summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp4886
1 files changed, 4886 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
new file mode 100644
index 0000000..b8126a3
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
@@ -0,0 +1,4886 @@
+//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that ARM uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMISelLowering.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMPerfectShuffle.h"
+#include "ARMRegisterInfo.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "ARMTargetObjectFile.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/Instruction.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Type.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <sstream>
+using namespace llvm;
+
+static cl::opt<bool>
+EnableARMLongCalls("arm-long-calls", cl::Hidden,
+ cl::desc("Generate calls via indirect call instructions."),
+ cl::init(false));
+
+static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State);
+static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State);
+static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State);
+static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State);
+
+void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
+ EVT PromotedBitwiseVT) {
+ if (VT != PromotedLdStVT) {
+ setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
+ PromotedLdStVT.getSimpleVT());
+
+ setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
+ PromotedLdStVT.getSimpleVT());
+ }
+
+ EVT ElemTy = VT.getVectorElementType();
+ if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
+ setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
+ if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
+ if (ElemTy != MVT::i32) {
+ setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
+ }
+ setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
+ if (llvm::ModelWithRegSequence())
+ setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
+ else
+ setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
+ if (VT.isInteger()) {
+ setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
+ setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
+ }
+
+ // Promote all bit-wise operations.
+ if (VT.isInteger() && VT != PromotedBitwiseVT) {
+ setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::AND, VT.getSimpleVT(),
+ PromotedBitwiseVT.getSimpleVT());
+ setOperationAction(ISD::OR, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::OR, VT.getSimpleVT(),
+ PromotedBitwiseVT.getSimpleVT());
+ setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
+ AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
+ PromotedBitwiseVT.getSimpleVT());
+ }
+
+ // Neon does not support vector divide/remainder operations.
+ setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
+ setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
+}
+
+void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
+ addRegisterClass(VT, ARM::DPRRegisterClass);
+ addTypeForNEON(VT, MVT::f64, MVT::v2i32);
+}
+
+void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
+ addRegisterClass(VT, ARM::QPRRegisterClass);
+ addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
+}
+
+static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
+ if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
+ return new TargetLoweringObjectFileMachO();
+
+ return new ARMElfTargetObjectFile();
+}
+
+ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(TM)) {
+ Subtarget = &TM.getSubtarget<ARMSubtarget>();
+
+ if (Subtarget->isTargetDarwin()) {
+ // Uses VFP for Thumb libfuncs if available.
+ if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
+ // Single-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
+ setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
+ setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
+ setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
+
+ // Double-precision floating-point arithmetic.
+ setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
+ setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
+ setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
+ setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
+
+ // Single-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
+ setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
+ setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
+ setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
+ setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
+ setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
+ setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
+ setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
+
+ // Double-precision comparisons.
+ setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
+ setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
+ setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
+ setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
+ setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
+ setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
+ setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
+ setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
+
+ setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
+ setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
+
+ // Floating-point to integer conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
+
+ // Conversions between floating types.
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
+
+ // Integer to floating-point conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ // FIXME: There appears to be some naming inconsistency in ARM libgcc:
+ // e.g., __floatunsidf vs. __floatunssidfvfp.
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
+ }
+ }
+
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, 0);
+ setLibcallName(RTLIB::SRL_I128, 0);
+ setLibcallName(RTLIB::SRA_I128, 0);
+
+ // Libcalls should use the AAPCS base standard ABI, even if hard float
+ // is in effect, as per the ARM RTABI specification, section 4.1.2.
+ if (Subtarget->isAAPCS_ABI()) {
+ for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
+ setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
+ CallingConv::ARM_AAPCS);
+ }
+ }
+
+ if (Subtarget->isThumb1Only())
+ addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
+ else
+ addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
+ addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
+ addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ }
+
+ if (Subtarget->hasNEON()) {
+ addDRTypeForNEON(MVT::v2f32);
+ addDRTypeForNEON(MVT::v8i8);
+ addDRTypeForNEON(MVT::v4i16);
+ addDRTypeForNEON(MVT::v2i32);
+ addDRTypeForNEON(MVT::v1i64);
+
+ addQRTypeForNEON(MVT::v4f32);
+ addQRTypeForNEON(MVT::v2f64);
+ addQRTypeForNEON(MVT::v16i8);
+ addQRTypeForNEON(MVT::v8i16);
+ addQRTypeForNEON(MVT::v4i32);
+ addQRTypeForNEON(MVT::v2i64);
+
+ // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
+ // neither Neon nor VFP support any arithmetic operations on it.
+ setOperationAction(ISD::FADD, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
+ setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
+ setOperationAction(ISD::FREM, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
+ setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
+ setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FABS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
+
+ // Neon does not support some operations on v1i64 and v2i64 types.
+ setOperationAction(ISD::MUL, MVT::v1i64, Expand);
+ setOperationAction(ISD::MUL, MVT::v2i64, Expand);
+ setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
+ setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
+
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ }
+
+ computeRegisterProperties();
+
+ // ARM does not have f32 extending load.
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+
+ // ARM does not have i1 sign extending load.
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // ARM supports all 4 flavors of integer indexed load / store.
+ if (!Subtarget->isThumb1Only()) {
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, MVT::i1, Legal);
+ setIndexedLoadAction(im, MVT::i8, Legal);
+ setIndexedLoadAction(im, MVT::i16, Legal);
+ setIndexedLoadAction(im, MVT::i32, Legal);
+ setIndexedStoreAction(im, MVT::i1, Legal);
+ setIndexedStoreAction(im, MVT::i8, Legal);
+ setIndexedStoreAction(im, MVT::i16, Legal);
+ setIndexedStoreAction(im, MVT::i32, Legal);
+ }
+ }
+
+ // i64 operation support.
+ if (Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ } else {
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ if (!Subtarget->hasV6Ops())
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+ }
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL, MVT::i64, Custom);
+ setOperationAction(ISD::SRA, MVT::i64, Custom);
+
+ // ARM does not have ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+
+ // Only ARMv6 has BSWAP.
+ if (!Subtarget->hasV6Ops())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+
+ // These are expanded into libcalls.
+ if (!Subtarget->hasDivide()) {
+ // v7M has a hardware divider
+ setOperationAction(ISD::SDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ }
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
+ // FIXME: Shouldn't need this, since no register is used, but the legalizer
+ // doesn't yet know how to not do that for SjLj.
+ setExceptionSelectorRegister(ARM::R0);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+ setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
+
+ // If the subtarget does not have extract instructions, sign_extend_inreg
+ // needs to be expanded. Extract is available in ARM mode on v6 and up,
+ // and on most Thumb2 implementations.
+ if ((!Subtarget->isThumb() && !Subtarget->hasV6Ops())
+ || (Subtarget->isThumb2() && !Subtarget->hasT2ExtractPack())) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ }
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
+ // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
+ // iff target supports vfp2.
+ setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+
+ // We don't support sin/cos/fmod/copysign/pow
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+ }
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+
+ // Various VFP goodness
+ if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
+ // int <-> fp are custom expanded into bit_convert + ARMISD ops.
+ if (Subtarget->hasVFP2()) {
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ }
+ // Special handling for half-precision FP.
+ if (!Subtarget->hasFP16()) {
+ setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
+ setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
+ }
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::MUL);
+
+ setStackPointerRegisterToSaveRestore(ARM::SP);
+
+ if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
+ setSchedulingPreference(Sched::RegPressure);
+ else
+ setSchedulingPreference(Sched::Hybrid);
+
+ // FIXME: If-converter should use instruction latency to determine
+ // profitability rather than relying on fixed limits.
+ if (Subtarget->getCPUString() == "generic") {
+ // Generic (and overly aggressive) if-conversion limits.
+ setIfCvtBlockSizeLimit(10);
+ setIfCvtDupBlockSizeLimit(2);
+ } else if (Subtarget->hasV7Ops()) {
+ setIfCvtBlockSizeLimit(3);
+ setIfCvtDupBlockSizeLimit(1);
+ } else if (Subtarget->hasV6Ops()) {
+ setIfCvtBlockSizeLimit(2);
+ setIfCvtDupBlockSizeLimit(1);
+ } else {
+ setIfCvtBlockSizeLimit(3);
+ setIfCvtDupBlockSizeLimit(2);
+ }
+
+ maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
+ // Do not enable CodePlacementOpt for now: it currently runs after the
+ // ARMConstantIslandPass and messes up branch relaxation and placement
+ // of constant islands.
+ // benefitFromCodePlacementOpt = true;
+}
+
+const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return 0;
+ case ARMISD::Wrapper: return "ARMISD::Wrapper";
+ case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
+ case ARMISD::CALL: return "ARMISD::CALL";
+ case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
+ case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
+ case ARMISD::tCALL: return "ARMISD::tCALL";
+ case ARMISD::BRCOND: return "ARMISD::BRCOND";
+ case ARMISD::BR_JT: return "ARMISD::BR_JT";
+ case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
+ case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
+ case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
+ case ARMISD::CMP: return "ARMISD::CMP";
+ case ARMISD::CMPZ: return "ARMISD::CMPZ";
+ case ARMISD::CMPFP: return "ARMISD::CMPFP";
+ case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
+ case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
+ case ARMISD::CMOV: return "ARMISD::CMOV";
+ case ARMISD::CNEG: return "ARMISD::CNEG";
+
+ case ARMISD::RBIT: return "ARMISD::RBIT";
+
+ case ARMISD::FTOSI: return "ARMISD::FTOSI";
+ case ARMISD::FTOUI: return "ARMISD::FTOUI";
+ case ARMISD::SITOF: return "ARMISD::SITOF";
+ case ARMISD::UITOF: return "ARMISD::UITOF";
+
+ case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
+ case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
+ case ARMISD::RRX: return "ARMISD::RRX";
+
+ case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
+ case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
+
+ case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
+ case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
+
+ case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
+
+ case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
+
+ case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
+ case ARMISD::SYNCBARRIER: return "ARMISD::SYNCBARRIER";
+
+ case ARMISD::VCEQ: return "ARMISD::VCEQ";
+ case ARMISD::VCGE: return "ARMISD::VCGE";
+ case ARMISD::VCGEU: return "ARMISD::VCGEU";
+ case ARMISD::VCGT: return "ARMISD::VCGT";
+ case ARMISD::VCGTU: return "ARMISD::VCGTU";
+ case ARMISD::VTST: return "ARMISD::VTST";
+
+ case ARMISD::VSHL: return "ARMISD::VSHL";
+ case ARMISD::VSHRs: return "ARMISD::VSHRs";
+ case ARMISD::VSHRu: return "ARMISD::VSHRu";
+ case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
+ case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
+ case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
+ case ARMISD::VSHRN: return "ARMISD::VSHRN";
+ case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
+ case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
+ case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
+ case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
+ case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
+ case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
+ case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
+ case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
+ case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
+ case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
+ case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
+ case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
+ case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
+ case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
+ case ARMISD::VDUP: return "ARMISD::VDUP";
+ case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
+ case ARMISD::VEXT: return "ARMISD::VEXT";
+ case ARMISD::VREV64: return "ARMISD::VREV64";
+ case ARMISD::VREV32: return "ARMISD::VREV32";
+ case ARMISD::VREV16: return "ARMISD::VREV16";
+ case ARMISD::VZIP: return "ARMISD::VZIP";
+ case ARMISD::VUZP: return "ARMISD::VUZP";
+ case ARMISD::VTRN: return "ARMISD::VTRN";
+ case ARMISD::FMAX: return "ARMISD::FMAX";
+ case ARMISD::FMIN: return "ARMISD::FMIN";
+ }
+}
+
+/// getRegClassFor - Return the register class that should be used for the
+/// specified value type.
+TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
+ // Map v4i64 to QQ registers but do not make the type legal. Similarly map
+ // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
+ // load / store 4 to 8 consecutive D registers.
+ if (Subtarget->hasNEON()) {
+ if (VT == MVT::v4i64)
+ return ARM::QQPRRegisterClass;
+ else if (VT == MVT::v8i64)
+ return ARM::QQQQPRRegisterClass;
+ }
+ return TargetLowering::getRegClassFor(VT);
+}
+
+/// getFunctionAlignment - Return the Log2 alignment of this function.
+unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
+ return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
+}
+
+Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
+ for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
+ EVT VT = N->getValueType(i);
+ if (VT.isFloatingPoint() || VT.isVector())
+ return Sched::Latency;
+ }
+ return Sched::RegPressure;
+}
+
+//===----------------------------------------------------------------------===//
+// Lowering Code
+//===----------------------------------------------------------------------===//
+
+/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
+static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition code!");
+ case ISD::SETNE: return ARMCC::NE;
+ case ISD::SETEQ: return ARMCC::EQ;
+ case ISD::SETGT: return ARMCC::GT;
+ case ISD::SETGE: return ARMCC::GE;
+ case ISD::SETLT: return ARMCC::LT;
+ case ISD::SETLE: return ARMCC::LE;
+ case ISD::SETUGT: return ARMCC::HI;
+ case ISD::SETUGE: return ARMCC::HS;
+ case ISD::SETULT: return ARMCC::LO;
+ case ISD::SETULE: return ARMCC::LS;
+ }
+}
+
+/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
+static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+ ARMCC::CondCodes &CondCode2) {
+ CondCode2 = ARMCC::AL;
+ switch (CC) {
+ default: llvm_unreachable("Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
+ case ISD::SETGT:
+ case ISD::SETOGT: CondCode = ARMCC::GT; break;
+ case ISD::SETGE:
+ case ISD::SETOGE: CondCode = ARMCC::GE; break;
+ case ISD::SETOLT: CondCode = ARMCC::MI; break;
+ case ISD::SETOLE: CondCode = ARMCC::LS; break;
+ case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
+ case ISD::SETO: CondCode = ARMCC::VC; break;
+ case ISD::SETUO: CondCode = ARMCC::VS; break;
+ case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
+ case ISD::SETUGT: CondCode = ARMCC::HI; break;
+ case ISD::SETUGE: CondCode = ARMCC::PL; break;
+ case ISD::SETLT:
+ case ISD::SETULT: CondCode = ARMCC::LT; break;
+ case ISD::SETLE:
+ case ISD::SETULE: CondCode = ARMCC::LE; break;
+ case ISD::SETNE:
+ case ISD::SETUNE: CondCode = ARMCC::NE; break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "ARMGenCallingConv.inc"
+
+// APCS f64 is in register pairs, possibly split to stack
+static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ CCState &State, bool CanFail) {
+ static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
+
+ // Try to get the first register.
+ if (unsigned Reg = State.AllocateReg(RegList, 4))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else {
+ // For the 2nd half of a v2f64, do not fail.
+ if (CanFail)
+ return false;
+
+ // Put the whole thing on the stack.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(8, 4),
+ LocVT, LocInfo));
+ return true;
+ }
+
+ // Try to get the second register.
+ if (unsigned Reg = State.AllocateReg(RegList, 4))
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ else
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(4, 4),
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
+ return false;
+ if (LocVT == MVT::v2f64 &&
+ !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
+ return false;
+ return true; // we handled it
+}
+
+// AAPCS f64 is in aligned register pairs
+static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ CCState &State, bool CanFail) {
+ static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
+ static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
+
+ unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
+ if (Reg == 0) {
+ // For the 2nd half of a v2f64, do not just fail.
+ if (CanFail)
+ return false;
+
+ // Put the whole thing on the stack.
+ State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
+ State.AllocateStack(8, 8),
+ LocVT, LocInfo));
+ return true;
+ }
+
+ unsigned i;
+ for (i = 0; i < 2; ++i)
+ if (HiRegList[i] == Reg)
+ break;
+
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
+ return false;
+ if (LocVT == MVT::v2f64 &&
+ !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
+ return false;
+ return true; // we handled it
+}
+
+static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo, CCState &State) {
+ static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
+ static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
+
+ unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
+ if (Reg == 0)
+ return false; // we didn't handle it
+
+ unsigned i;
+ for (i = 0; i < 2; ++i)
+ if (HiRegList[i] == Reg)
+ break;
+
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
+ LocVT, LocInfo));
+ return true;
+}
+
+static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
+ return false;
+ if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
+ return false;
+ return true; // we handled it
+}
+
+static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
+ CCValAssign::LocInfo &LocInfo,
+ ISD::ArgFlagsTy &ArgFlags,
+ CCState &State) {
+ return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
+ State);
+}
+
+/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
+/// given CallingConvention value.
+CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::Fast:
+ // Use target triple & subtarget features to do actual dispatch.
+ if (Subtarget->isAAPCS_ABI()) {
+ if (Subtarget->hasVFP2() &&
+ FloatABIType == FloatABI::Hard && !isVarArg)
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ else
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ } else
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ case CallingConv::ARM_AAPCS_VFP:
+ return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
+ case CallingConv::ARM_AAPCS:
+ return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
+ case CallingConv::ARM_APCS:
+ return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ true,
+ isVarArg));
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+
+ SDValue Val;
+ if (VA.needsCustom()) {
+ // Handle f64 or half of a v2f64.
+ SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(0, MVT::i32));
+
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(1, MVT::i32));
+ }
+ } else {
+ Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
+ InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+ }
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
+/// by "Src" to address "Dst" of size "Size". Alignment information is
+/// specified by the specific parameter attribute. The copy will be passed as
+/// a byval function parameter.
+/// Sometimes what we are copying is the end of a larger object, the part that
+/// does not fit in registers.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ DebugLoc dl) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ /*isVolatile=*/false, /*AlwaysInline=*/false,
+ NULL, 0, NULL, 0);
+}
+
+/// LowerMemOpCallTo - Store the argument to the stack.
+SDValue
+ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+ if (Flags.isByVal()) {
+ return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
+ }
+ return DAG.getStore(Chain, dl, Arg, PtrOff,
+ PseudoSourceValue::getStack(), LocMemOffset,
+ false, false, 0);
+}
+
+void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
+ SDValue Chain, SDValue &Arg,
+ RegsToPassVector &RegsToPass,
+ CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &StackPtr,
+ SmallVector<SDValue, 8> &MemOpChains,
+ ISD::ArgFlagsTy Flags) const {
+
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Arg);
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
+
+ if (NextVA.isRegLoc())
+ RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
+ else {
+ assert(NextVA.isMemLoc());
+ if (StackPtr.getNode() == 0)
+ StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
+ dl, DAG, NextVA,
+ Flags));
+ }
+}
+
+/// LowerCall - Lowering a call into a callseq_start <-
+/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
+/// nodes.
+SDValue
+ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool &isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // ARM target does not yet support tail call optimization.
+ isTailCall = false;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+
+ SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
+
+ RegsToPassVector RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization, arguments are handled later.
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = Outs[realArgIdx].Val;
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, MVT::i32));
+ SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, MVT::i32));
+
+ PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ if (VA.isRegLoc()) {
+ PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+ } else {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
+ dl, DAG, VA, Flags));
+ }
+ } else {
+ PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
+ StackPtr, MemOpChains, Flags);
+ }
+ } else if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ bool isDirect = false;
+ bool isARMFunc = false;
+ bool isLocalARMFunc = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ if (EnableARMLongCalls) {
+ assert (getTargetMachine().getRelocationModel() == Reloc::Static
+ && "long-calls with non-static relocation model!");
+ // Handle a global address or an external symbol. If it's not one of
+ // those, the target's already in a register, so we don't need to do
+ // anything extra.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
+ ARMPCLabelIndex,
+ ARMCP::CPValue, 0);
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
+ Sym, ARMPCLabelIndex, 0);
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ }
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ isDirect = true;
+ bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
+ bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // ARM call to a local ARM function is predicable.
+ isLocalARMFunc = !Subtarget->isThumb() && !isExt;
+ // tBX takes a register source operand.
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
+ ARMPCLabelIndex,
+ ARMCP::CPValue, 4);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
+ getPointerTy(), Callee, PICLabel);
+ } else
+ Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ isDirect = true;
+ bool isStub = Subtarget->isTargetDarwin() &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || isStub;
+ // tBX takes a register source operand.
+ const char *Sym = S->getSymbol();
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
+ Sym, ARMPCLabelIndex, 4);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(getPointerTy(), dl,
+ DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
+ getPointerTy(), Callee, PICLabel);
+ } else
+ Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
+ }
+
+ // FIXME: handle tail calls differently.
+ unsigned CallOpc;
+ if (Subtarget->isThumb()) {
+ if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
+ } else {
+ CallOpc = (isDirect || Subtarget->hasV5TOps())
+ ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
+ : ARMISD::CALL_NOLINK;
+ }
+ if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
+ // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
+ Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+ // Returns a chain and a flag for retval copy to use.
+ Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
+ &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
+ dl, DAG, InVals);
+}
+
+SDValue
+ARMTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of the return value to a location.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slots.
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze outgoing return values.
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
+ isVarArg));
+
+ // If this is the first return lowered for this function, add
+ // the regs to the liveout set for the function.
+ if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ if (RVLocs[i].isRegLoc())
+ DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ SDValue Flag;
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, realRVLocIdx = 0;
+ i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = Outs[realRVLocIdx].Val;
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ // Extract the first half and return it in two registers.
+ SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, MVT::i32));
+ SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Half);
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
+ Flag = Chain.getValue(1);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ HalfGPRs.getValue(1), Flag);
+ Flag = Chain.getValue(1);
+ VA = RVLocs[++i]; // skip ahead to next loc
+
+ // Extract the 2nd half and fall through to handle it as an f64 value.
+ Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, MVT::i32));
+ }
+ // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
+ // available.
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
+ Flag = Chain.getValue(1);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
+ Flag);
+ } else
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
+
+ // Guarantee that all emitted copies are
+ // stuck together, avoiding something bad.
+ Flag = Chain.getValue(1);
+ }
+
+ SDValue result;
+ if (Flag.getNode())
+ result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
+ else // Return Void
+ result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
+
+ return result;
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOVi.
+static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
+ EVT PtrVT = Op.getValueType();
+ // FIXME there is no actual debug info here
+ DebugLoc dl = Op.getDebugLoc();
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry())
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
+ else
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment());
+ return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
+}
+
+SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = 0;
+ DebugLoc DL = Op.getDebugLoc();
+ EVT PtrVT = getPointerTy();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ if (RelocM == Reloc::Static) {
+ CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
+ } else {
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
+ ARMCP::CPBlockAddress,
+ PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ }
+ CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ if (RelocM == Reloc::Static)
+ return Result;
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model
+SDValue
+ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const {
+ DebugLoc dl = GA->getDebugLoc();
+ EVT PtrVT = getPointerTy();
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, "tlsgd", true);
+ SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
+ Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ SDValue Chain = Argument.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
+
+ // call __tls_get_addr.
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Argument;
+ Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
+ Args.push_back(Entry);
+ // FIXME: is there useful debug info available here?
+ std::pair<SDValue, SDValue> CallResult =
+ LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
+ false, false, false, false,
+ 0, CallingConv::C, false, /*isReturnValueUsed=*/true,
+ DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
+ return CallResult.first;
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or
+// "local exec" model.
+SDValue
+ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const {
+ const GlobalValue *GV = GA->getGlobal();
+ DebugLoc dl = GA->getDebugLoc();
+ SDValue Offset;
+ SDValue Chain = DAG.getEntryNode();
+ EVT PtrVT = getPointerTy();
+ // Get the Thread Pointer
+ SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+
+ if (GV->isDeclaration()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ // Initial exec model.
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, "gottpoff", true);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ Chain = Offset.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
+
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ } else {
+ // local exec model
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+ // TODO: implement the "local dynamic" model
+ assert(Subtarget->isTargetELF() &&
+ "TLS not implemented for non-ELF targets");
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ // If the relocation model is PIC, use the "General Dynamic" TLS Model,
+ // otherwise use the "Local Exec" TLS Model
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ return LowerToTLSGeneralDynamicModel(GA, DAG);
+ else
+ return LowerToTLSExecModels(GA, DAG);
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ if (RelocM == Reloc::PIC_) {
+ bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ SDValue Chain = Result.getValue(1);
+ SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
+ if (!UseGOTOFF)
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result,
+ PseudoSourceValue::getGOT(), 0,
+ false, false, 0);
+ return Result;
+ } else {
+ // If we have T2 ops, we can materialize the address directly via movt/movw
+ // pair. This is always cheaper.
+ if (Subtarget->useMovt()) {
+ return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, PtrVT));
+ } else {
+ SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ }
+ }
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = 0;
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ if (RelocM == Reloc::Static)
+ CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
+ else {
+ ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ }
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ SDValue Chain = Result.getValue(1);
+
+ if (RelocM == Reloc::PIC_) {
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ }
+
+ if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result,
+ PseudoSourceValue::getGOT(), 0,
+ false, false, 0);
+
+ return Result;
+}
+
+SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetELF() &&
+ "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
+ "_GLOBAL_OFFSET_TABLE_",
+ ARMPCLabelIndex, PCAdj);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Val = Subtarget->isThumb() ?
+ DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::SP, MVT::i32) :
+ DAG.getConstant(0, MVT::i32);
+ return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
+ Op.getOperand(1), Val);
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(0, MVT::i32));
+}
+
+SDValue
+ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget)
+ const {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ DebugLoc dl = Op.getDebugLoc();
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+ case Intrinsic::arm_thread_pointer: {
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+ }
+ case Intrinsic::eh_sjlj_lsda: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
+ EVT PtrVT = getPointerTy();
+ DebugLoc dl = Op.getDebugLoc();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ unsigned PCAdj = (RelocM != Reloc::PIC_)
+ ? 0 : (Subtarget->isThumb() ? 4 : 8);
+ ARMConstantPoolValue *CPV =
+ new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
+ ARMCP::CPLSDA, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 0);
+ SDValue Chain = Result.getValue(1);
+
+ if (RelocM == Reloc::PIC_) {
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ }
+ return Result;
+ }
+ }
+}
+
+static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Op5 = Op.getOperand(5);
+ SDValue Res;
+ unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
+ if (isDeviceBarrier) {
+ if (Subtarget->hasV7Ops())
+ Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0));
+ else
+ Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ } else {
+ if (Subtarget->hasV7Ops())
+ Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
+ else
+ Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ }
+ return Res;
+}
+
+static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ DebugLoc dl = Op.getDebugLoc();
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
+ false, false, 0);
+}
+
+SDValue
+ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ DebugLoc dl = Node->getDebugLoc();
+ EVT VT = Node->getValueType(0);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDValue Align = Op.getOperand(2);
+
+ // Chain the dynamic stack allocation so that it doesn't modify the stack
+ // pointer when other instructions are using the stack.
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
+
+ unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
+ unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
+ if (AlignVal > StackAlign)
+ // Do this now since selection pass cannot introduce new target
+ // independent node.
+ Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
+
+ // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
+ // using a "add r, sp, r" instead. Negate the size now so we don't have to
+ // do even more horrible hack later.
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ if (AFI->isThumb1OnlyFunction()) {
+ bool Negate = true;
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
+ if (C) {
+ uint32_t Val = C->getZExtValue();
+ if (Val <= 508 && ((Val & 3) == 0))
+ Negate = false;
+ }
+ if (Negate)
+ Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
+ }
+
+ SDVTList VTList = DAG.getVTList(VT, MVT::Other);
+ SDValue Ops1[] = { Chain, Size, Align };
+ SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
+ Chain = Res.getValue(1);
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
+ DAG.getIntPtrConstant(0, true), SDValue());
+ SDValue Ops2[] = { Res, Chain };
+ return DAG.getMergeValues(Ops2, 2, dl);
+}
+
+SDValue
+ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &Root, SelectionDAG &DAG,
+ DebugLoc dl) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ TargetRegisterClass *RC;
+ if (AFI->isThumb1OnlyFunction())
+ RC = ARM::tGPRRegisterClass;
+ else
+ RC = ARM::GPRRegisterClass;
+
+ // Transform the arguments stored in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+
+ SDValue ArgValue2;
+ if (NextVA.isMemLoc()) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true, false);
+
+ // Create load node to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
+ PseudoSourceValue::getFixedStack(FI), 0,
+ false, false, 0);
+ } else {
+ Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
+ ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+ }
+
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
+}
+
+SDValue
+ARMTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ SmallVector<SDValue, 16> ArgValues;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ // Arguments stored in registers.
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+
+ SDValue ArgValue;
+ if (VA.needsCustom()) {
+ // f64 and vector types are split up into multiple registers or
+ // combinations of registers and stack slots.
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ SDValue ArgValue2;
+ if (VA.isMemLoc()) {
+ int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(),
+ true, false);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
+ PseudoSourceValue::getFixedStack(FI), 0,
+ false, false, 0);
+ } else {
+ ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ }
+ ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
+ } else
+ ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
+
+ } else {
+ TargetRegisterClass *RC;
+
+ if (RegVT == MVT::f32)
+ RC = ARM::SPRRegisterClass;
+ else if (RegVT == MVT::f64)
+ RC = ARM::DPRRegisterClass;
+ else if (RegVT == MVT::v2f64)
+ RC = ARM::QPRRegisterClass;
+ else if (RegVT == MVT::i32)
+ RC = (AFI->isThumb1OnlyFunction() ?
+ ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
+ else
+ llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
+
+ // Transform the arguments in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+ }
+
+ // If this is an 8 or 16-bit value, it is really passed promoted
+ // to 32 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::SExt:
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::ZExt:
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ }
+
+ InVals.push_back(ArgValue);
+
+ } else { // VA.isRegLoc()
+
+ // sanity check
+ assert(VA.isMemLoc());
+ assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
+
+ unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
+ int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
+ true, false);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
+ PseudoSourceValue::getFixedStack(FI), 0,
+ false, false, 0));
+ }
+ }
+
+ // varargs
+ if (isVarArg) {
+ static const unsigned GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+ };
+
+ unsigned NumGPRs = CCInfo.getFirstUnallocated
+ (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
+
+ unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
+ unsigned VARegSize = (4 - NumGPRs) * 4;
+ unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
+ unsigned ArgOffset = CCInfo.getNextStackOffset();
+ if (VARegSaveSize) {
+ // If this function is vararg, store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing
+ // the result of va_next.
+ AFI->setVarArgsRegSaveSize(VARegSaveSize);
+ AFI->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(VARegSaveSize,
+ ArgOffset + VARegSaveSize - VARegSize,
+ true, false));
+ SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
+ getPointerTy());
+
+ SmallVector<SDValue, 4> MemOps;
+ for (; NumGPRs < 4; ++NumGPRs) {
+ TargetRegisterClass *RC;
+ if (AFI->isThumb1OnlyFunction())
+ RC = ARM::tGPRRegisterClass;
+ else
+ RC = ARM::GPRRegisterClass;
+
+ unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()), 0,
+ false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
+ DAG.getConstant(4, getPointerTy()));
+ }
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
+ } else
+ // This will point to the next argument passed via stack.
+ AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset,
+ true, false));
+ }
+
+ return Chain;
+}
+
+/// isFloatingPointZero - Return true if this is +0.0.
+static bool isFloatingPointZero(SDValue Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->getValueAPF().isPosZero();
+ else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
+ // Maybe this has already been legalized into the constant pool?
+ if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
+ SDValue WrapperOp = Op.getOperand(1).getOperand(0);
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->getValueAPF().isPosZero();
+ }
+ }
+ return false;
+}
+
+/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
+/// the given operands.
+SDValue
+ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &ARMCC, SelectionDAG &DAG,
+ DebugLoc dl) const {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ unsigned C = RHSC->getZExtValue();
+ if (!isLegalICmpImmediate(C)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if (isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if (C > 0 && isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ RHS = DAG.getConstant(C-1, MVT::i32);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if (isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ RHS = DAG.getConstant(C+1, MVT::i32);
+ }
+ break;
+ }
+ }
+ }
+
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMISD::NodeType CompareType;
+ switch (CondCode) {
+ default:
+ CompareType = ARMISD::CMP;
+ break;
+ case ARMCC::EQ:
+ case ARMCC::NE:
+ // Uses only Z Flag
+ CompareType = ARMISD::CMPZ;
+ break;
+ }
+ ARMCC = DAG.getConstant(CondCode, MVT::i32);
+ return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
+}
+
+/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
+static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
+ DebugLoc dl) {
+ SDValue Cmp;
+ if (!isFloatingPointZero(RHS))
+ Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
+ else
+ Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
+ return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
+}
+
+SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue TrueVal = Op.getOperand(2);
+ SDValue FalseVal = Op.getOperand(3);
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDValue ARMCC;
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
+ return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
+ ARMCC, CCR, Cmp);
+ if (CondCode2 != ARMCC::AL) {
+ SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
+ // FIXME: Needs another CMP because flag can have but one use.
+ SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
+ Result = DAG.getNode(ARMISD::CMOV, dl, VT,
+ Result, TrueVal, ARMCC2, CCR, Cmp2);
+ }
+ return Result;
+}
+
+SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDValue ARMCC;
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
+ return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
+ Chain, Dest, ARMCC, CCR,Cmp);
+ }
+
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
+ SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
+ if (CondCode2 != ARMCC::AL) {
+ ARMCC = DAG.getConstant(CondCode2, MVT::i32);
+ SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
+ Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
+ }
+ return Res;
+}
+
+SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ DebugLoc dl = Op.getDebugLoc();
+
+ EVT PTy = getPointerTy();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
+ SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
+ SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
+ Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
+ Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
+ if (Subtarget->isThumb2()) {
+ // Thumb2 uses a two-level jump. That is, it jumps into the jump table
+ // which does another jump to the destination. This also makes it easier
+ // to translate it to TBB / TBH later.
+ // FIXME: This might not work if the function is extremely large.
+ return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
+ Addr, Op.getOperand(2), JTI, UId);
+ }
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
+ PseudoSourceValue::getJumpTable(), 0,
+ false, false, 0);
+ Chain = Addr.getValue(1);
+ Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ } else {
+ Addr = DAG.getLoad(PTy, dl, Chain, Addr,
+ PseudoSourceValue::getJumpTable(), 0, false, false, 0);
+ Chain = Addr.getValue(1);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
+ }
+}
+
+static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Opc;
+
+ switch (Op.getOpcode()) {
+ default:
+ assert(0 && "Invalid opcode!");
+ case ISD::FP_TO_SINT:
+ Opc = ARMISD::FTOSI;
+ break;
+ case ISD::FP_TO_UINT:
+ Opc = ARMISD::FTOUI;
+ break;
+ }
+ Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+}
+
+static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Opc;
+
+ switch (Op.getOpcode()) {
+ default:
+ assert(0 && "Invalid opcode!");
+ case ISD::SINT_TO_FP:
+ Opc = ARMISD::SITOF;
+ break;
+ case ISD::UINT_TO_FP:
+ Opc = ARMISD::UITOF;
+ break;
+ }
+
+ Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
+ return DAG.getNode(Opc, dl, VT, Op);
+}
+
+static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
+ // Implement fcopysign with a fabs and a conditional fneg.
+ SDValue Tmp0 = Op.getOperand(0);
+ SDValue Tmp1 = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ EVT SrcVT = Tmp1.getValueType();
+ SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
+ SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
+ SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
+}
+
+SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(4, MVT::i32);
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
+ NULL, 0, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(ARM::LR, ARM::GPRRegisterClass);
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+}
+
+SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
+ ? ARM::R7 : ARM::R11;
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
+ false, false, 0);
+ return FrameAddr;
+}
+
+/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
+/// expand a bit convert where either the source or destination type is i64 to
+/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
+/// operand type is illegal (e.g., v2f32 for a target that doesn't support
+/// vectors), since the legalizer won't know what to do with that.
+static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ DebugLoc dl = N->getDebugLoc();
+ SDValue Op = N->getOperand(0);
+
+ // This function is only supposed to be called for i64 types, either as the
+ // source or destination of the bit convert.
+ EVT SrcVT = Op.getValueType();
+ EVT DstVT = N->getValueType(0);
+ assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
+ "ExpandBIT_CONVERT called for non-i64 type");
+
+ // Turn i64->f64 into VMOVDRR.
+ if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(1, MVT::i32));
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+ }
+
+ // Turn f64->i64 into VMOVRRD.
+ if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
+ SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
+ }
+
+ return SDValue();
+}
+
+/// getZeroVector - Returns a vector of specified type with all zero elements.
+///
+static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ // Zero vectors are used to represent vector negation and in those cases
+ // will be implemented with the NEON VNEG instruction. However, VNEG does
+ // not support i64 elements, so sometimes the zero vectors will need to be
+ // explicitly constructed. For those cases, and potentially other uses in
+ // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
+ // to their dest type. This ensures they get CSE'd.
+ SDValue Vec;
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
+ SmallVector<SDValue, 8> Ops;
+ MVT TVT;
+
+ if (VT.getSizeInBits() == 64) {
+ Ops.assign(8, Cst); TVT = MVT::v8i8;
+ } else {
+ Ops.assign(16, Cst); TVT = MVT::v16i8;
+ }
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
+
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
+}
+
+/// getOnesVector - Returns a vector of specified type with all bits set.
+///
+static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
+ // dest type. This ensures they get CSE'd.
+ SDValue Vec;
+ SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
+ SmallVector<SDValue, 8> Ops;
+ MVT TVT;
+
+ if (VT.getSizeInBits() == 64) {
+ Ops.assign(8, Cst); TVT = MVT::v8i8;
+ } else {
+ Ops.assign(16, Cst); TVT = MVT::v16i8;
+ }
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
+
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
+}
+
+/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMCC;
+ unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
+
+ assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
+
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
+ ARMCC, DAG, dl);
+ SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMCC;
+
+ assert(Op.getOpcode() == ISD::SHL_PARTS);
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
+ SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
+
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
+ ARMCC, DAG, dl);
+ SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
+
+ if (!ST->hasV6T2Ops())
+ return SDValue();
+
+ SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
+ return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
+}
+
+static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
+
+ // Lower vector shifts on NEON to use VSHL.
+ if (VT.isVector()) {
+ assert(ST->hasNEON() && "unexpected vector shift");
+
+ // Left shifts translate directly to the vshiftu intrinsic.
+ if (N->getOpcode() == ISD::SHL)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
+ N->getOperand(0), N->getOperand(1));
+
+ assert((N->getOpcode() == ISD::SRA ||
+ N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
+
+ // NEON uses the same intrinsics for both left and right shifts. For
+ // right shifts, the shift amounts are negative, so negate the vector of
+ // shift amounts.
+ EVT ShiftVT = N->getOperand(1).getValueType();
+ SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
+ getZeroVector(ShiftVT, DAG, dl),
+ N->getOperand(1));
+ Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
+ Intrinsic::arm_neon_vshifts :
+ Intrinsic::arm_neon_vshiftu);
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(vshiftInt, MVT::i32),
+ N->getOperand(0), NegatedCount);
+ }
+
+ // We can get here for a node like i32 = ISD::SHL i32, i64
+ if (VT != MVT::i64)
+ return SDValue();
+
+ assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
+ "Unknown shift to lower!");
+
+ // We only lower SRA, SRL of 1 here, all others use generic lowering.
+ if (!isa<ConstantSDNode>(N->getOperand(1)) ||
+ cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
+ return SDValue();
+
+ // If we are in thumb mode, we don't have RRX.
+ if (ST->isThumb1Only()) return SDValue();
+
+ // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(1, MVT::i32));
+
+ // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
+ // captures the result into a carry flag.
+ unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
+ Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
+
+ // The low part is an ARMISD::RRX operand, which shifts the carry in.
+ Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
+
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
+ SDValue TmpOp0, TmpOp1;
+ bool Invert = false;
+ bool Swap = false;
+ unsigned Opc = 0;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ EVT VT = Op.getValueType();
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (Op.getOperand(1).getValueType().isFloatingPoint()) {
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal FP comparison"); break;
+ case ISD::SETUNE:
+ case ISD::SETNE: Invert = true; // Fallthrough
+ case ISD::SETOEQ:
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETOLT:
+ case ISD::SETLT: Swap = true; // Fallthrough
+ case ISD::SETOGT:
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETOLE:
+ case ISD::SETLE: Swap = true; // Fallthrough
+ case ISD::SETOGE:
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETUGE: Swap = true; // Fallthrough
+ case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
+ case ISD::SETUGT: Swap = true; // Fallthrough
+ case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
+ case ISD::SETUEQ: Invert = true; // Fallthrough
+ case ISD::SETONE:
+ // Expand this to (OLT | OGT).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
+ break;
+ case ISD::SETUO: Invert = true; // Fallthrough
+ case ISD::SETO:
+ // Expand this to (OLT | OGE).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
+ break;
+ }
+ } else {
+ // Integer comparisons.
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal integer comparison"); break;
+ case ISD::SETNE: Invert = true;
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETLT: Swap = true;
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETLE: Swap = true;
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
+ case ISD::SETULE: Swap = true;
+ case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
+ }
+
+ // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
+ if (Opc == ARMISD::VCEQ) {
+
+ SDValue AndOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ AndOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
+ AndOp = Op1;
+
+ // Ignore bitconvert.
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
+ AndOp = AndOp.getOperand(0);
+
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
+ Opc = ARMISD::VTST;
+ Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
+ Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
+ Invert = !Invert;
+ }
+ }
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ return Result;
+}
+
+/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
+/// VMOV instruction, and if so, return the constant being splatted.
+static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
+ unsigned SplatBitSize, SelectionDAG &DAG) {
+ switch (SplatBitSize) {
+ case 8:
+ // Any 1-byte value is OK.
+ assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
+ return DAG.getTargetConstant(SplatBits, MVT::i8);
+
+ case 16:
+ // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
+ if ((SplatBits & ~0xff) == 0 ||
+ (SplatBits & ~0xff00) == 0)
+ return DAG.getTargetConstant(SplatBits, MVT::i16);
+ break;
+
+ case 32:
+ // NEON's 32-bit VMOV supports splat values where:
+ // * only one byte is nonzero, or
+ // * the least significant byte is 0xff and the second byte is nonzero, or
+ // * the least significant 2 bytes are 0xff and the third is nonzero.
+ if ((SplatBits & ~0xff) == 0 ||
+ (SplatBits & ~0xff00) == 0 ||
+ (SplatBits & ~0xff0000) == 0 ||
+ (SplatBits & ~0xff000000) == 0)
+ return DAG.getTargetConstant(SplatBits, MVT::i32);
+
+ if ((SplatBits & ~0xffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xff) == 0xff)
+ return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
+
+ if ((SplatBits & ~0xffffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
+ return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
+
+ // Note: there are a few 32-bit splat values (specifically: 00ffff00,
+ // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
+ // VMOV.I32. A (very) minor optimization would be to replicate the value
+ // and fall through here to test for a valid 64-bit splat. But, then the
+ // caller would also need to check and handle the change in size.
+ break;
+
+ case 64: {
+ // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
+ uint64_t BitMask = 0xff;
+ uint64_t Val = 0;
+ for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if (((SplatBits | SplatUndef) & BitMask) == BitMask)
+ Val |= BitMask;
+ else if ((SplatBits & BitMask) != 0)
+ return SDValue();
+ BitMask <<= 8;
+ }
+ return DAG.getTargetConstant(Val, MVT::i64);
+ }
+
+ default:
+ llvm_unreachable("unexpected size for isVMOVSplat");
+ break;
+ }
+
+ return SDValue();
+}
+
+/// getVMOVImm - If this is a build_vector of constants which can be
+/// formed by using a VMOV instruction of the specified element size,
+/// return the constant being splatted. The ByteSize field indicates the
+/// number of bytes of each element [1248].
+SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ByteSize * 8))
+ return SDValue();
+
+ if (SplatBitSize > ByteSize * 8)
+ return SDValue();
+
+ return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
+ SplatBitSize, DAG);
+}
+
+static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
+ bool &ReverseVEXT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+ ReverseVEXT = false;
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, it may still be
+ // a VEXT but the source vectors must be swapped.
+ ExpectedElt += 1;
+ if (ExpectedElt == NumElts * 2) {
+ ExpectedElt = 0;
+ ReverseVEXT = true;
+ }
+
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ // Adjust the index value if the source operands will be swapped.
+ if (ReverseVEXT)
+ Imm -= NumElts;
+
+ return true;
+}
+
+/// isVREVMask - Check if a vector shuffle corresponds to a VREV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned BlockSize) {
+ assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
+ "Only possible block sizes for VREV are: 16, 32, 64");
+
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BlockElts = M[0] + 1;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if ((unsigned) M[i] !=
+ (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((unsigned) M[i] != i + WhichResult ||
+ (unsigned) M[i+1] != i + NumElts + WhichResult)
+ return false;
+ }
+ return true;
+}
+
+/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
+static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((unsigned) M[i] != i + WhichResult ||
+ (unsigned) M[i+1] != i + WhichResult)
+ return false;
+ }
+ return true;
+}
+
+static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if ((unsigned) M[i] != 2 * i + WhichResult)
+ return false;
+ }
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
+static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned Half = VT.getVectorNumElements() / 2;
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned j = 0; j != 2; ++j) {
+ unsigned Idx = WhichResult;
+ for (unsigned i = 0; i != Half; ++i) {
+ if ((unsigned) M[i + j * Half] != Idx)
+ return false;
+ Idx += 2;
+ }
+ }
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((unsigned) M[i] != Idx ||
+ (unsigned) M[i+1] != Idx + NumElts)
+ return false;
+ Idx += 1;
+ }
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
+static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
+ unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((unsigned) M[i] != Idx ||
+ (unsigned) M[i+1] != Idx)
+ return false;
+ Idx += 1;
+ }
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+
+static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
+ // Canonicalize all-zeros and all-ones vectors.
+ ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
+ if (ConstVal->isNullValue())
+ return getZeroVector(VT, DAG, dl);
+ if (ConstVal->isAllOnesValue())
+ return getOnesVector(VT, DAG, dl);
+
+ EVT CanonicalVT;
+ if (VT.is64BitVector()) {
+ switch (Val.getValueType().getSizeInBits()) {
+ case 8: CanonicalVT = MVT::v8i8; break;
+ case 16: CanonicalVT = MVT::v4i16; break;
+ case 32: CanonicalVT = MVT::v2i32; break;
+ case 64: CanonicalVT = MVT::v1i64; break;
+ default: llvm_unreachable("unexpected splat element type"); break;
+ }
+ } else {
+ assert(VT.is128BitVector() && "unknown splat vector size");
+ switch (Val.getValueType().getSizeInBits()) {
+ case 8: CanonicalVT = MVT::v16i8; break;
+ case 16: CanonicalVT = MVT::v8i16; break;
+ case 32: CanonicalVT = MVT::v4i32; break;
+ case 64: CanonicalVT = MVT::v2i64; break;
+ default: llvm_unreachable("unexpected splat element type"); break;
+ }
+ }
+
+ // Build a canonical splat for this value.
+ SmallVector<SDValue, 8> Ops;
+ Ops.assign(CanonicalVT.getVectorNumElements(), Val);
+ SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
+ Ops.size());
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it.
+static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize, DAG);
+ if (Val.getNode())
+ return BuildSplat(Val, VT, DAG, dl);
+ }
+ }
+
+ // Scan through the operands to see if only one value is used.
+ unsigned NumElts = VT.getVectorNumElements();
+ bool isOnlyLowElement = true;
+ bool usesOnlyOneValue = true;
+ bool isConstant = true;
+ SDValue Value;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (i > 0)
+ isOnlyLowElement = false;
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
+ isConstant = false;
+
+ if (!Value.getNode())
+ Value = V;
+ else if (V != Value)
+ usesOnlyOneValue = false;
+ }
+
+ if (!Value.getNode())
+ return DAG.getUNDEF(VT);
+
+ if (isOnlyLowElement)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
+
+ // If all elements are constants, fall back to the default expansion, which
+ // will generate a load from the constant pool.
+ if (isConstant)
+ return SDValue();
+
+ // Use VDUP for non-constant splats.
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (usesOnlyOneValue && EltSize <= 32)
+ return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
+
+ // Vectors with 32- or 64-bit elements can be built by directly assigning
+ // the subregisters.
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ SDValue Val = DAG.getUNDEF(VecVT);
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Elt = Op.getOperand(i);
+ if (Elt.getOpcode() == ISD::UNDEF)
+ continue;
+ Elt = DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Elt);
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Val, Elt,
+ DAG.getConstant(i, MVT::i32));
+ }
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
+ }
+
+ return SDValue();
+}
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (M[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = M[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return true;
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm, WhichResult;
+
+ return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
+ isVREVMask(M, VT, 64) ||
+ isVREVMask(M, VT, 32) ||
+ isVREVMask(M, VT, 16) ||
+ isVEXTMask(M, VT, ReverseVEXT, Imm) ||
+ isVTRNMask(M, VT, WhichResult) ||
+ isVUZPMask(M, VT, WhichResult) ||
+ isVZIPMask(M, VT, WhichResult) ||
+ isVTRN_v_undef_Mask(M, VT, WhichResult) ||
+ isVUZP_v_undef_Mask(M, VT, WhichResult) ||
+ isVZIP_v_undef_Mask(M, VT, WhichResult));
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ DebugLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VREV,
+ OP_VDUP0,
+ OP_VDUP1,
+ OP_VDUP2,
+ OP_VDUP3,
+ OP_VEXT1,
+ OP_VEXT2,
+ OP_VEXT3,
+ OP_VUZPL, // VUZP, left result
+ OP_VUZPR, // VUZP, right result
+ OP_VZIPL, // VZIP, left result
+ OP_VZIPR, // VZIP, right result
+ OP_VTRNL, // VTRN, left result
+ OP_VTRNR // VTRN, right result
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+ EVT VT = OpLHS.getValueType();
+
+ switch (OpNum) {
+ default: llvm_unreachable("Unknown shuffle opcode!");
+ case OP_VREV:
+ return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
+ case OP_VDUP0:
+ case OP_VDUP1:
+ case OP_VDUP2:
+ case OP_VDUP3:
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
+ case OP_VEXT1:
+ case OP_VEXT2:
+ case OP_VEXT3:
+ return DAG.getNode(ARMISD::VEXT, dl, VT,
+ OpLHS, OpRHS,
+ DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
+ case OP_VUZPL:
+ case OP_VUZPR:
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
+ case OP_VZIPL:
+ case OP_VZIPR:
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
+ case OP_VTRNL:
+ case OP_VTRNR:
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
+ }
+}
+
+static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+ SmallVector<int, 8> ShuffleMask;
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ // FIXME: floating-point vectors should be canonicalized to integer vectors
+ // of the same time so that they get CSEd properly.
+ SVN->getMask(ShuffleMask);
+
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
+ int Lane = SVN->getSplatIndex();
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane == -1) Lane = 0;
+
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
+ DAG.getConstant(Lane, MVT::i32));
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm;
+ if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
+ if (ReverseVEXT)
+ std::swap(V1, V2);
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
+ DAG.getConstant(Imm, MVT::i32));
+ }
+
+ if (isVREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
+
+ // Check for Neon shuffles that modify both input vectors in place.
+ // If both results are used, i.e., if there are two shuffles with the same
+ // source operands and with masks corresponding to both results of one of
+ // these operations, DAG memoization will ensure that a single node is
+ // used for both shuffles.
+ unsigned WhichResult;
+ if (isVTRNMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVUZPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+ if (isVZIPMask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ V1, V2).getValue(WhichResult);
+
+ if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+ if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ V1, V1).getValue(WhichResult);
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts == 4) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (ShuffleMask[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = ShuffleMask[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ // Implement shuffles with 32- or 64-bit elements as subreg copies.
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
+ V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
+ SDValue Val = DAG.getUNDEF(VecVT);
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (ShuffleMask[i] < 0)
+ continue;
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ ShuffleMask[i] < (int)NumElts ? V1 : V2,
+ DAG.getConstant(ShuffleMask[i] & (NumElts-1),
+ MVT::i32));
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Val,
+ Elt, DAG.getConstant(i, MVT::i32));
+ }
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Vec = Op.getOperand(0);
+ SDValue Lane = Op.getOperand(1);
+ assert(VT == MVT::i32 &&
+ Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
+ "unexpected type for custom-lowering vector extract");
+ return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
+ "unexpected CONCAT_VECTORS");
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Val = DAG.getUNDEF(MVT::v2f64);
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ if (Op0.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
+ DAG.getIntPtrConstant(0));
+ if (Op1.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
+ DAG.getIntPtrConstant(1));
+ return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
+}
+
+SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::GlobalAddress:
+ return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
+ LowerGlobalAddressELF(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
+ case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
+ Subtarget);
+ case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG);
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
+ case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
+ case ISD::SRL_PARTS:
+ case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
+ case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
+ case ISD::VSETCC: return LowerVSETCC(Op, DAG);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ }
+ return SDValue();
+}
+
+/// ReplaceNodeResults - Replace the results of node with an illegal result
+/// type with new values built out of custom code.
+void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ SDValue Res;
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this!");
+ break;
+ case ISD::BIT_CONVERT:
+ Res = ExpandBIT_CONVERT(N, DAG);
+ break;
+ case ISD::SRL:
+ case ISD::SRA:
+ Res = LowerShift(N, DAG, Subtarget);
+ break;
+ }
+ if (Res.getNode())
+ Results.push_back(Res);
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
+ MachineBasicBlock *BB,
+ unsigned Size) const {
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned oldval = MI->getOperand(2).getReg();
+ unsigned newval = MI->getOperand(3).getReg();
+ unsigned scratch = BB->getParent()->getRegInfo()
+ .createVirtualRegister(ARM::GPRRegisterClass);
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ unsigned ldrOpc, strOpc;
+ switch (Size) {
+ default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
+ case 1:
+ ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
+ strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
+ break;
+ case 2:
+ ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
+ strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
+ break;
+ case 4:
+ ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
+ strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
+ break;
+ }
+
+ MachineFunction *MF = BB->getParent();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It; // insert the new blocks after the current block
+
+ MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loop1MBB);
+ MF->insert(It, loop2MBB);
+ MF->insert(It, exitMBB);
+ exitMBB->transferSuccessors(BB);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loop1MBB
+ BB->addSuccessor(loop1MBB);
+
+ // loop1MBB:
+ // ldrex dest, [ptr]
+ // cmp dest, oldval
+ // bne exitMBB
+ BB = loop1MBB;
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(dest).addReg(oldval));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+ BB->addSuccessor(loop2MBB);
+ BB->addSuccessor(exitMBB);
+
+ // loop2MBB:
+ // strex scratch, newval, [ptr]
+ // cmp scratch, #0
+ // bne loop1MBB
+ BB = loop2MBB;
+ AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
+ .addReg(ptr));
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(scratch).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+ BB->addSuccessor(loop1MBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MF->DeleteMachineInstr(MI); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned Size, unsigned BinOpcode) const {
+ // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction *MF = BB->getParent();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned ptr = MI->getOperand(1).getReg();
+ unsigned incr = MI->getOperand(2).getReg();
+ DebugLoc dl = MI->getDebugLoc();
+
+ bool isThumb2 = Subtarget->isThumb2();
+ unsigned ldrOpc, strOpc;
+ switch (Size) {
+ default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
+ case 1:
+ ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
+ strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
+ break;
+ case 2:
+ ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
+ strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
+ break;
+ case 4:
+ ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
+ strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
+ break;
+ }
+
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+ exitMBB->transferSuccessors(BB);
+
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
+ unsigned scratch2 = (!BinOpcode) ? incr :
+ RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
+
+ // thisMBB:
+ // ...
+ // fallthrough --> loopMBB
+ BB->addSuccessor(loopMBB);
+
+ // loopMBB:
+ // ldrex dest, ptr
+ // <binop> scratch2, dest, incr
+ // strex scratch, scratch2, ptr
+ // cmp scratch, #0
+ // bne- loopMBB
+ // fallthrough --> exitMBB
+ BB = loopMBB;
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
+ if (BinOpcode) {
+ // operand order needs to go the other way for NAND
+ if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
+ AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
+ addReg(incr).addReg(dest)).addReg(0);
+ else
+ AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
+ addReg(dest).addReg(incr)).addReg(0);
+ }
+
+ AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
+ .addReg(ptr));
+ AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(scratch).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // exitMBB:
+ // ...
+ BB = exitMBB;
+
+ MF->DeleteMachineInstr(MI); // The instruction is gone now.
+
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+ switch (MI->getOpcode()) {
+ default:
+ MI->dump();
+ llvm_unreachable("Unexpected instr type to insert");
+
+ case ARM::ATOMIC_LOAD_ADD_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
+ case ARM::ATOMIC_LOAD_ADD_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
+ case ARM::ATOMIC_LOAD_ADD_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
+
+ case ARM::ATOMIC_LOAD_AND_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
+ case ARM::ATOMIC_LOAD_AND_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
+ case ARM::ATOMIC_LOAD_AND_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
+
+ case ARM::ATOMIC_LOAD_OR_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
+ case ARM::ATOMIC_LOAD_OR_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
+ case ARM::ATOMIC_LOAD_OR_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
+
+ case ARM::ATOMIC_LOAD_XOR_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
+ case ARM::ATOMIC_LOAD_XOR_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
+ case ARM::ATOMIC_LOAD_XOR_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
+
+ case ARM::ATOMIC_LOAD_NAND_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
+ case ARM::ATOMIC_LOAD_NAND_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
+ case ARM::ATOMIC_LOAD_NAND_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
+
+ case ARM::ATOMIC_LOAD_SUB_I8:
+ return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
+ case ARM::ATOMIC_LOAD_SUB_I16:
+ return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
+ case ARM::ATOMIC_LOAD_SUB_I32:
+ return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
+
+ case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
+ case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
+ case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
+
+ case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
+ case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
+ case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
+
+ case ARM::tMOVCCr_pseudo: {
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
+ .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+ // Update machine-CFG edges by first adding all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I)
+ sinkMBB->addSuccessor(*I);
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while (!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+ }
+
+ case ARM::tANDsp:
+ case ARM::tADDspr_:
+ case ARM::tSUBspi_:
+ case ARM::t2SUBrSPi_:
+ case ARM::t2SUBrSPi12_:
+ case ARM::t2SUBrSPs_: {
+ MachineFunction *MF = BB->getParent();
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool DstIsDead = MI->getOperand(0).isDead();
+ bool SrcIsKill = MI->getOperand(1).isKill();
+
+ if (SrcReg != ARM::SP) {
+ // Copy the source to SP from virtual register.
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
+ unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
+ ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
+ BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
+ .addReg(SrcReg, getKillRegState(SrcIsKill));
+ }
+
+ unsigned OpOpc = 0;
+ bool NeedPred = false, NeedCC = false, NeedOp3 = false;
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected pseudo instruction!");
+ case ARM::tANDsp:
+ OpOpc = ARM::tAND;
+ NeedPred = true;
+ break;
+ case ARM::tADDspr_:
+ OpOpc = ARM::tADDspr;
+ break;
+ case ARM::tSUBspi_:
+ OpOpc = ARM::tSUBspi;
+ break;
+ case ARM::t2SUBrSPi_:
+ OpOpc = ARM::t2SUBrSPi;
+ NeedPred = true; NeedCC = true;
+ break;
+ case ARM::t2SUBrSPi12_:
+ OpOpc = ARM::t2SUBrSPi12;
+ NeedPred = true;
+ break;
+ case ARM::t2SUBrSPs_:
+ OpOpc = ARM::t2SUBrSPs;
+ NeedPred = true; NeedCC = true; NeedOp3 = true;
+ break;
+ }
+ MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
+ if (OpOpc == ARM::tAND)
+ AddDefaultT1CC(MIB);
+ MIB.addReg(ARM::SP);
+ MIB.addOperand(MI->getOperand(2));
+ if (NeedOp3)
+ MIB.addOperand(MI->getOperand(3));
+ if (NeedPred)
+ AddDefaultPred(MIB);
+ if (NeedCC)
+ AddDefaultCC(MIB);
+
+ // Copy the result from SP to virtual register.
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
+ unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
+ ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
+ BuildMI(BB, dl, TII->get(CopyOpc))
+ .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
+ .addReg(ARM::SP);
+ MF->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+static
+SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = N->getValueType(0);
+ unsigned Opc = N->getOpcode();
+ bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
+ SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
+ SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
+ ISD::CondCode CC = ISD::SETCC_INVALID;
+
+ if (isSlctCC) {
+ CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
+ } else {
+ SDValue CCOp = Slct.getOperand(0);
+ if (CCOp.getOpcode() == ISD::SETCC)
+ CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
+ }
+
+ bool DoXform = false;
+ bool InvCC = false;
+ assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
+ "Bad input!");
+
+ if (LHS.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(LHS)->isNullValue()) {
+ DoXform = true;
+ } else if (CC != ISD::SETCC_INVALID &&
+ RHS.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(RHS)->isNullValue()) {
+ std::swap(LHS, RHS);
+ SDValue Op0 = Slct.getOperand(0);
+ EVT OpVT = isSlctCC ? Op0.getValueType() :
+ Op0.getOperand(0).getValueType();
+ bool isInt = OpVT.isInteger();
+ CC = ISD::getSetCCInverse(CC, isInt);
+
+ if (!TLI.isCondCodeLegal(CC, OpVT))
+ return SDValue(); // Inverse operator isn't legal.
+
+ DoXform = true;
+ InvCC = true;
+ }
+
+ if (DoXform) {
+ SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
+ if (isSlctCC)
+ return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
+ Slct.getOperand(0), Slct.getOperand(1), CC);
+ SDValue CCOp = Slct.getOperand(0);
+ if (InvCC)
+ CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
+ CCOp.getOperand(0), CCOp.getOperand(1), CC);
+ return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
+ CCOp, OtherOp, Result);
+ }
+ return SDValue();
+}
+
+/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
+static SDValue PerformADDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // added by evan in r37685 with no testcase.
+ SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
+
+ // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+ if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
+ if (Result.getNode()) return Result;
+ }
+ if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
+ if (Result.getNode()) return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
+static SDValue PerformSUBCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // added by evan in r37685 with no testcase.
+ SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
+
+ // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+ if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
+ if (Result.getNode()) return Result;
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+
+ if (Subtarget->isThumb1Only())
+ return SDValue();
+
+ if (DAG.getMachineFunction().
+ getFunction()->hasFnAttr(Attribute::OptimizeForSize))
+ return SDValue();
+
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i32)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ uint64_t MulAmt = C->getZExtValue();
+ unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
+ ShiftAmt = ShiftAmt & (32 - 1);
+ SDValue V = N->getOperand(0);
+ DebugLoc DL = N->getDebugLoc();
+
+ SDValue Res;
+ MulAmt >>= ShiftAmt;
+ if (isPowerOf2_32(MulAmt - 1)) {
+ // (mul x, 2^N + 1) => (add (shl x, N), x)
+ Res = DAG.getNode(ISD::ADD, DL, VT,
+ V, DAG.getNode(ISD::SHL, DL, VT,
+ V, DAG.getConstant(Log2_32(MulAmt-1),
+ MVT::i32)));
+ } else if (isPowerOf2_32(MulAmt + 1)) {
+ // (mul x, 2^N - 1) => (sub (shl x, N), x)
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V, DAG.getConstant(Log2_32(MulAmt+1),
+ MVT::i32)),
+ V);
+ } else
+ return SDValue();
+
+ if (ShiftAmt != 0)
+ Res = DAG.getNode(ISD::SHL, DL, VT, Res,
+ DAG.getConstant(ShiftAmt, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+}
+
+/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVRRD.
+static SDValue PerformVMOVRRDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // fmrrd(fmdrr x, y) -> x,y
+ SDValue InDouble = N->getOperand(0);
+ if (InDouble.getOpcode() == ARMISD::VMOVDRR)
+ return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
+ return SDValue();
+}
+
+/// getVShiftImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift operation, where all the elements of the
+/// build_vector must have the same constant integer value.
+static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
+ // Ignore bit_converts.
+ while (Op.getOpcode() == ISD::BIT_CONVERT)
+ Op = Op.getOperand(0);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElementBits) ||
+ SplatBitSize > ElementBits)
+ return false;
+ Cnt = SplatBits.getSExtValue();
+ return true;
+}
+
+/// isVShiftLImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift left operation. That value must be in the range:
+/// 0 <= Value < ElementBits for a left shift; or
+/// 0 <= Value <= ElementBits for a long left shift.
+static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
+}
+
+/// isVShiftRImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift right operation. For a shift opcode, the value
+/// is positive, but for an intrinsic the value count must be negative. The
+/// absolute value must be in the range:
+/// 1 <= |Value| <= ElementBits for a right shift; or
+/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
+static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
+ int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ if (isIntrinsic)
+ Cnt = -Cnt;
+ return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
+}
+
+/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
+static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ // Don't do anything for most intrinsics.
+ break;
+
+ // Vector shifts: check for immediate versions and lower them.
+ // Note: This is done during DAG combining instead of DAG legalizing because
+ // the build_vectors for 64-bit vector element shift counts are generally
+ // not legal, and it is hard to see their values after they get legalized to
+ // loads from a constant pool.
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ case Intrinsic::arm_neon_vshiftls:
+ case Intrinsic::arm_neon_vshiftlu:
+ case Intrinsic::arm_neon_vshiftn:
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ case Intrinsic::arm_neon_vqshiftsu:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
+ VShiftOpc = ARMISD::VSHL;
+ break;
+ }
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
+ VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ break;
+ }
+ return SDValue();
+
+ case Intrinsic::arm_neon_vshiftls:
+ case Intrinsic::arm_neon_vshiftlu:
+ if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for vshll intrinsic");
+
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshiftsu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for vqshlu intrinsic");
+
+ case Intrinsic::arm_neon_vshiftn:
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ // Narrowing shifts require an immediate right shift.
+ if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
+
+ default:
+ llvm_unreachable("unhandled vector shift");
+ }
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ // Opcode already set above.
+ break;
+ case Intrinsic::arm_neon_vshiftls:
+ case Intrinsic::arm_neon_vshiftlu:
+ if (Cnt == VT.getVectorElementType().getSizeInBits())
+ VShiftOpc = ARMISD::VSHLLi;
+ else
+ VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
+ ARMISD::VSHLLs : ARMISD::VSHLLu);
+ break;
+ case Intrinsic::arm_neon_vshiftn:
+ VShiftOpc = ARMISD::VSHRN; break;
+ case Intrinsic::arm_neon_vrshifts:
+ VShiftOpc = ARMISD::VRSHRs; break;
+ case Intrinsic::arm_neon_vrshiftu:
+ VShiftOpc = ARMISD::VRSHRu; break;
+ case Intrinsic::arm_neon_vrshiftn:
+ VShiftOpc = ARMISD::VRSHRN; break;
+ case Intrinsic::arm_neon_vqshifts:
+ VShiftOpc = ARMISD::VQSHLs; break;
+ case Intrinsic::arm_neon_vqshiftu:
+ VShiftOpc = ARMISD::VQSHLu; break;
+ case Intrinsic::arm_neon_vqshiftsu:
+ VShiftOpc = ARMISD::VQSHLsu; break;
+ case Intrinsic::arm_neon_vqshiftns:
+ VShiftOpc = ARMISD::VQSHRNs; break;
+ case Intrinsic::arm_neon_vqshiftnu:
+ VShiftOpc = ARMISD::VQSHRNu; break;
+ case Intrinsic::arm_neon_vqshiftnsu:
+ VShiftOpc = ARMISD::VQSHRNsu; break;
+ case Intrinsic::arm_neon_vqrshiftns:
+ VShiftOpc = ARMISD::VQRSHRNs; break;
+ case Intrinsic::arm_neon_vqrshiftnu:
+ VShiftOpc = ARMISD::VQRSHRNu; break;
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ VShiftOpc = ARMISD::VQRSHRNsu; break;
+ }
+
+ return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
+ N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vshiftins: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
+ VShiftOpc = ARMISD::VSLI;
+ else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
+ VShiftOpc = ARMISD::VSRI;
+ else {
+ llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
+ }
+
+ return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
+ N->getOperand(1), N->getOperand(2),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vqrshifts:
+ case Intrinsic::arm_neon_vqrshiftu:
+ // No immediate versions of these to check for.
+ break;
+ }
+
+ return SDValue();
+}
+
+/// PerformShiftCombine - Checks for immediate versions of vector shifts and
+/// lowers them. As with the vector shift intrinsics, this is done during DAG
+/// combining instead of DAG legalizing because the build_vectors for 64-bit
+/// vector element shift counts are generally not legal, and it is hard to see
+/// their values after they get legalized to loads from a constant pool.
+static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+
+ // Nothing to be done for scalar shifts.
+ if (! VT.isVector())
+ return SDValue();
+
+ assert(ST->hasNEON() && "unexpected vector shift");
+ int64_t Cnt;
+
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected shift opcode");
+
+ case ISD::SHL:
+ if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
+ return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ break;
+
+ case ISD::SRA:
+ case ISD::SRL:
+ if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
+ unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
+ DAG.getConstant(Cnt, MVT::i32));
+ }
+ }
+ return SDValue();
+}
+
+/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
+/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
+static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ SDValue N0 = N->getOperand(0);
+
+ // Check for sign- and zero-extensions of vector extract operations of 8-
+ // and 16-bit vector elements. NEON supports these directly. They are
+ // handled during DAG combining because type legalization will promote them
+ // to 32-bit types and it is messy to recognize the operations after that.
+ if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue Vec = N0.getOperand(0);
+ SDValue Lane = N0.getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT EltVT = N0.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (VT == MVT::i32 &&
+ (EltVT == MVT::i8 || EltVT == MVT::i16) &&
+ TLI.isTypeLegal(Vec.getValueType())) {
+
+ unsigned Opc = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ISD::SIGN_EXTEND:
+ Opc = ARMISD::VGETLANEs;
+ break;
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Opc = ARMISD::VGETLANEu;
+ break;
+ }
+ return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
+ }
+ }
+
+ return SDValue();
+}
+
+/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
+/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
+static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ // If the target supports NEON, try to use vmax/vmin instructions for f32
+ // selects like "x < y ? x : y". Unless the FiniteOnlyFPMath option is set,
+ // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
+ // a NaN; only do the transformation when it matches that behavior.
+
+ // For now only do this when using NEON for FP operations; if using VFP, it
+ // is not obvious that the benefit outweighs the cost of switching to the
+ // NEON pipeline.
+ if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
+ N->getValueType(0) != MVT::f32)
+ return SDValue();
+
+ SDValue CondLHS = N->getOperand(0);
+ SDValue CondRHS = N->getOperand(1);
+ SDValue LHS = N->getOperand(2);
+ SDValue RHS = N->getOperand(3);
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
+
+ unsigned Opcode = 0;
+ bool IsReversed;
+ if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
+ IsReversed = false; // x CC y ? x : y
+ } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
+ IsReversed = true ; // x CC y ? y : x
+ } else {
+ return SDValue();
+ }
+
+ bool IsUnordered;
+ switch (CC) {
+ default: break;
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETULT:
+ case ISD::SETULE:
+ // If LHS is NaN, an ordered comparison will be false and the result will
+ // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
+ // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
+ IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
+ if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
+ break;
+ // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
+ // will return -0, so vmin can only be used for unsafe math or if one of
+ // the operands is known to be nonzero.
+ if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
+ !UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
+ break;
+
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ // If LHS is NaN, an ordered comparison will be false and the result will
+ // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
+ // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
+ IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
+ if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
+ break;
+ // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
+ // will return +0, so vmax can only be used for unsafe math or if one of
+ // the operands is known to be nonzero.
+ if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
+ !UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
+ break;
+ }
+
+ if (!Opcode)
+ return SDValue();
+ return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
+}
+
+SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::ADD: return PerformADDCombine(N, DCI);
+ case ISD::SUB: return PerformSUBCombine(N, DCI);
+ case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
+ case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
+ case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
+ case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
+ }
+ return SDValue();
+}
+
+bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
+ if (!Subtarget->hasV6Ops())
+ // Pre-v6 does not support unaligned mem access.
+ return false;
+ else {
+ // v6+ may or may not support unaligned mem access depending on the system
+ // configuration.
+ // FIXME: This is pretty conservative. Should we provide cmdline option to
+ // control the behaviour?
+ if (!Subtarget->isTargetDarwin())
+ return false;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ return true;
+ // FIXME: VLD1 etc with standard alignment is legal.
+ }
+}
+
+static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
+ if (V < 0)
+ return false;
+
+ unsigned Scale = 1;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ // Scale == 1;
+ break;
+ case MVT::i16:
+ // Scale == 2;
+ Scale = 2;
+ break;
+ case MVT::i32:
+ // Scale == 4;
+ Scale = 4;
+ break;
+ }
+
+ if ((V & (Scale - 1)) != 0)
+ return false;
+ V /= Scale;
+ return V == (V & ((1LL << 5) - 1));
+}
+
+static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ bool isNeg = false;
+ if (V < 0) {
+ isNeg = true;
+ V = - V;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // + imm12 or - imm8
+ if (isNeg)
+ return V == (V & ((1LL << 8) - 1));
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ // Same as ARM mode. FIXME: NEON?
+ if (!Subtarget->hasVFP2())
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+/// isLegalAddressImmediate - Return true if the integer value can be used
+/// as the offset of the target addressing mode for load / store of the
+/// given type.
+static bool isLegalAddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ if (V == 0)
+ return true;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb1Only())
+ return isLegalT1AddressImmediate(V, VT);
+ else if (Subtarget->isThumb2())
+ return isLegalT2AddressImmediate(V, VT, Subtarget);
+
+ // ARM mode.
+ if (V < 0)
+ V = - V;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ // +- imm12
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::i16:
+ // +- imm8
+ return V == (V & ((1LL << 8) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) // FIXME: NEON?
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
+ EVT VT) const {
+ int Scale = AM.Scale;
+ if (Scale < 0)
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ Scale = Scale & ~1;
+ return Scale == 2 || Scale == 4 || Scale == 8;
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ const Type *Ty) const {
+ EVT VT = getValueType(Ty, true);
+ if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
+ return false;
+
+ // Can never fold addr of global into load/store.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // no scale reg, must be "r+i" or "r", or "i".
+ break;
+ case 1:
+ if (Subtarget->isThumb1Only())
+ return false;
+ // FALL THROUGH.
+ default:
+ // ARM doesn't support any R+R*scale+imm addr modes.
+ if (AM.BaseOffs)
+ return false;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb2())
+ return isLegalT2ScaledAddressingMode(AM, VT);
+
+ int Scale = AM.Scale;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ if (Scale < 0) Scale = -Scale;
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ return isPowerOf2_32(Scale & ~1);
+ case MVT::i16:
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+ break;
+ }
+ return true;
+}
+
+/// isLegalICmpImmediate - Return true if the specified immediate is legal
+/// icmp immediate, that is the target has icmp instructions which can compare
+/// a register against the immediate without having to materialize the
+/// immediate into a register.
+bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ if (!Subtarget->isThumb())
+ return ARM_AM::getSOImmVal(Imm) != -1;
+ if (Subtarget->isThumb2())
+ return ARM_AM::getT2SOImmVal(Imm) != -1;
+ return Imm >= 0 && Imm <= 255;
+}
+
+static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
+ // AddressingMode 3
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -256) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ return true;
+ }
+ }
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Offset = Ptr->getOperand(1);
+ return true;
+ } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
+ // AddressingMode 2
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x1000) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ Base = Ptr->getOperand(0);
+ return true;
+ }
+ }
+
+ if (Ptr->getOpcode() == ISD::ADD) {
+ isInc = true;
+ ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
+ if (ShOpcVal != ARM_AM::no_shift) {
+ Base = Ptr->getOperand(1);
+ Offset = Ptr->getOperand(0);
+ } else {
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ }
+ return true;
+ }
+
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ return true;
+ }
+
+ // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
+ return false;
+}
+
+static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
+ return true;
+ } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
+ isInc = Ptr->getOpcode() == ISD::ADD;
+ Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool
+ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getMemoryVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ Ptr = ST->getBasePtr();
+ VT = ST->getMemoryVT();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
+ return true;
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ if (Ptr != Base) {
+ // Swap base ptr and offset to catch more post-index load / store when
+ // it's legal. In Thumb2 mode, offset must be an immediate.
+ if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
+ !Subtarget->isThumb2())
+ std::swap(Base, Offset);
+
+ // Post-indexed load / store update the base pointer.
+ if (Ptr != Base)
+ return false;
+ }
+
+ AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+}
+
+void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
+ const APInt &Mask,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case ARMISD::CMOV: {
+ // Bits are known zero/one if known on the LHS and RHS.
+ DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+ if (KnownZero == 0 && KnownOne == 0) return;
+
+ APInt KnownZeroRHS, KnownOneRHS;
+ DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
+ KnownZeroRHS, KnownOneRHS, Depth+1);
+ KnownZero &= KnownZeroRHS;
+ KnownOne &= KnownOneRHS;
+ return;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+ARMTargetLowering::ConstraintType
+ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'l': return C_RegisterClass;
+ case 'w': return C_RegisterClass;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC ARM Constraint Letters
+ switch (Constraint[0]) {
+ case 'l':
+ if (Subtarget->isThumb())
+ return std::make_pair(0U, ARM::tGPRRegisterClass);
+ else
+ return std::make_pair(0U, ARM::GPRRegisterClass);
+ case 'r':
+ return std::make_pair(0U, ARM::GPRRegisterClass);
+ case 'w':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, ARM::SPRRegisterClass);
+ if (VT.getSizeInBits() == 64)
+ return std::make_pair(0U, ARM::DPRRegisterClass);
+ if (VT.getSizeInBits() == 128)
+ return std::make_pair(0U, ARM::QPRRegisterClass);
+ break;
+ }
+ }
+ if (StringRef("{cc}").equals_lower(Constraint))
+ return std::make_pair(0U, ARM::CCRRegisterClass);
+
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+std::vector<unsigned> ARMTargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint.size() != 1)
+ return std::vector<unsigned>();
+
+ switch (Constraint[0]) { // GCC ARM Constraint Letters
+ default: break;
+ case 'l':
+ return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
+ ARM::R4, ARM::R5, ARM::R6, ARM::R7,
+ 0);
+ case 'r':
+ return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
+ ARM::R4, ARM::R5, ARM::R6, ARM::R7,
+ ARM::R8, ARM::R9, ARM::R10, ARM::R11,
+ ARM::R12, ARM::LR, 0);
+ case 'w':
+ if (VT == MVT::f32)
+ return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
+ ARM::S4, ARM::S5, ARM::S6, ARM::S7,
+ ARM::S8, ARM::S9, ARM::S10, ARM::S11,
+ ARM::S12,ARM::S13,ARM::S14,ARM::S15,
+ ARM::S16,ARM::S17,ARM::S18,ARM::S19,
+ ARM::S20,ARM::S21,ARM::S22,ARM::S23,
+ ARM::S24,ARM::S25,ARM::S26,ARM::S27,
+ ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
+ if (VT.getSizeInBits() == 64)
+ return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
+ ARM::D4, ARM::D5, ARM::D6, ARM::D7,
+ ARM::D8, ARM::D9, ARM::D10,ARM::D11,
+ ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
+ if (VT.getSizeInBits() == 128)
+ return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
+ ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
+ break;
+ }
+
+ return std::vector<unsigned>();
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ char Constraint,
+ bool hasMemory,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(0, 0);
+
+ switch (Constraint) {
+ default: break;
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O':
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return;
+
+ int64_t CVal64 = C->getSExtValue();
+ int CVal = (int) CVal64;
+ // None of these constraints allow values larger than 32 bits. Check
+ // that the value fits in an int.
+ if (CVal != CVal64)
+ return;
+
+ switch (Constraint) {
+ case 'I':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between 0 and 255, for ADD
+ // immediates.
+ if (CVal >= 0 && CVal <= 255)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getT2SOImmVal(CVal) != -1)
+ break;
+ } else {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getSOImmVal(CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'J':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between -255 and -1, for negated ADD
+ // immediates. This can be used in GCC with an "n" modifier that
+ // prints the negated value, for use with SUB instructions. It is
+ // not useful otherwise but is implemented for compatibility.
+ if (CVal >= -255 && CVal <= -1)
+ break;
+ } else {
+ // This must be a constant between -4095 and 4095. It is not clear
+ // what this constraint is intended for. Implemented for
+ // compatibility with GCC.
+ if (CVal >= -4095 && CVal <= 4095)
+ break;
+ }
+ return;
+
+ case 'K':
+ if (Subtarget->isThumb1Only()) {
+ // A 32-bit value where only one byte has a nonzero value. Exclude
+ // zero to match GCC. This constraint is used by GCC internally for
+ // constants that can be loaded with a move/shift combination.
+ // It is not useful otherwise but is implemented for compatibility.
+ if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getT2SOImmVal(~CVal) != -1)
+ break;
+ } else {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getSOImmVal(~CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'L':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between -7 and 7,
+ // for 3-operand ADD/SUB immediate instructions.
+ if (CVal >= -7 && CVal < 7)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getT2SOImmVal(-CVal) != -1)
+ break;
+ } else {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getSOImmVal(-CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'M':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between 0 and 1020, for
+ // ADD sp + immediate.
+ if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
+ break;
+ } else {
+ // A power of two or a constant between 0 and 32. This is used in
+ // GCC for the shift amount on shifted register operands, but it is
+ // useful in general for any shift amounts.
+ if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
+ break;
+ }
+ return;
+
+ case 'N':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between 0 and 31, for shift amounts.
+ if (CVal >= 0 && CVal <= 31)
+ break;
+ }
+ return;
+
+ case 'O':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between -508 and 508, for
+ // ADD/SUB sp = sp + immediate.
+ if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
+ break;
+ }
+ return;
+ }
+ Result = DAG.getTargetConstant(CVal, Op.getValueType());
+ break;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
+ Ops, DAG);
+}
+
+bool
+ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The ARM target isn't yet aware of offsets.
+ return false;
+}
+
+int ARM::getVFPf32Imm(const APFloat &FPImm) {
+ APInt Imm = FPImm.bitcastToAPInt();
+ uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
+ int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
+ int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0x7ffff)
+ return -1;
+ Mantissa >>= 19;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+}
+
+int ARM::getVFPf64Imm(const APFloat &FPImm) {
+ APInt Imm = FPImm.bitcastToAPInt();
+ uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
+ int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
+ uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
+
+ // We can handle 4 bits of mantissa.
+ // mantissa = (16+UInt(e:f:g:h))/16.
+ if (Mantissa & 0xffffffffffffLL)
+ return -1;
+ Mantissa >>= 48;
+ if ((Mantissa & 0xf) != Mantissa)
+ return -1;
+
+ // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
+ if (Exp < -3 || Exp > 4)
+ return -1;
+ Exp = ((Exp+3) & 0x7) ^ 4;
+
+ return ((int)Sign << 7) | (Exp << 4) | Mantissa;
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ if (!Subtarget->hasVFP3())
+ return false;
+ if (VT == MVT::f32)
+ return ARM::getVFPf32Imm(Imm) != -1;
+ if (VT == MVT::f64)
+ return ARM::getVFPf64Imm(Imm) != -1;
+ return false;
+}
OpenPOWER on IntegriCloud