summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp138
1 files changed, 67 insertions, 71 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
index c1244225..9c4b496 100644
--- a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -37,6 +37,7 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@@ -409,6 +410,8 @@ ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
assert((Cond.size() == 2 || Cond.size() == 0) &&
"ARM branch conditions have two components!");
+ // For conditional branches, we use addOperand to preserve CPSR flags.
+
if (!FBB) {
if (Cond.empty()) { // Unconditional branch?
if (isThumb)
@@ -417,13 +420,13 @@ ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
} else
BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
- .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ .addImm(Cond[0].getImm()).addOperand(Cond[1]);
return 1;
}
// Two-way conditional branch.
BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
- .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+ .addImm(Cond[0].getImm()).addOperand(Cond[1]);
if (isThumb)
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
else
@@ -624,6 +627,10 @@ unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
case ARM::t2MOVi32imm:
return 8;
case ARM::CONSTPOOL_ENTRY:
+ case ARM::JUMPTABLE_INSTS:
+ case ARM::JUMPTABLE_ADDRS:
+ case ARM::JUMPTABLE_TBB:
+ case ARM::JUMPTABLE_TBH:
// If this machine instr is a constant pool entry, its size is recorded as
// operand #2.
return MI->getOperand(2).getImm();
@@ -638,42 +645,6 @@ unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
case ARM::t2Int_eh_sjlj_setjmp:
case ARM::t2Int_eh_sjlj_setjmp_nofp:
return 12;
- case ARM::BR_JTr:
- case ARM::BR_JTm:
- case ARM::BR_JTadd:
- case ARM::tBR_JTr:
- case ARM::t2BR_JT:
- case ARM::t2TBB_JT:
- case ARM::t2TBH_JT: {
- // These are jumptable branches, i.e. a branch followed by an inlined
- // jumptable. The size is 4 + 4 * number of entries. For TBB, each
- // entry is one byte; TBH two byte each.
- unsigned EntrySize = (Opc == ARM::t2TBB_JT)
- ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
- unsigned NumOps = MCID.getNumOperands();
- MachineOperand JTOP =
- MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
- unsigned JTI = JTOP.getIndex();
- const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
- assert(MJTI != nullptr);
- const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
- assert(JTI < JT.size());
- // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
- // 4 aligned. The assembler / linker may add 2 byte padding just before
- // the JT entries. The size does not include this padding; the
- // constant islands pass does separate bookkeeping for it.
- // FIXME: If we know the size of the function is less than (1 << 16) *2
- // bytes, we can use 16-bit entries instead. Then there won't be an
- // alignment issue.
- unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
- unsigned NumEntries = JT[JTI].MBBs.size();
- if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
- // Make sure the instruction that follows TBB is 2-byte aligned.
- // FIXME: Constant island pass should insert an "ALIGN" instruction
- // instead.
- ++NumEntries;
- return NumEntries * EntrySize + InstSize;
- }
case ARM::SPACE:
return MI->getOperand(1).getImm();
}
@@ -1431,7 +1402,7 @@ ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
const MachineInstr *MI1,
const MachineRegisterInfo *MRI) const {
- int Opcode = MI0->getOpcode();
+ unsigned Opcode = MI0->getOpcode();
if (Opcode == ARM::t2LDRpci ||
Opcode == ARM::t2LDRpci_pic ||
Opcode == ARM::tLDRpci ||
@@ -1684,6 +1655,33 @@ isProfitableToIfCvt(MachineBasicBlock &MBB,
if (!NumCycles)
return false;
+ // If we are optimizing for size, see if the branch in the predecessor can be
+ // lowered to cbn?z by the constant island lowering pass, and return false if
+ // so. This results in a shorter instruction sequence.
+ const Function *F = MBB.getParent()->getFunction();
+ if (F->hasFnAttribute(Attribute::OptimizeForSize) ||
+ F->hasFnAttribute(Attribute::MinSize)) {
+ MachineBasicBlock *Pred = *MBB.pred_begin();
+ if (!Pred->empty()) {
+ MachineInstr *LastMI = &*Pred->rbegin();
+ if (LastMI->getOpcode() == ARM::t2Bcc) {
+ MachineBasicBlock::iterator CmpMI = LastMI;
+ if (CmpMI != Pred->begin()) {
+ --CmpMI;
+ if (CmpMI->getOpcode() == ARM::tCMPi8 ||
+ CmpMI->getOpcode() == ARM::t2CMPri) {
+ unsigned Reg = CmpMI->getOperand(0).getReg();
+ unsigned PredReg = 0;
+ ARMCC::CondCodes P = getInstrPredicate(CmpMI, PredReg);
+ if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
+ isARMLowRegister(Reg))
+ return false;
+ }
+ }
+ }
+ }
+ }
+
// Attempt to estimate the relative costs of predication versus branching.
unsigned UnpredCost = Probability.getNumerator() * NumCycles;
UnpredCost /= Probability.getDenominator();
@@ -1741,7 +1739,7 @@ llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
}
-int llvm::getMatchingCondBranchOpcode(int Opc) {
+unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
if (Opc == ARM::B)
return ARM::Bcc;
if (Opc == ARM::tB)
@@ -1809,8 +1807,7 @@ static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
return nullptr;
}
bool DontMoveAcrossStores = true;
- if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ nullptr,
- DontMoveAcrossStores))
+ if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
return nullptr;
return MI;
}
@@ -1891,6 +1888,13 @@ ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
SeenMIs.insert(NewMI);
SeenMIs.erase(DefMI);
+ // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
+ // DefMI would be invalid when tranferred inside the loop. Checking for a
+ // loop is expensive, but at least remove kill flags if they are in different
+ // BBs.
+ if (DefMI->getParent() != MI->getParent())
+ NewMI->clearKillInfo();
+
// The caller will erase MI, but not DefMI.
DefMI->eraseFromParent();
return NewMI;
@@ -1991,8 +1995,7 @@ bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
unsigned NumBytes) {
// This optimisation potentially adds lots of load and store
// micro-operations, it's only really a great benefit to code-size.
- if (!MF.getFunction()->getAttributes().hasAttribute(
- AttributeSet::FunctionIndex, Attribute::MinSize))
+ if (!MF.getFunction()->hasFnAttribute(Attribute::MinSize))
return false;
// If only one register is pushed/popped, LLVM can use an LDR/STR
@@ -2286,16 +2289,6 @@ static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
return true;
break;
- case ARM::COPY: {
- // Walk down one instruction which is potentially an 'and'.
- const MachineInstr &Copy = *MI;
- MachineBasicBlock::iterator AND(
- std::next(MachineBasicBlock::iterator(MI)));
- if (AND == MI->getParent()->end()) return false;
- MI = AND;
- return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
- CmpMask, true);
- }
}
return false;
@@ -3665,9 +3658,7 @@ ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
// instructions).
if (Latency > 0 && Subtarget.isThumb2()) {
const MachineFunction *MF = DefMI->getParent()->getParent();
- if (MF->getFunction()->getAttributes().
- hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize))
+ if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
--Latency;
}
return Latency;
@@ -4118,19 +4109,21 @@ enum ARMExeDomain {
//
std::pair<uint16_t, uint16_t>
ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
- // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
- // if they are not predicated.
- if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
- return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
-
- // CortexA9 is particularly picky about mixing the two and wants these
- // converted.
- if (Subtarget.isCortexA9() && !isPredicated(MI) &&
- (MI->getOpcode() == ARM::VMOVRS ||
- MI->getOpcode() == ARM::VMOVSR ||
- MI->getOpcode() == ARM::VMOVS))
- return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
-
+ // If we don't have access to NEON instructions then we won't be able
+ // to swizzle anything to the NEON domain. Check to make sure.
+ if (Subtarget.hasNEON()) {
+ // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
+ // if they are not predicated.
+ if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
+ return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
+
+ // CortexA9 is particularly picky about mixing the two and wants these
+ // converted.
+ if (Subtarget.isCortexA9() && !isPredicated(MI) &&
+ (MI->getOpcode() == ARM::VMOVRS || MI->getOpcode() == ARM::VMOVSR ||
+ MI->getOpcode() == ARM::VMOVS))
+ return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
+ }
// No other instructions can be swizzled, so just determine their domain.
unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
@@ -4223,6 +4216,9 @@ ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
// Zap the predicate operands.
assert(!isPredicated(MI) && "Cannot predicate a VORRd");
+ // Make sure we've got NEON instructions.
+ assert(Subtarget.hasNEON() && "VORRd requires NEON");
+
// Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
DstReg = MI->getOperand(0).getReg();
SrcReg = MI->getOperand(1).getReg();
@@ -4510,7 +4506,7 @@ breakPartialRegDependency(MachineBasicBlock::iterator MI,
}
bool ARMBaseInstrInfo::hasNOP() const {
- return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
+ return Subtarget.getFeatureBits()[ARM::HasV6KOps];
}
bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
OpenPOWER on IntegriCloud