summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp3483
1 files changed, 3483 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
new file mode 100644
index 0000000..1cc5a17
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -0,0 +1,3483 @@
+//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Base ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMBaseInstrInfo.h"
+#include "ARM.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMHazardRecognizer.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/ADT/STLExtras.h"
+
+#define GET_INSTRINFO_CTOR
+#include "ARMGenInstrInfo.inc"
+
+using namespace llvm;
+
+static cl::opt<bool>
+EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
+ cl::desc("Enable ARM 2-addr to 3-addr conv"));
+
+static cl::opt<bool>
+WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
+ cl::desc("Widen ARM vmovs to vmovd when possible"));
+
+/// ARM_MLxEntry - Record information about MLA / MLS instructions.
+struct ARM_MLxEntry {
+ uint16_t MLxOpc; // MLA / MLS opcode
+ uint16_t MulOpc; // Expanded multiplication opcode
+ uint16_t AddSubOpc; // Expanded add / sub opcode
+ bool NegAcc; // True if the acc is negated before the add / sub.
+ bool HasLane; // True if instruction has an extra "lane" operand.
+};
+
+static const ARM_MLxEntry ARM_MLxTable[] = {
+ // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
+ // fp scalar ops
+ { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
+ { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
+ { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
+ { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
+ { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
+ { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
+
+ // fp SIMD ops
+ { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
+ { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
+ { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
+ { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
+ { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
+ { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
+ { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
+ { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
+};
+
+ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
+ : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
+ Subtarget(STI) {
+ for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
+ if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
+ assert(false && "Duplicated entries?");
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
+ }
+}
+
+// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
+// currently defaults to no prepass hazard recognizer.
+ScheduleHazardRecognizer *ARMBaseInstrInfo::
+CreateTargetHazardRecognizer(const TargetMachine *TM,
+ const ScheduleDAG *DAG) const {
+ if (usePreRAHazardRecognizer()) {
+ const InstrItineraryData *II = TM->getInstrItineraryData();
+ return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
+ }
+ return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
+}
+
+ScheduleHazardRecognizer *ARMBaseInstrInfo::
+CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ if (Subtarget.isThumb2() || Subtarget.hasVFP2())
+ return (ScheduleHazardRecognizer *)
+ new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
+ return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
+}
+
+MachineInstr *
+ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ // FIXME: Thumb2 support.
+
+ if (!EnableARM3Addr)
+ return NULL;
+
+ MachineInstr *MI = MBBI;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ uint64_t TSFlags = MI->getDesc().TSFlags;
+ bool isPre = false;
+ switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
+ default: return NULL;
+ case ARMII::IndexModePre:
+ isPre = true;
+ break;
+ case ARMII::IndexModePost:
+ break;
+ }
+
+ // Try splitting an indexed load/store to an un-indexed one plus an add/sub
+ // operation.
+ unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
+ if (MemOpc == 0)
+ return NULL;
+
+ MachineInstr *UpdateMI = NULL;
+ MachineInstr *MemMI = NULL;
+ unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ bool isLoad = !MI->mayStore();
+ const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
+ const MachineOperand &Base = MI->getOperand(2);
+ const MachineOperand &Offset = MI->getOperand(NumOps-3);
+ unsigned WBReg = WB.getReg();
+ unsigned BaseReg = Base.getReg();
+ unsigned OffReg = Offset.getReg();
+ unsigned OffImm = MI->getOperand(NumOps-2).getImm();
+ ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
+ switch (AddrMode) {
+ default: llvm_unreachable("Unknown indexed op!");
+ case ARMII::AddrMode2: {
+ bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM2Offset(OffImm);
+ if (OffReg == 0) {
+ if (ARM_AM::getSOImmVal(Amt) == -1)
+ // Can't encode it in a so_imm operand. This transformation will
+ // add more than 1 instruction. Abandon!
+ return NULL;
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else if (Amt != 0) {
+ ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
+ unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
+ .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ case ARMII::AddrMode3 : {
+ bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM3Offset(OffImm);
+ if (OffReg == 0)
+ // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ }
+
+ std::vector<MachineInstr*> NewMIs;
+ if (isPre) {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(WBReg).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
+ NewMIs.push_back(MemMI);
+ NewMIs.push_back(UpdateMI);
+ } else {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(BaseReg).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
+ if (WB.isDead())
+ UpdateMI->getOperand(0).setIsDead();
+ NewMIs.push_back(UpdateMI);
+ NewMIs.push_back(MemMI);
+ }
+
+ // Transfer LiveVariables states, kill / dead info.
+ if (LV) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned Reg = MO.getReg();
+
+ LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
+ if (MO.isDef()) {
+ MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
+ if (MO.isDead())
+ LV->addVirtualRegisterDead(Reg, NewMI);
+ }
+ if (MO.isUse() && MO.isKill()) {
+ for (unsigned j = 0; j < 2; ++j) {
+ // Look at the two new MI's in reverse order.
+ MachineInstr *NewMI = NewMIs[j];
+ if (!NewMI->readsRegister(Reg))
+ continue;
+ LV->addVirtualRegisterKilled(Reg, NewMI);
+ if (VI.removeKill(MI))
+ VI.Kills.push_back(NewMI);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ MFI->insert(MBBI, NewMIs[1]);
+ MFI->insert(MBBI, NewMIs[0]);
+ return NewMIs[0];
+}
+
+// Branch analysis.
+bool
+ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ unsigned LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (isUncondBranchOpcode(LastOpc)) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ if (isCondBranchOpcode(LastOpc)) {
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(LastInst->getOperand(1));
+ Cond.push_back(LastInst->getOperand(2));
+ return false;
+ }
+ return true; // Can't handle indirect branch.
+ }
+
+ // Get the instruction before it if it is a terminator.
+ MachineInstr *SecondLastInst = I;
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+
+ // If AllowModify is true and the block ends with two or more unconditional
+ // branches, delete all but the first unconditional branch.
+ if (AllowModify && isUncondBranchOpcode(LastOpc)) {
+ while (isUncondBranchOpcode(SecondLastOpc)) {
+ LastInst->eraseFromParent();
+ LastInst = SecondLastInst;
+ LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ // Return now the only terminator is an unconditional branch.
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else {
+ SecondLastInst = I;
+ SecondLastOpc = SecondLastInst->getOpcode();
+ }
+ }
+ }
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with a B and a Bcc, handle it.
+ if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(1));
+ Cond.push_back(SecondLastInst->getOperand(2));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two unconditional branches, handle it. The second
+ // one is not executed, so remove it.
+ if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // ...likewise if it ends with a branch table followed by an unconditional
+ // branch. The branch folder can create these, and we must get rid of them for
+ // correctness of Thumb constant islands.
+ if ((isJumpTableBranchOpcode(SecondLastOpc) ||
+ isIndirectBranchOpcode(SecondLastOpc)) &&
+ isUncondBranchOpcode(LastOpc)) {
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return true;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+
+unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (!isUncondBranchOpcode(I->getOpcode()) &&
+ !isCondBranchOpcode(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (!isCondBranchOpcode(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned
+ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
+ int BOpc = !AFI->isThumbFunction()
+ ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
+ int BccOpc = !AFI->isThumbFunction()
+ ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
+ bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "ARM branch conditions have two components!");
+
+ if (FBB == 0) {
+ if (Cond.empty()) { // Unconditional branch?
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else
+ BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ return 1;
+ }
+
+ // Two-way conditional branch.
+ BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+ return 2;
+}
+
+bool ARMBaseInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
+ Cond[0].setImm(ARMCC::getOppositeCondition(CC));
+ return false;
+}
+
+bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
+ if (MI->isBundle()) {
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ int PIdx = I->findFirstPredOperandIdx();
+ if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
+ return true;
+ }
+ return false;
+ }
+
+ int PIdx = MI->findFirstPredOperandIdx();
+ return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
+}
+
+bool ARMBaseInstrInfo::
+PredicateInstruction(MachineInstr *MI,
+ const SmallVectorImpl<MachineOperand> &Pred) const {
+ unsigned Opc = MI->getOpcode();
+ if (isUncondBranchOpcode(Opc)) {
+ MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
+ MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
+ MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
+ return true;
+ }
+
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx != -1) {
+ MachineOperand &PMO = MI->getOperand(PIdx);
+ PMO.setImm(Pred[0].getImm());
+ MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
+ return true;
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
+ const SmallVectorImpl<MachineOperand> &Pred2) const {
+ if (Pred1.size() > 2 || Pred2.size() > 2)
+ return false;
+
+ ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
+ ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
+ if (CC1 == CC2)
+ return true;
+
+ switch (CC1) {
+ default:
+ return false;
+ case ARMCC::AL:
+ return true;
+ case ARMCC::HS:
+ return CC2 == ARMCC::HI;
+ case ARMCC::LS:
+ return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
+ case ARMCC::GE:
+ return CC2 == ARMCC::GT;
+ case ARMCC::LE:
+ return CC2 == ARMCC::LT;
+ }
+}
+
+bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ bool Found = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
+ (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ }
+
+ return Found;
+}
+
+/// isPredicable - Return true if the specified instruction can be predicated.
+/// By default, this returns true for every instruction with a
+/// PredicateOperand.
+bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
+ if (!MI->isPredicable())
+ return false;
+
+ if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
+ ARMFunctionInfo *AFI =
+ MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
+ return AFI->isThumb2Function();
+ }
+ return true;
+}
+
+/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
+LLVM_ATTRIBUTE_NOINLINE
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+ unsigned JTI);
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+ unsigned JTI) {
+ assert(JTI < JT.size());
+ return JT[JTI].MBBs.size();
+}
+
+/// GetInstSize - Return the size of the specified MachineInstr.
+///
+unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const MachineBasicBlock &MBB = *MI->getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.getSize())
+ return MCID.getSize();
+
+ // If this machine instr is an inline asm, measure it.
+ if (MI->getOpcode() == ARM::INLINEASM)
+ return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
+ if (MI->isLabel())
+ return 0;
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ case TargetOpcode::PROLOG_LABEL:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::DBG_VALUE:
+ return 0;
+ case TargetOpcode::BUNDLE:
+ return getInstBundleLength(MI);
+ case ARM::MOVi16_ga_pcrel:
+ case ARM::MOVTi16_ga_pcrel:
+ case ARM::t2MOVi16_ga_pcrel:
+ case ARM::t2MOVTi16_ga_pcrel:
+ return 4;
+ case ARM::MOVi32imm:
+ case ARM::t2MOVi32imm:
+ return 8;
+ case ARM::CONSTPOOL_ENTRY:
+ // If this machine instr is a constant pool entry, its size is recorded as
+ // operand #2.
+ return MI->getOperand(2).getImm();
+ case ARM::Int_eh_sjlj_longjmp:
+ return 16;
+ case ARM::tInt_eh_sjlj_longjmp:
+ return 10;
+ case ARM::Int_eh_sjlj_setjmp:
+ case ARM::Int_eh_sjlj_setjmp_nofp:
+ return 20;
+ case ARM::tInt_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp_nofp:
+ return 12;
+ case ARM::BR_JTr:
+ case ARM::BR_JTm:
+ case ARM::BR_JTadd:
+ case ARM::tBR_JTr:
+ case ARM::t2BR_JT:
+ case ARM::t2TBB_JT:
+ case ARM::t2TBH_JT: {
+ // These are jumptable branches, i.e. a branch followed by an inlined
+ // jumptable. The size is 4 + 4 * number of entries. For TBB, each
+ // entry is one byte; TBH two byte each.
+ unsigned EntrySize = (Opc == ARM::t2TBB_JT)
+ ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
+ unsigned NumOps = MCID.getNumOperands();
+ MachineOperand JTOP =
+ MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
+ unsigned JTI = JTOP.getIndex();
+ const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+ assert(MJTI != 0);
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ assert(JTI < JT.size());
+ // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
+ // 4 aligned. The assembler / linker may add 2 byte padding just before
+ // the JT entries. The size does not include this padding; the
+ // constant islands pass does separate bookkeeping for it.
+ // FIXME: If we know the size of the function is less than (1 << 16) *2
+ // bytes, we can use 16-bit entries instead. Then there won't be an
+ // alignment issue.
+ unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
+ unsigned NumEntries = getNumJTEntries(JT, JTI);
+ if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
+ // Make sure the instruction that follows TBB is 2-byte aligned.
+ // FIXME: Constant island pass should insert an "ALIGN" instruction
+ // instead.
+ ++NumEntries;
+ return NumEntries * EntrySize + InstSize;
+ }
+ default:
+ // Otherwise, pseudo-instruction sizes are zero.
+ return 0;
+ }
+}
+
+unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
+ unsigned Size = 0;
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ assert(!I->isBundle() && "No nested bundle!");
+ Size += GetInstSizeInBytes(&*I);
+ }
+ return Size;
+}
+
+void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ bool GPRDest = ARM::GPRRegClass.contains(DestReg);
+ bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
+
+ if (GPRDest && GPRSrc) {
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))));
+ return;
+ }
+
+ bool SPRDest = ARM::SPRRegClass.contains(DestReg);
+ bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
+
+ unsigned Opc = 0;
+ if (SPRDest && SPRSrc)
+ Opc = ARM::VMOVS;
+ else if (GPRDest && SPRSrc)
+ Opc = ARM::VMOVRS;
+ else if (SPRDest && GPRSrc)
+ Opc = ARM::VMOVSR;
+ else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD;
+ else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VORRq;
+
+ if (Opc) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ if (Opc == ARM::VORRq)
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ AddDefaultPred(MIB);
+ return;
+ }
+
+ // Handle register classes that require multiple instructions.
+ unsigned BeginIdx = 0;
+ unsigned SubRegs = 0;
+ unsigned Spacing = 1;
+
+ // Use VORRq when possible.
+ if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
+ else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
+ // Fall back to VMOVD.
+ else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
+ else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
+ else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
+
+ else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
+ else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
+ else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
+
+ if (Opc) {
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ MachineInstrBuilder Mov;
+ for (unsigned i = 0; i != SubRegs; ++i) {
+ unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
+ unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i*Spacing);
+ assert(Dst && Src && "Bad sub-register");
+ Mov = AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
+ .addReg(Src));
+ // VORR takes two source operands.
+ if (Opc == ARM::VORRq)
+ Mov.addReg(Src);
+ }
+ // Add implicit super-register defs and kills to the last instruction.
+ Mov->addRegisterDefined(DestReg, TRI);
+ if (KillSrc)
+ Mov->addRegisterKilled(SrcReg, TRI);
+ return;
+ }
+
+ llvm_unreachable("Impossible reg-to-reg copy");
+}
+
+static const
+MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
+ unsigned Reg, unsigned SubIdx, unsigned State,
+ const TargetRegisterInfo *TRI) {
+ if (!SubIdx)
+ return MIB.addReg(Reg, State);
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
+ return MIB.addReg(Reg, State, SubIdx);
+}
+
+void ARMBaseInstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI),
+ Align);
+
+ switch (RC->getSize()) {
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC)) {
+ // Use aligned spills if the stack can be realigned.
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ // Use aligned spills if the stack can be realigned.
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ // FIXME: It's possible to only store part of the QQ register if the
+ // spilled def has a sub-register index.
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown reg class!");
+ }
+}
+
+unsigned
+ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::STRrs:
+ case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::STRi12:
+ case ARM::t2STRi12:
+ case ARM::tSTRspi:
+ case ARM::VSTRD:
+ case ARM::VSTRS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VST1q64:
+ case ARM::VST1d64TPseudo:
+ case ARM::VST1d64QPseudo:
+ if (MI->getOperand(0).isFI() &&
+ MI->getOperand(2).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(2).getReg();
+ }
+ break;
+ case ARM::VSTMQIA:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ const MachineMemOperand *Dummy;
+ return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
+}
+
+void ARMBaseInstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI),
+ Align);
+
+ switch (RC->getSize()) {
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown regclass!");
+ }
+}
+
+unsigned
+ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::LDRi12:
+ case ARM::t2LDRi12:
+ case ARM::tLDRspi:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLD1q64:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d64QPseudo:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLDMQIA:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ const MachineMemOperand *Dummy;
+ return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
+}
+
+bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
+ // This hook gets to expand COPY instructions before they become
+ // copyPhysReg() calls. Look for VMOVS instructions that can legally be
+ // widened to VMOVD. We prefer the VMOVD when possible because it may be
+ // changed into a VORR that can go down the NEON pipeline.
+ if (!WidenVMOVS || !MI->isCopy())
+ return false;
+
+ // Look for a copy between even S-registers. That is where we keep floats
+ // when using NEON v2f32 instructions for f32 arithmetic.
+ unsigned DstRegS = MI->getOperand(0).getReg();
+ unsigned SrcRegS = MI->getOperand(1).getReg();
+ if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
+ return false;
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ if (!DstRegD || !SrcRegD)
+ return false;
+
+ // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
+ // legal if the COPY already defines the full DstRegD, and it isn't a
+ // sub-register insertion.
+ if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
+ return false;
+
+ // A dead copy shouldn't show up here, but reject it just in case.
+ if (MI->getOperand(0).isDead())
+ return false;
+
+ // All clear, widen the COPY.
+ DEBUG(dbgs() << "widening: " << *MI);
+
+ // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg
+ // or some other super-register.
+ int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
+ if (ImpDefIdx != -1)
+ MI->RemoveOperand(ImpDefIdx);
+
+ // Change the opcode and operands.
+ MI->setDesc(get(ARM::VMOVD));
+ MI->getOperand(0).setReg(DstRegD);
+ MI->getOperand(1).setReg(SrcRegD);
+ AddDefaultPred(MachineInstrBuilder(MI));
+
+ // We are now reading SrcRegD instead of SrcRegS. This may upset the
+ // register scavenger and machine verifier, so we need to indicate that we
+ // are reading an undefined value from SrcRegD, but a proper value from
+ // SrcRegS.
+ MI->getOperand(1).setIsUndef();
+ MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
+
+ // SrcRegD may actually contain an unrelated value in the ssub_1
+ // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
+ if (MI->getOperand(1).isKill()) {
+ MI->getOperand(1).setIsKill(false);
+ MI->addRegisterKilled(SrcRegS, TRI, true);
+ }
+
+ DEBUG(dbgs() << "replaced by: " << *MI);
+ return true;
+}
+
+MachineInstr*
+ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
+ int FrameIx, uint64_t Offset,
+ const MDNode *MDPtr,
+ DebugLoc DL) const {
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
+ .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
+ return &*MIB;
+}
+
+/// Create a copy of a const pool value. Update CPI to the new index and return
+/// the label UID.
+static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
+ MachineConstantPool *MCP = MF.getConstantPool();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
+ assert(MCPE.isMachineConstantPoolEntry() &&
+ "Expecting a machine constantpool entry!");
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ unsigned PCLabelId = AFI->createPICLabelUId();
+ ARMConstantPoolValue *NewCPV = 0;
+ // FIXME: The below assumes PIC relocation model and that the function
+ // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
+ // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
+ // instructions, so that's probably OK, but is PIC always correct when
+ // we get here?
+ if (ACPV->isGlobalValue())
+ NewCPV = ARMConstantPoolConstant::
+ Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
+ ARMCP::CPValue, 4);
+ else if (ACPV->isExtSymbol())
+ NewCPV = ARMConstantPoolSymbol::
+ Create(MF.getFunction()->getContext(),
+ cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
+ else if (ACPV->isBlockAddress())
+ NewCPV = ARMConstantPoolConstant::
+ Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
+ ARMCP::CPBlockAddress, 4);
+ else if (ACPV->isLSDA())
+ NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
+ ARMCP::CPLSDA, 4);
+ else if (ACPV->isMachineBasicBlock())
+ NewCPV = ARMConstantPoolMBB::
+ Create(MF.getFunction()->getContext(),
+ cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
+ else
+ llvm_unreachable("Unexpected ARM constantpool value type!!");
+ CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
+ return PCLabelId;
+}
+
+void ARMBaseInstrInfo::
+reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const {
+ unsigned Opcode = Orig->getOpcode();
+ switch (Opcode) {
+ default: {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
+ MBB.insert(I, MI);
+ break;
+ }
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ MachineFunction &MF = *MBB.getParent();
+ unsigned CPI = Orig->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
+ DestReg)
+ .addConstantPoolIndex(CPI).addImm(PCLabelId);
+ MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
+ break;
+ }
+ }
+}
+
+MachineInstr *
+ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
+ MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
+ switch(Orig->getOpcode()) {
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ unsigned CPI = Orig->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ Orig->getOperand(1).setIndex(CPI);
+ Orig->getOperand(2).setImm(PCLabelId);
+ break;
+ }
+ }
+ return MI;
+}
+
+bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
+ const MachineInstr *MI1,
+ const MachineRegisterInfo *MRI) const {
+ int Opcode = MI0->getOpcode();
+ if (Opcode == ARM::t2LDRpci ||
+ Opcode == ARM::t2LDRpci_pic ||
+ Opcode == ARM::tLDRpci ||
+ Opcode == ARM::tLDRpci_pic ||
+ Opcode == ARM::MOV_ga_dyn ||
+ Opcode == ARM::MOV_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_dyn ||
+ Opcode == ARM::t2MOV_ga_pcrel) {
+ if (MI1->getOpcode() != Opcode)
+ return false;
+ if (MI0->getNumOperands() != MI1->getNumOperands())
+ return false;
+
+ const MachineOperand &MO0 = MI0->getOperand(1);
+ const MachineOperand &MO1 = MI1->getOperand(1);
+ if (MO0.getOffset() != MO1.getOffset())
+ return false;
+
+ if (Opcode == ARM::MOV_ga_dyn ||
+ Opcode == ARM::MOV_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_dyn ||
+ Opcode == ARM::t2MOV_ga_pcrel)
+ // Ignore the PC labels.
+ return MO0.getGlobal() == MO1.getGlobal();
+
+ const MachineFunction *MF = MI0->getParent()->getParent();
+ const MachineConstantPool *MCP = MF->getConstantPool();
+ int CPI0 = MO0.getIndex();
+ int CPI1 = MO1.getIndex();
+ const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
+ const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
+ bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
+ bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
+ if (isARMCP0 && isARMCP1) {
+ ARMConstantPoolValue *ACPV0 =
+ static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
+ ARMConstantPoolValue *ACPV1 =
+ static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
+ return ACPV0->hasSameValue(ACPV1);
+ } else if (!isARMCP0 && !isARMCP1) {
+ return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
+ }
+ return false;
+ } else if (Opcode == ARM::PICLDR) {
+ if (MI1->getOpcode() != Opcode)
+ return false;
+ if (MI0->getNumOperands() != MI1->getNumOperands())
+ return false;
+
+ unsigned Addr0 = MI0->getOperand(1).getReg();
+ unsigned Addr1 = MI1->getOperand(1).getReg();
+ if (Addr0 != Addr1) {
+ if (!MRI ||
+ !TargetRegisterInfo::isVirtualRegister(Addr0) ||
+ !TargetRegisterInfo::isVirtualRegister(Addr1))
+ return false;
+
+ // This assumes SSA form.
+ MachineInstr *Def0 = MRI->getVRegDef(Addr0);
+ MachineInstr *Def1 = MRI->getVRegDef(Addr1);
+ // Check if the loaded value, e.g. a constantpool of a global address, are
+ // the same.
+ if (!produceSameValue(Def0, Def1, MRI))
+ return false;
+ }
+
+ for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
+ // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
+ const MachineOperand &MO0 = MI0->getOperand(i);
+ const MachineOperand &MO1 = MI1->getOperand(i);
+ if (!MO0.isIdenticalTo(MO1))
+ return false;
+ }
+ return true;
+ }
+
+ return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
+}
+
+/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
+/// determine if two loads are loading from the same base address. It should
+/// only return true if the base pointers are the same and the only differences
+/// between the two addresses is the offset. It also returns the offsets by
+/// reference.
+bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1,
+ int64_t &Offset2) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
+ return false;
+
+ switch (Load1->getMachineOpcode()) {
+ default:
+ return false;
+ case ARM::LDRi12:
+ case ARM::LDRBi12:
+ case ARM::LDRD:
+ case ARM::LDRH:
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRDi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRi12:
+ case ARM::t2LDRSHi12:
+ break;
+ }
+
+ switch (Load2->getMachineOpcode()) {
+ default:
+ return false;
+ case ARM::LDRi12:
+ case ARM::LDRBi12:
+ case ARM::LDRD:
+ case ARM::LDRH:
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRDi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRi12:
+ case ARM::t2LDRSHi12:
+ break;
+ }
+
+ // Check if base addresses and chain operands match.
+ if (Load1->getOperand(0) != Load2->getOperand(0) ||
+ Load1->getOperand(4) != Load2->getOperand(4))
+ return false;
+
+ // Index should be Reg0.
+ if (Load1->getOperand(3) != Load2->getOperand(3))
+ return false;
+
+ // Determine the offsets.
+ if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
+ isa<ConstantSDNode>(Load2->getOperand(1))) {
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
+ Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
+ return true;
+ }
+
+ return false;
+}
+
+/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
+/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
+/// be scheduled togther. On some targets if two loads are loading from
+/// addresses in the same cache line, it's better if they are scheduled
+/// together. This function takes two integers that represent the load offsets
+/// from the common base address. It returns true if it decides it's desirable
+/// to schedule the two loads together. "NumLoads" is the number of loads that
+/// have already been scheduled after Load1.
+bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ assert(Offset2 > Offset1);
+
+ if ((Offset2 - Offset1) / 8 > 64)
+ return false;
+
+ if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
+ return false; // FIXME: overly conservative?
+
+ // Four loads in a row should be sufficient.
+ if (NumLoads >= 3)
+ return false;
+
+ return true;
+}
+
+bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Debug info is never a scheduling boundary. It's necessary to be explicit
+ // due to the special treatment of IT instructions below, otherwise a
+ // dbg_value followed by an IT will result in the IT instruction being
+ // considered a scheduling hazard, which is wrong. It should be the actual
+ // instruction preceding the dbg_value instruction(s), just like it is
+ // when debug info is not present.
+ if (MI->isDebugValue())
+ return false;
+
+ // Terminators and labels can't be scheduled around.
+ if (MI->isTerminator() || MI->isLabel())
+ return true;
+
+ // Treat the start of the IT block as a scheduling boundary, but schedule
+ // t2IT along with all instructions following it.
+ // FIXME: This is a big hammer. But the alternative is to add all potential
+ // true and anti dependencies to IT block instructions as implicit operands
+ // to the t2IT instruction. The added compile time and complexity does not
+ // seem worth it.
+ MachineBasicBlock::const_iterator I = MI;
+ // Make sure to skip any dbg_value instructions
+ while (++I != MBB->end() && I->isDebugValue())
+ ;
+ if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
+ return true;
+
+ // Don't attempt to schedule around any instruction that defines
+ // a stack-oriented pointer, as it's unlikely to be profitable. This
+ // saves compile time, because it doesn't require every single
+ // stack slot reference to depend on the instruction that does the
+ // modification.
+ // Calls don't actually change the stack pointer, even if they have imp-defs.
+ // No ARM calling conventions change the stack pointer. (X86 calling
+ // conventions sometimes do).
+ if (!MI->isCall() && MI->definesRegister(ARM::SP))
+ return true;
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ const BranchProbability &Probability) const {
+ if (!NumCycles)
+ return false;
+
+ // Attempt to estimate the relative costs of predication versus branching.
+ unsigned UnpredCost = Probability.getNumerator() * NumCycles;
+ UnpredCost /= Probability.getDenominator();
+ UnpredCost += 1; // The branch itself
+ UnpredCost += Subtarget.getMispredictionPenalty() / 10;
+
+ return (NumCycles + ExtraPredCycles) <= UnpredCost;
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned TCycles, unsigned TExtra,
+ MachineBasicBlock &FMBB,
+ unsigned FCycles, unsigned FExtra,
+ const BranchProbability &Probability) const {
+ if (!TCycles || !FCycles)
+ return false;
+
+ // Attempt to estimate the relative costs of predication versus branching.
+ unsigned TUnpredCost = Probability.getNumerator() * TCycles;
+ TUnpredCost /= Probability.getDenominator();
+
+ uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
+ unsigned FUnpredCost = Comp * FCycles;
+ FUnpredCost /= Probability.getDenominator();
+
+ unsigned UnpredCost = TUnpredCost + FUnpredCost;
+ UnpredCost += 1; // The branch itself
+ UnpredCost += Subtarget.getMispredictionPenalty() / 10;
+
+ return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
+}
+
+/// getInstrPredicate - If instruction is predicated, returns its predicate
+/// condition, otherwise returns AL. It also returns the condition code
+/// register by reference.
+ARMCC::CondCodes
+llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx == -1) {
+ PredReg = 0;
+ return ARMCC::AL;
+ }
+
+ PredReg = MI->getOperand(PIdx+1).getReg();
+ return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
+}
+
+
+int llvm::getMatchingCondBranchOpcode(int Opc) {
+ if (Opc == ARM::B)
+ return ARM::Bcc;
+ if (Opc == ARM::tB)
+ return ARM::tBcc;
+ if (Opc == ARM::t2B)
+ return ARM::t2Bcc;
+
+ llvm_unreachable("Unknown unconditional branch opcode!");
+}
+
+/// commuteInstruction - Handle commutable instructions.
+MachineInstr *
+ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ switch (MI->getOpcode()) {
+ case ARM::MOVCCr:
+ case ARM::t2MOVCCr: {
+ // MOVCC can be commuted by inverting the condition.
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
+ // MOVCC AL can't be inverted. Shouldn't happen.
+ if (CC == ARMCC::AL || PredReg != ARM::CPSR)
+ return NULL;
+ MI = TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
+ if (!MI)
+ return NULL;
+ // After swapping the MOVCC operands, also invert the condition.
+ MI->getOperand(MI->findFirstPredOperandIdx())
+ .setImm(ARMCC::getOppositeCondition(CC));
+ return MI;
+ }
+ }
+ return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
+}
+
+/// Identify instructions that can be folded into a MOVCC instruction, and
+/// return the corresponding opcode for the predicated pseudo-instruction.
+static unsigned canFoldIntoMOVCC(unsigned Reg, MachineInstr *&MI,
+ const MachineRegisterInfo &MRI) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return 0;
+ if (!MRI.hasOneNonDBGUse(Reg))
+ return 0;
+ MI = MRI.getVRegDef(Reg);
+ if (!MI)
+ return 0;
+ // Check if MI has any non-dead defs or physreg uses. This also detects
+ // predicated instructions which will be reading CPSR.
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ return 0;
+ if (MO.isDef() && !MO.isDead())
+ return 0;
+ }
+ switch (MI->getOpcode()) {
+ default: return 0;
+ case ARM::ANDri: return ARM::ANDCCri;
+ case ARM::ANDrr: return ARM::ANDCCrr;
+ case ARM::ANDrsi: return ARM::ANDCCrsi;
+ case ARM::ANDrsr: return ARM::ANDCCrsr;
+ case ARM::t2ANDri: return ARM::t2ANDCCri;
+ case ARM::t2ANDrr: return ARM::t2ANDCCrr;
+ case ARM::t2ANDrs: return ARM::t2ANDCCrs;
+ case ARM::EORri: return ARM::EORCCri;
+ case ARM::EORrr: return ARM::EORCCrr;
+ case ARM::EORrsi: return ARM::EORCCrsi;
+ case ARM::EORrsr: return ARM::EORCCrsr;
+ case ARM::t2EORri: return ARM::t2EORCCri;
+ case ARM::t2EORrr: return ARM::t2EORCCrr;
+ case ARM::t2EORrs: return ARM::t2EORCCrs;
+ case ARM::ORRri: return ARM::ORRCCri;
+ case ARM::ORRrr: return ARM::ORRCCrr;
+ case ARM::ORRrsi: return ARM::ORRCCrsi;
+ case ARM::ORRrsr: return ARM::ORRCCrsr;
+ case ARM::t2ORRri: return ARM::t2ORRCCri;
+ case ARM::t2ORRrr: return ARM::t2ORRCCrr;
+ case ARM::t2ORRrs: return ARM::t2ORRCCrs;
+
+ // ARM ADD/SUB
+ case ARM::ADDri: return ARM::ADDCCri;
+ case ARM::ADDrr: return ARM::ADDCCrr;
+ case ARM::ADDrsi: return ARM::ADDCCrsi;
+ case ARM::ADDrsr: return ARM::ADDCCrsr;
+ case ARM::SUBri: return ARM::SUBCCri;
+ case ARM::SUBrr: return ARM::SUBCCrr;
+ case ARM::SUBrsi: return ARM::SUBCCrsi;
+ case ARM::SUBrsr: return ARM::SUBCCrsr;
+
+ // Thumb2 ADD/SUB
+ case ARM::t2ADDri: return ARM::t2ADDCCri;
+ case ARM::t2ADDri12: return ARM::t2ADDCCri12;
+ case ARM::t2ADDrr: return ARM::t2ADDCCrr;
+ case ARM::t2ADDrs: return ARM::t2ADDCCrs;
+ case ARM::t2SUBri: return ARM::t2SUBCCri;
+ case ARM::t2SUBri12: return ARM::t2SUBCCri12;
+ case ARM::t2SUBrr: return ARM::t2SUBCCrr;
+ case ARM::t2SUBrs: return ARM::t2SUBCCrs;
+ }
+}
+
+bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
+ SmallVectorImpl<MachineOperand> &Cond,
+ unsigned &TrueOp, unsigned &FalseOp,
+ bool &Optimizable) const {
+ assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ // MOVCC operands:
+ // 0: Def.
+ // 1: True use.
+ // 2: False use.
+ // 3: Condition code.
+ // 4: CPSR use.
+ TrueOp = 1;
+ FalseOp = 2;
+ Cond.push_back(MI->getOperand(3));
+ Cond.push_back(MI->getOperand(4));
+ // We can always fold a def.
+ Optimizable = true;
+ return false;
+}
+
+MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
+ bool PreferFalse) const {
+ assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ MachineInstr *DefMI = 0;
+ unsigned Opc = canFoldIntoMOVCC(MI->getOperand(2).getReg(), DefMI, MRI);
+ bool Invert = !Opc;
+ if (!Opc)
+ Opc = canFoldIntoMOVCC(MI->getOperand(1).getReg(), DefMI, MRI);
+ if (!Opc)
+ return 0;
+
+ // Create a new predicated version of DefMI.
+ // Rfalse is the first use.
+ MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ get(Opc), MI->getOperand(0).getReg())
+ .addOperand(MI->getOperand(Invert ? 2 : 1));
+
+ // Copy all the DefMI operands, excluding its (null) predicate.
+ const MCInstrDesc &DefDesc = DefMI->getDesc();
+ for (unsigned i = 1, e = DefDesc.getNumOperands();
+ i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
+ NewMI.addOperand(DefMI->getOperand(i));
+
+ unsigned CondCode = MI->getOperand(3).getImm();
+ if (Invert)
+ NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
+ else
+ NewMI.addImm(CondCode);
+ NewMI.addOperand(MI->getOperand(4));
+
+ // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
+ if (NewMI->hasOptionalDef())
+ AddDefaultCC(NewMI);
+
+ // The caller will erase MI, but not DefMI.
+ DefMI->eraseFromParent();
+ return NewMI;
+}
+
+/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
+/// instruction is encoded with an 'S' bit is determined by the optional CPSR
+/// def operand.
+///
+/// This will go away once we can teach tblgen how to set the optional CPSR def
+/// operand itself.
+struct AddSubFlagsOpcodePair {
+ uint16_t PseudoOpc;
+ uint16_t MachineOpc;
+};
+
+static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
+ {ARM::ADDSri, ARM::ADDri},
+ {ARM::ADDSrr, ARM::ADDrr},
+ {ARM::ADDSrsi, ARM::ADDrsi},
+ {ARM::ADDSrsr, ARM::ADDrsr},
+
+ {ARM::SUBSri, ARM::SUBri},
+ {ARM::SUBSrr, ARM::SUBrr},
+ {ARM::SUBSrsi, ARM::SUBrsi},
+ {ARM::SUBSrsr, ARM::SUBrsr},
+
+ {ARM::RSBSri, ARM::RSBri},
+ {ARM::RSBSrsi, ARM::RSBrsi},
+ {ARM::RSBSrsr, ARM::RSBrsr},
+
+ {ARM::t2ADDSri, ARM::t2ADDri},
+ {ARM::t2ADDSrr, ARM::t2ADDrr},
+ {ARM::t2ADDSrs, ARM::t2ADDrs},
+
+ {ARM::t2SUBSri, ARM::t2SUBri},
+ {ARM::t2SUBSrr, ARM::t2SUBrr},
+ {ARM::t2SUBSrs, ARM::t2SUBrs},
+
+ {ARM::t2RSBSri, ARM::t2RSBri},
+ {ARM::t2RSBSrs, ARM::t2RSBrs},
+};
+
+unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
+ for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
+ if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
+ return AddSubFlagsOpcodeMap[i].MachineOpc;
+ return 0;
+}
+
+void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII, unsigned MIFlags) {
+ bool isSub = NumBytes < 0;
+ if (isSub) NumBytes = -NumBytes;
+
+ while (NumBytes) {
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
+ unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
+ assert(ThisVal && "Didn't extract field correctly");
+
+ // We will handle these bits from offset, clear them.
+ NumBytes &= ~ThisVal;
+
+ assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
+
+ // Build the new ADD / SUB.
+ unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
+ .setMIFlags(MIFlags);
+ BaseReg = DestReg;
+ }
+}
+
+bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) {
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ bool isSub = false;
+
+ // Memory operands in inline assembly always use AddrMode2.
+ if (Opcode == ARM::INLINEASM)
+ AddrMode = ARMII::AddrMode2;
+
+ if (Opcode == ARM::ADDri) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+ if (Offset == 0) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::MOVr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.RemoveOperand(FrameRegIdx+1);
+ Offset = 0;
+ return true;
+ } else if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ MI.setDesc(TII.get(ARM::SUBri));
+ }
+
+ // Common case: small offset, fits into instruction.
+ if (ARM_AM::getSOImmVal(Offset) != -1) {
+ // Replace the FrameIndex with sp / fp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, pull as much of the immedidate into this ADDri/SUBri
+ // as possible.
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
+ unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
+
+ // We will handle these bits from offset, clear them.
+ Offset &= ~ThisImmVal;
+
+ // Get the properly encoded SOImmVal field.
+ assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
+ "Bit extraction didn't work?");
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
+ } else {
+ unsigned ImmIdx = 0;
+ int InstrOffs = 0;
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ switch (AddrMode) {
+ case ARMII::AddrMode_i12: {
+ ImmIdx = FrameRegIdx + 1;
+ InstrOffs = MI.getOperand(ImmIdx).getImm();
+ NumBits = 12;
+ break;
+ }
+ case ARMII::AddrMode2: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 12;
+ break;
+ }
+ case ARMII::AddrMode3: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ break;
+ }
+ case ARMII::AddrMode4:
+ case ARMII::AddrMode6:
+ // Can't fold any offset even if it's zero.
+ return false;
+ case ARMII::AddrMode5: {
+ ImmIdx = FrameRegIdx+1;
+ InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ Scale = 4;
+ break;
+ }
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+
+ Offset += InstrOffs * Scale;
+ assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ }
+
+ // Attempt to fold address comp. if opcode has offset bits
+ if (NumBits > 0) {
+ // Common case: small offset, fits into instruction.
+ MachineOperand &ImmOp = MI.getOperand(ImmIdx);
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with sp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ // FIXME: When addrmode2 goes away, this will simplify (like the
+ // T2 version), as the LDR.i12 versions don't need the encoding
+ // tricks for the offset value.
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
+ ImmedOffset = ImmedOffset & Mask;
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask*Scale);
+ }
+ }
+
+ Offset = (isSub) ? -Offset : Offset;
+ return Offset == 0;
+}
+
+/// analyzeCompare - For a comparison instruction, return the source registers
+/// in SrcReg and SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool ARMBaseInstrInfo::
+analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
+ int &CmpMask, int &CmpValue) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::CMPri:
+ case ARM::t2CMPri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(1).getImm();
+ return true;
+ case ARM::CMPrr:
+ case ARM::t2CMPrr:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = MI->getOperand(1).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case ARM::TSTri:
+ case ARM::t2TSTri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = MI->getOperand(1).getImm();
+ CmpValue = 0;
+ return true;
+ }
+
+ return false;
+}
+
+/// isSuitableForMask - Identify a suitable 'and' instruction that
+/// operates on the given source register and applies the same mask
+/// as a 'tst' instruction. Provide a limited look-through for copies.
+/// When successful, MI will hold the found instruction.
+static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
+ int CmpMask, bool CommonUse) {
+ switch (MI->getOpcode()) {
+ case ARM::ANDri:
+ case ARM::t2ANDri:
+ if (CmpMask != MI->getOperand(2).getImm())
+ return false;
+ if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
+ return true;
+ break;
+ case ARM::COPY: {
+ // Walk down one instruction which is potentially an 'and'.
+ const MachineInstr &Copy = *MI;
+ MachineBasicBlock::iterator AND(
+ llvm::next(MachineBasicBlock::iterator(MI)));
+ if (AND == MI->getParent()->end()) return false;
+ MI = AND;
+ return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
+ CmpMask, true);
+ }
+ }
+
+ return false;
+}
+
+/// getSwappedCondition - assume the flags are set by MI(a,b), return
+/// the condition code if we modify the instructions such that flags are
+/// set by MI(b,a).
+inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
+ switch (CC) {
+ default: return ARMCC::AL;
+ case ARMCC::EQ: return ARMCC::EQ;
+ case ARMCC::NE: return ARMCC::NE;
+ case ARMCC::HS: return ARMCC::LS;
+ case ARMCC::LO: return ARMCC::HI;
+ case ARMCC::HI: return ARMCC::LO;
+ case ARMCC::LS: return ARMCC::HS;
+ case ARMCC::GE: return ARMCC::LE;
+ case ARMCC::LT: return ARMCC::GT;
+ case ARMCC::GT: return ARMCC::LT;
+ case ARMCC::LE: return ARMCC::GE;
+ }
+}
+
+/// isRedundantFlagInstr - check whether the first instruction, whose only
+/// purpose is to update flags, can be made redundant.
+/// CMPrr can be made redundant by SUBrr if the operands are the same.
+/// CMPri can be made redundant by SUBri if the operands are the same.
+/// This function can be extended later on.
+inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
+ unsigned SrcReg2, int ImmValue,
+ MachineInstr *OI) {
+ if ((CmpI->getOpcode() == ARM::CMPrr ||
+ CmpI->getOpcode() == ARM::t2CMPrr) &&
+ (OI->getOpcode() == ARM::SUBrr ||
+ OI->getOpcode() == ARM::t2SUBrr) &&
+ ((OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getReg() == SrcReg2) ||
+ (OI->getOperand(1).getReg() == SrcReg2 &&
+ OI->getOperand(2).getReg() == SrcReg)))
+ return true;
+
+ if ((CmpI->getOpcode() == ARM::CMPri ||
+ CmpI->getOpcode() == ARM::t2CMPri) &&
+ (OI->getOpcode() == ARM::SUBri ||
+ OI->getOpcode() == ARM::t2SUBri) &&
+ OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getImm() == ImmValue)
+ return true;
+ return false;
+}
+
+/// optimizeCompareInstr - Convert the instruction supplying the argument to the
+/// comparison into one that sets the zero bit in the flags register;
+/// Remove a redundant Compare instruction if an earlier instruction can set the
+/// flags in the same way as Compare.
+/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
+/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
+/// condition code of instructions which use the flags.
+bool ARMBaseInstrInfo::
+optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
+ int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const {
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+
+ // Masked compares sometimes use the same register as the corresponding 'and'.
+ if (CmpMask != ~0) {
+ if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
+ MI = 0;
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
+ UE = MRI->use_end(); UI != UE; ++UI) {
+ if (UI->getParent() != CmpInstr->getParent()) continue;
+ MachineInstr *PotentialAND = &*UI;
+ if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
+ continue;
+ MI = PotentialAND;
+ break;
+ }
+ if (!MI) return false;
+ }
+ }
+
+ // Get ready to iterate backward from CmpInstr.
+ MachineBasicBlock::iterator I = CmpInstr, E = MI,
+ B = CmpInstr->getParent()->begin();
+
+ // Early exit if CmpInstr is at the beginning of the BB.
+ if (I == B) return false;
+
+ // There are two possible candidates which can be changed to set CPSR:
+ // One is MI, the other is a SUB instruction.
+ // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
+ // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
+ MachineInstr *Sub = NULL;
+ if (SrcReg2 != 0)
+ // MI is not a candidate for CMPrr.
+ MI = NULL;
+ else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
+ // Conservatively refuse to convert an instruction which isn't in the same
+ // BB as the comparison.
+ // For CMPri, we need to check Sub, thus we can't return here.
+ if (CmpInstr->getOpcode() == ARM::CMPri ||
+ CmpInstr->getOpcode() == ARM::t2CMPri)
+ MI = NULL;
+ else
+ return false;
+ }
+
+ // Check that CPSR isn't set between the comparison instruction and the one we
+ // want to change. At the same time, search for Sub.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ --I;
+ for (; I != E; --I) {
+ const MachineInstr &Instr = *I;
+
+ if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
+ Instr.readsRegister(ARM::CPSR, TRI))
+ // This instruction modifies or uses CPSR after the one we want to
+ // change. We can't do this transformation.
+ return false;
+
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
+ Sub = &*I;
+ break;
+ }
+
+ if (I == B)
+ // The 'and' is below the comparison instruction.
+ return false;
+ }
+
+ // Return false if no candidates exist.
+ if (!MI && !Sub)
+ return false;
+
+ // The single candidate is called MI.
+ if (!MI) MI = Sub;
+
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::RSBrr:
+ case ARM::RSBri:
+ case ARM::RSCrr:
+ case ARM::RSCri:
+ case ARM::ADDrr:
+ case ARM::ADDri:
+ case ARM::ADCrr:
+ case ARM::ADCri:
+ case ARM::SUBrr:
+ case ARM::SUBri:
+ case ARM::SBCrr:
+ case ARM::SBCri:
+ case ARM::t2RSBri:
+ case ARM::t2ADDrr:
+ case ARM::t2ADDri:
+ case ARM::t2ADCrr:
+ case ARM::t2ADCri:
+ case ARM::t2SUBrr:
+ case ARM::t2SUBri:
+ case ARM::t2SBCrr:
+ case ARM::t2SBCri:
+ case ARM::ANDrr:
+ case ARM::ANDri:
+ case ARM::t2ANDrr:
+ case ARM::t2ANDri:
+ case ARM::ORRrr:
+ case ARM::ORRri:
+ case ARM::t2ORRrr:
+ case ARM::t2ORRri:
+ case ARM::EORrr:
+ case ARM::EORri:
+ case ARM::t2EORrr:
+ case ARM::t2EORri: {
+ // Scan forward for the use of CPSR
+ // When checking against MI: if it's a conditional code requires
+ // checking of V bit, then this is not safe to do.
+ // It is safe to remove CmpInstr if CPSR is redefined or killed.
+ // If we are done with the basic block, we need to check whether CPSR is
+ // live-out.
+ SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
+ OperandsToUpdate;
+ bool isSafe = false;
+ I = CmpInstr;
+ E = CmpInstr->getParent()->end();
+ while (!isSafe && ++I != E) {
+ const MachineInstr &Instr = *I;
+ for (unsigned IO = 0, EO = Instr.getNumOperands();
+ !isSafe && IO != EO; ++IO) {
+ const MachineOperand &MO = Instr.getOperand(IO);
+ if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
+ isSafe = true;
+ break;
+ }
+ if (!MO.isReg() || MO.getReg() != ARM::CPSR)
+ continue;
+ if (MO.isDef()) {
+ isSafe = true;
+ break;
+ }
+ // Condition code is after the operand before CPSR.
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
+ if (Sub) {
+ ARMCC::CondCodes NewCC = getSwappedCondition(CC);
+ if (NewCC == ARMCC::AL)
+ return false;
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
+ // on CMP needs to be updated to be based on SUB.
+ // Push the condition code operands to OperandsToUpdate.
+ // If it is safe to remove CmpInstr, the condition code of these
+ // operands will be modified.
+ if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
+ Sub->getOperand(2).getReg() == SrcReg)
+ OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
+ NewCC));
+ }
+ else
+ switch (CC) {
+ default:
+ // CPSR can be used multiple times, we should continue.
+ break;
+ case ARMCC::VS:
+ case ARMCC::VC:
+ case ARMCC::GE:
+ case ARMCC::LT:
+ case ARMCC::GT:
+ case ARMCC::LE:
+ return false;
+ }
+ }
+ }
+
+ // If CPSR is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if (!isSafe) {
+ MachineBasicBlock *MBB = CmpInstr->getParent();
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(ARM::CPSR))
+ return false;
+ }
+
+ // Toggle the optional operand to CPSR.
+ MI->getOperand(5).setReg(ARM::CPSR);
+ MI->getOperand(5).setIsDef(true);
+ CmpInstr->eraseFromParent();
+
+ // Modify the condition code of operands in OperandsToUpdate.
+ // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
+ // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
+ OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
+ MachineInstr *DefMI, unsigned Reg,
+ MachineRegisterInfo *MRI) const {
+ // Fold large immediates into add, sub, or, xor.
+ unsigned DefOpc = DefMI->getOpcode();
+ if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
+ return false;
+ if (!DefMI->getOperand(1).isImm())
+ // Could be t2MOVi32imm <ga:xx>
+ return false;
+
+ if (!MRI->hasOneNonDBGUse(Reg))
+ return false;
+
+ const MCInstrDesc &DefMCID = DefMI->getDesc();
+ if (DefMCID.hasOptionalDef()) {
+ unsigned NumOps = DefMCID.getNumOperands();
+ const MachineOperand &MO = DefMI->getOperand(NumOps-1);
+ if (MO.getReg() == ARM::CPSR && !MO.isDead())
+ // If DefMI defines CPSR and it is not dead, it's obviously not safe
+ // to delete DefMI.
+ return false;
+ }
+
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ if (UseMCID.hasOptionalDef()) {
+ unsigned NumOps = UseMCID.getNumOperands();
+ if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
+ // If the instruction sets the flag, do not attempt this optimization
+ // since it may change the semantics of the code.
+ return false;
+ }
+
+ unsigned UseOpc = UseMI->getOpcode();
+ unsigned NewUseOpc = 0;
+ uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
+ uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
+ bool Commute = false;
+ switch (UseOpc) {
+ default: return false;
+ case ARM::SUBrr:
+ case ARM::ADDrr:
+ case ARM::ORRrr:
+ case ARM::EORrr:
+ case ARM::t2SUBrr:
+ case ARM::t2ADDrr:
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr: {
+ Commute = UseMI->getOperand(2).getReg() != Reg;
+ switch (UseOpc) {
+ default: break;
+ case ARM::SUBrr: {
+ if (Commute)
+ return false;
+ ImmVal = -ImmVal;
+ NewUseOpc = ARM::SUBri;
+ // Fallthrough
+ }
+ case ARM::ADDrr:
+ case ARM::ORRrr:
+ case ARM::EORrr: {
+ if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
+ case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
+ case ARM::EORrr: NewUseOpc = ARM::EORri; break;
+ }
+ break;
+ }
+ case ARM::t2SUBrr: {
+ if (Commute)
+ return false;
+ ImmVal = -ImmVal;
+ NewUseOpc = ARM::t2SUBri;
+ // Fallthrough
+ }
+ case ARM::t2ADDrr:
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr: {
+ if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
+ case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
+ case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ unsigned OpIdx = Commute ? 2 : 1;
+ unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
+ bool isKill = UseMI->getOperand(OpIdx).isKill();
+ unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
+ AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
+ UseMI, UseMI->getDebugLoc(),
+ get(NewUseOpc), NewReg)
+ .addReg(Reg1, getKillRegState(isKill))
+ .addImm(SOImmValV1)));
+ UseMI->setDesc(get(NewUseOpc));
+ UseMI->getOperand(1).setReg(NewReg);
+ UseMI->getOperand(1).setIsKill();
+ UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
+ DefMI->eraseFromParent();
+ return true;
+}
+
+unsigned
+ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
+ const MachineInstr *MI) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ const MCInstrDesc &Desc = MI->getDesc();
+ unsigned Class = Desc.getSchedClass();
+ int ItinUOps = ItinData->getNumMicroOps(Class);
+ if (ItinUOps >= 0)
+ return ItinUOps;
+
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unexpected multi-uops instruction!");
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+
+ // The number of uOps for load / store multiple are determined by the number
+ // registers.
+ //
+ // On Cortex-A8, each pair of register loads / stores can be scheduled on the
+ // same cycle. The scheduling for the first load / store must be done
+ // separately by assuming the address is not 64-bit aligned.
+ //
+ // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
+ // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
+ // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD: {
+ unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
+ return (NumRegs / 2) + (NumRegs % 2) + 1;
+ }
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
+ if (Subtarget.isCortexA8()) {
+ if (NumRegs < 4)
+ return 2;
+ // 4 registers would be issued: 2, 2.
+ // 5 registers would be issued: 2, 2, 1.
+ int A8UOps = (NumRegs / 2);
+ if (NumRegs % 2)
+ ++A8UOps;
+ return A8UOps;
+ } else if (Subtarget.isCortexA9()) {
+ int A9UOps = (NumRegs / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((NumRegs % 2) ||
+ !MI->hasOneMemOperand() ||
+ (*MI->memoperands_begin())->getAlignment() < 8)
+ ++A9UOps;
+ return A9UOps;
+ } else {
+ // Assume the worst.
+ return NumRegs;
+ }
+ }
+ }
+}
+
+int
+ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ int DefCycle;
+ if (Subtarget.isCortexA8()) {
+ // (regno / 2) + (regno % 2) + 1
+ DefCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++DefCycle;
+ } else if (Subtarget.isCortexA9()) {
+ DefCycle = RegNo;
+ bool isSLoad = false;
+
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ isSLoad = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
+ ++DefCycle;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+int
+ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ int DefCycle;
+ if (Subtarget.isCortexA8()) {
+ // 4 registers would be issued: 1, 2, 1.
+ // 5 registers would be issued: 1, 2, 2.
+ DefCycle = RegNo / 2;
+ if (DefCycle < 1)
+ DefCycle = 1;
+ // Result latency is issue cycle + 2: E2.
+ DefCycle += 2;
+ } else if (Subtarget.isCortexA9()) {
+ DefCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || DefAlign < 8)
+ ++DefCycle;
+ // Result latency is AGU cycles + 2.
+ DefCycle += 2;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+int
+ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ int UseCycle;
+ if (Subtarget.isCortexA8()) {
+ // (regno / 2) + (regno % 2) + 1
+ UseCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++UseCycle;
+ } else if (Subtarget.isCortexA9()) {
+ UseCycle = RegNo;
+ bool isSStore = false;
+
+ switch (UseMCID.getOpcode()) {
+ default: break;
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ isSStore = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSStore && (RegNo % 2)) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = RegNo + 2;
+ }
+
+ return UseCycle;
+}
+
+int
+ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ int UseCycle;
+ if (Subtarget.isCortexA8()) {
+ UseCycle = RegNo / 2;
+ if (UseCycle < 2)
+ UseCycle = 2;
+ // Read in E3.
+ UseCycle += 2;
+ } else if (Subtarget.isCortexA9()) {
+ UseCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = 1;
+ }
+ return UseCycle;
+}
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefIdx, unsigned DefAlign,
+ const MCInstrDesc &UseMCID,
+ unsigned UseIdx, unsigned UseAlign) const {
+ unsigned DefClass = DefMCID.getSchedClass();
+ unsigned UseClass = UseMCID.getSchedClass();
+
+ if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+
+ // This may be a def / use of a variable_ops instruction, the operand
+ // latency might be determinable dynamically. Let the target try to
+ // figure it out.
+ int DefCycle = -1;
+ bool LdmBypass = false;
+ switch (DefMCID.getOpcode()) {
+ default:
+ DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ break;
+
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ LdmBypass = 1;
+ DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+ }
+
+ if (DefCycle == -1)
+ // We can't seem to determine the result latency of the def, assume it's 2.
+ DefCycle = 2;
+
+ int UseCycle = -1;
+ switch (UseMCID.getOpcode()) {
+ default:
+ UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
+ break;
+
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+ }
+
+ if (UseCycle == -1)
+ // Assume it's read in the first stage.
+ UseCycle = 1;
+
+ UseCycle = DefCycle - UseCycle + 1;
+ if (UseCycle > 0) {
+ if (LdmBypass) {
+ // It's a variable_ops instruction so we can't use DefIdx here. Just use
+ // first def operand.
+ if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
+ UseClass, UseIdx))
+ --UseCycle;
+ } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
+ UseClass, UseIdx)) {
+ --UseCycle;
+ }
+ }
+
+ return UseCycle;
+}
+
+static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
+ const MachineInstr *MI, unsigned Reg,
+ unsigned &DefIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_iterator I = MI; ++I;
+ MachineBasicBlock::const_instr_iterator II =
+ llvm::prior(I.getInstrIterator());
+ assert(II->isInsideBundle() && "Empty bundle?");
+
+ int Idx = -1;
+ while (II->isInsideBundle()) {
+ Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
+ if (Idx != -1)
+ break;
+ --II;
+ ++Dist;
+ }
+
+ assert(Idx != -1 && "Cannot find bundled definition!");
+ DefIdx = Idx;
+ return II;
+}
+
+static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
+ const MachineInstr *MI, unsigned Reg,
+ unsigned &UseIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_instr_iterator II = MI; ++II;
+ assert(II->isInsideBundle() && "Empty bundle?");
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+
+ // FIXME: This doesn't properly handle multiple uses.
+ int Idx = -1;
+ while (II != E && II->isInsideBundle()) {
+ Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
+ if (Idx != -1)
+ break;
+ if (II->getOpcode() != ARM::t2IT)
+ ++Dist;
+ ++II;
+ }
+
+ if (Idx == -1) {
+ Dist = 0;
+ return 0;
+ }
+
+ UseIdx = Idx;
+ return II;
+}
+
+/// Return the number of cycles to add to (or subtract from) the static
+/// itinerary based on the def opcode and alignment. The caller will ensure that
+/// adjusted latency is at least one cycle.
+static int adjustDefLatency(const ARMSubtarget &Subtarget,
+ const MachineInstr *DefMI,
+ const MCInstrDesc *DefMCID, unsigned DefAlign) {
+ int Adjust = 0;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA9()) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefMI->getOperand(3).getImm();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ --Adjust;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefMI->getOperand(3).getImm();
+ if (ShAmt == 0 || ShAmt == 2)
+ --Adjust;
+ break;
+ }
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.isCortexA9()) {
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8:
+ case ARM::VLD2q16:
+ case ARM::VLD2q32:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8wb_fixed:
+ case ARM::VLD2q16wb_fixed:
+ case ARM::VLD2q32wb_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8wb_register:
+ case ARM::VLD2q16wb_register:
+ case ARM::VLD2q32wb_register:
+ case ARM::VLD3d8:
+ case ARM::VLD3d16:
+ case ARM::VLD3d32:
+ case ARM::VLD1d64T:
+ case ARM::VLD3d8_UPD:
+ case ARM::VLD3d16_UPD:
+ case ARM::VLD3d32_UPD:
+ case ARM::VLD1d64Twb_fixed:
+ case ARM::VLD1d64Twb_register:
+ case ARM::VLD3q8_UPD:
+ case ARM::VLD3q16_UPD:
+ case ARM::VLD3q32_UPD:
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD1d64Q:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ case ARM::VLD1d64Qwb_fixed:
+ case ARM::VLD1d64Qwb_register:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD4DUPd8:
+ case ARM::VLD4DUPd16:
+ case ARM::VLD4DUPd32:
+ case ARM::VLD4DUPd8_UPD:
+ case ARM::VLD4DUPd16_UPD:
+ case ARM::VLD4DUPd32_UPD:
+ case ARM::VLD1LNd8:
+ case ARM::VLD1LNd16:
+ case ARM::VLD1LNd32:
+ case ARM::VLD1LNd8_UPD:
+ case ARM::VLD1LNd16_UPD:
+ case ARM::VLD1LNd32_UPD:
+ case ARM::VLD2LNd8:
+ case ARM::VLD2LNd16:
+ case ARM::VLD2LNd32:
+ case ARM::VLD2LNq16:
+ case ARM::VLD2LNq32:
+ case ARM::VLD2LNd8_UPD:
+ case ARM::VLD2LNd16_UPD:
+ case ARM::VLD2LNd32_UPD:
+ case ARM::VLD2LNq16_UPD:
+ case ARM::VLD2LNq32_UPD:
+ case ARM::VLD4LNd8:
+ case ARM::VLD4LNd16:
+ case ARM::VLD4LNd32:
+ case ARM::VLD4LNq16:
+ case ARM::VLD4LNq32:
+ case ARM::VLD4LNd8_UPD:
+ case ARM::VLD4LNd16_UPD:
+ case ARM::VLD4LNd32_UPD:
+ case ARM::VLD4LNq16_UPD:
+ case ARM::VLD4LNq32_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ ++Adjust;
+ break;
+ }
+ }
+ return Adjust;
+}
+
+
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const {
+ // No operand latency. The caller may fall back to getInstrLatency.
+ if (!ItinData || ItinData->isEmpty())
+ return -1;
+
+ const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
+ unsigned Reg = DefMO.getReg();
+ const MCInstrDesc *DefMCID = &DefMI->getDesc();
+ const MCInstrDesc *UseMCID = &UseMI->getDesc();
+
+ unsigned DefAdj = 0;
+ if (DefMI->isBundle()) {
+ DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
+ DefMCID = &DefMI->getDesc();
+ }
+ if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
+ DefMI->isRegSequence() || DefMI->isImplicitDef()) {
+ return 1;
+ }
+
+ unsigned UseAdj = 0;
+ if (UseMI->isBundle()) {
+ unsigned NewUseIdx;
+ const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
+ Reg, NewUseIdx, UseAdj);
+ if (!NewUseMI)
+ return -1;
+
+ UseMI = NewUseMI;
+ UseIdx = NewUseIdx;
+ UseMCID = &UseMI->getDesc();
+ }
+
+ if (Reg == ARM::CPSR) {
+ if (DefMI->getOpcode() == ARM::FMSTAT) {
+ // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
+ return Subtarget.isCortexA9() ? 1 : 20;
+ }
+
+ // CPSR set and branch can be paired in the same cycle.
+ if (UseMI->isBranch())
+ return 0;
+
+ // Otherwise it takes the instruction latency (generally one).
+ unsigned Latency = getInstrLatency(ItinData, DefMI);
+
+ // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
+ // its uses. Instructions which are otherwise scheduled between them may
+ // incur a code size penalty (not able to use the CPSR setting 16-bit
+ // instructions).
+ if (Latency > 0 && Subtarget.isThumb2()) {
+ const MachineFunction *MF = DefMI->getParent()->getParent();
+ if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
+ --Latency;
+ }
+ return Latency;
+ }
+
+ if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
+ return -1;
+
+ unsigned DefAlign = DefMI->hasOneMemOperand()
+ ? (*DefMI->memoperands_begin())->getAlignment() : 0;
+ unsigned UseAlign = UseMI->hasOneMemOperand()
+ ? (*UseMI->memoperands_begin())->getAlignment() : 0;
+
+ // Get the itinerary's latency if possible, and handle variable_ops.
+ int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
+ *UseMCID, UseIdx, UseAlign);
+ // Unable to find operand latency. The caller may resort to getInstrLatency.
+ if (Latency < 0)
+ return Latency;
+
+ // Adjust for IT block position.
+ int Adj = DefAdj + UseAdj;
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
+ if (Adj >= 0 || (int)Latency > -Adj) {
+ return Latency + Adj;
+ }
+ // Return the itinerary latency, which may be zero but not less than zero.
+ return Latency;
+}
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const {
+ if (!DefNode->isMachineOpcode())
+ return 1;
+
+ const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
+
+ if (isZeroCost(DefMCID.Opcode))
+ return 0;
+
+ if (!ItinData || ItinData->isEmpty())
+ return DefMCID.mayLoad() ? 3 : 1;
+
+ if (!UseNode->isMachineOpcode()) {
+ int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
+ if (Subtarget.isCortexA9())
+ return Latency <= 2 ? 1 : Latency - 1;
+ else
+ return Latency <= 3 ? 1 : Latency - 2;
+ }
+
+ const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
+ const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
+ unsigned DefAlign = !DefMN->memoperands_empty()
+ ? (*DefMN->memoperands_begin())->getAlignment() : 0;
+ const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
+ unsigned UseAlign = !UseMN->memoperands_empty()
+ ? (*UseMN->memoperands_begin())->getAlignment() : 0;
+ int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
+ UseMCID, UseIdx, UseAlign);
+
+ if (Latency > 1 &&
+ (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ --Latency;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ if (ShAmt == 0 || ShAmt == 2)
+ --Latency;
+ break;
+ }
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.isCortexA9())
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8Pseudo:
+ case ARM::VLD2q16Pseudo:
+ case ARM::VLD2q32Pseudo:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8PseudoWB_fixed:
+ case ARM::VLD2q16PseudoWB_fixed:
+ case ARM::VLD2q32PseudoWB_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8PseudoWB_register:
+ case ARM::VLD2q16PseudoWB_register:
+ case ARM::VLD2q32PseudoWB_register:
+ case ARM::VLD3d8Pseudo:
+ case ARM::VLD3d16Pseudo:
+ case ARM::VLD3d32Pseudo:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD3d8Pseudo_UPD:
+ case ARM::VLD3d16Pseudo_UPD:
+ case ARM::VLD3d32Pseudo_UPD:
+ case ARM::VLD3q8Pseudo_UPD:
+ case ARM::VLD3q16Pseudo_UPD:
+ case ARM::VLD3q32Pseudo_UPD:
+ case ARM::VLD3q8oddPseudo:
+ case ARM::VLD3q16oddPseudo:
+ case ARM::VLD3q32oddPseudo:
+ case ARM::VLD3q8oddPseudo_UPD:
+ case ARM::VLD3q16oddPseudo_UPD:
+ case ARM::VLD3q32oddPseudo_UPD:
+ case ARM::VLD4d8Pseudo:
+ case ARM::VLD4d16Pseudo:
+ case ARM::VLD4d32Pseudo:
+ case ARM::VLD1d64QPseudo:
+ case ARM::VLD4d8Pseudo_UPD:
+ case ARM::VLD4d16Pseudo_UPD:
+ case ARM::VLD4d32Pseudo_UPD:
+ case ARM::VLD4q8Pseudo_UPD:
+ case ARM::VLD4q16Pseudo_UPD:
+ case ARM::VLD4q32Pseudo_UPD:
+ case ARM::VLD4q8oddPseudo:
+ case ARM::VLD4q16oddPseudo:
+ case ARM::VLD4q32oddPseudo:
+ case ARM::VLD4q8oddPseudo_UPD:
+ case ARM::VLD4q16oddPseudo_UPD:
+ case ARM::VLD4q32oddPseudo_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD4DUPd8Pseudo:
+ case ARM::VLD4DUPd16Pseudo:
+ case ARM::VLD4DUPd32Pseudo:
+ case ARM::VLD4DUPd8Pseudo_UPD:
+ case ARM::VLD4DUPd16Pseudo_UPD:
+ case ARM::VLD4DUPd32Pseudo_UPD:
+ case ARM::VLD1LNq8Pseudo:
+ case ARM::VLD1LNq16Pseudo:
+ case ARM::VLD1LNq32Pseudo:
+ case ARM::VLD1LNq8Pseudo_UPD:
+ case ARM::VLD1LNq16Pseudo_UPD:
+ case ARM::VLD1LNq32Pseudo_UPD:
+ case ARM::VLD2LNd8Pseudo:
+ case ARM::VLD2LNd16Pseudo:
+ case ARM::VLD2LNd32Pseudo:
+ case ARM::VLD2LNq16Pseudo:
+ case ARM::VLD2LNq32Pseudo:
+ case ARM::VLD2LNd8Pseudo_UPD:
+ case ARM::VLD2LNd16Pseudo_UPD:
+ case ARM::VLD2LNd32Pseudo_UPD:
+ case ARM::VLD2LNq16Pseudo_UPD:
+ case ARM::VLD2LNq32Pseudo_UPD:
+ case ARM::VLD4LNd8Pseudo:
+ case ARM::VLD4LNd16Pseudo:
+ case ARM::VLD4LNd32Pseudo:
+ case ARM::VLD4LNq16Pseudo:
+ case ARM::VLD4LNq32Pseudo:
+ case ARM::VLD4LNd8Pseudo_UPD:
+ case ARM::VLD4LNd16Pseudo_UPD:
+ case ARM::VLD4LNd32Pseudo_UPD:
+ case ARM::VLD4LNq16Pseudo_UPD:
+ case ARM::VLD4LNq32Pseudo_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ ++Latency;
+ break;
+ }
+
+ return Latency;
+}
+
+unsigned
+ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *DepMI) const {
+ unsigned Reg = DefMI->getOperand(DefIdx).getReg();
+ if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
+ return 1;
+
+ // If the second MI is predicated, then there is an implicit use dependency.
+ return getInstrLatency(ItinData, DefMI);
+}
+
+unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost) const {
+ if (MI->isCopyLike() || MI->isInsertSubreg() ||
+ MI->isRegSequence() || MI->isImplicitDef())
+ return 1;
+
+ // An instruction scheduler typically runs on unbundled instructions, however
+ // other passes may query the latency of a bundled instruction.
+ if (MI->isBundle()) {
+ unsigned Latency = 0;
+ MachineBasicBlock::const_instr_iterator I = MI;
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ if (I->getOpcode() != ARM::t2IT)
+ Latency += getInstrLatency(ItinData, I, PredCost);
+ }
+ return Latency;
+ }
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
+ // When predicated, CPSR is an additional source operand for CPSR updating
+ // instructions, this apparently increases their latencies.
+ *PredCost = 1;
+ }
+ // Be sure to call getStageLatency for an empty itinerary in case it has a
+ // valid MinLatency property.
+ if (!ItinData)
+ return MI->mayLoad() ? 3 : 1;
+
+ unsigned Class = MCID.getSchedClass();
+
+ // For instructions with variable uops, use uops as latency.
+ if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
+ return getNumMicroOps(ItinData, MI);
+
+ // For the common case, fall back on the itinerary's latency.
+ unsigned Latency = ItinData->getStageLatency(Class);
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ unsigned DefAlign = MI->hasOneMemOperand()
+ ? (*MI->memoperands_begin())->getAlignment() : 0;
+ int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
+ if (Adj >= 0 || (int)Latency > -Adj) {
+ return Latency + Adj;
+ }
+ return Latency;
+}
+
+int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *Node) const {
+ if (!Node->isMachineOpcode())
+ return 1;
+
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ unsigned Opcode = Node->getMachineOpcode();
+ switch (Opcode) {
+ default:
+ return ItinData->getStageLatency(get(Opcode).getSchedClass());
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+ }
+}
+
+bool ARMBaseInstrInfo::
+hasHighOperandLatency(const InstrItineraryData *ItinData,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI, unsigned UseIdx) const {
+ unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
+ unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
+ if (Subtarget.isCortexA8() &&
+ (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
+ // CortexA8 VFP instructions are not pipelined.
+ return true;
+
+ // Hoist VFP / NEON instructions with 4 or higher latency.
+ int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx,
+ /*FindMin=*/false);
+ if (Latency < 0)
+ Latency = getInstrLatency(ItinData, DefMI);
+ if (Latency <= 3)
+ return false;
+ return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
+ UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
+}
+
+bool ARMBaseInstrInfo::
+hasLowDefLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx) const {
+ if (!ItinData || ItinData->isEmpty())
+ return false;
+
+ unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
+ if (DDomain == ARMII::DomainGeneral) {
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ return (DefCycle != -1 && DefCycle <= 2);
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
+ StringRef &ErrInfo) const {
+ if (convertAddSubFlagsOpcode(MI->getOpcode())) {
+ ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
+ return false;
+ }
+ return true;
+}
+
+bool
+ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
+ unsigned &AddSubOpc,
+ bool &NegAcc, bool &HasLane) const {
+ DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
+ if (I == MLxEntryMap.end())
+ return false;
+
+ const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
+ MulOpc = Entry.MulOpc;
+ AddSubOpc = Entry.AddSubOpc;
+ NegAcc = Entry.NegAcc;
+ HasLane = Entry.HasLane;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Execution domains.
+//===----------------------------------------------------------------------===//
+//
+// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
+// and some can go down both. The vmov instructions go down the VFP pipeline,
+// but they can be changed to vorr equivalents that are executed by the NEON
+// pipeline.
+//
+// We use the following execution domain numbering:
+//
+enum ARMExeDomain {
+ ExeGeneric = 0,
+ ExeVFP = 1,
+ ExeNEON = 2
+};
+//
+// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
+//
+std::pair<uint16_t, uint16_t>
+ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
+ // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
+ // if they are not predicated.
+ if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
+ return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
+
+ // Cortex-A9 is particularly picky about mixing the two and wants these
+ // converted.
+ if (Subtarget.isCortexA9() && !isPredicated(MI) &&
+ (MI->getOpcode() == ARM::VMOVRS ||
+ MI->getOpcode() == ARM::VMOVSR))
+ return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
+
+ // No other instructions can be swizzled, so just determine their domain.
+ unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
+
+ if (Domain & ARMII::DomainNEON)
+ return std::make_pair(ExeNEON, 0);
+
+ // Certain instructions can go either way on Cortex-A8.
+ // Treat them as NEON instructions.
+ if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
+ return std::make_pair(ExeNEON, 0);
+
+ if (Domain & ARMII::DomainVFP)
+ return std::make_pair(ExeVFP, 0);
+
+ return std::make_pair(ExeGeneric, 0);
+}
+
+void
+ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
+ unsigned DstReg, SrcReg, DReg;
+ unsigned Lane;
+ MachineInstrBuilder MIB(MI);
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ bool isKill;
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("cannot handle opcode!");
+ break;
+ case ARM::VMOVD:
+ if (Domain != ExeNEON)
+ break;
+
+ // Zap the predicate operands.
+ assert(!isPredicated(MI) && "Cannot predicate a VORRd");
+ MI->RemoveOperand(3);
+ MI->RemoveOperand(2);
+
+ // Change to a VORRd which requires two identical use operands.
+ MI->setDesc(get(ARM::VORRd));
+
+ // Add the extra source operand and new predicates.
+ // This will go before any implicit ops.
+ AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
+ break;
+ case ARM::VMOVRS:
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
+
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ DReg = TRI->getMatchingSuperReg(SrcReg, ARM::ssub_0, &ARM::DPRRegClass);
+ Lane = 0;
+ if (DReg == ARM::NoRegister) {
+ DReg = TRI->getMatchingSuperReg(SrcReg, ARM::ssub_1, &ARM::DPRRegClass);
+ Lane = 1;
+ assert(DReg && "S-register with no D super-register?");
+ }
+
+ MI->RemoveOperand(3);
+ MI->RemoveOperand(2);
+ MI->RemoveOperand(1);
+
+ MI->setDesc(get(ARM::VGETLNi32));
+ MIB.addReg(DReg);
+ MIB.addImm(Lane);
+
+ MIB->getOperand(1).setIsUndef();
+ MIB.addReg(SrcReg, RegState::Implicit);
+
+ AddDefaultPred(MIB);
+ break;
+ case ARM::VMOVSR:
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
+
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ DReg = TRI->getMatchingSuperReg(DstReg, ARM::ssub_0, &ARM::DPRRegClass);
+ Lane = 0;
+ if (DReg == ARM::NoRegister) {
+ DReg = TRI->getMatchingSuperReg(DstReg, ARM::ssub_1, &ARM::DPRRegClass);
+ Lane = 1;
+ assert(DReg && "S-register with no D super-register?");
+ }
+ isKill = MI->getOperand(0).isKill();
+
+ MI->RemoveOperand(3);
+ MI->RemoveOperand(2);
+ MI->RemoveOperand(1);
+ MI->RemoveOperand(0);
+
+ MI->setDesc(get(ARM::VSETLNi32));
+ MIB.addReg(DReg);
+ MIB.addReg(DReg);
+ MIB.addReg(SrcReg);
+ MIB.addImm(Lane);
+
+ MIB->getOperand(1).setIsUndef();
+
+ if (isKill)
+ MIB->addRegisterKilled(DstReg, TRI, true);
+ MIB->addRegisterDefined(DstReg, TRI);
+
+ AddDefaultPred(MIB);
+ break;
+ }
+
+}
+
+bool ARMBaseInstrInfo::hasNOP() const {
+ return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
+}
OpenPOWER on IntegriCloud