diff options
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp | 2375 |
1 files changed, 2375 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp new file mode 100644 index 0000000..9baef6b --- /dev/null +++ b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp @@ -0,0 +1,2375 @@ +//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines an instruction selector for the ARM target. +// +//===----------------------------------------------------------------------===// + +#include "ARM.h" +#include "ARMAddressingModes.h" +#include "ARMTargetMachine.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/Intrinsics.h" +#include "llvm/LLVMContext.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +static cl::opt<bool> +UseRegSeq("neon-reg-sequence", cl::Hidden, + cl::desc("Use reg_sequence to model ld / st of multiple neon regs"), + cl::init(true)); + +//===--------------------------------------------------------------------===// +/// ARMDAGToDAGISel - ARM specific code to select ARM machine +/// instructions for SelectionDAG operations. +/// +namespace { +class ARMDAGToDAGISel : public SelectionDAGISel { + ARMBaseTargetMachine &TM; + + /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can + /// make the right decision when generating code for different targets. + const ARMSubtarget *Subtarget; + +public: + explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, + CodeGenOpt::Level OptLevel) + : SelectionDAGISel(tm, OptLevel), TM(tm), + Subtarget(&TM.getSubtarget<ARMSubtarget>()) { + } + + virtual const char *getPassName() const { + return "ARM Instruction Selection"; + } + + /// getI32Imm - Return a target constant of type i32 with the specified + /// value. + inline SDValue getI32Imm(unsigned Imm) { + return CurDAG->getTargetConstant(Imm, MVT::i32); + } + + SDNode *Select(SDNode *N); + + bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A, + SDValue &B, SDValue &C); + bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base, + SDValue &Offset, SDValue &Opc); + bool SelectAddrMode2Offset(SDNode *Op, SDValue N, + SDValue &Offset, SDValue &Opc); + bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base, + SDValue &Offset, SDValue &Opc); + bool SelectAddrMode3Offset(SDNode *Op, SDValue N, + SDValue &Offset, SDValue &Opc); + bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr, + SDValue &Mode); + bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base, + SDValue &Offset); + bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align); + + bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset, + SDValue &Label); + + bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base, + SDValue &Offset); + bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale, + SDValue &Base, SDValue &OffImm, + SDValue &Offset); + bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffImm, SDValue &Offset); + bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffImm, SDValue &Offset); + bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffImm, SDValue &Offset); + bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffImm); + + bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N, + SDValue &BaseReg, SDValue &Opc); + bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffImm); + bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffImm); + bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, + SDValue &OffImm); + bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffImm); + bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base, + SDValue &OffReg, SDValue &ShImm); + + // Include the pieces autogenerated from the target description. +#include "ARMGenDAGISel.inc" + +private: + /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for + /// ARM. + SDNode *SelectARMIndexedLoad(SDNode *N); + SDNode *SelectT2IndexedLoad(SDNode *N); + + /// SelectVLD - Select NEON load intrinsics. NumVecs should be + /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for + /// loads of D registers and even subregs and odd subregs of Q registers. + /// For NumVecs <= 2, QOpcodes1 is not used. + SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, + unsigned *QOpcodes0, unsigned *QOpcodes1); + + /// SelectVST - Select NEON store intrinsics. NumVecs should + /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for + /// stores of D registers and even subregs and odd subregs of Q registers. + /// For NumVecs <= 2, QOpcodes1 is not used. + SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, + unsigned *QOpcodes0, unsigned *QOpcodes1); + + /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should + /// be 2, 3 or 4. The opcode arrays specify the instructions used for + /// load/store of D registers and even subregs and odd subregs of Q registers. + SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs, + unsigned *DOpcodes, unsigned *QOpcodes0, + unsigned *QOpcodes1); + + /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM. + SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned); + + /// SelectCMOVOp - Select CMOV instructions for ARM. + SDNode *SelectCMOVOp(SDNode *N); + SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, + SDValue InFlag); + SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, + SDValue InFlag); + SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, + SDValue InFlag); + SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, + SDValue InFlag); + + SDNode *SelectConcatVector(SDNode *N); + + /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for + /// inline asm expressions. + virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, + char ConstraintCode, + std::vector<SDValue> &OutOps); + + /// PairDRegs - Form a quad register from a pair of D registers. + /// + SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1); + + /// PairDRegs - Form a quad register pair from a pair of Q registers. + /// + SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1); + + /// QuadDRegs - Form a quad register pair from a quad of D registers. + /// + SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); + + /// QuadQRegs - Form 4 consecutive Q registers. + /// + SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); + + /// OctoDRegs - Form 8 consecutive D registers. + /// + SDNode *OctoDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3, + SDValue V4, SDValue V5, SDValue V6, SDValue V7); +}; +} + +/// isInt32Immediate - This method tests to see if the node is a 32-bit constant +/// operand. If so Imm will receive the 32-bit value. +static bool isInt32Immediate(SDNode *N, unsigned &Imm) { + if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { + Imm = cast<ConstantSDNode>(N)->getZExtValue(); + return true; + } + return false; +} + +// isInt32Immediate - This method tests to see if a constant operand. +// If so Imm will receive the 32 bit value. +static bool isInt32Immediate(SDValue N, unsigned &Imm) { + return isInt32Immediate(N.getNode(), Imm); +} + +// isOpcWithIntImmediate - This method tests to see if the node is a specific +// opcode and that it has a immediate integer right operand. +// If so Imm will receive the 32 bit value. +static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { + return N->getOpcode() == Opc && + isInt32Immediate(N->getOperand(1).getNode(), Imm); +} + + +bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op, + SDValue N, + SDValue &BaseReg, + SDValue &ShReg, + SDValue &Opc) { + ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); + + // Don't match base register only case. That is matched to a separate + // lower complexity pattern with explicit register operand. + if (ShOpcVal == ARM_AM::no_shift) return false; + + BaseReg = N.getOperand(0); + unsigned ShImmVal = 0; + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + ShReg = CurDAG->getRegister(0, MVT::i32); + ShImmVal = RHS->getZExtValue() & 31; + } else { + ShReg = N.getOperand(1); + } + Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), + MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N, + SDValue &Base, SDValue &Offset, + SDValue &Opc) { + if (N.getOpcode() == ISD::MUL) { + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + // X * [3,5,9] -> X + X * [2,4,8] etc. + int RHSC = (int)RHS->getZExtValue(); + if (RHSC & 1) { + RHSC = RHSC & ~1; + ARM_AM::AddrOpc AddSub = ARM_AM::add; + if (RHSC < 0) { + AddSub = ARM_AM::sub; + RHSC = - RHSC; + } + if (isPowerOf2_32(RHSC)) { + unsigned ShAmt = Log2_32(RHSC); + Base = Offset = N.getOperand(0); + Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, + ARM_AM::lsl), + MVT::i32); + return true; + } + } + } + } + + if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { + Base = N; + if (N.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(N)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } else if (N.getOpcode() == ARMISD::Wrapper && + !(Subtarget->useMovt() && + N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { + Base = N.getOperand(0); + } + Offset = CurDAG->getRegister(0, MVT::i32); + Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, + ARM_AM::no_shift), + MVT::i32); + return true; + } + + // Match simple R +/- imm12 operands. + if (N.getOpcode() == ISD::ADD) + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if ((RHSC >= 0 && RHSC < 0x1000) || + (RHSC < 0 && RHSC > -0x1000)) { // 12 bits. + Base = N.getOperand(0); + if (Base.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(Base)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } + Offset = CurDAG->getRegister(0, MVT::i32); + + ARM_AM::AddrOpc AddSub = ARM_AM::add; + if (RHSC < 0) { + AddSub = ARM_AM::sub; + RHSC = - RHSC; + } + Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC, + ARM_AM::no_shift), + MVT::i32); + return true; + } + } + + // Otherwise this is R +/- [possibly shifted] R. + ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub; + ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1)); + unsigned ShAmt = 0; + + Base = N.getOperand(0); + Offset = N.getOperand(1); + + if (ShOpcVal != ARM_AM::no_shift) { + // Check to see if the RHS of the shift is a constant, if not, we can't fold + // it. + if (ConstantSDNode *Sh = + dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) { + ShAmt = Sh->getZExtValue(); + Offset = N.getOperand(1).getOperand(0); + } else { + ShOpcVal = ARM_AM::no_shift; + } + } + + // Try matching (R shl C) + (R). + if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) { + ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0)); + if (ShOpcVal != ARM_AM::no_shift) { + // Check to see if the RHS of the shift is a constant, if not, we can't + // fold it. + if (ConstantSDNode *Sh = + dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) { + ShAmt = Sh->getZExtValue(); + Offset = N.getOperand(0).getOperand(0); + Base = N.getOperand(1); + } else { + ShOpcVal = ARM_AM::no_shift; + } + } + } + + Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), + MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N, + SDValue &Offset, SDValue &Opc) { + unsigned Opcode = Op->getOpcode(); + ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) + ? cast<LoadSDNode>(Op)->getAddressingMode() + : cast<StoreSDNode>(Op)->getAddressingMode(); + ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) + ? ARM_AM::add : ARM_AM::sub; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { + int Val = (int)C->getZExtValue(); + if (Val >= 0 && Val < 0x1000) { // 12 bits. + Offset = CurDAG->getRegister(0, MVT::i32); + Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val, + ARM_AM::no_shift), + MVT::i32); + return true; + } + } + + Offset = N; + ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); + unsigned ShAmt = 0; + if (ShOpcVal != ARM_AM::no_shift) { + // Check to see if the RHS of the shift is a constant, if not, we can't fold + // it. + if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + ShAmt = Sh->getZExtValue(); + Offset = N.getOperand(0); + } else { + ShOpcVal = ARM_AM::no_shift; + } + } + + Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), + MVT::i32); + return true; +} + + +bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N, + SDValue &Base, SDValue &Offset, + SDValue &Opc) { + if (N.getOpcode() == ISD::SUB) { + // X - C is canonicalize to X + -C, no need to handle it here. + Base = N.getOperand(0); + Offset = N.getOperand(1); + Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32); + return true; + } + + if (N.getOpcode() != ISD::ADD) { + Base = N; + if (N.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(N)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } + Offset = CurDAG->getRegister(0, MVT::i32); + Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32); + return true; + } + + // If the RHS is +/- imm8, fold into addr mode. + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if ((RHSC >= 0 && RHSC < 256) || + (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. + Base = N.getOperand(0); + if (Base.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(Base)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } + Offset = CurDAG->getRegister(0, MVT::i32); + + ARM_AM::AddrOpc AddSub = ARM_AM::add; + if (RHSC < 0) { + AddSub = ARM_AM::sub; + RHSC = - RHSC; + } + Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32); + return true; + } + } + + Base = N.getOperand(0); + Offset = N.getOperand(1); + Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N, + SDValue &Offset, SDValue &Opc) { + unsigned Opcode = Op->getOpcode(); + ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) + ? cast<LoadSDNode>(Op)->getAddressingMode() + : cast<StoreSDNode>(Op)->getAddressingMode(); + ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) + ? ARM_AM::add : ARM_AM::sub; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { + int Val = (int)C->getZExtValue(); + if (Val >= 0 && Val < 256) { + Offset = CurDAG->getRegister(0, MVT::i32); + Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32); + return true; + } + } + + Offset = N; + Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N, + SDValue &Addr, SDValue &Mode) { + Addr = N; + Mode = CurDAG->getTargetConstant(0, MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N, + SDValue &Base, SDValue &Offset) { + if (N.getOpcode() != ISD::ADD) { + Base = N; + if (N.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(N)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } else if (N.getOpcode() == ARMISD::Wrapper && + !(Subtarget->useMovt() && + N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { + Base = N.getOperand(0); + } + Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), + MVT::i32); + return true; + } + + // If the RHS is +/- imm8, fold into addr mode. + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if ((RHSC & 3) == 0) { // The constant is implicitly multiplied by 4. + RHSC >>= 2; + if ((RHSC >= 0 && RHSC < 256) || + (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. + Base = N.getOperand(0); + if (Base.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(Base)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } + + ARM_AM::AddrOpc AddSub = ARM_AM::add; + if (RHSC < 0) { + AddSub = ARM_AM::sub; + RHSC = - RHSC; + } + Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC), + MVT::i32); + return true; + } + } + } + + Base = N; + Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), + MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N, + SDValue &Addr, SDValue &Align) { + Addr = N; + // Default to no alignment. + Align = CurDAG->getTargetConstant(0, MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N, + SDValue &Offset, SDValue &Label) { + if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { + Offset = N.getOperand(0); + SDValue N1 = N.getOperand(1); + Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(), + MVT::i32); + return true; + } + return false; +} + +bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N, + SDValue &Base, SDValue &Offset){ + // FIXME dl should come from the parent load or store, not the address + DebugLoc dl = Op->getDebugLoc(); + if (N.getOpcode() != ISD::ADD) { + ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N); + if (!NC || NC->getZExtValue() != 0) + return false; + + Base = Offset = N; + return true; + } + + Base = N.getOperand(0); + Offset = N.getOperand(1); + return true; +} + +bool +ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N, + unsigned Scale, SDValue &Base, + SDValue &OffImm, SDValue &Offset) { + if (Scale == 4) { + SDValue TmpBase, TmpOffImm; + if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm)) + return false; // We want to select tLDRspi / tSTRspi instead. + if (N.getOpcode() == ARMISD::Wrapper && + N.getOperand(0).getOpcode() == ISD::TargetConstantPool) + return false; // We want to select tLDRpci instead. + } + + if (N.getOpcode() != ISD::ADD) { + if (N.getOpcode() == ARMISD::Wrapper && + !(Subtarget->useMovt() && + N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { + Base = N.getOperand(0); + } else + Base = N; + + Offset = CurDAG->getRegister(0, MVT::i32); + OffImm = CurDAG->getTargetConstant(0, MVT::i32); + return true; + } + + // Thumb does not have [sp, r] address mode. + RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); + RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1)); + if ((LHSR && LHSR->getReg() == ARM::SP) || + (RHSR && RHSR->getReg() == ARM::SP)) { + Base = N; + Offset = CurDAG->getRegister(0, MVT::i32); + OffImm = CurDAG->getTargetConstant(0, MVT::i32); + return true; + } + + // If the RHS is + imm5 * scale, fold into addr mode. + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if ((RHSC & (Scale-1)) == 0) { // The constant is implicitly multiplied. + RHSC /= Scale; + if (RHSC >= 0 && RHSC < 32) { + Base = N.getOperand(0); + Offset = CurDAG->getRegister(0, MVT::i32); + OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); + return true; + } + } + } + + Base = N.getOperand(0); + Offset = N.getOperand(1); + OffImm = CurDAG->getTargetConstant(0, MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N, + SDValue &Base, SDValue &OffImm, + SDValue &Offset) { + return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset); +} + +bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N, + SDValue &Base, SDValue &OffImm, + SDValue &Offset) { + return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset); +} + +bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N, + SDValue &Base, SDValue &OffImm, + SDValue &Offset) { + return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset); +} + +bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N, + SDValue &Base, SDValue &OffImm) { + if (N.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(N)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + OffImm = CurDAG->getTargetConstant(0, MVT::i32); + return true; + } + + if (N.getOpcode() != ISD::ADD) + return false; + + RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); + if (N.getOperand(0).getOpcode() == ISD::FrameIndex || + (LHSR && LHSR->getReg() == ARM::SP)) { + // If the RHS is + imm8 * scale, fold into addr mode. + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if ((RHSC & 3) == 0) { // The constant is implicitly multiplied. + RHSC >>= 2; + if (RHSC >= 0 && RHSC < 256) { + Base = N.getOperand(0); + if (Base.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(Base)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } + OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); + return true; + } + } + } + } + + return false; +} + +bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N, + SDValue &BaseReg, + SDValue &Opc) { + ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); + + // Don't match base register only case. That is matched to a separate + // lower complexity pattern with explicit register operand. + if (ShOpcVal == ARM_AM::no_shift) return false; + + BaseReg = N.getOperand(0); + unsigned ShImmVal = 0; + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + ShImmVal = RHS->getZExtValue() & 31; + Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal)); + return true; + } + + return false; +} + +bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N, + SDValue &Base, SDValue &OffImm) { + // Match simple R + imm12 operands. + + // Base only. + if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { + if (N.getOpcode() == ISD::FrameIndex) { + // Match frame index... + int FI = cast<FrameIndexSDNode>(N)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + OffImm = CurDAG->getTargetConstant(0, MVT::i32); + return true; + } else if (N.getOpcode() == ARMISD::Wrapper && + !(Subtarget->useMovt() && + N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { + Base = N.getOperand(0); + if (Base.getOpcode() == ISD::TargetConstantPool) + return false; // We want to select t2LDRpci instead. + } else + Base = N; + OffImm = CurDAG->getTargetConstant(0, MVT::i32); + return true; + } + + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + if (SelectT2AddrModeImm8(Op, N, Base, OffImm)) + // Let t2LDRi8 handle (R - imm8). + return false; + + int RHSC = (int)RHS->getZExtValue(); + if (N.getOpcode() == ISD::SUB) + RHSC = -RHSC; + + if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) + Base = N.getOperand(0); + if (Base.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(Base)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } + OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); + return true; + } + } + + // Base only. + Base = N; + OffImm = CurDAG->getTargetConstant(0, MVT::i32); + return true; +} + +bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N, + SDValue &Base, SDValue &OffImm) { + // Match simple R - imm8 operands. + if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) { + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getSExtValue(); + if (N.getOpcode() == ISD::SUB) + RHSC = -RHSC; + + if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) + Base = N.getOperand(0); + if (Base.getOpcode() == ISD::FrameIndex) { + int FI = cast<FrameIndexSDNode>(Base)->getIndex(); + Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + } + OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); + return true; + } + } + } + + return false; +} + +bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, + SDValue &OffImm){ + unsigned Opcode = Op->getOpcode(); + ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) + ? cast<LoadSDNode>(Op)->getAddressingMode() + : cast<StoreSDNode>(Op)->getAddressingMode(); + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N)) { + int RHSC = (int)RHS->getZExtValue(); + if (RHSC >= 0 && RHSC < 0x100) { // 8 bits. + OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) + ? CurDAG->getTargetConstant(RHSC, MVT::i32) + : CurDAG->getTargetConstant(-RHSC, MVT::i32); + return true; + } + } + + return false; +} + +bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, + SDValue &Base, SDValue &OffImm) { + if (N.getOpcode() == ISD::ADD) { + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if (((RHSC & 0x3) == 0) && + ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { // 8 bits. + Base = N.getOperand(0); + OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); + return true; + } + } + } else if (N.getOpcode() == ISD::SUB) { + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) { // 8 bits. + Base = N.getOperand(0); + OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32); + return true; + } + } + } + + return false; +} + +bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N, + SDValue &Base, + SDValue &OffReg, SDValue &ShImm) { + // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. + if (N.getOpcode() != ISD::ADD) + return false; + + // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { + int RHSC = (int)RHS->getZExtValue(); + if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) + return false; + else if (RHSC < 0 && RHSC >= -255) // 8 bits + return false; + } + + // Look for (R + R) or (R + (R << [1,2,3])). + unsigned ShAmt = 0; + Base = N.getOperand(0); + OffReg = N.getOperand(1); + + // Swap if it is ((R << c) + R). + ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg); + if (ShOpcVal != ARM_AM::lsl) { + ShOpcVal = ARM_AM::getShiftOpcForNode(Base); + if (ShOpcVal == ARM_AM::lsl) + std::swap(Base, OffReg); + } + + if (ShOpcVal == ARM_AM::lsl) { + // Check to see if the RHS of the shift is a constant, if not, we can't fold + // it. + if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) { + ShAmt = Sh->getZExtValue(); + if (ShAmt >= 4) { + ShAmt = 0; + ShOpcVal = ARM_AM::no_shift; + } else + OffReg = OffReg.getOperand(0); + } else { + ShOpcVal = ARM_AM::no_shift; + } + } + + ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32); + + return true; +} + +//===--------------------------------------------------------------------===// + +/// getAL - Returns a ARMCC::AL immediate node. +static inline SDValue getAL(SelectionDAG *CurDAG) { + return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32); +} + +SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) { + LoadSDNode *LD = cast<LoadSDNode>(N); + ISD::MemIndexedMode AM = LD->getAddressingMode(); + if (AM == ISD::UNINDEXED) + return NULL; + + EVT LoadedVT = LD->getMemoryVT(); + SDValue Offset, AMOpc; + bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); + unsigned Opcode = 0; + bool Match = false; + if (LoadedVT == MVT::i32 && + SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) { + Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST; + Match = true; + } else if (LoadedVT == MVT::i16 && + SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { + Match = true; + Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) + ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) + : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); + } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { + if (LD->getExtensionType() == ISD::SEXTLOAD) { + if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { + Match = true; + Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; + } + } else { + if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) { + Match = true; + Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST; + } + } + } + + if (Match) { + SDValue Chain = LD->getChain(); + SDValue Base = LD->getBasePtr(); + SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG), + CurDAG->getRegister(0, MVT::i32), Chain }; + return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32, + MVT::Other, Ops, 6); + } + + return NULL; +} + +SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) { + LoadSDNode *LD = cast<LoadSDNode>(N); + ISD::MemIndexedMode AM = LD->getAddressingMode(); + if (AM == ISD::UNINDEXED) + return NULL; + + EVT LoadedVT = LD->getMemoryVT(); + bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; + SDValue Offset; + bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); + unsigned Opcode = 0; + bool Match = false; + if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) { + switch (LoadedVT.getSimpleVT().SimpleTy) { + case MVT::i32: + Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; + break; + case MVT::i16: + if (isSExtLd) + Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; + else + Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; + break; + case MVT::i8: + case MVT::i1: + if (isSExtLd) + Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; + else + Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; + break; + default: + return NULL; + } + Match = true; + } + + if (Match) { + SDValue Chain = LD->getChain(); + SDValue Base = LD->getBasePtr(); + SDValue Ops[]= { Base, Offset, getAL(CurDAG), + CurDAG->getRegister(0, MVT::i32), Chain }; + return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32, + MVT::Other, Ops, 5); + } + + return NULL; +} + +/// PairDRegs - Form a quad register from a pair of D registers. +/// +SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) { + DebugLoc dl = V0.getNode()->getDebugLoc(); + SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); + SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); + if (llvm::ModelWithRegSequence()) { + const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 }; + return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4); + } + SDValue Undef = + SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0); + SDNode *Pair = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, + VT, Undef, V0, SubReg0); + return CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, + VT, SDValue(Pair, 0), V1, SubReg1); +} + +/// PairQRegs - Form 4 consecutive D registers from a pair of Q registers. +/// +SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) { + DebugLoc dl = V0.getNode()->getDebugLoc(); + SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); + SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); + const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 }; + return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4); +} + +/// QuadDRegs - Form 4 consecutive D registers. +/// +SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1, + SDValue V2, SDValue V3) { + DebugLoc dl = V0.getNode()->getDebugLoc(); + SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); + SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); + SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32); + SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32); + const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 }; + return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8); +} + +/// QuadQRegs - Form 4 consecutive Q registers. +/// +SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1, + SDValue V2, SDValue V3) { + DebugLoc dl = V0.getNode()->getDebugLoc(); + SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); + SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); + SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32); + SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32); + const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 }; + return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8); +} + +/// OctoDRegs - Form 8 consecutive D registers. +/// +SDNode *ARMDAGToDAGISel::OctoDRegs(EVT VT, SDValue V0, SDValue V1, + SDValue V2, SDValue V3, + SDValue V4, SDValue V5, + SDValue V6, SDValue V7) { + DebugLoc dl = V0.getNode()->getDebugLoc(); + SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); + SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); + SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32); + SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32); + SDValue SubReg4 = CurDAG->getTargetConstant(ARM::dsub_4, MVT::i32); + SDValue SubReg5 = CurDAG->getTargetConstant(ARM::dsub_5, MVT::i32); + SDValue SubReg6 = CurDAG->getTargetConstant(ARM::dsub_6, MVT::i32); + SDValue SubReg7 = CurDAG->getTargetConstant(ARM::dsub_7, MVT::i32); + const SDValue Ops[] ={ V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3, + V4, SubReg4, V5, SubReg5, V6, SubReg6, V7, SubReg7 }; + return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 16); +} + +/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type +/// for a 64-bit subregister of the vector. +static EVT GetNEONSubregVT(EVT VT) { + switch (VT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("unhandled NEON type"); + case MVT::v16i8: return MVT::v8i8; + case MVT::v8i16: return MVT::v4i16; + case MVT::v4f32: return MVT::v2f32; + case MVT::v4i32: return MVT::v2i32; + case MVT::v2i64: return MVT::v1i64; + } +} + +SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs, + unsigned *DOpcodes, unsigned *QOpcodes0, + unsigned *QOpcodes1) { + assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range"); + DebugLoc dl = N->getDebugLoc(); + + SDValue MemAddr, Align; + if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align)) + return NULL; + + SDValue Chain = N->getOperand(0); + EVT VT = N->getValueType(0); + bool is64BitVector = VT.is64BitVector(); + + unsigned OpcodeIndex; + switch (VT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("unhandled vld type"); + // Double-register operations: + case MVT::v8i8: OpcodeIndex = 0; break; + case MVT::v4i16: OpcodeIndex = 1; break; + case MVT::v2f32: + case MVT::v2i32: OpcodeIndex = 2; break; + case MVT::v1i64: OpcodeIndex = 3; break; + // Quad-register operations: + case MVT::v16i8: OpcodeIndex = 0; break; + case MVT::v8i16: OpcodeIndex = 1; break; + case MVT::v4f32: + case MVT::v4i32: OpcodeIndex = 2; break; + case MVT::v2i64: OpcodeIndex = 3; + assert(NumVecs == 1 && "v2i64 type only supported for VLD1"); + break; + } + + SDValue Pred = getAL(CurDAG); + SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); + if (is64BitVector) { + unsigned Opc = DOpcodes[OpcodeIndex]; + const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain }; + std::vector<EVT> ResTys(NumVecs, VT); + ResTys.push_back(MVT::Other); + SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5); + if (!llvm::ModelWithRegSequence() || NumVecs < 2) + return VLd; + + SDValue RegSeq; + SDValue V0 = SDValue(VLd, 0); + SDValue V1 = SDValue(VLd, 1); + + // Form a REG_SEQUENCE to force register allocation. + if (NumVecs == 2) + RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); + else { + SDValue V2 = SDValue(VLd, 2); + // If it's a vld3, form a quad D-register but discard the last part. + SDValue V3 = (NumVecs == 3) + ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) + : SDValue(VLd, 3); + RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); + } + + assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { + SDValue D = CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec, + dl, VT, RegSeq); + ReplaceUses(SDValue(N, Vec), D); + } + ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, NumVecs)); + return NULL; + } + + EVT RegVT = GetNEONSubregVT(VT); + if (NumVecs <= 2) { + // Quad registers are directly supported for VLD1 and VLD2, + // loading pairs of D regs. + unsigned Opc = QOpcodes0[OpcodeIndex]; + const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain }; + std::vector<EVT> ResTys(2 * NumVecs, RegVT); + ResTys.push_back(MVT::Other); + SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5); + Chain = SDValue(VLd, 2 * NumVecs); + + // Combine the even and odd subregs to produce the result. + if (llvm::ModelWithRegSequence()) { + if (NumVecs == 1) { + SDNode *Q = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1)); + ReplaceUses(SDValue(N, 0), SDValue(Q, 0)); + } else { + SDValue QQ = SDValue(QuadDRegs(MVT::v4i64, + SDValue(VLd, 0), SDValue(VLd, 1), + SDValue(VLd, 2), SDValue(VLd, 3)), 0); + SDValue Q0 = CurDAG->getTargetExtractSubreg(ARM::qsub_0, dl, VT, QQ); + SDValue Q1 = CurDAG->getTargetExtractSubreg(ARM::qsub_1, dl, VT, QQ); + ReplaceUses(SDValue(N, 0), Q0); + ReplaceUses(SDValue(N, 1), Q1); + } + } else { + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { + SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1)); + ReplaceUses(SDValue(N, Vec), SDValue(Q, 0)); + } + } + } else { + // Otherwise, quad registers are loaded with two separate instructions, + // where one loads the even registers and the other loads the odd registers. + + std::vector<EVT> ResTys(NumVecs, RegVT); + ResTys.push_back(MemAddr.getValueType()); + ResTys.push_back(MVT::Other); + + // Load the even subregs. + unsigned Opc = QOpcodes0[OpcodeIndex]; + const SDValue OpsA[] = { MemAddr, Align, Reg0, Pred, Reg0, Chain }; + SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 6); + Chain = SDValue(VLdA, NumVecs+1); + + // Load the odd subregs. + Opc = QOpcodes1[OpcodeIndex]; + const SDValue OpsB[] = { SDValue(VLdA, NumVecs), + Align, Reg0, Pred, Reg0, Chain }; + SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 6); + Chain = SDValue(VLdB, NumVecs+1); + + if (llvm::ModelWithRegSequence()) { + SDValue V0 = SDValue(VLdA, 0); + SDValue V1 = SDValue(VLdB, 0); + SDValue V2 = SDValue(VLdA, 1); + SDValue V3 = SDValue(VLdB, 1); + SDValue V4 = SDValue(VLdA, 2); + SDValue V5 = SDValue(VLdB, 2); + SDValue V6 = (NumVecs == 3) + ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT), + 0) + : SDValue(VLdA, 3); + SDValue V7 = (NumVecs == 3) + ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT), + 0) + : SDValue(VLdB, 3); + SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V0, V1, V2, V3, + V4, V5, V6, V7), 0); + + // Extract out the 3 / 4 Q registers. + assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { + SDValue Q = CurDAG->getTargetExtractSubreg(ARM::qsub_0+Vec, + dl, VT, RegSeq); + ReplaceUses(SDValue(N, Vec), Q); + } + } else { + // Combine the even and odd subregs to produce the result. + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { + SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec)); + ReplaceUses(SDValue(N, Vec), SDValue(Q, 0)); + } + } + } + ReplaceUses(SDValue(N, NumVecs), Chain); + return NULL; +} + +SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs, + unsigned *DOpcodes, unsigned *QOpcodes0, + unsigned *QOpcodes1) { + assert(NumVecs >=1 && NumVecs <= 4 && "VST NumVecs out-of-range"); + DebugLoc dl = N->getDebugLoc(); + + SDValue MemAddr, Align; + if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align)) + return NULL; + + SDValue Chain = N->getOperand(0); + EVT VT = N->getOperand(3).getValueType(); + bool is64BitVector = VT.is64BitVector(); + + unsigned OpcodeIndex; + switch (VT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("unhandled vst type"); + // Double-register operations: + case MVT::v8i8: OpcodeIndex = 0; break; + case MVT::v4i16: OpcodeIndex = 1; break; + case MVT::v2f32: + case MVT::v2i32: OpcodeIndex = 2; break; + case MVT::v1i64: OpcodeIndex = 3; break; + // Quad-register operations: + case MVT::v16i8: OpcodeIndex = 0; break; + case MVT::v8i16: OpcodeIndex = 1; break; + case MVT::v4f32: + case MVT::v4i32: OpcodeIndex = 2; break; + case MVT::v2i64: OpcodeIndex = 3; + assert(NumVecs == 1 && "v2i64 type only supported for VST1"); + break; + } + + SDValue Pred = getAL(CurDAG); + SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); + + SmallVector<SDValue, 10> Ops; + Ops.push_back(MemAddr); + Ops.push_back(Align); + + if (is64BitVector) { + if (llvm::ModelWithRegSequence() && NumVecs >= 2) { + SDValue RegSeq; + SDValue V0 = N->getOperand(0+3); + SDValue V1 = N->getOperand(1+3); + + // Form a REG_SEQUENCE to force register allocation. + if (NumVecs == 2) + RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); + else { + SDValue V2 = N->getOperand(2+3); + // If it's a vld3, form a quad D-register and leave the last part as + // an undef. + SDValue V3 = (NumVecs == 3) + ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) + : N->getOperand(3+3); + RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); + } + + // Now extract the D registers back out. + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT, + RegSeq)); + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT, + RegSeq)); + if (NumVecs > 2) + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT, + RegSeq)); + if (NumVecs > 3) + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT, + RegSeq)); + } else { + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops.push_back(N->getOperand(Vec+3)); + } + Ops.push_back(Pred); + Ops.push_back(Reg0); // predicate register + Ops.push_back(Chain); + unsigned Opc = DOpcodes[OpcodeIndex]; + return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5); + } + + EVT RegVT = GetNEONSubregVT(VT); + if (NumVecs <= 2) { + // Quad registers are directly supported for VST1 and VST2, + // storing pairs of D regs. + unsigned Opc = QOpcodes0[OpcodeIndex]; + if (llvm::ModelWithRegSequence() && NumVecs == 2) { + // First extract the pair of Q registers. + SDValue Q0 = N->getOperand(3); + SDValue Q1 = N->getOperand(4); + + // Form a QQ register. + SDValue QQ = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0); + + // Now extract the D registers back out. + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT, + QQ)); + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT, + QQ)); + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, RegVT, + QQ)); + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, RegVT, + QQ)); + Ops.push_back(Pred); + Ops.push_back(Reg0); // predicate register + Ops.push_back(Chain); + return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 4); + } else { + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT, + N->getOperand(Vec+3))); + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT, + N->getOperand(Vec+3))); + } + Ops.push_back(Pred); + Ops.push_back(Reg0); // predicate register + Ops.push_back(Chain); + return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), + 5 + 2 * NumVecs); + } + } + + // Otherwise, quad registers are stored with two separate instructions, + // where one stores the even registers and the other stores the odd registers. + if (llvm::ModelWithRegSequence()) { + // Form the QQQQ REG_SEQUENCE. + SDValue V[8]; + for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) { + V[i] = CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT, + N->getOperand(Vec+3)); + V[i+1] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT, + N->getOperand(Vec+3)); + } + if (NumVecs == 3) + V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, RegVT), 0); + + SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3], + V[4], V[5], V[6], V[7]), 0); + + // Store the even D registers. + assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); + Ops.push_back(Reg0); // post-access address offset + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec*2, dl, + RegVT, RegSeq)); + Ops.push_back(Pred); + Ops.push_back(Reg0); // predicate register + Ops.push_back(Chain); + unsigned Opc = QOpcodes0[OpcodeIndex]; + SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), + MVT::Other, Ops.data(), NumVecs+6); + Chain = SDValue(VStA, 1); + + // Store the odd D registers. + Ops[0] = SDValue(VStA, 0); // MemAddr + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1+Vec*2, dl, + RegVT, RegSeq); + Ops[NumVecs+5] = Chain; + Opc = QOpcodes1[OpcodeIndex]; + SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), + MVT::Other, Ops.data(), NumVecs+6); + Chain = SDValue(VStB, 1); + ReplaceUses(SDValue(N, 0), Chain); + return NULL; + } else { + Ops.push_back(Reg0); // post-access address offset + + // Store the even subregs. + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT, + N->getOperand(Vec+3))); + Ops.push_back(Pred); + Ops.push_back(Reg0); // predicate register + Ops.push_back(Chain); + unsigned Opc = QOpcodes0[OpcodeIndex]; + SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), + MVT::Other, Ops.data(), NumVecs+6); + Chain = SDValue(VStA, 1); + + // Store the odd subregs. + Ops[0] = SDValue(VStA, 0); // MemAddr + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT, + N->getOperand(Vec+3)); + Ops[NumVecs+5] = Chain; + Opc = QOpcodes1[OpcodeIndex]; + SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), + MVT::Other, Ops.data(), NumVecs+6); + Chain = SDValue(VStB, 1); + ReplaceUses(SDValue(N, 0), Chain); + return NULL; + } +} + +SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, + unsigned NumVecs, unsigned *DOpcodes, + unsigned *QOpcodes0, + unsigned *QOpcodes1) { + assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range"); + DebugLoc dl = N->getDebugLoc(); + + SDValue MemAddr, Align; + if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align)) + return NULL; + + SDValue Chain = N->getOperand(0); + unsigned Lane = + cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue(); + EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType(); + bool is64BitVector = VT.is64BitVector(); + + // Quad registers are handled by load/store of subregs. Find the subreg info. + unsigned NumElts = 0; + int SubregIdx = 0; + bool Even = false; + EVT RegVT = VT; + if (!is64BitVector) { + RegVT = GetNEONSubregVT(VT); + NumElts = RegVT.getVectorNumElements(); + SubregIdx = (Lane < NumElts) ? ARM::dsub_0 : ARM::dsub_1; + Even = Lane < NumElts; + } + + unsigned OpcodeIndex; + switch (VT.getSimpleVT().SimpleTy) { + default: llvm_unreachable("unhandled vld/vst lane type"); + // Double-register operations: + case MVT::v8i8: OpcodeIndex = 0; break; + case MVT::v4i16: OpcodeIndex = 1; break; + case MVT::v2f32: + case MVT::v2i32: OpcodeIndex = 2; break; + // Quad-register operations: + case MVT::v8i16: OpcodeIndex = 0; break; + case MVT::v4f32: + case MVT::v4i32: OpcodeIndex = 1; break; + } + + SDValue Pred = getAL(CurDAG); + SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); + + SmallVector<SDValue, 10> Ops; + Ops.push_back(MemAddr); + Ops.push_back(Align); + + unsigned Opc = 0; + if (is64BitVector) { + Opc = DOpcodes[OpcodeIndex]; + if (llvm::ModelWithRegSequence()) { + SDValue RegSeq; + SDValue V0 = N->getOperand(0+3); + SDValue V1 = N->getOperand(1+3); + if (NumVecs == 2) { + RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); + } else { + SDValue V2 = N->getOperand(2+3); + SDValue V3 = (NumVecs == 3) + ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) + : N->getOperand(3+3); + RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); + } + + // Now extract the D registers back out. + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT, + RegSeq)); + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT, + RegSeq)); + if (NumVecs > 2) + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT, + RegSeq)); + if (NumVecs > 3) + Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT, + RegSeq)); + } else { + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops.push_back(N->getOperand(Vec+3)); + } + } else { + // Check if this is loading the even or odd subreg of a Q register. + if (Lane < NumElts) { + Opc = QOpcodes0[OpcodeIndex]; + } else { + Lane -= NumElts; + Opc = QOpcodes1[OpcodeIndex]; + } + + if (llvm::ModelWithRegSequence()) { + SDValue RegSeq; + SDValue V0 = N->getOperand(0+3); + SDValue V1 = N->getOperand(1+3); + if (NumVecs == 2) { + RegSeq = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0); + } else { + SDValue V2 = N->getOperand(2+3); + SDValue V3 = (NumVecs == 3) + ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) + : N->getOperand(3+3); + RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0); + } + + // Extract the subregs of the input vector. + unsigned SubIdx = Even ? ARM::dsub_0 : ARM::dsub_1; + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops.push_back(CurDAG->getTargetExtractSubreg(SubIdx+Vec*2, dl, RegVT, + RegSeq)); + } else { + // Extract the subregs of the input vector. + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT, + N->getOperand(Vec+3))); + } + } + Ops.push_back(getI32Imm(Lane)); + Ops.push_back(Pred); + Ops.push_back(Reg0); + Ops.push_back(Chain); + + if (!IsLoad) + return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+6); + + std::vector<EVT> ResTys(NumVecs, RegVT); + ResTys.push_back(MVT::Other); + SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(),NumVecs+6); + + if (llvm::ModelWithRegSequence()) { + // Form a REG_SEQUENCE to force register allocation. + SDValue RegSeq; + if (is64BitVector) { + SDValue V0 = SDValue(VLdLn, 0); + SDValue V1 = SDValue(VLdLn, 1); + if (NumVecs == 2) { + RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); + } else { + SDValue V2 = SDValue(VLdLn, 2); + // If it's a vld3, form a quad D-register but discard the last part. + SDValue V3 = (NumVecs == 3) + ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) + : SDValue(VLdLn, 3); + RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); + } + } else { + // For 128-bit vectors, take the 64-bit results of the load and insert them + // as subregs into the result. + SDValue V[8]; + for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) { + if (Even) { + V[i] = SDValue(VLdLn, Vec); + V[i+1] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, RegVT), 0); + } else { + V[i] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, RegVT), 0); + V[i+1] = SDValue(VLdLn, Vec); + } + } + if (NumVecs == 3) + V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, + dl, RegVT), 0); + + if (NumVecs == 2) + RegSeq = SDValue(QuadDRegs(MVT::v4i64, V[0], V[1], V[2], V[3]), 0); + else + RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3], + V[4], V[5], V[6], V[7]), 0); + } + + assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); + assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); + unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) + ReplaceUses(SDValue(N, Vec), + CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, RegSeq)); + ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, NumVecs)); + return NULL; + } + + // For a 64-bit vector load to D registers, nothing more needs to be done. + if (is64BitVector) + return VLdLn; + + // For 128-bit vectors, take the 64-bit results of the load and insert them + // as subregs into the result. + for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { + SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT, + N->getOperand(Vec+3), + SDValue(VLdLn, Vec)); + ReplaceUses(SDValue(N, Vec), QuadVec); + } + + Chain = SDValue(VLdLn, NumVecs); + ReplaceUses(SDValue(N, NumVecs), Chain); + return NULL; +} + +SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N, + bool isSigned) { + if (!Subtarget->hasV6T2Ops()) + return NULL; + + unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX) + : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX); + + + // For unsigned extracts, check for a shift right and mask + unsigned And_imm = 0; + if (N->getOpcode() == ISD::AND) { + if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) { + + // The immediate is a mask of the low bits iff imm & (imm+1) == 0 + if (And_imm & (And_imm + 1)) + return NULL; + + unsigned Srl_imm = 0; + if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, + Srl_imm)) { + assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); + + unsigned Width = CountTrailingOnes_32(And_imm); + unsigned LSB = Srl_imm; + SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { N->getOperand(0).getOperand(0), + CurDAG->getTargetConstant(LSB, MVT::i32), + CurDAG->getTargetConstant(Width, MVT::i32), + getAL(CurDAG), Reg0 }; + return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); + } + } + return NULL; + } + + // Otherwise, we're looking for a shift of a shift + unsigned Shl_imm = 0; + if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) { + assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!"); + unsigned Srl_imm = 0; + if (isInt32Immediate(N->getOperand(1), Srl_imm)) { + assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); + unsigned Width = 32 - Srl_imm; + int LSB = Srl_imm - Shl_imm; + if (LSB < 0) + return NULL; + SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { N->getOperand(0).getOperand(0), + CurDAG->getTargetConstant(LSB, MVT::i32), + CurDAG->getTargetConstant(Width, MVT::i32), + getAL(CurDAG), Reg0 }; + return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); + } + } + return NULL; +} + +SDNode *ARMDAGToDAGISel:: +SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { + SDValue CPTmp0; + SDValue CPTmp1; + if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) { + unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue(); + unsigned SOShOp = ARM_AM::getSORegShOp(SOVal); + unsigned Opc = 0; + switch (SOShOp) { + case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break; + case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break; + case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break; + case ARM_AM::ror: Opc = ARM::t2MOVCCror; break; + default: + llvm_unreachable("Unknown so_reg opcode!"); + break; + } + SDValue SOShImm = + CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32); + SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); + SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag }; + return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6); + } + return 0; +} + +SDNode *ARMDAGToDAGISel:: +SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { + SDValue CPTmp0; + SDValue CPTmp1; + SDValue CPTmp2; + if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) { + SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); + SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag }; + return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7); + } + return 0; +} + +SDNode *ARMDAGToDAGISel:: +SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { + ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal); + if (!T) + return 0; + + if (Predicate_t2_so_imm(TrueVal.getNode())) { + SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32); + SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); + SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; + return CurDAG->SelectNodeTo(N, + ARM::t2MOVCCi, MVT::i32, Ops, 5); + } + return 0; +} + +SDNode *ARMDAGToDAGISel:: +SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, + ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { + ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal); + if (!T) + return 0; + + if (Predicate_so_imm(TrueVal.getNode())) { + SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32); + SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); + SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; + return CurDAG->SelectNodeTo(N, + ARM::MOVCCi, MVT::i32, Ops, 5); + } + return 0; +} + +SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) { + EVT VT = N->getValueType(0); + SDValue FalseVal = N->getOperand(0); + SDValue TrueVal = N->getOperand(1); + SDValue CC = N->getOperand(2); + SDValue CCR = N->getOperand(3); + SDValue InFlag = N->getOperand(4); + assert(CC.getOpcode() == ISD::Constant); + assert(CCR.getOpcode() == ISD::Register); + ARMCC::CondCodes CCVal = + (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue(); + + if (!Subtarget->isThumb1Only() && VT == MVT::i32) { + // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) + // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) + // Pattern complexity = 18 cost = 1 size = 0 + SDValue CPTmp0; + SDValue CPTmp1; + SDValue CPTmp2; + if (Subtarget->isThumb()) { + SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal, + CCVal, CCR, InFlag); + if (!Res) + Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal, + ARMCC::getOppositeCondition(CCVal), CCR, InFlag); + if (Res) + return Res; + } else { + SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal, + CCVal, CCR, InFlag); + if (!Res) + Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal, + ARMCC::getOppositeCondition(CCVal), CCR, InFlag); + if (Res) + return Res; + } + + // Pattern: (ARMcmov:i32 GPR:i32:$false, + // (imm:i32)<<P:Predicate_so_imm>>:$true, + // (imm:i32):$cc) + // Emits: (MOVCCi:i32 GPR:i32:$false, + // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc) + // Pattern complexity = 10 cost = 1 size = 0 + if (Subtarget->isThumb()) { + SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal, + CCVal, CCR, InFlag); + if (!Res) + Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal, + ARMCC::getOppositeCondition(CCVal), CCR, InFlag); + if (Res) + return Res; + } else { + SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal, + CCVal, CCR, InFlag); + if (!Res) + Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal, + ARMCC::getOppositeCondition(CCVal), CCR, InFlag); + if (Res) + return Res; + } + } + + // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) + // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) + // Pattern complexity = 6 cost = 1 size = 0 + // + // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) + // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) + // Pattern complexity = 6 cost = 11 size = 0 + // + // Also FCPYScc and FCPYDcc. + SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32); + SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag }; + unsigned Opc = 0; + switch (VT.getSimpleVT().SimpleTy) { + default: assert(false && "Illegal conditional move type!"); + break; + case MVT::i32: + Opc = Subtarget->isThumb() + ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo) + : ARM::MOVCCr; + break; + case MVT::f32: + Opc = ARM::VMOVScc; + break; + case MVT::f64: + Opc = ARM::VMOVDcc; + break; + } + return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); +} + +SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) { + // The only time a CONCAT_VECTORS operation can have legal types is when + // two 64-bit vectors are concatenated to a 128-bit vector. + EVT VT = N->getValueType(0); + if (!VT.is128BitVector() || N->getNumOperands() != 2) + llvm_unreachable("unexpected CONCAT_VECTORS"); + DebugLoc dl = N->getDebugLoc(); + SDValue V0 = N->getOperand(0); + SDValue V1 = N->getOperand(1); + SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); + SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); + const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 }; + return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4); +} + +SDNode *ARMDAGToDAGISel::Select(SDNode *N) { + DebugLoc dl = N->getDebugLoc(); + + if (N->isMachineOpcode()) + return NULL; // Already selected. + + switch (N->getOpcode()) { + default: break; + case ISD::Constant: { + unsigned Val = cast<ConstantSDNode>(N)->getZExtValue(); + bool UseCP = true; + if (Subtarget->hasThumb2()) + // Thumb2-aware targets have the MOVT instruction, so all immediates can + // be done with MOV + MOVT, at worst. + UseCP = 0; + else { + if (Subtarget->isThumb()) { + UseCP = (Val > 255 && // MOV + ~Val > 255 && // MOV + MVN + !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL + } else + UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV + ARM_AM::getSOImmVal(~Val) == -1 && // MVN + !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs. + } + + if (UseCP) { + SDValue CPIdx = + CurDAG->getTargetConstantPool(ConstantInt::get( + Type::getInt32Ty(*CurDAG->getContext()), Val), + TLI.getPointerTy()); + + SDNode *ResNode; + if (Subtarget->isThumb1Only()) { + SDValue Pred = getAL(CurDAG); + SDValue PredReg = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() }; + ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other, + Ops, 4); + } else { + SDValue Ops[] = { + CPIdx, + CurDAG->getRegister(0, MVT::i32), + CurDAG->getTargetConstant(0, MVT::i32), + getAL(CurDAG), + CurDAG->getRegister(0, MVT::i32), + CurDAG->getEntryNode() + }; + ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other, + Ops, 6); + } + ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); + return NULL; + } + + // Other cases are autogenerated. + break; + } + case ISD::FrameIndex: { + // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. + int FI = cast<FrameIndexSDNode>(N)->getIndex(); + SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); + if (Subtarget->isThumb1Only()) { + return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI, + CurDAG->getTargetConstant(0, MVT::i32)); + } else { + unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? + ARM::t2ADDri : ARM::ADDri); + SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), + getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), + CurDAG->getRegister(0, MVT::i32) }; + return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); + } + } + case ISD::SRL: + if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) + return I; + break; + case ISD::SRA: + if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true)) + return I; + break; + case ISD::MUL: + if (Subtarget->isThumb1Only()) + break; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { + unsigned RHSV = C->getZExtValue(); + if (!RHSV) break; + if (isPowerOf2_32(RHSV-1)) { // 2^n+1? + unsigned ShImm = Log2_32(RHSV-1); + if (ShImm >= 32) + break; + SDValue V = N->getOperand(0); + ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); + SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); + SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); + if (Subtarget->isThumb()) { + SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; + return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6); + } else { + SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; + return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7); + } + } + if (isPowerOf2_32(RHSV+1)) { // 2^n-1? + unsigned ShImm = Log2_32(RHSV+1); + if (ShImm >= 32) + break; + SDValue V = N->getOperand(0); + ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); + SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); + SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); + if (Subtarget->isThumb()) { + SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0 }; + return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 5); + } else { + SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; + return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7); + } + } + } + break; + case ISD::AND: { + // Check for unsigned bitfield extract + if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) + return I; + + // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits + // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits + // are entirely contributed by c2 and lower 16-bits are entirely contributed + // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)). + // Select it to: "movt x, ((c1 & 0xffff) >> 16) + EVT VT = N->getValueType(0); + if (VT != MVT::i32) + break; + unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2()) + ? ARM::t2MOVTi16 + : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0); + if (!Opc) + break; + SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + if (!N1C) + break; + if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) { + SDValue N2 = N0.getOperand(1); + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); + if (!N2C) + break; + unsigned N1CVal = N1C->getZExtValue(); + unsigned N2CVal = N2C->getZExtValue(); + if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) && + (N1CVal & 0xffffU) == 0xffffU && + (N2CVal & 0xffffU) == 0x0U) { + SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16, + MVT::i32); + SDValue Ops[] = { N0.getOperand(0), Imm16, + getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; + return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4); + } + } + break; + } + case ARMISD::VMOVRRD: + return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32, + N->getOperand(0), getAL(CurDAG), + CurDAG->getRegister(0, MVT::i32)); + case ISD::UMUL_LOHI: { + if (Subtarget->isThumb1Only()) + break; + if (Subtarget->isThumb()) { + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), + getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), + CurDAG->getRegister(0, MVT::i32) }; + return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4); + } else { + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), + getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), + CurDAG->getRegister(0, MVT::i32) }; + return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5); + } + } + case ISD::SMUL_LOHI: { + if (Subtarget->isThumb1Only()) + break; + if (Subtarget->isThumb()) { + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), + getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; + return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4); + } else { + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), + getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), + CurDAG->getRegister(0, MVT::i32) }; + return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5); + } + } + case ISD::LOAD: { + SDNode *ResNode = 0; + if (Subtarget->isThumb() && Subtarget->hasThumb2()) + ResNode = SelectT2IndexedLoad(N); + else + ResNode = SelectARMIndexedLoad(N); + if (ResNode) + return ResNode; + + // VLDMQ must be custom-selected for "v2f64 load" to set the AM5Opc value. + if (Subtarget->hasVFP2() && + N->getValueType(0).getSimpleVT().SimpleTy == MVT::v2f64) { + SDValue Chain = N->getOperand(0); + SDValue AM5Opc = + CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32); + SDValue Pred = getAL(CurDAG); + SDValue PredReg = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { N->getOperand(1), AM5Opc, Pred, PredReg, Chain }; + MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); + MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); + SDNode *Ret = CurDAG->getMachineNode(ARM::VLDMQ, dl, + MVT::v2f64, MVT::Other, Ops, 5); + cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); + return Ret; + } + // Other cases are autogenerated. + break; + } + case ISD::STORE: { + // VSTMQ must be custom-selected for "v2f64 store" to set the AM5Opc value. + if (Subtarget->hasVFP2() && + N->getOperand(1).getValueType().getSimpleVT().SimpleTy == MVT::v2f64) { + SDValue Chain = N->getOperand(0); + SDValue AM5Opc = + CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32); + SDValue Pred = getAL(CurDAG); + SDValue PredReg = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { N->getOperand(1), N->getOperand(2), + AM5Opc, Pred, PredReg, Chain }; + MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); + MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); + SDNode *Ret = CurDAG->getMachineNode(ARM::VSTMQ, dl, MVT::Other, Ops, 6); + cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1); + return Ret; + } + // Other cases are autogenerated. + break; + } + case ARMISD::BRCOND: { + // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) + // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) + // Pattern complexity = 6 cost = 1 size = 0 + + // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) + // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) + // Pattern complexity = 6 cost = 1 size = 0 + + // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) + // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) + // Pattern complexity = 6 cost = 1 size = 0 + + unsigned Opc = Subtarget->isThumb() ? + ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; + SDValue Chain = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + SDValue N3 = N->getOperand(3); + SDValue InFlag = N->getOperand(4); + assert(N1.getOpcode() == ISD::BasicBlock); + assert(N2.getOpcode() == ISD::Constant); + assert(N3.getOpcode() == ISD::Register); + + SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) + cast<ConstantSDNode>(N2)->getZExtValue()), + MVT::i32); + SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag }; + SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, + MVT::Flag, Ops, 5); + Chain = SDValue(ResNode, 0); + if (N->getNumValues() == 2) { + InFlag = SDValue(ResNode, 1); + ReplaceUses(SDValue(N, 1), InFlag); + } + ReplaceUses(SDValue(N, 0), + SDValue(Chain.getNode(), Chain.getResNo())); + return NULL; + } + case ARMISD::CMOV: + return SelectCMOVOp(N); + case ARMISD::CNEG: { + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + SDValue N3 = N->getOperand(3); + SDValue InFlag = N->getOperand(4); + assert(N2.getOpcode() == ISD::Constant); + assert(N3.getOpcode() == ISD::Register); + + SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) + cast<ConstantSDNode>(N2)->getZExtValue()), + MVT::i32); + SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag }; + unsigned Opc = 0; + switch (VT.getSimpleVT().SimpleTy) { + default: assert(false && "Illegal conditional move type!"); + break; + case MVT::f32: + Opc = ARM::VNEGScc; + break; + case MVT::f64: + Opc = ARM::VNEGDcc; + break; + } + return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); + } + + case ARMISD::VZIP: { + unsigned Opc = 0; + EVT VT = N->getValueType(0); + switch (VT.getSimpleVT().SimpleTy) { + default: return NULL; + case MVT::v8i8: Opc = ARM::VZIPd8; break; + case MVT::v4i16: Opc = ARM::VZIPd16; break; + case MVT::v2f32: + case MVT::v2i32: Opc = ARM::VZIPd32; break; + case MVT::v16i8: Opc = ARM::VZIPq8; break; + case MVT::v8i16: Opc = ARM::VZIPq16; break; + case MVT::v4f32: + case MVT::v4i32: Opc = ARM::VZIPq32; break; + } + SDValue Pred = getAL(CurDAG); + SDValue PredReg = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; + return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); + } + case ARMISD::VUZP: { + unsigned Opc = 0; + EVT VT = N->getValueType(0); + switch (VT.getSimpleVT().SimpleTy) { + default: return NULL; + case MVT::v8i8: Opc = ARM::VUZPd8; break; + case MVT::v4i16: Opc = ARM::VUZPd16; break; + case MVT::v2f32: + case MVT::v2i32: Opc = ARM::VUZPd32; break; + case MVT::v16i8: Opc = ARM::VUZPq8; break; + case MVT::v8i16: Opc = ARM::VUZPq16; break; + case MVT::v4f32: + case MVT::v4i32: Opc = ARM::VUZPq32; break; + } + SDValue Pred = getAL(CurDAG); + SDValue PredReg = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; + return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); + } + case ARMISD::VTRN: { + unsigned Opc = 0; + EVT VT = N->getValueType(0); + switch (VT.getSimpleVT().SimpleTy) { + default: return NULL; + case MVT::v8i8: Opc = ARM::VTRNd8; break; + case MVT::v4i16: Opc = ARM::VTRNd16; break; + case MVT::v2f32: + case MVT::v2i32: Opc = ARM::VTRNd32; break; + case MVT::v16i8: Opc = ARM::VTRNq8; break; + case MVT::v8i16: Opc = ARM::VTRNq16; break; + case MVT::v4f32: + case MVT::v4i32: Opc = ARM::VTRNq32; break; + } + SDValue Pred = getAL(CurDAG); + SDValue PredReg = CurDAG->getRegister(0, MVT::i32); + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; + return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); + } + + case ISD::INTRINSIC_VOID: + case ISD::INTRINSIC_W_CHAIN: { + unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); + switch (IntNo) { + default: + break; + + case Intrinsic::arm_neon_vld1: { + unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16, + ARM::VLD1d32, ARM::VLD1d64 }; + unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16, + ARM::VLD1q32, ARM::VLD1q64 }; + return SelectVLD(N, 1, DOpcodes, QOpcodes, 0); + } + + case Intrinsic::arm_neon_vld2: { + unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16, + ARM::VLD2d32, ARM::VLD1q64 }; + unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 }; + return SelectVLD(N, 2, DOpcodes, QOpcodes, 0); + } + + case Intrinsic::arm_neon_vld3: { + unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16, + ARM::VLD3d32, ARM::VLD1d64T }; + unsigned QOpcodes0[] = { ARM::VLD3q8_UPD, + ARM::VLD3q16_UPD, + ARM::VLD3q32_UPD }; + unsigned QOpcodes1[] = { ARM::VLD3q8odd_UPD, + ARM::VLD3q16odd_UPD, + ARM::VLD3q32odd_UPD }; + return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vld4: { + unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16, + ARM::VLD4d32, ARM::VLD1d64Q }; + unsigned QOpcodes0[] = { ARM::VLD4q8_UPD, + ARM::VLD4q16_UPD, + ARM::VLD4q32_UPD }; + unsigned QOpcodes1[] = { ARM::VLD4q8odd_UPD, + ARM::VLD4q16odd_UPD, + ARM::VLD4q32odd_UPD }; + return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vld2lane: { + unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 }; + unsigned QOpcodes0[] = { ARM::VLD2LNq16, ARM::VLD2LNq32 }; + unsigned QOpcodes1[] = { ARM::VLD2LNq16odd, ARM::VLD2LNq32odd }; + return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vld3lane: { + unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 }; + unsigned QOpcodes0[] = { ARM::VLD3LNq16, ARM::VLD3LNq32 }; + unsigned QOpcodes1[] = { ARM::VLD3LNq16odd, ARM::VLD3LNq32odd }; + return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vld4lane: { + unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 }; + unsigned QOpcodes0[] = { ARM::VLD4LNq16, ARM::VLD4LNq32 }; + unsigned QOpcodes1[] = { ARM::VLD4LNq16odd, ARM::VLD4LNq32odd }; + return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vst1: { + unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16, + ARM::VST1d32, ARM::VST1d64 }; + unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16, + ARM::VST1q32, ARM::VST1q64 }; + return SelectVST(N, 1, DOpcodes, QOpcodes, 0); + } + + case Intrinsic::arm_neon_vst2: { + unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16, + ARM::VST2d32, ARM::VST1q64 }; + unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 }; + return SelectVST(N, 2, DOpcodes, QOpcodes, 0); + } + + case Intrinsic::arm_neon_vst3: { + unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16, + ARM::VST3d32, ARM::VST1d64T }; + unsigned QOpcodes0[] = { ARM::VST3q8_UPD, + ARM::VST3q16_UPD, + ARM::VST3q32_UPD }; + unsigned QOpcodes1[] = { ARM::VST3q8odd_UPD, + ARM::VST3q16odd_UPD, + ARM::VST3q32odd_UPD }; + return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vst4: { + unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16, + ARM::VST4d32, ARM::VST1d64Q }; + unsigned QOpcodes0[] = { ARM::VST4q8_UPD, + ARM::VST4q16_UPD, + ARM::VST4q32_UPD }; + unsigned QOpcodes1[] = { ARM::VST4q8odd_UPD, + ARM::VST4q16odd_UPD, + ARM::VST4q32odd_UPD }; + return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vst2lane: { + unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 }; + unsigned QOpcodes0[] = { ARM::VST2LNq16, ARM::VST2LNq32 }; + unsigned QOpcodes1[] = { ARM::VST2LNq16odd, ARM::VST2LNq32odd }; + return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vst3lane: { + unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 }; + unsigned QOpcodes0[] = { ARM::VST3LNq16, ARM::VST3LNq32 }; + unsigned QOpcodes1[] = { ARM::VST3LNq16odd, ARM::VST3LNq32odd }; + return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); + } + + case Intrinsic::arm_neon_vst4lane: { + unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 }; + unsigned QOpcodes0[] = { ARM::VST4LNq16, ARM::VST4LNq32 }; + unsigned QOpcodes1[] = { ARM::VST4LNq16odd, ARM::VST4LNq32odd }; + return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); + } + } + break; + } + + case ISD::CONCAT_VECTORS: + return SelectConcatVector(N); + } + + return SelectCode(N); +} + +bool ARMDAGToDAGISel:: +SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, + std::vector<SDValue> &OutOps) { + assert(ConstraintCode == 'm' && "unexpected asm memory constraint"); + // Require the address to be in a register. That is safe for all ARM + // variants and it is hard to do anything much smarter without knowing + // how the operand is used. + OutOps.push_back(Op); + return false; +} + +/// createARMISelDag - This pass converts a legalized DAG into a +/// ARM-specific DAG, ready for instruction scheduling. +/// +FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM, + CodeGenOpt::Level OptLevel) { + return new ARMDAGToDAGISel(TM, OptLevel); +} + +/// ModelWithRegSequence - Return true if isel should use REG_SEQUENCE to model +/// operations involving sub-registers. +bool llvm::ModelWithRegSequence() { + return UseRegSeq; +} |