.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
@@ -967,23 +1031,29 @@ CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
- case CallingConv::C:
case CallingConv::Fast:
+ if (Subtarget->hasVFP2() && !isVarArg) {
+ if (!Subtarget->isAAPCS_ABI())
+ return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
+ // For AAPCS ABI targets, just use VFP variant of the calling convention.
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ }
+ // Fallthrough
+ case CallingConv::C: {
// Use target triple & subtarget features to do actual dispatch.
- if (Subtarget->isAAPCS_ABI()) {
- if (Subtarget->hasVFP2() &&
- FloatABIType == FloatABI::Hard && !isVarArg)
- return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
- else
- return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
- } else
- return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ if (!Subtarget->isAAPCS_ABI())
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
+ else if (Subtarget->hasVFP2() &&
+ FloatABIType == FloatABI::Hard && !isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
+ }
case CallingConv::ARM_AAPCS_VFP:
- return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
case CallingConv::ARM_AAPCS:
- return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
case CallingConv::ARM_APCS:
- return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
}
}
@@ -1050,7 +1120,7 @@ ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
- Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
+ Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
break;
}
@@ -1073,7 +1143,7 @@ CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*isVolatile=*/false, /*AlwaysInline=*/false,
- NULL, 0, NULL, 0);
+ MachinePointerInfo(0), MachinePointerInfo(0));
}
/// LowerMemOpCallTo - Store the argument to the stack.
@@ -1086,11 +1156,11 @@ ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
- if (Flags.isByVal()) {
+ if (Flags.isByVal())
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
- }
+
return DAG.getStore(Chain, dl, Arg, PtrOff,
- PseudoSourceValue::getStack(), LocMemOffset,
+ MachinePointerInfo::getStack(LocMemOffset),
false, false, 0);
}
@@ -1198,7 +1268,7 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
@@ -1289,7 +1359,7 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
// Create a constant pool entry for the callee address
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
ARMPCLabelIndex,
ARMCP::CPValue, 0);
@@ -1298,13 +1368,13 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
// Create a constant pool entry for the callee address
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
Sym, ARMPCLabelIndex, 0);
// Get the address of the callee into a register
@@ -1312,7 +1382,7 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
}
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
@@ -1326,7 +1396,7 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
// tBX takes a register source operand.
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
ARMPCLabelIndex,
ARMCP::CPValue, 4);
@@ -1334,13 +1404,19 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
getPointerTy(), Callee, PICLabel);
- } else
- Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
+ } else {
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ unsigned OpFlags = 0;
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
+ }
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
isDirect = true;
bool isStub = Subtarget->isTargetDarwin() &&
@@ -1349,20 +1425,26 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
// tBX takes a register source operand.
const char *Sym = S->getSymbol();
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
Sym, ARMPCLabelIndex, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
getPointerTy(), Callee, PICLabel);
- } else
- Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
+ } else {
+ unsigned OpFlags = 0;
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
+ }
}
// FIXME: handle tail calls differently.
@@ -1391,7 +1473,7 @@ ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
if (InFlag.getNode())
Ops.push_back(InFlag);
- SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (isTailCall)
return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
@@ -1421,7 +1503,7 @@ bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
int FI = INT_MAX;
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
- if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
+ if (!TargetRegisterInfo::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
@@ -1490,32 +1572,15 @@ ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// LR. This means if we need to reload LR, it takes an extra instructions,
// which outweighs the value of the tail call; but here we don't know yet
// whether LR is going to be used. Probably the right approach is to
- // generate the tail call here and turn it back into CALL/RET in
+ // generate the tail call here and turn it back into CALL/RET in
// emitEpilogue if LR is used.
- if (Subtarget->isThumb1Only())
- return false;
-
- // For the moment, we can only do this to functions defined in this
- // compilation, or to indirect calls. A Thumb B to an ARM function,
- // or vice versa, is not easily fixed up in the linker unlike BL.
- // (We could do this by loading the address of the callee into a register;
- // that is an extra instruction over the direct call and burns a register
- // as well, so is not likely to be a win.)
-
- // It might be safe to remove this restriction on non-Darwin.
// Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
// but we need to make sure there are enough registers; the only valid
// registers are the 4 used for parameters. We don't currently do this
// case.
- if (isa<ExternalSymbolSDNode>(Callee))
- return false;
-
- if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
- const GlobalValue *GV = G->getGlobal();
- if (GV->isDeclaration() || GV->isWeakForLinker())
- return false;
- }
+ if (Subtarget->isThumb1Only())
+ return false;
// If the calling conventions do not match, then we'd better make sure the
// results are returned in the same way as what the caller expects.
@@ -1583,7 +1648,7 @@ ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
if (!VA.isRegLoc())
return false;
if (!ArgLocs[++i].isRegLoc())
- return false;
+ return false;
if (RegVT == MVT::v2f64) {
if (!ArgLocs[++i].isRegLoc())
return false;
@@ -1643,7 +1708,7 @@ ARMTargetLowering::LowerReturn(SDValue Chain,
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
@@ -1693,6 +1758,61 @@ ARMTargetLowering::LowerReturn(SDValue Chain,
return result;
}
+bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ unsigned NumCopies = 0;
+ SDNode* Copies[2];
+ SDNode *Use = *N->use_begin();
+ if (Use->getOpcode() == ISD::CopyToReg) {
+ Copies[NumCopies++] = Use;
+ } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
+ // f64 returned in a pair of GPRs.
+ for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ Copies[UI.getUse().getResNo()] = *UI;
+ ++NumCopies;
+ }
+ } else if (Use->getOpcode() == ISD::BITCAST) {
+ // f32 returned in a single GPR.
+ if (!Use->hasNUsesOfValue(1, 0))
+ return false;
+ Use = *Use->use_begin();
+ if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
+ return false;
+ Copies[NumCopies++] = Use;
+ } else {
+ return false;
+ }
+
+ if (NumCopies != 1 && NumCopies != 2)
+ return false;
+
+ bool HasRet = false;
+ for (unsigned i = 0; i < NumCopies; ++i) {
+ SDNode *Copy = Copies[i];
+ for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() == ISD::CopyToReg) {
+ SDNode *Use = *UI;
+ if (Use == Copies[0] || Use == Copies[1])
+ continue;
+ return false;
+ }
+ if (UI->getOpcode() != ARMISD::RET_FLAG)
+ return false;
+ HasRet = true;
+ }
+ }
+
+ return HasRet;
+}
+
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
@@ -1732,7 +1852,7 @@ SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
} else {
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
- ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
ARMCP::CPBlockAddress,
PCAdj);
@@ -1740,7 +1860,7 @@ SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
}
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
if (RelocM == Reloc::Static)
return Result;
@@ -1757,14 +1877,14 @@ ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
- ARMCP::CPValue, PCAdj, "tlsgd", true);
+ ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
SDValue Chain = Argument.getValue(1);
@@ -1802,16 +1922,16 @@ ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
if (GV->isDeclaration()) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
// Initial exec model.
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
- ARMCP::CPValue, PCAdj, "gottpoff", true);
+ ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
Chain = Offset.getValue(1);
@@ -1819,15 +1939,15 @@ ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
} else {
// local exec model
- ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
}
@@ -1859,51 +1979,72 @@ SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
if (RelocM == Reloc::PIC_) {
bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
ARMConstantPoolValue *CPV =
- new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
+ new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
SDValue Chain = Result.getValue(1);
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
if (!UseGOTOFF)
Result = DAG.getLoad(PtrVT, dl, Chain, Result,
- PseudoSourceValue::getGOT(), 0,
- false, false, 0);
+ MachinePointerInfo::getGOT(), false, false, 0);
return Result;
+ }
+
+ // If we have T2 ops, we can materialize the address directly via movt/movw
+ // pair. This is always cheaper.
+ if (Subtarget->useMovt()) {
+ ++NumMovwMovt;
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
} else {
- // If we have T2 ops, we can materialize the address directly via movt/movw
- // pair. This is always cheaper.
- if (Subtarget->useMovt()) {
- return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
- DAG.getTargetGlobalAddress(GV, dl, PtrVT));
- } else {
- SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
- CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
- return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
- false, false, 0);
- }
+ SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(),
+ false, false, 0);
}
}
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
SelectionDAG &DAG) const {
- MachineFunction &MF = DAG.getMachineFunction();
- ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned ARMPCLabelIndex = 0;
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ if (Subtarget->useMovt()) {
+ ++NumMovwMovt;
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ if (RelocM == Reloc::Static)
+ return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
+
+ unsigned Wrapper = (RelocM == Reloc::PIC_)
+ ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
+ SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
+ if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
+ Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(), false, false, 0);
+ return Result;
+ }
+
+ unsigned ARMPCLabelIndex = 0;
SDValue CPAddr;
- if (RelocM == Reloc::Static)
+ if (RelocM == Reloc::Static) {
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
- else {
- ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ } else {
+ ARMPCLabelIndex = AFI->createPICLabelUId();
unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
@@ -1912,7 +2053,7 @@ SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
SDValue Chain = Result.getValue(1);
@@ -1922,8 +2063,7 @@ SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
}
if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
- Result = DAG.getLoad(PtrVT, dl, Chain, Result,
- PseudoSourceValue::getGOT(), 0,
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
false, false, 0);
return Result;
@@ -1935,7 +2075,7 @@ SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
"GLOBAL OFFSET TABLE not implemented for non-ELF targets");
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
@@ -1945,13 +2085,21 @@ SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
SDValue
+ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
+ const {
+ DebugLoc dl = Op.getDebugLoc();
+ return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
SDValue Val = DAG.getConstant(0, MVT::i32);
@@ -1980,7 +2128,7 @@ ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
- unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
@@ -1994,7 +2142,7 @@ ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
- PseudoSourceValue::getConstantPool(), 0,
+ MachinePointerInfo::getConstantPool(),
false, false, 0);
if (RelocM == Reloc::PIC_) {
@@ -2009,21 +2157,55 @@ ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
DebugLoc dl = Op.getDebugLoc();
- SDValue Op5 = Op.getOperand(5);
- unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
- // Some subtargets which have dmb and dsb instructions can handle barriers
- // directly. Some ARMv6 cpus can support them with the help of mcr
- // instruction. Thumb1 and pre-v6 ARM mode use a libcall instead and should
- // never get here.
- unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
- if (Subtarget->hasDataBarrier())
- return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
- else {
- assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
+ if (!Subtarget->hasDataBarrier()) {
+ // Some ARMv6 cpus can support data barriers with an mcr instruction.
+ // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
+ // here.
+ assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
"Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
- return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
+ return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
}
+
+ SDValue Op5 = Op.getOperand(5);
+ bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
+ unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
+
+ ARM_MB::MemBOpt DMBOpt;
+ if (isDeviceBarrier)
+ DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
+ else
+ DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
+ return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(DMBOpt, MVT::i32));
+}
+
+static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ // ARM pre v5TE and Thumb1 does not have preload instructions.
+ if (!(Subtarget->isThumb2() ||
+ (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
+ // Just preserve the chain.
+ return Op.getOperand(0);
+
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
+ if (!isRead &&
+ (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
+ // ARMv7 with MP extension has PLDW.
+ return Op.getOperand(0);
+
+ if (Subtarget->isThumb())
+ // Invert the bits.
+ isRead = ~isRead & 1;
+ unsigned isData = Subtarget->isThumb() ? 0 : 1;
+
+ // Currently there is no intrinsic that matches pli.
+ return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
+ DAG.getConstant(isData, MVT::i32));
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
@@ -2036,8 +2218,8 @@ static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
- return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
- false, false, 0);
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
}
SDValue
@@ -2054,7 +2236,7 @@ ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
RC = ARM::GPRRegisterClass;
// Transform the arguments stored in physical registers into virtual ones.
- unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC, dl);
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
SDValue ArgValue2;
@@ -2065,10 +2247,10 @@ ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
// Create load node to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
- PseudoSourceValue::getFixedStack(FI), 0,
+ MachinePointerInfo::getFixedStack(FI),
false, false, 0);
} else {
- Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
+ Reg = MF.addLiveIn(NextVA.getLocReg(), RC, dl);
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
}
@@ -2119,7 +2301,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
- PseudoSourceValue::getFixedStack(FI), 0,
+ MachinePointerInfo::getFixedStack(FI),
false, false, 0);
} else {
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
@@ -2149,7 +2331,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
- unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC, dl);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
}
@@ -2160,7 +2342,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
- ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
+ ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::SExt:
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
@@ -2188,7 +2370,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
- PseudoSourceValue::getFixedStack(FI), 0,
+ MachinePointerInfo::getFixedStack(FI),
false, false, 0));
}
}
@@ -2202,7 +2384,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
unsigned NumGPRs = CCInfo.getFirstUnallocated
(GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
- unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
+ unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
unsigned VARegSize = (4 - NumGPRs) * 4;
unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
unsigned ArgOffset = CCInfo.getNextStackOffset();
@@ -2214,7 +2396,7 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
AFI->setVarArgsFrameIndex(
MFI->CreateFixedObject(VARegSaveSize,
ArgOffset + VARegSaveSize - VARegSize,
- true));
+ false));
SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
getPointerTy());
@@ -2226,12 +2408,12 @@ ARMTargetLowering::LowerFormalArguments(SDValue Chain,
else
RC = ARM::GPRRegisterClass;
- unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
+ unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC, dl);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN,
- PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()),
- 0, false, false, 0);
+ MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
+ false, false, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
DAG.getConstant(4, getPointerTy()));
@@ -2320,7 +2502,7 @@ ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
break;
}
ARMcc = DAG.getConstant(CondCode, MVT::i32);
- return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
+ return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
}
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
@@ -2329,10 +2511,10 @@ ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
DebugLoc dl) const {
SDValue Cmp;
if (!isFloatingPointZero(RHS))
- Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
+ Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
else
- Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
- return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
+ Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
+ return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
}
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
@@ -2444,8 +2626,7 @@ static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
- Ld->getChain(), Ld->getBasePtr(),
- Ld->getSrcValue(), Ld->getSrcValueOffset(),
+ Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
Ld->isVolatile(), Ld->isNonTemporal(),
Ld->getAlignment());
@@ -2464,7 +2645,7 @@ static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
SDValue Ptr = Ld->getBasePtr();
RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
Ld->getChain(), Ptr,
- Ld->getSrcValue(), Ld->getSrcValueOffset(),
+ Ld->getPointerInfo(),
Ld->isVolatile(), Ld->isNonTemporal(),
Ld->getAlignment());
@@ -2474,7 +2655,7 @@ static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
PtrType, Ptr, DAG.getConstant(4, PtrType));
RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
Ld->getChain(), NewPtr,
- Ld->getSrcValue(), Ld->getSrcValueOffset() + 4,
+ Ld->getPointerInfo().getWithOffset(4),
Ld->isVolatile(), Ld->isNonTemporal(),
NewAlign);
return;
@@ -2524,7 +2705,7 @@ ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
expandf64Toi32(RHS, DAG, RHS1, RHS2);
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMcc = DAG.getConstant(CondCode, MVT::i32);
- SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
}
@@ -2564,7 +2745,7 @@ SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
- SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
if (CondCode2 != ARMCC::AL) {
@@ -2599,14 +2780,14 @@ SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
}
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
- PseudoSourceValue::getJumpTable(), 0,
+ MachinePointerInfo::getJumpTable(),
false, false, 0);
Chain = Addr.getValue(1);
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
} else {
Addr = DAG.getLoad(PTy, dl, Chain, Addr,
- PseudoSourceValue::getJumpTable(), 0, false, false, 0);
+ MachinePointerInfo::getJumpTable(), false, false, 0);
Chain = Addr.getValue(1);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
}
@@ -2627,7 +2808,7 @@ static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
break;
}
Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
}
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
@@ -2646,7 +2827,7 @@ static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
break;
}
- Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
+ Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
return DAG.getNode(Opc, dl, VT, Op);
}
@@ -2657,12 +2838,46 @@ SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
EVT SrcVT = Tmp1.getValueType();
- SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
- SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
- SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
- SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
+ bool F2IisFast = Subtarget->isCortexA9() ||
+ Tmp0.getOpcode() == ISD::BITCAST || Tmp0.getOpcode() == ARMISD::VMOVDRR;
+
+ // Bitcast operand 1 to i32.
+ if (SrcVT == MVT::f64)
+ Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ &Tmp1, 1).getValue(1);
+ Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
+
+ // If float to int conversion isn't going to be super expensive, then simply
+ // or in the signbit.
+ if (F2IisFast) {
+ SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
+ SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
+ Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
+ if (VT == MVT::f32) {
+ Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
+ }
+
+ // f64: Or the high part with signbit and then combine two parts.
+ Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ &Tmp0, 1);
+ SDValue Lo = Tmp0.getValue(0);
+ SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
+ Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+ }
+
+ // Remove the signbit of operand 0.
+ Tmp0 = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
+
+ // If operand 1 signbit is one, then negate operand 0.
+ SDValue ARMcc;
+ SDValue Cmp = getARMCmp(Tmp1, DAG.getConstant(0, MVT::i32),
+ ISD::SETLT, ARMcc, DAG, dl);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
- return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
+ return DAG.getNode(ARMISD::CNEG, dl, VT, Tmp0, Tmp0, ARMcc, CCR, Cmp);
}
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
@@ -2678,11 +2893,11 @@ SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
SDValue Offset = DAG.getConstant(4, MVT::i32);
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
- NULL, 0, false, false, 0);
+ MachinePointerInfo(), false, false, 0);
}
// Return LR, which contains the return address. Mark it an implicit live-in.
- unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
+ unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32), dl);
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
@@ -2697,17 +2912,18 @@ SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
? ARM::R7 : ARM::R11;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
- FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
false, false, 0);
return FrameAddr;
}
-/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
+/// ExpandBITCAST - If the target supports VFP, this function is called to
/// expand a bit convert where either the source or destination type is i64 to
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
/// vectors), since the legalizer won't know what to do with that.
-static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
+static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
DebugLoc dl = N->getDebugLoc();
SDValue Op = N->getOperand(0);
@@ -2717,7 +2933,7 @@ static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
EVT SrcVT = Op.getValueType();
EVT DstVT = N->getValueType(0);
assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
- "ExpandBIT_CONVERT called for non-i64 type");
+ "ExpandBITCAST called for non-i64 type");
// Turn i64->f64 into VMOVDRR.
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
@@ -2725,7 +2941,7 @@ static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(1, MVT::i32));
- return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
+ return DAG.getNode(ISD::BITCAST, dl, DstVT,
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
}
@@ -2752,7 +2968,7 @@ static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
@@ -2825,7 +3041,7 @@ SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
return DAG.getMergeValues(Ops, 2, dl);
}
-SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
// The rounding mode is in bits 23:22 of the FPSCR.
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
@@ -2835,11 +3051,11 @@ SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
DAG.getConstant(Intrinsic::arm_get_fpscr,
MVT::i32));
- SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
+ SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
DAG.getConstant(1U << 22, MVT::i32));
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
DAG.getConstant(22, MVT::i32));
- return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
+ return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
DAG.getConstant(3, MVT::i32));
}
@@ -2860,33 +3076,40 @@ static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
+ if (!VT.isVector())
+ return SDValue();
+
// Lower vector shifts on NEON to use VSHL.
- if (VT.isVector()) {
- assert(ST->hasNEON() && "unexpected vector shift");
-
- // Left shifts translate directly to the vshiftu intrinsic.
- if (N->getOpcode() == ISD::SHL)
- return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
- DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
- N->getOperand(0), N->getOperand(1));
-
- assert((N->getOpcode() == ISD::SRA ||
- N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
-
- // NEON uses the same intrinsics for both left and right shifts. For
- // right shifts, the shift amounts are negative, so negate the vector of
- // shift amounts.
- EVT ShiftVT = N->getOperand(1).getValueType();
- SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
- getZeroVector(ShiftVT, DAG, dl),
- N->getOperand(1));
- Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
- Intrinsic::arm_neon_vshifts :
- Intrinsic::arm_neon_vshiftu);
+ assert(ST->hasNEON() && "unexpected vector shift");
+
+ // Left shifts translate directly to the vshiftu intrinsic.
+ if (N->getOpcode() == ISD::SHL)
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
- DAG.getConstant(vshiftInt, MVT::i32),
- N->getOperand(0), NegatedCount);
- }
+ DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
+ N->getOperand(0), N->getOperand(1));
+
+ assert((N->getOpcode() == ISD::SRA ||
+ N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
+
+ // NEON uses the same intrinsics for both left and right shifts. For
+ // right shifts, the shift amounts are negative, so negate the vector of
+ // shift amounts.
+ EVT ShiftVT = N->getOperand(1).getValueType();
+ SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
+ getZeroVector(ShiftVT, DAG, dl),
+ N->getOperand(1));
+ Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
+ Intrinsic::arm_neon_vshifts :
+ Intrinsic::arm_neon_vshiftu);
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(vshiftInt, MVT::i32),
+ N->getOperand(0), NegatedCount);
+}
+
+static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
// We can get here for a node like i32 = ISD::SHL i32, i64
if (VT != MVT::i64)
@@ -2912,7 +3135,7 @@ static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
// captures the result into a carry flag.
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
- Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
+ Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
// The low part is an ARMISD::RRX operand, which shifts the carry in.
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
@@ -2998,13 +3221,13 @@ static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
AndOp = Op1;
// Ignore bitconvert.
- if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
AndOp = AndOp.getOperand(0);
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
Opc = ARMISD::VTST;
- Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
- Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
+ Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
+ Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
Invert = !Invert;
}
}
@@ -3013,7 +3236,38 @@ static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
if (Swap)
std::swap(Op0, Op1);
- SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+ // If one of the operands is a constant vector zero, attempt to fold the
+ // comparison to a specialized compare-against-zero form.
+ SDValue SingleOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ SingleOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
+ if (Opc == ARMISD::VCGE)
+ Opc = ARMISD::VCLEZ;
+ else if (Opc == ARMISD::VCGT)
+ Opc = ARMISD::VCLTZ;
+ SingleOp = Op1;
+ }
+
+ SDValue Result;
+ if (SingleOp.getNode()) {
+ switch (Opc) {
+ case ARMISD::VCEQ:
+ Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
+ case ARMISD::VCGE:
+ Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
+ case ARMISD::VCLEZ:
+ Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
+ case ARMISD::VCGT:
+ Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
+ case ARMISD::VCLTZ:
+ Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
+ default:
+ Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+ }
+ } else {
+ Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+ }
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
@@ -3026,7 +3280,7 @@ static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
/// operand (e.g., VMOV). If so, return the encoded value.
static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
unsigned SplatBitSize, SelectionDAG &DAG,
- EVT &VT, bool is128Bits, bool isVMOV) {
+ EVT &VT, bool is128Bits, NEONModImmType type) {
unsigned OpCmode, Imm;
// SplatBitSize is set to the smallest size that splats the vector, so a
@@ -3039,7 +3293,7 @@ static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
switch (SplatBitSize) {
case 8:
- if (!isVMOV)
+ if (type != VMOVModImm)
return SDValue();
// Any 1-byte value is OK. Op=0, Cmode=1110.
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
@@ -3096,6 +3350,9 @@ static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
break;
}
+ // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
+ if (type == OtherModImm) return SDValue();
+
if ((SplatBits & ~0xffff) == 0 &&
((SplatBits | SplatUndef) & 0xff) == 0xff) {
// Value = 0x0000nnff: Op=x, Cmode=1100.
@@ -3122,7 +3379,7 @@ static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
return SDValue();
case 64: {
- if (!isVMOV)
+ if (type != VMOVModImm)
return SDValue();
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
uint64_t BitMask = 0xff;
@@ -3376,8 +3633,8 @@ static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
-static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
- const ARMSubtarget *ST) {
+SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const {
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
@@ -3391,10 +3648,11 @@ static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
EVT VmovVT;
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize,
- DAG, VmovVT, VT.is128BitVector(), true);
+ DAG, VmovVT, VT.is128BitVector(),
+ VMOVModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
// Try an immediate VMVN.
@@ -3402,10 +3660,11 @@ static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
((1LL << SplatBitSize) - 1));
Val = isNEONModifiedImm(NegatedImm,
SplatUndef.getZExtValue(), SplatBitSize,
- DAG, VmovVT, VT.is128BitVector(), false);
+ DAG, VmovVT, VT.is128BitVector(),
+ VMVNModImm);
if (Val.getNode()) {
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
}
}
}
@@ -3439,26 +3698,25 @@ static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
- if (EnableARMVDUPsplat) {
- // Use VDUP for non-constant splats. For f32 constant splats, reduce to
- // i32 and try again.
- if (usesOnlyOneValue && EltSize <= 32) {
- if (!isConstant)
- return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
- if (VT.getVectorElementType().isFloatingPoint()) {
- SmallVector<SDValue, 8> Ops;
- for (unsigned i = 0; i < NumElts; ++i)
- Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
- Op.getOperand(i)));
- SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
- NumElts);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
- LowerBUILD_VECTOR(Val, DAG, ST));
- }
- SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
+ // Use VDUP for non-constant splats. For f32 constant splats, reduce to
+ // i32 and try again.
+ if (usesOnlyOneValue && EltSize <= 32) {
+ if (!isConstant)
+ return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
+ if (VT.getVectorElementType().isFloatingPoint()) {
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
+ Op.getOperand(i)));
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
+ SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
+ Val = LowerBUILD_VECTOR(Val, DAG, ST);
if (Val.getNode())
- return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
+ SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
+ if (Val.getNode())
+ return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
}
// If all elements are constants and the case above didn't get hit, fall back
@@ -3467,10 +3725,11 @@ static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
if (isConstant)
return SDValue();
- if (!EnableARMVDUPsplat) {
- // Use VDUP for non-constant splats.
- if (usesOnlyOneValue && EltSize <= 32)
- return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
+ // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
+ if (NumElts >= 4) {
+ SDValue shuffle = ReconstructShuffle(Op, DAG);
+ if (shuffle != SDValue())
+ return shuffle;
}
// Vectors with 32- or 64-bit elements can be built by directly assigning
@@ -3483,14 +3742,144 @@ static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i)
- Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
return SDValue();
}
+// Gather data to see if the operation can be modelled as a
+// shuffle in combination with VEXTs.
+SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
+ SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SmallVector<SDValue, 2> SourceVecs;
+ SmallVector<unsigned, 2> MinElts;
+ SmallVector<unsigned, 2> MaxElts;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
+ // A shuffle can only come from building a vector from various
+ // elements of other vectors.
+ return SDValue();
+ }
+
+ // Record this extraction against the appropriate vector if possible...
+ SDValue SourceVec = V.getOperand(0);
+ unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
+ bool FoundSource = false;
+ for (unsigned j = 0; j < SourceVecs.size(); ++j) {
+ if (SourceVecs[j] == SourceVec) {
+ if (MinElts[j] > EltNo)
+ MinElts[j] = EltNo;
+ if (MaxElts[j] < EltNo)
+ MaxElts[j] = EltNo;
+ FoundSource = true;
+ break;
+ }
+ }
+
+ // Or record a new source if not...
+ if (!FoundSource) {
+ SourceVecs.push_back(SourceVec);
+ MinElts.push_back(EltNo);
+ MaxElts.push_back(EltNo);
+ }
+ }
+
+ // Currently only do something sane when at most two source vectors
+ // involved.
+ if (SourceVecs.size() > 2)
+ return SDValue();
+
+ SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
+ int VEXTOffsets[2] = {0, 0};
+
+ // This loop extracts the usage patterns of the source vectors
+ // and prepares appropriate SDValues for a shuffle if possible.
+ for (unsigned i = 0; i < SourceVecs.size(); ++i) {
+ if (SourceVecs[i].getValueType() == VT) {
+ // No VEXT necessary
+ ShuffleSrcs[i] = SourceVecs[i];
+ VEXTOffsets[i] = 0;
+ continue;
+ } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
+ // It probably isn't worth padding out a smaller vector just to
+ // break it down again in a shuffle.
+ return SDValue();
+ }
+
+ // Since only 64-bit and 128-bit vectors are legal on ARM and
+ // we've eliminated the other cases...
+ assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
+ "unexpected vector sizes in ReconstructShuffle");
+
+ if (MaxElts[i] - MinElts[i] >= NumElts) {
+ // Span too large for a VEXT to cope
+ return SDValue();
+ }
+
+ if (MinElts[i] >= NumElts) {
+ // The extraction can just take the second half
+ VEXTOffsets[i] = NumElts;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ } else if (MaxElts[i] < NumElts) {
+ // The extraction can just take the first half
+ VEXTOffsets[i] = 0;
+ ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(0));
+ } else {
+ // An actual VEXT is needed
+ VEXTOffsets[i] = MinElts[i];
+ SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(0));
+ SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ SourceVecs[i],
+ DAG.getIntPtrConstant(NumElts));
+ ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
+ DAG.getConstant(VEXTOffsets[i], MVT::i32));
+ }
+ }
+
+ SmallVector<int, 8> Mask;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Entry = Op.getOperand(i);
+ if (Entry.getOpcode() == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ SDValue ExtractVec = Entry.getOperand(0);
+ int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
+ .getOperand(1))->getSExtValue();
+ if (ExtractVec == SourceVecs[0]) {
+ Mask.push_back(ExtractElt - VEXTOffsets[0]);
+ } else {
+ Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
+ }
+ }
+
+ // Final check before we try to produce nonsense...
+ if (isShuffleMaskLegal(Mask, VT))
+ return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
+ &Mask[0]);
+
+ return SDValue();
+}
+
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
@@ -3706,8 +4095,8 @@ static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
// registers are defined to use, and since i64 is not legal.
EVT EltVT = EVT::getFloatingPointVT(EltSize);
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
- V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
- V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
+ V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i) {
if (ShuffleMask[i] < 0)
@@ -3719,21 +4108,26 @@ static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
MVT::i32)));
}
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
}
return SDValue();
}
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
- EVT VT = Op.getValueType();
- DebugLoc dl = Op.getDebugLoc();
- SDValue Vec = Op.getOperand(0);
+ // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
SDValue Lane = Op.getOperand(1);
- assert(VT == MVT::i32 &&
- Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
- "unexpected type for custom-lowering vector extract");
- return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
+ if (!isa<ConstantSDNode>(Lane))
+ return SDValue();
+
+ SDValue Vec = Op.getOperand(0);
+ if (Op.getValueType() == MVT::i32 &&
+ Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
+ DebugLoc dl = Op.getDebugLoc();
+ return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
+ }
+
+ return Op;
}
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
@@ -3747,25 +4141,123 @@ static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
SDValue Op1 = Op.getOperand(1);
if (Op0.getOpcode() != ISD::UNDEF)
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
DAG.getIntPtrConstant(0));
if (Op1.getOpcode() != ISD::UNDEF)
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
DAG.getIntPtrConstant(1));
- return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
+}
+
+/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
+/// element has been zero/sign-extended, depending on the isSigned parameter,
+/// from an integer type half its size.
+static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
+ bool isSigned) {
+ // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ if (BVN->getValueType(0) != MVT::v4i32 ||
+ BVN->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+ unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ unsigned HiElt = 1 - LoElt;
+ ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
+ ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
+ ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
+ ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
+ if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
+ return false;
+ if (isSigned) {
+ if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
+ Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
+ return true;
+ } else {
+ if (Hi0->isNullValue() && Hi1->isNullValue())
+ return true;
+ }
+ return false;
+ }
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ unsigned HalfSize = EltSize / 2;
+ if (isSigned) {
+ int64_t SExtVal = C->getSExtValue();
+ if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
+ return false;
+ } else {
+ if ((C->getZExtValue() >> HalfSize) != 0)
+ return false;
+ }
+ continue;
+ }
+ return false;
+ }
+
+ return true;
+}
+
+/// isSignExtended - Check if a node is a vector value that is sign-extended
+/// or a constant BUILD_VECTOR with sign-extended elements.
+static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, true))
+ return true;
+ return false;
+}
+
+/// isZeroExtended - Check if a node is a vector value that is zero-extended
+/// or a constant BUILD_VECTOR with zero-extended elements.
+static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, false))
+ return true;
+ return false;
}
-/// SkipExtension - For a node that is either a SIGN_EXTEND, ZERO_EXTEND, or
-/// an extending load, return the unextended value.
+/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
+/// load, or BUILD_VECTOR with extended elements, return the unextended value.
static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
return N->getOperand(0);
- LoadSDNode *LD = cast<LoadSDNode>(N);
- return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
- LD->getBasePtr(), LD->getSrcValue(),
- LD->getSrcValueOffset(), LD->isVolatile(),
- LD->isNonTemporal(), LD->getAlignment());
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
+ return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
+ LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->getAlignment());
+ // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
+ // have been legalized as a BITCAST from v4i32.
+ if (N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
+ BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
+ unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
+ BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
+ }
+ // Construct a new BUILD_VECTOR with elements truncated to half the size.
+ assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
+ EVT VT = N->getValueType(0);
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT TruncVT = MVT::getIntegerVT(EltSize);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
+ const APInt &CInt = C->getAPIntValue();
+ Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
+ MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
}
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
@@ -3776,19 +4268,16 @@ static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
SDNode *N0 = Op.getOperand(0).getNode();
SDNode *N1 = Op.getOperand(1).getNode();
unsigned NewOpc = 0;
- if ((N0->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N0)) &&
- (N1->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N1))) {
+ if (isSignExtended(N0, DAG) && isSignExtended(N1, DAG))
NewOpc = ARMISD::VMULLs;
- } else if ((N0->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N0)) &&
- (N1->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N1))) {
+ else if (isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG))
NewOpc = ARMISD::VMULLu;
- } else if (VT.getSimpleVT().SimpleTy == MVT::v2i64) {
+ else if (VT == MVT::v2i64)
// Fall through to expand this. It is not legal.
return SDValue();
- } else {
+ else
// Other vector multiplications are legal.
return Op;
- }
// Legalize to a VMULL instruction.
DebugLoc DL = Op.getDebugLoc();
@@ -3801,6 +4290,181 @@ static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
}
+static SDValue
+LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
+ // Convert to float
+ // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
+ // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
+ X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
+ Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
+ X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
+ Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
+ // Get reciprocal estimate.
+ // float4 recip = vrecpeq_f32(yf);
+ Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
+ // Because char has a smaller range than uchar, we can actually get away
+ // without any newton steps. This requires that we use a weird bias
+ // of 0xb000, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
+ X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
+ Y = DAG.getConstant(0xb000, MVT::i32);
+ Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
+ X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
+ // Convert back to short.
+ X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
+ X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
+ return X;
+}
+
+static SDValue
+LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
+ SDValue N2;
+ // Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_s16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_s16(x));
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and one refinement step.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ N1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Because short has a smaller range than ushort, we can actually get away
+ // with only a single newton step. This requires that we use a weird bias
+ // of 89, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 89);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(89, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_s32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
+static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::SDIV");
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0));
+
+ N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
+ return N0;
+ }
+ return LowerSDIV_v4i16(N0, N1, dl, DAG);
+}
+
+static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::UDIV");
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0));
+
+ N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
+ DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
+ N0);
+ return N0;
+ }
+
+ // v4i16 sdiv ... Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_u16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_u16(x));
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and two refinement steps.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ N1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
+ N1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Simply multiplying by the reciprocal estimate can leave us a few ulps
+ // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
+ // and that it will never cause us to return an answer too large).
+ // float4 result = as_float4(as_int4(xf*recip) + 89);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(2, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_u32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
@@ -3816,6 +4480,7 @@ SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
+ case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
@@ -3826,9 +4491,10 @@ SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
Subtarget);
- case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG);
+ case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
case ISD::SHL:
case ISD::SRL:
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
@@ -3843,6 +4509,8 @@ SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
+ case ISD::SDIV: return LowerSDIV(Op, DAG);
+ case ISD::UDIV: return LowerUDIV(Op, DAG);
}
return SDValue();
}
@@ -3857,12 +4525,12 @@ void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
default:
llvm_unreachable("Don't know how to custom expand this!");
break;
- case ISD::BIT_CONVERT:
- Res = ExpandBIT_CONVERT(N, DAG);
+ case ISD::BITCAST:
+ Res = ExpandBITCAST(N, DAG);
break;
case ISD::SRL:
case ISD::SRA:
- Res = LowerShift(N, DAG, Subtarget);
+ Res = Expand64BitShift(N, DAG, Subtarget);
break;
}
if (Res.getNode())
@@ -3892,7 +4560,7 @@ ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
case 1:
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
- strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
+ strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
break;
case 2:
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
@@ -4183,6 +4851,9 @@ ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case ARM::BCCi64:
case ARM::BCCZi64: {
+ // If there is an unconditional branch to the other successor, remove it.
+ BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
+
// Compare both parts that make up the double comparison separately for
// equality.
bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
@@ -4341,10 +5012,6 @@ static SDValue PerformMULCombine(SDNode *N,
if (Subtarget->isThumb1Only())
return SDValue();
- if (DAG.getMachineFunction().
- getFunction()->hasFnAttr(Attribute::OptimizeForSize))
- return SDValue();
-
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
@@ -4389,10 +5056,67 @@ static SDValue PerformMULCombine(SDNode *N,
return SDValue();
}
+static SDValue PerformANDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // Attempt to use immediate-form VBIC
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ DebugLoc dl = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VbicVT;
+ SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VbicVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
+ SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
static SDValue PerformORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const ARMSubtarget *Subtarget) {
+ // Attempt to use immediate-form VORR
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ DebugLoc dl = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN && Subtarget->hasNEON() &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VorrVT;
+ SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, VorrVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
+ SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
+ }
+ }
+ }
+
// Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
// reasonable.
@@ -4400,7 +5124,6 @@ static SDValue PerformORCombine(SDNode *N,
if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
return SDValue();
- SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
DebugLoc DL = N->getDebugLoc();
// 1) or (and A, mask), val => ARMbfi A, val, mask
@@ -4415,40 +5138,46 @@ static SDValue PerformORCombine(SDNode *N,
if (N0.getOpcode() != ISD::AND)
return SDValue();
- EVT VT = N->getValueType(0);
if (VT != MVT::i32)
return SDValue();
+ SDValue N00 = N0.getOperand(0);
// The value and the mask need to be constants so we can verify this is
// actually a bitfield set. If the mask is 0xffff, we can do better
// via a movt instruction, so don't use BFI in that case.
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
- if (!C)
+ SDValue MaskOp = N0.getOperand(1);
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
+ if (!MaskC)
return SDValue();
- unsigned Mask = C->getZExtValue();
+ unsigned Mask = MaskC->getZExtValue();
if (Mask == 0xffff)
return SDValue();
SDValue Res;
// Case (1): or (and A, mask), val => ARMbfi A, val, mask
- if ((C = dyn_cast<ConstantSDNode>(N1))) {
- unsigned Val = C->getZExtValue();
- if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N1C) {
+ unsigned Val = N1C->getZExtValue();
+ if ((Val & ~Mask) != Val)
return SDValue();
- Val >>= CountTrailingZeros_32(~Mask);
- Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
- DAG.getConstant(Val, MVT::i32),
- DAG.getConstant(Mask, MVT::i32));
+ if (ARM::isBitFieldInvertedMask(Mask)) {
+ Val >>= CountTrailingZeros_32(~Mask);
- // Do not add new nodes to DAG combiner worklist.
- DCI.CombineTo(N, Res, false);
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
+ DAG.getConstant(Val, MVT::i32),
+ DAG.getConstant(Mask, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ }
} else if (N1.getOpcode() == ISD::AND) {
// case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
- C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
- if (!C)
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
return SDValue();
- unsigned Mask2 = C->getZExtValue();
+ unsigned Mask2 = N11C->getZExtValue();
if (ARM::isBitFieldInvertedMask(Mask) &&
ARM::isBitFieldInvertedMask(~Mask2) &&
@@ -4462,10 +5191,11 @@ static SDValue PerformORCombine(SDNode *N,
unsigned lsb = CountTrailingZeros_32(Mask2);
Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
DAG.getConstant(lsb, MVT::i32));
- Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
DAG.getConstant(Mask, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
+ return SDValue();
} else if (ARM::isBitFieldInvertedMask(~Mask) &&
ARM::isBitFieldInvertedMask(Mask2) &&
(CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
@@ -4476,40 +5206,472 @@ static SDValue PerformORCombine(SDNode *N,
return SDValue();
// 2b
unsigned lsb = CountTrailingZeros_32(Mask);
- Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
+ Res = DAG.getNode(ISD::SRL, DL, VT, N00,
DAG.getConstant(lsb, MVT::i32));
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
DAG.getConstant(Mask2, MVT::i32));
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, Res, false);
+ return SDValue();
}
}
+ if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
+ N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
+ ARM::isBitFieldInvertedMask(~Mask)) {
+ // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
+ // where lsb(mask) == #shamt and masked bits of B are known zero.
+ SDValue ShAmt = N00.getOperand(1);
+ unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
+ unsigned LSB = CountTrailingZeros_32(Mask);
+ if (ShAmtC != LSB)
+ return SDValue();
+
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
+ DAG.getConstant(~Mask, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ }
+
+ return SDValue();
+}
+
+/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
+/// C1 & C2 == C1.
+static SDValue PerformBFICombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N1 = N->getOperand(1);
+ if (N1.getOpcode() == ISD::AND) {
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
+ return SDValue();
+ unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
+ unsigned Mask2 = N11C->getZExtValue();
+ if ((Mask & Mask2) == Mask2)
+ return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
+ N->getOperand(0), N1.getOperand(0),
+ N->getOperand(2));
+ }
return SDValue();
}
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVRRD.
static SDValue PerformVMOVRRDCombine(SDNode *N,
- TargetLowering::DAGCombinerInfo &DCI) {
- // fmrrd(fmdrr x, y) -> x,y
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // vmovrrd(vmovdrr x, y) -> x,y
SDValue InDouble = N->getOperand(0);
if (InDouble.getOpcode() == ARMISD::VMOVDRR)
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
return SDValue();
}
+/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
+static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
+ // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() == ISD::BITCAST)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::BITCAST)
+ Op1 = Op1.getOperand(0);
+ if (Op0.getOpcode() == ARMISD::VMOVRRD &&
+ Op0.getNode() == Op1.getNode() &&
+ Op0.getResNo() == 0 && Op1.getResNo() == 1)
+ return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
+ N->getValueType(0), Op0.getOperand(0));
+ return SDValue();
+}
+
+/// PerformSTORECombine - Target-specific dag combine xforms for
+/// ISD::STORE.
+static SDValue PerformSTORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // Bitcast an i64 store extracted from a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ SDValue StVal = St->getValue();
+ if (!ISD::isNormalStore(St) || St->isVolatile() ||
+ StVal.getValueType() != MVT::i64 ||
+ StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc dl = StVal.getDebugLoc();
+ SDValue IntVec = StVal.getOperand(0);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ IntVec.getValueType().getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
+ SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ Vec, StVal.getOperand(1));
+ dl = N->getDebugLoc();
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(ExtElt.getNode());
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment(),
+ St->getTBAAInfo());
+}
+
+/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
+/// are normal, non-volatile loads. If so, it is profitable to bitcast an
+/// i64 vector to have f64 elements, since the value can then be loaded
+/// directly into a VFP register.
+static bool hasNormalLoadOperand(SDNode *N) {
+ unsigned NumElts = N->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
+ return true;
+ }
+ return false;
+}
+
+/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
+/// ISD::BUILD_VECTOR.
+static SDValue PerformBUILD_VECTORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI){
+ // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
+ // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
+ // into a pair of GPRs, which is fine when the value is used as a scalar,
+ // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
+ SelectionDAG &DAG = DCI.DAG;
+ if (N->getNumOperands() == 2) {
+ SDValue RV = PerformVMOVDRRCombine(N, DAG);
+ if (RV.getNode())
+ return RV;
+ }
+
+ // Load i64 elements as f64 values so that type legalization does not split
+ // them up into i32 values.
+ EVT VT = N->getValueType(0);
+ if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
+ return SDValue();
+ DebugLoc dl = N->getDebugLoc();
+ SmallVector<SDValue, 8> Ops;
+ unsigned NumElts = VT.getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
+ Ops.push_back(V);
+ // Make the DAGCombiner fold the bitcast.
+ DCI.AddToWorklist(V.getNode());
+ }
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
+ return DAG.getNode(ISD::BITCAST, dl, VT, BV);
+}
+
+/// PerformInsertEltCombine - Target-specific dag combine xforms for
+/// ISD::INSERT_VECTOR_ELT.
+static SDValue PerformInsertEltCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // Bitcast an i64 load inserted into a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ EVT VT = N->getValueType(0);
+ SDNode *Elt = N->getOperand(1).getNode();
+ if (VT.getVectorElementType() != MVT::i64 ||
+ !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ DebugLoc dl = N->getDebugLoc();
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ VT.getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(V.getNode());
+ SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
+ Vec, V, N->getOperand(2));
+ return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
+}
+
+/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
+/// ISD::VECTOR_SHUFFLE.
+static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
+ // The LLVM shufflevector instruction does not require the shuffle mask
+ // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
+ // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
+ // operands do not match the mask length, they are extended by concatenating
+ // them with undef vectors. That is probably the right thing for other
+ // targets, but for NEON it is better to concatenate two double-register
+ // size vector operands into a single quad-register size vector. Do that
+ // transformation here:
+ // shuffle(concat(v1, undef), concat(v2, undef)) ->
+ // shuffle(concat(v1, v2), undef)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op1.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op0.getNumOperands() != 2 ||
+ Op1.getNumOperands() != 2)
+ return SDValue();
+ SDValue Concat0Op1 = Op0.getOperand(1);
+ SDValue Concat1Op1 = Op1.getOperand(1);
+ if (Concat0Op1.getOpcode() != ISD::UNDEF ||
+ Concat1Op1.getOpcode() != ISD::UNDEF)
+ return SDValue();
+ // Skip the transformation if any of the types are illegal.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = N->getValueType(0);
+ if (!TLI.isTypeLegal(VT) ||
+ !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
+ !TLI.isTypeLegal(Concat1Op1.getValueType()))
+ return SDValue();
+
+ SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
+ Op0.getOperand(0), Op1.getOperand(0));
+ // Translate the shuffle mask.
+ SmallVector<int, 16> NewMask;
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned HalfElts = NumElts/2;
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+ for (unsigned n = 0; n < NumElts; ++n) {
+ int MaskElt = SVN->getMaskElt(n);
+ int NewElt = -1;
+ if (MaskElt < (int)HalfElts)
+ NewElt = MaskElt;
+ else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
+ NewElt = HalfElts + MaskElt - NumElts;
+ NewMask.push_back(NewElt);
+ }
+ return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
+ DAG.getUNDEF(VT), NewMask.data());
+}
+
+/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
+/// NEON load/store intrinsics to merge base address updates.
+static SDValue CombineBaseUpdate(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
+ N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
+ unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
+ SDValue Addr = N->getOperand(AddrOpIdx);
+
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD ||
+ UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load/store. Otherwise, folding
+ // it would create a cycle.
+ if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
+ continue;
+
+ // Find the new opcode for the updating load/store.
+ bool isLoad = true;
+ bool isLaneOp = false;
+ unsigned NewOpc = 0;
+ unsigned NumVecs = 0;
+ if (isIntrinsic) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: assert(0 && "unexpected intrinsic for Neon base update");
+ case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
+ NumVecs = 1; break;
+ case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
+ NumVecs = 2; break;
+ case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
+ NumVecs = 3; break;
+ case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
+ NumVecs = 4; break;
+ case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
+ NumVecs = 2; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
+ NumVecs = 3; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
+ NumVecs = 4; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
+ NumVecs = 1; isLoad = false; break;
+ case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
+ NumVecs = 2; isLoad = false; break;
+ case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
+ NumVecs = 3; isLoad = false; break;
+ case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
+ NumVecs = 4; isLoad = false; break;
+ case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
+ NumVecs = 2; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
+ NumVecs = 3; isLoad = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
+ NumVecs = 4; isLoad = false; isLaneOp = true; break;
+ }
+ } else {
+ isLaneOp = true;
+ switch (N->getOpcode()) {
+ default: assert(0 && "unexpected opcode for Neon base update");
+ case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
+ case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
+ case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
+ }
+ }
+
+ // Find the size of memory referenced by the load/store.
+ EVT VecTy;
+ if (isLoad)
+ VecTy = N->getValueType(0);
+ else
+ VecTy = N->getOperand(AddrOpIdx+1).getValueType();
+ unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
+ if (isLaneOp)
+ NumBytes /= VecTy.getVectorNumElements();
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint64_t IncVal = CInc->getZExtValue();
+ if (IncVal != NumBytes)
+ continue;
+ } else if (NumBytes >= 3 * 16) {
+ // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
+ // separate instructions that make it harder to use a non-constant update.
+ continue;
+ }
+
+ // Create the new updating load/store node.
+ EVT Tys[6];
+ unsigned NumResultVecs = (isLoad ? NumVecs : 0);
+ unsigned n;
+ for (n = 0; n < NumResultVecs; ++n)
+ Tys[n] = VecTy;
+ Tys[n++] = MVT::i32;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(N->getOperand(0)); // incoming chain
+ Ops.push_back(N->getOperand(AddrOpIdx));
+ Ops.push_back(Inc);
+ for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
+ Ops.push_back(N->getOperand(i));
+ }
+ MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
+ Ops.data(), Ops.size(),
+ MemInt->getMemoryVT(),
+ MemInt->getMemOperand());
+
+ // Update the uses.
+ std::vector<SDValue> NewResults;
+ for (unsigned i = 0; i < NumResultVecs; ++i) {
+ NewResults.push_back(SDValue(UpdN.getNode(), i));
+ }
+ NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
+ DCI.CombineTo(N, NewResults);
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
+
+ break;
+ }
+ return SDValue();
+}
+
+/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
+/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
+/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
+/// return true.
+static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ // vldN-dup instructions only support 64-bit vectors for N > 1.
+ if (!VT.is64BitVector())
+ return false;
+
+ // Check if the VDUPLANE operand is a vldN-dup intrinsic.
+ SDNode *VLD = N->getOperand(0).getNode();
+ if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
+ return false;
+ unsigned NumVecs = 0;
+ unsigned NewOpc = 0;
+ unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
+ if (IntNo == Intrinsic::arm_neon_vld2lane) {
+ NumVecs = 2;
+ NewOpc = ARMISD::VLD2DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
+ NumVecs = 3;
+ NewOpc = ARMISD::VLD3DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
+ NumVecs = 4;
+ NewOpc = ARMISD::VLD4DUP;
+ } else {
+ return false;
+ }
+
+ // First check that all the vldN-lane uses are VDUPLANEs and that the lane
+ // numbers match the load.
+ unsigned VLDLaneNo =
+ cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ // Ignore uses of the chain result.
+ if (UI.getUse().getResNo() == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ if (User->getOpcode() != ARMISD::VDUPLANE ||
+ VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
+ return false;
+ }
+
+ // Create the vldN-dup node.
+ EVT Tys[5];
+ unsigned n;
+ for (n = 0; n < NumVecs; ++n)
+ Tys[n] = VT;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
+ SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
+ MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
+ SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
+ Ops, 2, VLDMemInt->getMemoryVT(),
+ VLDMemInt->getMemOperand());
+
+ // Update the uses.
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ unsigned ResNo = UI.getUse().getResNo();
+ // Ignore uses of the chain result.
+ if (ResNo == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
+ }
+
+ // Now the vldN-lane intrinsic is dead except for its chain result.
+ // Update uses of the chain.
+ std::vector<SDValue> VLDDupResults;
+ for (unsigned n = 0; n < NumVecs; ++n)
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
+ DCI.CombineTo(VLD, VLDDupResults);
+
+ return true;
+}
+
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
/// ARMISD::VDUPLANE.
static SDValue PerformVDUPLANECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
- // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
- // redundant.
SDValue Op = N->getOperand(0);
- EVT VT = N->getValueType(0);
- // Ignore bit_converts.
- while (Op.getOpcode() == ISD::BIT_CONVERT)
+ // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
+ // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
+ if (CombineVLDDUP(N, DCI))
+ return SDValue(N, 0);
+
+ // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
+ // redundant. Ignore bit_converts for now; element sizes are checked below.
+ while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
return SDValue();
@@ -4521,11 +5683,11 @@ static SDValue PerformVDUPLANECombine(SDNode *N,
unsigned EltBits;
if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
EltSize = 8;
+ EVT VT = N->getValueType(0);
if (EltSize > VT.getVectorElementType().getSizeInBits())
return SDValue();
- SDValue Res = DCI.DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
- return DCI.CombineTo(N, Res, false);
+ return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
}
/// getVShiftImm - Check if this is a valid build_vector for the immediate
@@ -4533,7 +5695,7 @@ static SDValue PerformVDUPLANECombine(SDNode *N,
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
- while (Op.getOpcode() == ISD::BIT_CONVERT)
+ while (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
@@ -4747,7 +5909,8 @@ static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
EVT VT = N->getValueType(0);
// Nothing to be done for scalar shifts.
- if (! VT.isVector())
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!VT.isVector() || !TLI.isTypeLegal(VT))
return SDValue();
assert(ST->hasNEON() && "unexpected vector shift");
@@ -4793,7 +5956,8 @@ static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
if (VT == MVT::i32 &&
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
- TLI.isTypeLegal(Vec.getValueType())) {
+ TLI.isTypeLegal(Vec.getValueType()) &&
+ isa<ConstantSDNode>(Lane)) {
unsigned Opc = 0;
switch (N->getOpcode()) {
@@ -4906,7 +6070,14 @@ SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
case ISD::SUB: return PerformSUBCombine(N, DCI);
case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
+ case ISD::AND: return PerformANDCombine(N, DCI);
+ case ARMISD::BFI: return PerformBFICombine(N, DCI);
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
+ case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
+ case ISD::STORE: return PerformSTORECombine(N, DCI);
+ case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
+ case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
+ case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
case ISD::SHL:
@@ -4916,20 +6087,42 @@ SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
+ case ARMISD::VLD2DUP:
+ case ARMISD::VLD3DUP:
+ case ARMISD::VLD4DUP:
+ return CombineBaseUpdate(N, DCI);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane:
+ return CombineBaseUpdate(N, DCI);
+ default: break;
+ }
+ break;
}
return SDValue();
}
-bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
- if (!Subtarget->hasV6Ops())
- // Pre-v6 does not support unaligned mem access.
- return false;
+bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
+ EVT VT) const {
+ return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
+}
- // v6+ may or may not support unaligned mem access depending on the system
- // configuration.
- // FIXME: This is pretty conservative. Should we provide cmdline option to
- // control the behaviour?
- if (!Subtarget->isTargetDarwin())
+bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
+ if (!Subtarget->allowsUnalignedMem())
return false;
switch (VT.getSimpleVT().SimpleTy) {
@@ -5143,7 +6336,7 @@ bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
if (!Subtarget->isThumb())
return ARM_AM::getSOImmVal(Imm) != -1;
if (Subtarget->isThumb2())
- return ARM_AM::getT2SOImmVal(Imm) != -1;
+ return ARM_AM::getT2SOImmVal(Imm) != -1;
return Imm >= 0 && Imm <= 255;
}
@@ -5348,6 +6541,37 @@ void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
// ARM Inline Assembly Support
//===----------------------------------------------------------------------===//
+bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ // Looking for "rev" which is V6+.
+ if (!Subtarget->hasV6Ops())
+ return false;
+
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+ std::string AsmStr = IA->getAsmString();
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, ";\n");
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ AsmStr = AsmPieces[0];
+ AsmPieces.clear();
+ SplitString(AsmStr, AsmPieces, " \t,");
+
+ // rev $0, $1
+ if (AsmPieces.size() == 3 &&
+ AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
+ IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
+ const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (Ty && Ty->getBitWidth() == 32)
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ break;
+ }
+
+ return false;
+}
+
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
ARMTargetLowering::ConstraintType
@@ -5362,6 +6586,40 @@ ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
return TargetLowering::getConstraintType(Constraint);
}
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ARMTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (CallOperandVal == NULL)
+ return CW_Default;
+ const Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'l':
+ if (type->isIntegerTy()) {
+ if (Subtarget->isThumb())
+ weight = CW_SpecificReg;
+ else
+ weight = CW_Register;
+ }
+ break;
+ case 'w':
+ if (type->isFloatingPointTy())
+ weight = CW_Register;
+ break;
+ }
+ return weight;
+}
+
std::pair<unsigned, const TargetRegisterClass*>
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
@@ -5664,3 +6922,63 @@ bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
return ARM::getVFPf64Imm(Imm) != -1;
return false;
}
+
+/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
+/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
+/// specified in the intrinsic calls.
+bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ // Conservatively set memVT to the entire set of vectors loaded.
+ uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile loads with NEON intrinsics not supported
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ // Conservatively set memVT to the entire set of vectors stored.
+ unsigned NumElts = 0;
+ for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
+ const Type *ArgTy = I.getArgOperand(ArgI)->getType();
+ if (!ArgTy->isVectorTy())
+ break;
+ NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
+ }
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile stores with NEON intrinsics not supported
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}
OpenPOWER on IntegriCloud