summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp2375
1 files changed, 2375 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
new file mode 100644
index 0000000..9baef6b
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelDAGToDAG.cpp
@@ -0,0 +1,2375 @@
+//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the ARM target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMTargetMachine.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+UseRegSeq("neon-reg-sequence", cl::Hidden,
+ cl::desc("Use reg_sequence to model ld / st of multiple neon regs"),
+ cl::init(true));
+
+//===--------------------------------------------------------------------===//
+/// ARMDAGToDAGISel - ARM specific code to select ARM machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+class ARMDAGToDAGISel : public SelectionDAGISel {
+ ARMBaseTargetMachine &TM;
+
+ /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const ARMSubtarget *Subtarget;
+
+public:
+ explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
+ CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel), TM(tm),
+ Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
+ }
+
+ virtual const char *getPassName() const {
+ return "ARM Instruction Selection";
+ }
+
+ /// getI32Imm - Return a target constant of type i32 with the specified
+ /// value.
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ SDNode *Select(SDNode *N);
+
+ bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A,
+ SDValue &B, SDValue &C);
+ bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode2Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc);
+ bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr,
+ SDValue &Mode);
+ bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &Offset);
+ bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align);
+
+ bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset,
+ SDValue &Label);
+
+ bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &Offset);
+ bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale,
+ SDValue &Base, SDValue &OffImm,
+ SDValue &Offset);
+ bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffImm, SDValue &Offset);
+ bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffImm, SDValue &Offset);
+ bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffImm, SDValue &Offset);
+ bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffImm);
+
+ bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
+ SDValue &BaseReg, SDValue &Opc);
+ bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
+ SDValue &OffImm);
+ bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffImm);
+ bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base,
+ SDValue &OffReg, SDValue &ShImm);
+
+ // Include the pieces autogenerated from the target description.
+#include "ARMGenDAGISel.inc"
+
+private:
+ /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
+ /// ARM.
+ SDNode *SelectARMIndexedLoad(SDNode *N);
+ SDNode *SelectT2IndexedLoad(SDNode *N);
+
+ /// SelectVLD - Select NEON load intrinsics. NumVecs should be
+ /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// loads of D registers and even subregs and odd subregs of Q registers.
+ /// For NumVecs <= 2, QOpcodes1 is not used.
+ SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
+ unsigned *QOpcodes0, unsigned *QOpcodes1);
+
+ /// SelectVST - Select NEON store intrinsics. NumVecs should
+ /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// stores of D registers and even subregs and odd subregs of Q registers.
+ /// For NumVecs <= 2, QOpcodes1 is not used.
+ SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
+ unsigned *QOpcodes0, unsigned *QOpcodes1);
+
+ /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
+ /// be 2, 3 or 4. The opcode arrays specify the instructions used for
+ /// load/store of D registers and even subregs and odd subregs of Q registers.
+ SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs,
+ unsigned *DOpcodes, unsigned *QOpcodes0,
+ unsigned *QOpcodes1);
+
+ /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
+ SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
+
+ /// SelectCMOVOp - Select CMOV instructions for ARM.
+ SDNode *SelectCMOVOp(SDNode *N);
+ SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR,
+ SDValue InFlag);
+ SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR,
+ SDValue InFlag);
+ SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR,
+ SDValue InFlag);
+ SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR,
+ SDValue InFlag);
+
+ SDNode *SelectConcatVector(SDNode *N);
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps);
+
+ /// PairDRegs - Form a quad register from a pair of D registers.
+ ///
+ SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
+
+ /// PairDRegs - Form a quad register pair from a pair of Q registers.
+ ///
+ SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
+
+ /// QuadDRegs - Form a quad register pair from a quad of D registers.
+ ///
+ SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+
+ /// QuadQRegs - Form 4 consecutive Q registers.
+ ///
+ SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
+
+ /// OctoDRegs - Form 8 consecutive D registers.
+ ///
+ SDNode *OctoDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3,
+ SDValue V4, SDValue V5, SDValue V6, SDValue V7);
+};
+}
+
+/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isInt32Immediate - This method tests to see if a constant operand.
+// If so Imm will receive the 32 bit value.
+static bool isInt32Immediate(SDValue N, unsigned &Imm) {
+ return isInt32Immediate(N.getNode(), Imm);
+}
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
+ return N->getOpcode() == Opc &&
+ isInt32Immediate(N->getOperand(1).getNode(), Imm);
+}
+
+
+bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op,
+ SDValue N,
+ SDValue &BaseReg,
+ SDValue &ShReg,
+ SDValue &Opc) {
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ ShReg = CurDAG->getRegister(0, MVT::i32);
+ ShImmVal = RHS->getZExtValue() & 31;
+ } else {
+ ShReg = N.getOperand(1);
+ }
+ Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::MUL) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ // X * [3,5,9] -> X + X * [2,4,8] etc.
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC & 1) {
+ RHSC = RHSC & ~1;
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ if (isPowerOf2_32(RHSC)) {
+ unsigned ShAmt = Log2_32(RHSC);
+ Base = Offset = N.getOperand(0);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
+ ARM_AM::lsl),
+ MVT::i32);
+ return true;
+ }
+ }
+ }
+ }
+
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ } else if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return true;
+ }
+
+ // Match simple R +/- imm12 operands.
+ if (N.getOpcode() == ISD::ADD)
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if ((RHSC >= 0 && RHSC < 0x1000) ||
+ (RHSC < 0 && RHSC > -0x1000)) { // 12 bits.
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return true;
+ }
+ }
+
+ // Otherwise this is R +/- [possibly shifted] R.
+ ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub;
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1));
+ unsigned ShAmt = 0;
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ Offset = N.getOperand(1).getOperand(0);
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ // Try matching (R shl C) + (R).
+ if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0));
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't
+ // fold it.
+ if (ConstantSDNode *Sh =
+ dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ Offset = N.getOperand(0).getOperand(0);
+ Base = N.getOperand(1);
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
+ int Val = (int)C->getZExtValue();
+ if (Val >= 0 && Val < 0x1000) { // 12 bits.
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
+ ARM_AM::no_shift),
+ MVT::i32);
+ return true;
+ }
+ }
+
+ Offset = N;
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
+ unsigned ShAmt = 0;
+ if (ShOpcVal != ARM_AM::no_shift) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ Offset = N.getOperand(0);
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
+ MVT::i32);
+ return true;
+}
+
+
+bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &Offset,
+ SDValue &Opc) {
+ if (N.getOpcode() == ISD::SUB) {
+ // X - C is canonicalize to X + -C, no need to handle it here.
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
+ return true;
+ }
+
+ if (N.getOpcode() != ISD::ADD) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
+ return true;
+ }
+
+ // If the RHS is +/- imm8, fold into addr mode.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if ((RHSC >= 0 && RHSC < 256) ||
+ (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
+ Offset = CurDAG->getRegister(0, MVT::i32);
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
+ return true;
+ }
+ }
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Opc) {
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
+ ? ARM_AM::add : ARM_AM::sub;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
+ int Val = (int)C->getZExtValue();
+ if (Val >= 0 && Val < 256) {
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
+ return true;
+ }
+ }
+
+ Offset = N;
+ Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N,
+ SDValue &Addr, SDValue &Mode) {
+ Addr = N;
+ Mode = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &Offset) {
+ if (N.getOpcode() != ISD::ADD) {
+ Base = N;
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ } else if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ }
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
+ MVT::i32);
+ return true;
+ }
+
+ // If the RHS is +/- imm8, fold into addr mode.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if ((RHSC & 3) == 0) { // The constant is implicitly multiplied by 4.
+ RHSC >>= 2;
+ if ((RHSC >= 0 && RHSC < 256) ||
+ (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
+
+ ARM_AM::AddrOpc AddSub = ARM_AM::add;
+ if (RHSC < 0) {
+ AddSub = ARM_AM::sub;
+ RHSC = - RHSC;
+ }
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
+ MVT::i32);
+ return true;
+ }
+ }
+ }
+
+ Base = N;
+ Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
+ MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N,
+ SDValue &Addr, SDValue &Align) {
+ Addr = N;
+ // Default to no alignment.
+ Align = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N,
+ SDValue &Offset, SDValue &Label) {
+ if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
+ Offset = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
+ MVT::i32);
+ return true;
+ }
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &Offset){
+ // FIXME dl should come from the parent load or store, not the address
+ DebugLoc dl = Op->getDebugLoc();
+ if (N.getOpcode() != ISD::ADD) {
+ ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
+ if (!NC || NC->getZExtValue() != 0)
+ return false;
+
+ Base = Offset = N;
+ return true;
+ }
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ return true;
+}
+
+bool
+ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N,
+ unsigned Scale, SDValue &Base,
+ SDValue &OffImm, SDValue &Offset) {
+ if (Scale == 4) {
+ SDValue TmpBase, TmpOffImm;
+ if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm))
+ return false; // We want to select tLDRspi / tSTRspi instead.
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select tLDRpci instead.
+ }
+
+ if (N.getOpcode() != ISD::ADD) {
+ if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ } else
+ Base = N;
+
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ // Thumb does not have [sp, r] address mode.
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
+ if ((LHSR && LHSR->getReg() == ARM::SP) ||
+ (RHSR && RHSR->getReg() == ARM::SP)) {
+ Base = N;
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ // If the RHS is + imm5 * scale, fold into addr mode.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if ((RHSC & (Scale-1)) == 0) { // The constant is implicitly multiplied.
+ RHSC /= Scale;
+ if (RHSC >= 0 && RHSC < 32) {
+ Base = N.getOperand(0);
+ Offset = CurDAG->getRegister(0, MVT::i32);
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+ }
+
+ Base = N.getOperand(0);
+ Offset = N.getOperand(1);
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &OffImm,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset);
+}
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &OffImm,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset);
+}
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &OffImm,
+ SDValue &Offset) {
+ return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset);
+}
+
+bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+
+ RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
+ if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
+ (LHSR && LHSR->getReg() == ARM::SP)) {
+ // If the RHS is + imm8 * scale, fold into addr mode.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if ((RHSC & 3) == 0) { // The constant is implicitly multiplied.
+ RHSC >>= 2;
+ if (RHSC >= 0 && RHSC < 256) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
+ SDValue &BaseReg,
+ SDValue &Opc) {
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
+
+ // Don't match base register only case. That is matched to a separate
+ // lower complexity pattern with explicit register operand.
+ if (ShOpcVal == ARM_AM::no_shift) return false;
+
+ BaseReg = N.getOperand(0);
+ unsigned ShImmVal = 0;
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ ShImmVal = RHS->getZExtValue() & 31;
+ Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ // Match simple R + imm12 operands.
+
+ // Base only.
+ if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
+ if (N.getOpcode() == ISD::FrameIndex) {
+ // Match frame index...
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ } else if (N.getOpcode() == ARMISD::Wrapper &&
+ !(Subtarget->useMovt() &&
+ N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::TargetConstantPool)
+ return false; // We want to select t2LDRpci instead.
+ } else
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+ }
+
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ if (SelectT2AddrModeImm8(Op, N, Base, OffImm))
+ // Let t2LDRi8 handle (R - imm8).
+ return false;
+
+ int RHSC = (int)RHS->getZExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ // Base only.
+ Base = N;
+ OffImm = CurDAG->getTargetConstant(0, MVT::i32);
+ return true;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ // Match simple R - imm8 operands.
+ if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getSExtValue();
+ if (N.getOpcode() == ISD::SUB)
+ RHSC = -RHSC;
+
+ if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
+ Base = N.getOperand(0);
+ if (Base.getOpcode() == ISD::FrameIndex) {
+ int FI = cast<FrameIndexSDNode>(Base)->getIndex();
+ Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ }
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
+ SDValue &OffImm){
+ unsigned Opcode = Op->getOpcode();
+ ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
+ ? cast<LoadSDNode>(Op)->getAddressingMode()
+ : cast<StoreSDNode>(Op)->getAddressingMode();
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N)) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC >= 0 && RHSC < 0x100) { // 8 bits.
+ OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
+ ? CurDAG->getTargetConstant(RHSC, MVT::i32)
+ : CurDAG->getTargetConstant(-RHSC, MVT::i32);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N,
+ SDValue &Base, SDValue &OffImm) {
+ if (N.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (((RHSC & 0x3) == 0) &&
+ ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { // 8 bits.
+ Base = N.getOperand(0);
+ OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
+ return true;
+ }
+ }
+ } else if (N.getOpcode() == ISD::SUB) {
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) { // 8 bits.
+ Base = N.getOperand(0);
+ OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N,
+ SDValue &Base,
+ SDValue &OffReg, SDValue &ShImm) {
+ // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
+ if (N.getOpcode() != ISD::ADD)
+ return false;
+
+ // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
+ return false;
+ else if (RHSC < 0 && RHSC >= -255) // 8 bits
+ return false;
+ }
+
+ // Look for (R + R) or (R + (R << [1,2,3])).
+ unsigned ShAmt = 0;
+ Base = N.getOperand(0);
+ OffReg = N.getOperand(1);
+
+ // Swap if it is ((R << c) + R).
+ ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg);
+ if (ShOpcVal != ARM_AM::lsl) {
+ ShOpcVal = ARM_AM::getShiftOpcForNode(Base);
+ if (ShOpcVal == ARM_AM::lsl)
+ std::swap(Base, OffReg);
+ }
+
+ if (ShOpcVal == ARM_AM::lsl) {
+ // Check to see if the RHS of the shift is a constant, if not, we can't fold
+ // it.
+ if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
+ ShAmt = Sh->getZExtValue();
+ if (ShAmt >= 4) {
+ ShAmt = 0;
+ ShOpcVal = ARM_AM::no_shift;
+ } else
+ OffReg = OffReg.getOperand(0);
+ } else {
+ ShOpcVal = ARM_AM::no_shift;
+ }
+ }
+
+ ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
+
+ return true;
+}
+
+//===--------------------------------------------------------------------===//
+
+/// getAL - Returns a ARMCC::AL immediate node.
+static inline SDValue getAL(SelectionDAG *CurDAG) {
+ return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
+}
+
+SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ if (AM == ISD::UNINDEXED)
+ return NULL;
+
+ EVT LoadedVT = LD->getMemoryVT();
+ SDValue Offset, AMOpc;
+ bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
+ unsigned Opcode = 0;
+ bool Match = false;
+ if (LoadedVT == MVT::i32 &&
+ SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST;
+ Match = true;
+ } else if (LoadedVT == MVT::i16 &&
+ SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
+ ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
+ : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
+ } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
+ if (LD->getExtensionType() == ISD::SEXTLOAD) {
+ if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
+ }
+ } else {
+ if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
+ Match = true;
+ Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST;
+ }
+ }
+ }
+
+ if (Match) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
+ MVT::Other, Ops, 6);
+ }
+
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ if (AM == ISD::UNINDEXED)
+ return NULL;
+
+ EVT LoadedVT = LD->getMemoryVT();
+ bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
+ SDValue Offset;
+ bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
+ unsigned Opcode = 0;
+ bool Match = false;
+ if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ case MVT::i32:
+ Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
+ break;
+ case MVT::i16:
+ if (isSExtLd)
+ Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
+ else
+ Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
+ break;
+ case MVT::i8:
+ case MVT::i1:
+ if (isSExtLd)
+ Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
+ else
+ Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
+ break;
+ default:
+ return NULL;
+ }
+ Match = true;
+ }
+
+ if (Match) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[]= { Base, Offset, getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32), Chain };
+ return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
+ MVT::Other, Ops, 5);
+ }
+
+ return NULL;
+}
+
+/// PairDRegs - Form a quad register from a pair of D registers.
+///
+SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
+ DebugLoc dl = V0.getNode()->getDebugLoc();
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ if (llvm::ModelWithRegSequence()) {
+ const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
+ }
+ SDValue Undef =
+ SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0);
+ SDNode *Pair = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
+ VT, Undef, V0, SubReg0);
+ return CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
+ VT, SDValue(Pair, 0), V1, SubReg1);
+}
+
+/// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
+///
+SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
+ DebugLoc dl = V0.getNode()->getDebugLoc();
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
+ const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
+}
+
+/// QuadDRegs - Form 4 consecutive D registers.
+///
+SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ DebugLoc dl = V0.getNode()->getDebugLoc();
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
+ const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
+}
+
+/// QuadQRegs - Form 4 consecutive Q registers.
+///
+SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3) {
+ DebugLoc dl = V0.getNode()->getDebugLoc();
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
+ const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
+}
+
+/// OctoDRegs - Form 8 consecutive D registers.
+///
+SDNode *ARMDAGToDAGISel::OctoDRegs(EVT VT, SDValue V0, SDValue V1,
+ SDValue V2, SDValue V3,
+ SDValue V4, SDValue V5,
+ SDValue V6, SDValue V7) {
+ DebugLoc dl = V0.getNode()->getDebugLoc();
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
+ SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
+ SDValue SubReg4 = CurDAG->getTargetConstant(ARM::dsub_4, MVT::i32);
+ SDValue SubReg5 = CurDAG->getTargetConstant(ARM::dsub_5, MVT::i32);
+ SDValue SubReg6 = CurDAG->getTargetConstant(ARM::dsub_6, MVT::i32);
+ SDValue SubReg7 = CurDAG->getTargetConstant(ARM::dsub_7, MVT::i32);
+ const SDValue Ops[] ={ V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3,
+ V4, SubReg4, V5, SubReg5, V6, SubReg6, V7, SubReg7 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 16);
+}
+
+/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type
+/// for a 64-bit subregister of the vector.
+static EVT GetNEONSubregVT(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled NEON type");
+ case MVT::v16i8: return MVT::v8i8;
+ case MVT::v8i16: return MVT::v4i16;
+ case MVT::v4f32: return MVT::v2f32;
+ case MVT::v4i32: return MVT::v2i32;
+ case MVT::v2i64: return MVT::v1i64;
+ }
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
+ unsigned *DOpcodes, unsigned *QOpcodes0,
+ unsigned *QOpcodes1) {
+ assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
+ DebugLoc dl = N->getDebugLoc();
+
+ SDValue MemAddr, Align;
+ if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
+ return NULL;
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ bool is64BitVector = VT.is64BitVector();
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ case MVT::v1i64: OpcodeIndex = 3; break;
+ // Quad-register operations:
+ case MVT::v16i8: OpcodeIndex = 0; break;
+ case MVT::v8i16: OpcodeIndex = 1; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2i64: OpcodeIndex = 3;
+ assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
+ break;
+ }
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (is64BitVector) {
+ unsigned Opc = DOpcodes[OpcodeIndex];
+ const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
+ std::vector<EVT> ResTys(NumVecs, VT);
+ ResTys.push_back(MVT::Other);
+ SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
+ if (!llvm::ModelWithRegSequence() || NumVecs < 2)
+ return VLd;
+
+ SDValue RegSeq;
+ SDValue V0 = SDValue(VLd, 0);
+ SDValue V1 = SDValue(VLd, 1);
+
+ // Form a REG_SEQUENCE to force register allocation.
+ if (NumVecs == 2)
+ RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
+ else {
+ SDValue V2 = SDValue(VLd, 2);
+ // If it's a vld3, form a quad D-register but discard the last part.
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
+ : SDValue(VLd, 3);
+ RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDValue D = CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec,
+ dl, VT, RegSeq);
+ ReplaceUses(SDValue(N, Vec), D);
+ }
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, NumVecs));
+ return NULL;
+ }
+
+ EVT RegVT = GetNEONSubregVT(VT);
+ if (NumVecs <= 2) {
+ // Quad registers are directly supported for VLD1 and VLD2,
+ // loading pairs of D regs.
+ unsigned Opc = QOpcodes0[OpcodeIndex];
+ const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
+ std::vector<EVT> ResTys(2 * NumVecs, RegVT);
+ ResTys.push_back(MVT::Other);
+ SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
+ Chain = SDValue(VLd, 2 * NumVecs);
+
+ // Combine the even and odd subregs to produce the result.
+ if (llvm::ModelWithRegSequence()) {
+ if (NumVecs == 1) {
+ SDNode *Q = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1));
+ ReplaceUses(SDValue(N, 0), SDValue(Q, 0));
+ } else {
+ SDValue QQ = SDValue(QuadDRegs(MVT::v4i64,
+ SDValue(VLd, 0), SDValue(VLd, 1),
+ SDValue(VLd, 2), SDValue(VLd, 3)), 0);
+ SDValue Q0 = CurDAG->getTargetExtractSubreg(ARM::qsub_0, dl, VT, QQ);
+ SDValue Q1 = CurDAG->getTargetExtractSubreg(ARM::qsub_1, dl, VT, QQ);
+ ReplaceUses(SDValue(N, 0), Q0);
+ ReplaceUses(SDValue(N, 1), Q1);
+ }
+ } else {
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1));
+ ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
+ }
+ }
+ } else {
+ // Otherwise, quad registers are loaded with two separate instructions,
+ // where one loads the even registers and the other loads the odd registers.
+
+ std::vector<EVT> ResTys(NumVecs, RegVT);
+ ResTys.push_back(MemAddr.getValueType());
+ ResTys.push_back(MVT::Other);
+
+ // Load the even subregs.
+ unsigned Opc = QOpcodes0[OpcodeIndex];
+ const SDValue OpsA[] = { MemAddr, Align, Reg0, Pred, Reg0, Chain };
+ SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 6);
+ Chain = SDValue(VLdA, NumVecs+1);
+
+ // Load the odd subregs.
+ Opc = QOpcodes1[OpcodeIndex];
+ const SDValue OpsB[] = { SDValue(VLdA, NumVecs),
+ Align, Reg0, Pred, Reg0, Chain };
+ SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 6);
+ Chain = SDValue(VLdB, NumVecs+1);
+
+ if (llvm::ModelWithRegSequence()) {
+ SDValue V0 = SDValue(VLdA, 0);
+ SDValue V1 = SDValue(VLdB, 0);
+ SDValue V2 = SDValue(VLdA, 1);
+ SDValue V3 = SDValue(VLdB, 1);
+ SDValue V4 = SDValue(VLdA, 2);
+ SDValue V5 = SDValue(VLdB, 2);
+ SDValue V6 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT),
+ 0)
+ : SDValue(VLdA, 3);
+ SDValue V7 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT),
+ 0)
+ : SDValue(VLdB, 3);
+ SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V0, V1, V2, V3,
+ V4, V5, V6, V7), 0);
+
+ // Extract out the 3 / 4 Q registers.
+ assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDValue Q = CurDAG->getTargetExtractSubreg(ARM::qsub_0+Vec,
+ dl, VT, RegSeq);
+ ReplaceUses(SDValue(N, Vec), Q);
+ }
+ } else {
+ // Combine the even and odd subregs to produce the result.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec));
+ ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
+ }
+ }
+ }
+ ReplaceUses(SDValue(N, NumVecs), Chain);
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
+ unsigned *DOpcodes, unsigned *QOpcodes0,
+ unsigned *QOpcodes1) {
+ assert(NumVecs >=1 && NumVecs <= 4 && "VST NumVecs out-of-range");
+ DebugLoc dl = N->getDebugLoc();
+
+ SDValue MemAddr, Align;
+ if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
+ return NULL;
+
+ SDValue Chain = N->getOperand(0);
+ EVT VT = N->getOperand(3).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vst type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ case MVT::v1i64: OpcodeIndex = 3; break;
+ // Quad-register operations:
+ case MVT::v16i8: OpcodeIndex = 0; break;
+ case MVT::v8i16: OpcodeIndex = 1; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 2; break;
+ case MVT::v2i64: OpcodeIndex = 3;
+ assert(NumVecs == 1 && "v2i64 type only supported for VST1");
+ break;
+ }
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+
+ SmallVector<SDValue, 10> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+
+ if (is64BitVector) {
+ if (llvm::ModelWithRegSequence() && NumVecs >= 2) {
+ SDValue RegSeq;
+ SDValue V0 = N->getOperand(0+3);
+ SDValue V1 = N->getOperand(1+3);
+
+ // Form a REG_SEQUENCE to force register allocation.
+ if (NumVecs == 2)
+ RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
+ else {
+ SDValue V2 = N->getOperand(2+3);
+ // If it's a vld3, form a quad D-register and leave the last part as
+ // an undef.
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
+ : N->getOperand(3+3);
+ RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+
+ // Now extract the D registers back out.
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT,
+ RegSeq));
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT,
+ RegSeq));
+ if (NumVecs > 2)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,
+ RegSeq));
+ if (NumVecs > 3)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,
+ RegSeq));
+ } else {
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(N->getOperand(Vec+3));
+ }
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0); // predicate register
+ Ops.push_back(Chain);
+ unsigned Opc = DOpcodes[OpcodeIndex];
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5);
+ }
+
+ EVT RegVT = GetNEONSubregVT(VT);
+ if (NumVecs <= 2) {
+ // Quad registers are directly supported for VST1 and VST2,
+ // storing pairs of D regs.
+ unsigned Opc = QOpcodes0[OpcodeIndex];
+ if (llvm::ModelWithRegSequence() && NumVecs == 2) {
+ // First extract the pair of Q registers.
+ SDValue Q0 = N->getOperand(3);
+ SDValue Q1 = N->getOperand(4);
+
+ // Form a QQ register.
+ SDValue QQ = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
+
+ // Now extract the D registers back out.
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
+ QQ));
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
+ QQ));
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, RegVT,
+ QQ));
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, RegVT,
+ QQ));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0); // predicate register
+ Ops.push_back(Chain);
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 4);
+ } else {
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
+ N->getOperand(Vec+3)));
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
+ N->getOperand(Vec+3)));
+ }
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0); // predicate register
+ Ops.push_back(Chain);
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(),
+ 5 + 2 * NumVecs);
+ }
+ }
+
+ // Otherwise, quad registers are stored with two separate instructions,
+ // where one stores the even registers and the other stores the odd registers.
+ if (llvm::ModelWithRegSequence()) {
+ // Form the QQQQ REG_SEQUENCE.
+ SDValue V[8];
+ for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
+ V[i] = CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
+ N->getOperand(Vec+3));
+ V[i+1] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
+ N->getOperand(Vec+3));
+ }
+ if (NumVecs == 3)
+ V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, RegVT), 0);
+
+ SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
+ V[4], V[5], V[6], V[7]), 0);
+
+ // Store the even D registers.
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ Ops.push_back(Reg0); // post-access address offset
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec*2, dl,
+ RegVT, RegSeq));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0); // predicate register
+ Ops.push_back(Chain);
+ unsigned Opc = QOpcodes0[OpcodeIndex];
+ SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
+ MVT::Other, Ops.data(), NumVecs+6);
+ Chain = SDValue(VStA, 1);
+
+ // Store the odd D registers.
+ Ops[0] = SDValue(VStA, 0); // MemAddr
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1+Vec*2, dl,
+ RegVT, RegSeq);
+ Ops[NumVecs+5] = Chain;
+ Opc = QOpcodes1[OpcodeIndex];
+ SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
+ MVT::Other, Ops.data(), NumVecs+6);
+ Chain = SDValue(VStB, 1);
+ ReplaceUses(SDValue(N, 0), Chain);
+ return NULL;
+ } else {
+ Ops.push_back(Reg0); // post-access address offset
+
+ // Store the even subregs.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
+ N->getOperand(Vec+3)));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0); // predicate register
+ Ops.push_back(Chain);
+ unsigned Opc = QOpcodes0[OpcodeIndex];
+ SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
+ MVT::Other, Ops.data(), NumVecs+6);
+ Chain = SDValue(VStA, 1);
+
+ // Store the odd subregs.
+ Ops[0] = SDValue(VStA, 0); // MemAddr
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
+ N->getOperand(Vec+3));
+ Ops[NumVecs+5] = Chain;
+ Opc = QOpcodes1[OpcodeIndex];
+ SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
+ MVT::Other, Ops.data(), NumVecs+6);
+ Chain = SDValue(VStB, 1);
+ ReplaceUses(SDValue(N, 0), Chain);
+ return NULL;
+ }
+}
+
+SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
+ unsigned NumVecs, unsigned *DOpcodes,
+ unsigned *QOpcodes0,
+ unsigned *QOpcodes1) {
+ assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
+ DebugLoc dl = N->getDebugLoc();
+
+ SDValue MemAddr, Align;
+ if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
+ return NULL;
+
+ SDValue Chain = N->getOperand(0);
+ unsigned Lane =
+ cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue();
+ EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType();
+ bool is64BitVector = VT.is64BitVector();
+
+ // Quad registers are handled by load/store of subregs. Find the subreg info.
+ unsigned NumElts = 0;
+ int SubregIdx = 0;
+ bool Even = false;
+ EVT RegVT = VT;
+ if (!is64BitVector) {
+ RegVT = GetNEONSubregVT(VT);
+ NumElts = RegVT.getVectorNumElements();
+ SubregIdx = (Lane < NumElts) ? ARM::dsub_0 : ARM::dsub_1;
+ Even = Lane < NumElts;
+ }
+
+ unsigned OpcodeIndex;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("unhandled vld/vst lane type");
+ // Double-register operations:
+ case MVT::v8i8: OpcodeIndex = 0; break;
+ case MVT::v4i16: OpcodeIndex = 1; break;
+ case MVT::v2f32:
+ case MVT::v2i32: OpcodeIndex = 2; break;
+ // Quad-register operations:
+ case MVT::v8i16: OpcodeIndex = 0; break;
+ case MVT::v4f32:
+ case MVT::v4i32: OpcodeIndex = 1; break;
+ }
+
+ SDValue Pred = getAL(CurDAG);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+
+ SmallVector<SDValue, 10> Ops;
+ Ops.push_back(MemAddr);
+ Ops.push_back(Align);
+
+ unsigned Opc = 0;
+ if (is64BitVector) {
+ Opc = DOpcodes[OpcodeIndex];
+ if (llvm::ModelWithRegSequence()) {
+ SDValue RegSeq;
+ SDValue V0 = N->getOperand(0+3);
+ SDValue V1 = N->getOperand(1+3);
+ if (NumVecs == 2) {
+ RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
+ } else {
+ SDValue V2 = N->getOperand(2+3);
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
+ : N->getOperand(3+3);
+ RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+
+ // Now extract the D registers back out.
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT,
+ RegSeq));
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT,
+ RegSeq));
+ if (NumVecs > 2)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,
+ RegSeq));
+ if (NumVecs > 3)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,
+ RegSeq));
+ } else {
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(N->getOperand(Vec+3));
+ }
+ } else {
+ // Check if this is loading the even or odd subreg of a Q register.
+ if (Lane < NumElts) {
+ Opc = QOpcodes0[OpcodeIndex];
+ } else {
+ Lane -= NumElts;
+ Opc = QOpcodes1[OpcodeIndex];
+ }
+
+ if (llvm::ModelWithRegSequence()) {
+ SDValue RegSeq;
+ SDValue V0 = N->getOperand(0+3);
+ SDValue V1 = N->getOperand(1+3);
+ if (NumVecs == 2) {
+ RegSeq = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
+ } else {
+ SDValue V2 = N->getOperand(2+3);
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
+ : N->getOperand(3+3);
+ RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
+ }
+
+ // Extract the subregs of the input vector.
+ unsigned SubIdx = Even ? ARM::dsub_0 : ARM::dsub_1;
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(SubIdx+Vec*2, dl, RegVT,
+ RegSeq));
+ } else {
+ // Extract the subregs of the input vector.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
+ N->getOperand(Vec+3)));
+ }
+ }
+ Ops.push_back(getI32Imm(Lane));
+ Ops.push_back(Pred);
+ Ops.push_back(Reg0);
+ Ops.push_back(Chain);
+
+ if (!IsLoad)
+ return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+6);
+
+ std::vector<EVT> ResTys(NumVecs, RegVT);
+ ResTys.push_back(MVT::Other);
+ SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(),NumVecs+6);
+
+ if (llvm::ModelWithRegSequence()) {
+ // Form a REG_SEQUENCE to force register allocation.
+ SDValue RegSeq;
+ if (is64BitVector) {
+ SDValue V0 = SDValue(VLdLn, 0);
+ SDValue V1 = SDValue(VLdLn, 1);
+ if (NumVecs == 2) {
+ RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
+ } else {
+ SDValue V2 = SDValue(VLdLn, 2);
+ // If it's a vld3, form a quad D-register but discard the last part.
+ SDValue V3 = (NumVecs == 3)
+ ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
+ : SDValue(VLdLn, 3);
+ RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
+ }
+ } else {
+ // For 128-bit vectors, take the 64-bit results of the load and insert them
+ // as subregs into the result.
+ SDValue V[8];
+ for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
+ if (Even) {
+ V[i] = SDValue(VLdLn, Vec);
+ V[i+1] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, RegVT), 0);
+ } else {
+ V[i] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, RegVT), 0);
+ V[i+1] = SDValue(VLdLn, Vec);
+ }
+ }
+ if (NumVecs == 3)
+ V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
+ dl, RegVT), 0);
+
+ if (NumVecs == 2)
+ RegSeq = SDValue(QuadDRegs(MVT::v4i64, V[0], V[1], V[2], V[3]), 0);
+ else
+ RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
+ V[4], V[5], V[6], V[7]), 0);
+ }
+
+ assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
+ assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
+ unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
+ ReplaceUses(SDValue(N, Vec),
+ CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, RegSeq));
+ ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, NumVecs));
+ return NULL;
+ }
+
+ // For a 64-bit vector load to D registers, nothing more needs to be done.
+ if (is64BitVector)
+ return VLdLn;
+
+ // For 128-bit vectors, take the 64-bit results of the load and insert them
+ // as subregs into the result.
+ for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
+ SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
+ N->getOperand(Vec+3),
+ SDValue(VLdLn, Vec));
+ ReplaceUses(SDValue(N, Vec), QuadVec);
+ }
+
+ Chain = SDValue(VLdLn, NumVecs);
+ ReplaceUses(SDValue(N, NumVecs), Chain);
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
+ bool isSigned) {
+ if (!Subtarget->hasV6T2Ops())
+ return NULL;
+
+ unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
+ : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
+
+
+ // For unsigned extracts, check for a shift right and mask
+ unsigned And_imm = 0;
+ if (N->getOpcode() == ISD::AND) {
+ if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
+
+ // The immediate is a mask of the low bits iff imm & (imm+1) == 0
+ if (And_imm & (And_imm + 1))
+ return NULL;
+
+ unsigned Srl_imm = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
+ Srl_imm)) {
+ assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
+
+ unsigned Width = CountTrailingOnes_32(And_imm);
+ unsigned LSB = Srl_imm;
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
+ }
+ }
+ return NULL;
+ }
+
+ // Otherwise, we're looking for a shift of a shift
+ unsigned Shl_imm = 0;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
+ assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
+ unsigned Srl_imm = 0;
+ if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
+ assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
+ unsigned Width = 32 - Srl_imm;
+ int LSB = Srl_imm - Shl_imm;
+ if (LSB < 0)
+ return NULL;
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ CurDAG->getTargetConstant(LSB, MVT::i32),
+ CurDAG->getTargetConstant(Width, MVT::i32),
+ getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
+ }
+ }
+ return NULL;
+}
+
+SDNode *ARMDAGToDAGISel::
+SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
+ SDValue CPTmp0;
+ SDValue CPTmp1;
+ if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) {
+ unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
+ unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
+ unsigned Opc = 0;
+ switch (SOShOp) {
+ case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
+ case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
+ case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
+ case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
+ default:
+ llvm_unreachable("Unknown so_reg opcode!");
+ break;
+ }
+ SDValue SOShImm =
+ CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
+ SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
+ SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
+ }
+ return 0;
+}
+
+SDNode *ARMDAGToDAGISel::
+SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
+ SDValue CPTmp0;
+ SDValue CPTmp1;
+ SDValue CPTmp2;
+ if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
+ SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
+ SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
+ return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7);
+ }
+ return 0;
+}
+
+SDNode *ARMDAGToDAGISel::
+SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
+ ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
+ if (!T)
+ return 0;
+
+ if (Predicate_t2_so_imm(TrueVal.getNode())) {
+ SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
+ SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
+ SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
+ return CurDAG->SelectNodeTo(N,
+ ARM::t2MOVCCi, MVT::i32, Ops, 5);
+ }
+ return 0;
+}
+
+SDNode *ARMDAGToDAGISel::
+SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
+ ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
+ ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
+ if (!T)
+ return 0;
+
+ if (Predicate_so_imm(TrueVal.getNode())) {
+ SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
+ SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
+ SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
+ return CurDAG->SelectNodeTo(N,
+ ARM::MOVCCi, MVT::i32, Ops, 5);
+ }
+ return 0;
+}
+
+SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ SDValue FalseVal = N->getOperand(0);
+ SDValue TrueVal = N->getOperand(1);
+ SDValue CC = N->getOperand(2);
+ SDValue CCR = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
+ assert(CC.getOpcode() == ISD::Constant);
+ assert(CCR.getOpcode() == ISD::Register);
+ ARMCC::CondCodes CCVal =
+ (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
+
+ if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
+ // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
+ // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
+ // Pattern complexity = 18 cost = 1 size = 0
+ SDValue CPTmp0;
+ SDValue CPTmp1;
+ SDValue CPTmp2;
+ if (Subtarget->isThumb()) {
+ SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
+ CCVal, CCR, InFlag);
+ if (!Res)
+ Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
+ ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
+ if (Res)
+ return Res;
+ } else {
+ SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
+ CCVal, CCR, InFlag);
+ if (!Res)
+ Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
+ ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
+ if (Res)
+ return Res;
+ }
+
+ // Pattern: (ARMcmov:i32 GPR:i32:$false,
+ // (imm:i32)<<P:Predicate_so_imm>>:$true,
+ // (imm:i32):$cc)
+ // Emits: (MOVCCi:i32 GPR:i32:$false,
+ // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
+ // Pattern complexity = 10 cost = 1 size = 0
+ if (Subtarget->isThumb()) {
+ SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal,
+ CCVal, CCR, InFlag);
+ if (!Res)
+ Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal,
+ ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
+ if (Res)
+ return Res;
+ } else {
+ SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal,
+ CCVal, CCR, InFlag);
+ if (!Res)
+ Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal,
+ ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
+ if (Res)
+ return Res;
+ }
+ }
+
+ // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
+ // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+ //
+ // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
+ // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 11 size = 0
+ //
+ // Also FCPYScc and FCPYDcc.
+ SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
+ SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
+ unsigned Opc = 0;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: assert(false && "Illegal conditional move type!");
+ break;
+ case MVT::i32:
+ Opc = Subtarget->isThumb()
+ ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
+ : ARM::MOVCCr;
+ break;
+ case MVT::f32:
+ Opc = ARM::VMOVScc;
+ break;
+ case MVT::f64:
+ Opc = ARM::VMOVDcc;
+ break;
+ }
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
+}
+
+SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ EVT VT = N->getValueType(0);
+ if (!VT.is128BitVector() || N->getNumOperands() != 2)
+ llvm_unreachable("unexpected CONCAT_VECTORS");
+ DebugLoc dl = N->getDebugLoc();
+ SDValue V0 = N->getOperand(0);
+ SDValue V1 = N->getOperand(1);
+ SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
+ SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
+ const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
+ return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
+}
+
+SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
+ DebugLoc dl = N->getDebugLoc();
+
+ if (N->isMachineOpcode())
+ return NULL; // Already selected.
+
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::Constant: {
+ unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
+ bool UseCP = true;
+ if (Subtarget->hasThumb2())
+ // Thumb2-aware targets have the MOVT instruction, so all immediates can
+ // be done with MOV + MOVT, at worst.
+ UseCP = 0;
+ else {
+ if (Subtarget->isThumb()) {
+ UseCP = (Val > 255 && // MOV
+ ~Val > 255 && // MOV + MVN
+ !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL
+ } else
+ UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
+ ARM_AM::getSOImmVal(~Val) == -1 && // MVN
+ !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs.
+ }
+
+ if (UseCP) {
+ SDValue CPIdx =
+ CurDAG->getTargetConstantPool(ConstantInt::get(
+ Type::getInt32Ty(*CurDAG->getContext()), Val),
+ TLI.getPointerTy());
+
+ SDNode *ResNode;
+ if (Subtarget->isThumb1Only()) {
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
+ ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other,
+ Ops, 4);
+ } else {
+ SDValue Ops[] = {
+ CPIdx,
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getEntryNode()
+ };
+ ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
+ Ops, 6);
+ }
+ ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
+ return NULL;
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::FrameIndex: {
+ // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
+ if (Subtarget->isThumb1Only()) {
+ return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI,
+ CurDAG->getTargetConstant(0, MVT::i32));
+ } else {
+ unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
+ ARM::t2ADDri : ARM::ADDri);
+ SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
+ }
+ }
+ case ISD::SRL:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
+ return I;
+ break;
+ case ISD::SRA:
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
+ return I;
+ break;
+ case ISD::MUL:
+ if (Subtarget->isThumb1Only())
+ break;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ unsigned RHSV = C->getZExtValue();
+ if (!RHSV) break;
+ if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
+ unsigned ShImm = Log2_32(RHSV-1);
+ if (ShImm >= 32)
+ break;
+ SDValue V = N->getOperand(0);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7);
+ }
+ }
+ if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
+ unsigned ShImm = Log2_32(RHSV+1);
+ if (ShImm >= 32)
+ break;
+ SDValue V = N->getOperand(0);
+ ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
+ SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
+ SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 5);
+ } else {
+ SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
+ return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7);
+ }
+ }
+ }
+ break;
+ case ISD::AND: {
+ // Check for unsigned bitfield extract
+ if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
+ return I;
+
+ // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
+ // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
+ // are entirely contributed by c2 and lower 16-bits are entirely contributed
+ // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
+ // Select it to: "movt x, ((c1 & 0xffff) >> 16)
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i32)
+ break;
+ unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
+ ? ARM::t2MOVTi16
+ : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
+ if (!Opc)
+ break;
+ SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (!N1C)
+ break;
+ if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
+ SDValue N2 = N0.getOperand(1);
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
+ if (!N2C)
+ break;
+ unsigned N1CVal = N1C->getZExtValue();
+ unsigned N2CVal = N2C->getZExtValue();
+ if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
+ (N1CVal & 0xffffU) == 0xffffU &&
+ (N2CVal & 0xffffU) == 0x0U) {
+ SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
+ MVT::i32);
+ SDValue Ops[] = { N0.getOperand(0), Imm16,
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
+ }
+ }
+ break;
+ }
+ case ARMISD::VMOVRRD:
+ return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
+ N->getOperand(0), getAL(CurDAG),
+ CurDAG->getRegister(0, MVT::i32));
+ case ISD::UMUL_LOHI: {
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4);
+ } else {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
+ }
+ }
+ case ISD::SMUL_LOHI: {
+ if (Subtarget->isThumb1Only())
+ break;
+ if (Subtarget->isThumb()) {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4);
+ } else {
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
+ getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
+ CurDAG->getRegister(0, MVT::i32) };
+ return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
+ }
+ }
+ case ISD::LOAD: {
+ SDNode *ResNode = 0;
+ if (Subtarget->isThumb() && Subtarget->hasThumb2())
+ ResNode = SelectT2IndexedLoad(N);
+ else
+ ResNode = SelectARMIndexedLoad(N);
+ if (ResNode)
+ return ResNode;
+
+ // VLDMQ must be custom-selected for "v2f64 load" to set the AM5Opc value.
+ if (Subtarget->hasVFP2() &&
+ N->getValueType(0).getSimpleVT().SimpleTy == MVT::v2f64) {
+ SDValue Chain = N->getOperand(0);
+ SDValue AM5Opc =
+ CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(1), AM5Opc, Pred, PredReg, Chain };
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
+ SDNode *Ret = CurDAG->getMachineNode(ARM::VLDMQ, dl,
+ MVT::v2f64, MVT::Other, Ops, 5);
+ cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
+ return Ret;
+ }
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::STORE: {
+ // VSTMQ must be custom-selected for "v2f64 store" to set the AM5Opc value.
+ if (Subtarget->hasVFP2() &&
+ N->getOperand(1).getValueType().getSimpleVT().SimpleTy == MVT::v2f64) {
+ SDValue Chain = N->getOperand(0);
+ SDValue AM5Opc =
+ CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(1), N->getOperand(2),
+ AM5Opc, Pred, PredReg, Chain };
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
+ SDNode *Ret = CurDAG->getMachineNode(ARM::VSTMQ, dl, MVT::Other, Ops, 6);
+ cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
+ return Ret;
+ }
+ // Other cases are autogenerated.
+ break;
+ }
+ case ARMISD::BRCOND: {
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
+ // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
+ // Pattern complexity = 6 cost = 1 size = 0
+
+ unsigned Opc = Subtarget->isThumb() ?
+ ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
+ assert(N1.getOpcode() == ISD::BasicBlock);
+ assert(N2.getOpcode() == ISD::Constant);
+ assert(N3.getOpcode() == ISD::Register);
+
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
+ SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
+ MVT::Flag, Ops, 5);
+ Chain = SDValue(ResNode, 0);
+ if (N->getNumValues() == 2) {
+ InFlag = SDValue(ResNode, 1);
+ ReplaceUses(SDValue(N, 1), InFlag);
+ }
+ ReplaceUses(SDValue(N, 0),
+ SDValue(Chain.getNode(), Chain.getResNo()));
+ return NULL;
+ }
+ case ARMISD::CMOV:
+ return SelectCMOVOp(N);
+ case ARMISD::CNEG: {
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ SDValue InFlag = N->getOperand(4);
+ assert(N2.getOpcode() == ISD::Constant);
+ assert(N3.getOpcode() == ISD::Register);
+
+ SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
+ cast<ConstantSDNode>(N2)->getZExtValue()),
+ MVT::i32);
+ SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag };
+ unsigned Opc = 0;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: assert(false && "Illegal conditional move type!");
+ break;
+ case MVT::f32:
+ Opc = ARM::VNEGScc;
+ break;
+ case MVT::f64:
+ Opc = ARM::VNEGDcc;
+ break;
+ }
+ return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
+ }
+
+ case ARMISD::VZIP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VZIPd8; break;
+ case MVT::v4i16: Opc = ARM::VZIPd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VZIPd32; break;
+ case MVT::v16i8: Opc = ARM::VZIPq8; break;
+ case MVT::v8i16: Opc = ARM::VZIPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VZIPq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
+ }
+ case ARMISD::VUZP: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VUZPd8; break;
+ case MVT::v4i16: Opc = ARM::VUZPd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VUZPd32; break;
+ case MVT::v16i8: Opc = ARM::VUZPq8; break;
+ case MVT::v8i16: Opc = ARM::VUZPq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VUZPq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
+ }
+ case ARMISD::VTRN: {
+ unsigned Opc = 0;
+ EVT VT = N->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return NULL;
+ case MVT::v8i8: Opc = ARM::VTRNd8; break;
+ case MVT::v4i16: Opc = ARM::VTRNd16; break;
+ case MVT::v2f32:
+ case MVT::v2i32: Opc = ARM::VTRNd32; break;
+ case MVT::v16i8: Opc = ARM::VTRNq8; break;
+ case MVT::v8i16: Opc = ARM::VTRNq16; break;
+ case MVT::v4f32:
+ case MVT::v4i32: Opc = ARM::VTRNq32; break;
+ }
+ SDValue Pred = getAL(CurDAG);
+ SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
+ return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
+ }
+
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default:
+ break;
+
+ case Intrinsic::arm_neon_vld1: {
+ unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
+ ARM::VLD1d32, ARM::VLD1d64 };
+ unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
+ ARM::VLD1q32, ARM::VLD1q64 };
+ return SelectVLD(N, 1, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vld2: {
+ unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
+ ARM::VLD2d32, ARM::VLD1q64 };
+ unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
+ return SelectVLD(N, 2, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vld3: {
+ unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16,
+ ARM::VLD3d32, ARM::VLD1d64T };
+ unsigned QOpcodes0[] = { ARM::VLD3q8_UPD,
+ ARM::VLD3q16_UPD,
+ ARM::VLD3q32_UPD };
+ unsigned QOpcodes1[] = { ARM::VLD3q8odd_UPD,
+ ARM::VLD3q16odd_UPD,
+ ARM::VLD3q32odd_UPD };
+ return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld4: {
+ unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16,
+ ARM::VLD4d32, ARM::VLD1d64Q };
+ unsigned QOpcodes0[] = { ARM::VLD4q8_UPD,
+ ARM::VLD4q16_UPD,
+ ARM::VLD4q32_UPD };
+ unsigned QOpcodes1[] = { ARM::VLD4q8odd_UPD,
+ ARM::VLD4q16odd_UPD,
+ ARM::VLD4q32odd_UPD };
+ return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld2lane: {
+ unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
+ unsigned QOpcodes0[] = { ARM::VLD2LNq16, ARM::VLD2LNq32 };
+ unsigned QOpcodes1[] = { ARM::VLD2LNq16odd, ARM::VLD2LNq32odd };
+ return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld3lane: {
+ unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
+ unsigned QOpcodes0[] = { ARM::VLD3LNq16, ARM::VLD3LNq32 };
+ unsigned QOpcodes1[] = { ARM::VLD3LNq16odd, ARM::VLD3LNq32odd };
+ return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vld4lane: {
+ unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
+ unsigned QOpcodes0[] = { ARM::VLD4LNq16, ARM::VLD4LNq32 };
+ unsigned QOpcodes1[] = { ARM::VLD4LNq16odd, ARM::VLD4LNq32odd };
+ return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst1: {
+ unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
+ ARM::VST1d32, ARM::VST1d64 };
+ unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
+ ARM::VST1q32, ARM::VST1q64 };
+ return SelectVST(N, 1, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vst2: {
+ unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
+ ARM::VST2d32, ARM::VST1q64 };
+ unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 };
+ return SelectVST(N, 2, DOpcodes, QOpcodes, 0);
+ }
+
+ case Intrinsic::arm_neon_vst3: {
+ unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16,
+ ARM::VST3d32, ARM::VST1d64T };
+ unsigned QOpcodes0[] = { ARM::VST3q8_UPD,
+ ARM::VST3q16_UPD,
+ ARM::VST3q32_UPD };
+ unsigned QOpcodes1[] = { ARM::VST3q8odd_UPD,
+ ARM::VST3q16odd_UPD,
+ ARM::VST3q32odd_UPD };
+ return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst4: {
+ unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16,
+ ARM::VST4d32, ARM::VST1d64Q };
+ unsigned QOpcodes0[] = { ARM::VST4q8_UPD,
+ ARM::VST4q16_UPD,
+ ARM::VST4q32_UPD };
+ unsigned QOpcodes1[] = { ARM::VST4q8odd_UPD,
+ ARM::VST4q16odd_UPD,
+ ARM::VST4q32odd_UPD };
+ return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst2lane: {
+ unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 };
+ unsigned QOpcodes0[] = { ARM::VST2LNq16, ARM::VST2LNq32 };
+ unsigned QOpcodes1[] = { ARM::VST2LNq16odd, ARM::VST2LNq32odd };
+ return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst3lane: {
+ unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 };
+ unsigned QOpcodes0[] = { ARM::VST3LNq16, ARM::VST3LNq32 };
+ unsigned QOpcodes1[] = { ARM::VST3LNq16odd, ARM::VST3LNq32odd };
+ return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+
+ case Intrinsic::arm_neon_vst4lane: {
+ unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 };
+ unsigned QOpcodes0[] = { ARM::VST4LNq16, ARM::VST4LNq32 };
+ unsigned QOpcodes1[] = { ARM::VST4LNq16odd, ARM::VST4LNq32odd };
+ return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
+ }
+ }
+ break;
+ }
+
+ case ISD::CONCAT_VECTORS:
+ return SelectConcatVector(N);
+ }
+
+ return SelectCode(N);
+}
+
+bool ARMDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
+ // Require the address to be in a register. That is safe for all ARM
+ // variants and it is hard to do anything much smarter without knowing
+ // how the operand is used.
+ OutOps.push_back(Op);
+ return false;
+}
+
+/// createARMISelDag - This pass converts a legalized DAG into a
+/// ARM-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new ARMDAGToDAGISel(TM, OptLevel);
+}
+
+/// ModelWithRegSequence - Return true if isel should use REG_SEQUENCE to model
+/// operations involving sub-registers.
+bool llvm::ModelWithRegSequence() {
+ return UseRegSeq;
+}
OpenPOWER on IntegriCloud