summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp4631
1 files changed, 4631 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
new file mode 100644
index 0000000..49f3288
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -0,0 +1,4631 @@
+//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Base ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM.h"
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMFeatures.h"
+#include "ARMHazardRecognizer.h"
+#include "ARMMachineFunctionInfo.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-instrinfo"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "ARMGenInstrInfo.inc"
+
+static cl::opt<bool>
+EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
+ cl::desc("Enable ARM 2-addr to 3-addr conv"));
+
+static cl::opt<bool>
+WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
+ cl::desc("Widen ARM vmovs to vmovd when possible"));
+
+static cl::opt<unsigned>
+SwiftPartialUpdateClearance("swift-partial-update-clearance",
+ cl::Hidden, cl::init(12),
+ cl::desc("Clearance before partial register updates"));
+
+/// ARM_MLxEntry - Record information about MLA / MLS instructions.
+struct ARM_MLxEntry {
+ uint16_t MLxOpc; // MLA / MLS opcode
+ uint16_t MulOpc; // Expanded multiplication opcode
+ uint16_t AddSubOpc; // Expanded add / sub opcode
+ bool NegAcc; // True if the acc is negated before the add / sub.
+ bool HasLane; // True if instruction has an extra "lane" operand.
+};
+
+static const ARM_MLxEntry ARM_MLxTable[] = {
+ // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
+ // fp scalar ops
+ { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
+ { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
+ { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
+ { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
+ { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
+ { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
+
+ // fp SIMD ops
+ { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
+ { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
+ { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
+ { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
+ { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
+ { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
+ { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
+ { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
+};
+
+ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
+ : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
+ Subtarget(STI) {
+ for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
+ if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
+ llvm_unreachable("Duplicated entries?");
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
+ }
+}
+
+// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
+// currently defaults to no prepass hazard recognizer.
+ScheduleHazardRecognizer *
+ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const {
+ if (usePreRAHazardRecognizer()) {
+ const InstrItineraryData *II =
+ static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
+ return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
+ }
+ return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
+}
+
+ScheduleHazardRecognizer *ARMBaseInstrInfo::
+CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ if (Subtarget.isThumb2() || Subtarget.hasVFP2())
+ return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
+ return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
+}
+
+MachineInstr *
+ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ // FIXME: Thumb2 support.
+
+ if (!EnableARM3Addr)
+ return nullptr;
+
+ MachineInstr *MI = MBBI;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ uint64_t TSFlags = MI->getDesc().TSFlags;
+ bool isPre = false;
+ switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
+ default: return nullptr;
+ case ARMII::IndexModePre:
+ isPre = true;
+ break;
+ case ARMII::IndexModePost:
+ break;
+ }
+
+ // Try splitting an indexed load/store to an un-indexed one plus an add/sub
+ // operation.
+ unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
+ if (MemOpc == 0)
+ return nullptr;
+
+ MachineInstr *UpdateMI = nullptr;
+ MachineInstr *MemMI = nullptr;
+ unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ bool isLoad = !MI->mayStore();
+ const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
+ const MachineOperand &Base = MI->getOperand(2);
+ const MachineOperand &Offset = MI->getOperand(NumOps-3);
+ unsigned WBReg = WB.getReg();
+ unsigned BaseReg = Base.getReg();
+ unsigned OffReg = Offset.getReg();
+ unsigned OffImm = MI->getOperand(NumOps-2).getImm();
+ ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
+ switch (AddrMode) {
+ default: llvm_unreachable("Unknown indexed op!");
+ case ARMII::AddrMode2: {
+ bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM2Offset(OffImm);
+ if (OffReg == 0) {
+ if (ARM_AM::getSOImmVal(Amt) == -1)
+ // Can't encode it in a so_imm operand. This transformation will
+ // add more than 1 instruction. Abandon!
+ return nullptr;
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else if (Amt != 0) {
+ ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
+ unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
+ .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
+ .addImm(Pred).addReg(0).addReg(0);
+ } else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ case ARMII::AddrMode3 : {
+ bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM3Offset(OffImm);
+ if (OffReg == 0)
+ // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg).addImm(Amt)
+ .addImm(Pred).addReg(0).addReg(0);
+ else
+ UpdateMI = BuildMI(MF, MI->getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg).addReg(OffReg)
+ .addImm(Pred).addReg(0).addReg(0);
+ break;
+ }
+ }
+
+ std::vector<MachineInstr*> NewMIs;
+ if (isPre) {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(WBReg).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
+ NewMIs.push_back(MemMI);
+ NewMIs.push_back(UpdateMI);
+ } else {
+ if (isLoad)
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc), MI->getOperand(0).getReg())
+ .addReg(BaseReg).addImm(0).addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI->getDebugLoc(),
+ get(MemOpc)).addReg(MI->getOperand(1).getReg())
+ .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
+ if (WB.isDead())
+ UpdateMI->getOperand(0).setIsDead();
+ NewMIs.push_back(UpdateMI);
+ NewMIs.push_back(MemMI);
+ }
+
+ // Transfer LiveVariables states, kill / dead info.
+ if (LV) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned Reg = MO.getReg();
+
+ LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
+ if (MO.isDef()) {
+ MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
+ if (MO.isDead())
+ LV->addVirtualRegisterDead(Reg, NewMI);
+ }
+ if (MO.isUse() && MO.isKill()) {
+ for (unsigned j = 0; j < 2; ++j) {
+ // Look at the two new MI's in reverse order.
+ MachineInstr *NewMI = NewMIs[j];
+ if (!NewMI->readsRegister(Reg))
+ continue;
+ LV->addVirtualRegisterKilled(Reg, NewMI);
+ if (VI.removeKill(MI))
+ VI.Kills.push_back(NewMI);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ MFI->insert(MBBI, NewMIs[1]);
+ MFI->insert(MBBI, NewMIs[0]);
+ return NewMIs[0];
+}
+
+// Branch analysis.
+bool
+ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ TBB = nullptr;
+ FBB = nullptr;
+
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false; // Empty blocks are easy.
+ --I;
+
+ // Walk backwards from the end of the basic block until the branch is
+ // analyzed or we give up.
+ while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) {
+
+ // Flag to be raised on unanalyzeable instructions. This is useful in cases
+ // where we want to clean up on the end of the basic block before we bail
+ // out.
+ bool CantAnalyze = false;
+
+ // Skip over DEBUG values and predicated nonterminators.
+ while (I->isDebugValue() || !I->isTerminator()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+
+ if (isIndirectBranchOpcode(I->getOpcode()) ||
+ isJumpTableBranchOpcode(I->getOpcode())) {
+ // Indirect branches and jump tables can't be analyzed, but we still want
+ // to clean up any instructions at the tail of the basic block.
+ CantAnalyze = true;
+ } else if (isUncondBranchOpcode(I->getOpcode())) {
+ TBB = I->getOperand(0).getMBB();
+ } else if (isCondBranchOpcode(I->getOpcode())) {
+ // Bail out if we encounter multiple conditional branches.
+ if (!Cond.empty())
+ return true;
+
+ assert(!FBB && "FBB should have been null.");
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(I->getOperand(1));
+ Cond.push_back(I->getOperand(2));
+ } else if (I->isReturn()) {
+ // Returns can't be analyzed, but we should run cleanup.
+ CantAnalyze = !isPredicated(I);
+ } else {
+ // We encountered other unrecognized terminator. Bail out immediately.
+ return true;
+ }
+
+ // Cleanup code - to be run for unpredicated unconditional branches and
+ // returns.
+ if (!isPredicated(I) &&
+ (isUncondBranchOpcode(I->getOpcode()) ||
+ isIndirectBranchOpcode(I->getOpcode()) ||
+ isJumpTableBranchOpcode(I->getOpcode()) ||
+ I->isReturn())) {
+ // Forget any previous condition branch information - it no longer applies.
+ Cond.clear();
+ FBB = nullptr;
+
+ // If we can modify the function, delete everything below this
+ // unconditional branch.
+ if (AllowModify) {
+ MachineBasicBlock::iterator DI = std::next(I);
+ while (DI != MBB.end()) {
+ MachineInstr *InstToDelete = DI;
+ ++DI;
+ InstToDelete->eraseFromParent();
+ }
+ }
+ }
+
+ if (CantAnalyze)
+ return true;
+
+ if (I == MBB.begin())
+ return false;
+
+ --I;
+ }
+
+ // We made it past the terminators without bailing out - we must have
+ // analyzed this branch successfully.
+ return false;
+}
+
+
+unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return 0;
+
+ if (!isUncondBranchOpcode(I->getOpcode()) &&
+ !isCondBranchOpcode(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (!isCondBranchOpcode(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned
+ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ ArrayRef<MachineOperand> Cond,
+ DebugLoc DL) const {
+ ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
+ int BOpc = !AFI->isThumbFunction()
+ ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
+ int BccOpc = !AFI->isThumbFunction()
+ ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
+ bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "ARM branch conditions have two components!");
+
+ // For conditional branches, we use addOperand to preserve CPSR flags.
+
+ if (!FBB) {
+ if (Cond.empty()) { // Unconditional branch?
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else
+ BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addOperand(Cond[1]);
+ return 1;
+ }
+
+ // Two-way conditional branch.
+ BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
+ .addImm(Cond[0].getImm()).addOperand(Cond[1]);
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+ return 2;
+}
+
+bool ARMBaseInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
+ Cond[0].setImm(ARMCC::getOppositeCondition(CC));
+ return false;
+}
+
+bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
+ if (MI->isBundle()) {
+ MachineBasicBlock::const_instr_iterator I = MI->getIterator();
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ int PIdx = I->findFirstPredOperandIdx();
+ if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
+ return true;
+ }
+ return false;
+ }
+
+ int PIdx = MI->findFirstPredOperandIdx();
+ return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
+}
+
+bool ARMBaseInstrInfo::
+PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
+ unsigned Opc = MI->getOpcode();
+ if (isUncondBranchOpcode(Opc)) {
+ MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .addReg(Pred[1].getReg());
+ return true;
+ }
+
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx != -1) {
+ MachineOperand &PMO = MI->getOperand(PIdx);
+ PMO.setImm(Pred[0].getImm());
+ MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
+ return true;
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
+ ArrayRef<MachineOperand> Pred2) const {
+ if (Pred1.size() > 2 || Pred2.size() > 2)
+ return false;
+
+ ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
+ ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
+ if (CC1 == CC2)
+ return true;
+
+ switch (CC1) {
+ default:
+ return false;
+ case ARMCC::AL:
+ return true;
+ case ARMCC::HS:
+ return CC2 == ARMCC::HI;
+ case ARMCC::LS:
+ return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
+ case ARMCC::GE:
+ return CC2 == ARMCC::GT;
+ case ARMCC::LE:
+ return CC2 == ARMCC::LT;
+ }
+}
+
+bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ bool Found = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
+ (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
+ Pred.push_back(MO);
+ Found = true;
+ }
+ }
+
+ return Found;
+}
+
+static bool isCPSRDefined(const MachineInstr *MI) {
+ for (const auto &MO : MI->operands())
+ if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
+ return true;
+ return false;
+}
+
+static bool isEligibleForITBlock(const MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return true;
+ case ARM::tADC: // ADC (register) T1
+ case ARM::tADDi3: // ADD (immediate) T1
+ case ARM::tADDi8: // ADD (immediate) T2
+ case ARM::tADDrr: // ADD (register) T1
+ case ARM::tAND: // AND (register) T1
+ case ARM::tASRri: // ASR (immediate) T1
+ case ARM::tASRrr: // ASR (register) T1
+ case ARM::tBIC: // BIC (register) T1
+ case ARM::tEOR: // EOR (register) T1
+ case ARM::tLSLri: // LSL (immediate) T1
+ case ARM::tLSLrr: // LSL (register) T1
+ case ARM::tLSRri: // LSR (immediate) T1
+ case ARM::tLSRrr: // LSR (register) T1
+ case ARM::tMUL: // MUL T1
+ case ARM::tMVN: // MVN (register) T1
+ case ARM::tORR: // ORR (register) T1
+ case ARM::tROR: // ROR (register) T1
+ case ARM::tRSB: // RSB (immediate) T1
+ case ARM::tSBC: // SBC (register) T1
+ case ARM::tSUBi3: // SUB (immediate) T1
+ case ARM::tSUBi8: // SUB (immediate) T2
+ case ARM::tSUBrr: // SUB (register) T1
+ return !isCPSRDefined(MI);
+ }
+}
+
+/// isPredicable - Return true if the specified instruction can be predicated.
+/// By default, this returns true for every instruction with a
+/// PredicateOperand.
+bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
+ if (!MI->isPredicable())
+ return false;
+
+ if (!isEligibleForITBlock(MI))
+ return false;
+
+ ARMFunctionInfo *AFI =
+ MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
+
+ if (AFI->isThumb2Function()) {
+ if (getSubtarget().restrictIT())
+ return isV8EligibleForIT(MI);
+ } else { // non-Thumb
+ if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
+ return false;
+ }
+
+ return true;
+}
+
+namespace llvm {
+template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isUndef() || MO.isUse())
+ continue;
+ if (MO.getReg() != ARM::CPSR)
+ continue;
+ if (!MO.isDead())
+ return false;
+ }
+ // all definitions of CPSR are dead
+ return true;
+}
+}
+
+/// GetInstSize - Return the size of the specified MachineInstr.
+///
+unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const MachineBasicBlock &MBB = *MI->getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.getSize())
+ return MCID.getSize();
+
+ // If this machine instr is an inline asm, measure it.
+ if (MI->getOpcode() == ARM::INLINEASM)
+ return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ default:
+ // pseudo-instruction sizes are zero.
+ return 0;
+ case TargetOpcode::BUNDLE:
+ return getInstBundleLength(MI);
+ case ARM::MOVi16_ga_pcrel:
+ case ARM::MOVTi16_ga_pcrel:
+ case ARM::t2MOVi16_ga_pcrel:
+ case ARM::t2MOVTi16_ga_pcrel:
+ return 4;
+ case ARM::MOVi32imm:
+ case ARM::t2MOVi32imm:
+ return 8;
+ case ARM::CONSTPOOL_ENTRY:
+ case ARM::JUMPTABLE_INSTS:
+ case ARM::JUMPTABLE_ADDRS:
+ case ARM::JUMPTABLE_TBB:
+ case ARM::JUMPTABLE_TBH:
+ // If this machine instr is a constant pool entry, its size is recorded as
+ // operand #2.
+ return MI->getOperand(2).getImm();
+ case ARM::Int_eh_sjlj_longjmp:
+ return 16;
+ case ARM::tInt_eh_sjlj_longjmp:
+ return 10;
+ case ARM::Int_eh_sjlj_setjmp:
+ case ARM::Int_eh_sjlj_setjmp_nofp:
+ return 20;
+ case ARM::tInt_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp_nofp:
+ return 12;
+ case ARM::SPACE:
+ return MI->getOperand(1).getImm();
+ }
+}
+
+unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
+ unsigned Size = 0;
+ MachineBasicBlock::const_instr_iterator I = MI->getIterator();
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ assert(!I->isBundle() && "No nested bundle!");
+ Size += GetInstSizeInBytes(&*I);
+ }
+ return Size;
+}
+
+void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const {
+ unsigned Opc = Subtarget.isThumb()
+ ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
+ : ARM::MRS;
+
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
+
+ // There is only 1 A/R class MRS instruction, and it always refers to
+ // APSR. However, there are lots of other possibilities on M-class cores.
+ if (Subtarget.isMClass())
+ MIB.addImm(0x800);
+
+ AddDefaultPred(MIB);
+
+ MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
+}
+
+void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const {
+ unsigned Opc = Subtarget.isThumb()
+ ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
+ : ARM::MSR;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
+
+ if (Subtarget.isMClass())
+ MIB.addImm(0x800);
+ else
+ MIB.addImm(8);
+
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+
+ AddDefaultPred(MIB);
+
+ MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
+}
+
+void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ bool GPRDest = ARM::GPRRegClass.contains(DestReg);
+ bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
+
+ if (GPRDest && GPRSrc) {
+ AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))));
+ return;
+ }
+
+ bool SPRDest = ARM::SPRRegClass.contains(DestReg);
+ bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
+
+ unsigned Opc = 0;
+ if (SPRDest && SPRSrc)
+ Opc = ARM::VMOVS;
+ else if (GPRDest && SPRSrc)
+ Opc = ARM::VMOVRS;
+ else if (SPRDest && GPRSrc)
+ Opc = ARM::VMOVSR;
+ else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
+ Opc = ARM::VMOVD;
+ else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
+ Opc = ARM::VORRq;
+
+ if (Opc) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ if (Opc == ARM::VORRq)
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ AddDefaultPred(MIB);
+ return;
+ }
+
+ // Handle register classes that require multiple instructions.
+ unsigned BeginIdx = 0;
+ unsigned SubRegs = 0;
+ int Spacing = 1;
+
+ // Use VORRq when possible.
+ if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VORRq;
+ BeginIdx = ARM::qsub_0;
+ SubRegs = 2;
+ } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VORRq;
+ BeginIdx = ARM::qsub_0;
+ SubRegs = 4;
+ // Fall back to VMOVD.
+ } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 2;
+ } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 3;
+ } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 4;
+ } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
+ Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
+ BeginIdx = ARM::gsub_0;
+ SubRegs = 2;
+ } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 2;
+ Spacing = 2;
+ } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 3;
+ Spacing = 2;
+ } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 4;
+ Spacing = 2;
+ } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
+ Opc = ARM::VMOVS;
+ BeginIdx = ARM::ssub_0;
+ SubRegs = 2;
+ } else if (SrcReg == ARM::CPSR) {
+ copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
+ return;
+ } else if (DestReg == ARM::CPSR) {
+ copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
+ return;
+ }
+
+ assert(Opc && "Impossible reg-to-reg copy");
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ MachineInstrBuilder Mov;
+
+ // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
+ if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
+ BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
+ Spacing = -Spacing;
+ }
+#ifndef NDEBUG
+ SmallSet<unsigned, 4> DstRegs;
+#endif
+ for (unsigned i = 0; i != SubRegs; ++i) {
+ unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
+ unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
+ assert(Dst && Src && "Bad sub-register");
+#ifndef NDEBUG
+ assert(!DstRegs.count(Src) && "destructive vector copy");
+ DstRegs.insert(Dst);
+#endif
+ Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
+ // VORR takes two source operands.
+ if (Opc == ARM::VORRq)
+ Mov.addReg(Src);
+ Mov = AddDefaultPred(Mov);
+ // MOVr can set CC.
+ if (Opc == ARM::MOVr)
+ Mov = AddDefaultCC(Mov);
+ }
+ // Add implicit super-register defs and kills to the last instruction.
+ Mov->addRegisterDefined(DestReg, TRI);
+ if (KillSrc)
+ Mov->addRegisterKilled(SrcReg, TRI);
+}
+
+const MachineInstrBuilder &
+ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
+ unsigned SubIdx, unsigned State,
+ const TargetRegisterInfo *TRI) const {
+ if (!SubIdx)
+ return MIB.addReg(Reg, State);
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
+ return MIB.addReg(Reg, State, SubIdx);
+}
+
+void ARMBaseInstrInfo::
+storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI), Align);
+
+ switch (RC->getSize()) {
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ if (Subtarget.hasV5TEOps()) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
+ AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
+ AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
+ MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
+
+ AddDefaultPred(MIB);
+ } else {
+ // Fallback to STM instruction, which has existed since the dawn of
+ // time.
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
+ .addFrameIndex(FI).addMemOperand(MMO));
+ AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
+ AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC)) {
+ // Use aligned spills if the stack can be realigned.
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ // Use aligned spills if the stack can be realigned.
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ // FIXME: It's possible to only store part of the QQ register if the
+ // spilled def has a sub-register index.
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
+ .addFrameIndex(FI).addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown reg class!");
+ }
+}
+
+unsigned
+ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::STRrs:
+ case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::STRi12:
+ case ARM::t2STRi12:
+ case ARM::tSTRspi:
+ case ARM::VSTRD:
+ case ARM::VSTRS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VST1q64:
+ case ARM::VST1d64TPseudo:
+ case ARM::VST1d64QPseudo:
+ if (MI->getOperand(0).isFI() &&
+ MI->getOperand(2).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(2).getReg();
+ }
+ break;
+ case ARM::VSTMQIA:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ const MachineMemOperand *Dummy;
+ return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
+}
+
+void ARMBaseInstrInfo::
+loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
+ unsigned DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI), Align);
+
+ switch (RC->getSize()) {
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
+ .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
+ } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB;
+
+ if (Subtarget.hasV5TEOps()) {
+ MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
+ AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
+ AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
+ MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
+
+ AddDefaultPred(MIB);
+ } else {
+ // Fallback to LDM instruction, which has existed since the dawn of
+ // time.
+ MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
+ .addFrameIndex(FI).addMemOperand(MMO));
+ MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
+ }
+
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO));
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
+ .addFrameIndex(FI).addImm(16)
+ .addMemOperand(MMO));
+ } else {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB =
+ AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
+ if (TargetRegisterInfo::isPhysicalRegister(DestReg))
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown regclass!");
+ }
+}
+
+unsigned
+ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isImm() &&
+ MI->getOperand(2).getReg() == 0 &&
+ MI->getOperand(3).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::LDRi12:
+ case ARM::t2LDRi12:
+ case ARM::tLDRspi:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLD1q64:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d64QPseudo:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLDMQIA:
+ if (MI->getOperand(1).isFI() &&
+ MI->getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ const MachineMemOperand *Dummy;
+ return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
+}
+
+/// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
+/// depending on whether the result is used.
+void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MBBI) const {
+ bool isThumb1 = Subtarget.isThumb1Only();
+ bool isThumb2 = Subtarget.isThumb2();
+ const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
+
+ MachineInstr *MI = MBBI;
+ DebugLoc dl = MI->getDebugLoc();
+ MachineBasicBlock *BB = MI->getParent();
+
+ MachineInstrBuilder LDM, STM;
+ if (isThumb1 || !MI->getOperand(1).isDead()) {
+ LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
+ : isThumb1 ? ARM::tLDMIA_UPD
+ : ARM::LDMIA_UPD))
+ .addOperand(MI->getOperand(1));
+ } else {
+ LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
+ }
+
+ if (isThumb1 || !MI->getOperand(0).isDead()) {
+ STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
+ : isThumb1 ? ARM::tSTMIA_UPD
+ : ARM::STMIA_UPD))
+ .addOperand(MI->getOperand(0));
+ } else {
+ STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
+ }
+
+ AddDefaultPred(LDM.addOperand(MI->getOperand(3)));
+ AddDefaultPred(STM.addOperand(MI->getOperand(2)));
+
+ // Sort the scratch registers into ascending order.
+ const TargetRegisterInfo &TRI = getRegisterInfo();
+ llvm::SmallVector<unsigned, 6> ScratchRegs;
+ for(unsigned I = 5; I < MI->getNumOperands(); ++I)
+ ScratchRegs.push_back(MI->getOperand(I).getReg());
+ std::sort(ScratchRegs.begin(), ScratchRegs.end(),
+ [&TRI](const unsigned &Reg1,
+ const unsigned &Reg2) -> bool {
+ return TRI.getEncodingValue(Reg1) <
+ TRI.getEncodingValue(Reg2);
+ });
+
+ for (const auto &Reg : ScratchRegs) {
+ LDM.addReg(Reg, RegState::Define);
+ STM.addReg(Reg, RegState::Kill);
+ }
+
+ BB->erase(MBBI);
+}
+
+
+bool
+ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ Reloc::Model RM = MF.getTarget().getRelocationModel();
+
+ if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
+ assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
+ "LOAD_STACK_GUARD currently supported only for MachO.");
+ expandLoadStackGuard(MI, RM);
+ MI->getParent()->erase(MI);
+ return true;
+ }
+
+ if (MI->getOpcode() == ARM::MEMCPY) {
+ expandMEMCPY(MI);
+ return true;
+ }
+
+ // This hook gets to expand COPY instructions before they become
+ // copyPhysReg() calls. Look for VMOVS instructions that can legally be
+ // widened to VMOVD. We prefer the VMOVD when possible because it may be
+ // changed into a VORR that can go down the NEON pipeline.
+ if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15() ||
+ Subtarget.isFPOnlySP())
+ return false;
+
+ // Look for a copy between even S-registers. That is where we keep floats
+ // when using NEON v2f32 instructions for f32 arithmetic.
+ unsigned DstRegS = MI->getOperand(0).getReg();
+ unsigned SrcRegS = MI->getOperand(1).getReg();
+ if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
+ return false;
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ if (!DstRegD || !SrcRegD)
+ return false;
+
+ // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
+ // legal if the COPY already defines the full DstRegD, and it isn't a
+ // sub-register insertion.
+ if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
+ return false;
+
+ // A dead copy shouldn't show up here, but reject it just in case.
+ if (MI->getOperand(0).isDead())
+ return false;
+
+ // All clear, widen the COPY.
+ DEBUG(dbgs() << "widening: " << *MI);
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+
+ // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg
+ // or some other super-register.
+ int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
+ if (ImpDefIdx != -1)
+ MI->RemoveOperand(ImpDefIdx);
+
+ // Change the opcode and operands.
+ MI->setDesc(get(ARM::VMOVD));
+ MI->getOperand(0).setReg(DstRegD);
+ MI->getOperand(1).setReg(SrcRegD);
+ AddDefaultPred(MIB);
+
+ // We are now reading SrcRegD instead of SrcRegS. This may upset the
+ // register scavenger and machine verifier, so we need to indicate that we
+ // are reading an undefined value from SrcRegD, but a proper value from
+ // SrcRegS.
+ MI->getOperand(1).setIsUndef();
+ MIB.addReg(SrcRegS, RegState::Implicit);
+
+ // SrcRegD may actually contain an unrelated value in the ssub_1
+ // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
+ if (MI->getOperand(1).isKill()) {
+ MI->getOperand(1).setIsKill(false);
+ MI->addRegisterKilled(SrcRegS, TRI, true);
+ }
+
+ DEBUG(dbgs() << "replaced by: " << *MI);
+ return true;
+}
+
+/// Create a copy of a const pool value. Update CPI to the new index and return
+/// the label UID.
+static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
+ MachineConstantPool *MCP = MF.getConstantPool();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
+ assert(MCPE.isMachineConstantPoolEntry() &&
+ "Expecting a machine constantpool entry!");
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ unsigned PCLabelId = AFI->createPICLabelUId();
+ ARMConstantPoolValue *NewCPV = nullptr;
+
+ // FIXME: The below assumes PIC relocation model and that the function
+ // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
+ // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
+ // instructions, so that's probably OK, but is PIC always correct when
+ // we get here?
+ if (ACPV->isGlobalValue())
+ NewCPV = ARMConstantPoolConstant::Create(
+ cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
+ 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
+ else if (ACPV->isExtSymbol())
+ NewCPV = ARMConstantPoolSymbol::
+ Create(MF.getFunction()->getContext(),
+ cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
+ else if (ACPV->isBlockAddress())
+ NewCPV = ARMConstantPoolConstant::
+ Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
+ ARMCP::CPBlockAddress, 4);
+ else if (ACPV->isLSDA())
+ NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
+ ARMCP::CPLSDA, 4);
+ else if (ACPV->isMachineBasicBlock())
+ NewCPV = ARMConstantPoolMBB::
+ Create(MF.getFunction()->getContext(),
+ cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
+ else
+ llvm_unreachable("Unexpected ARM constantpool value type!!");
+ CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
+ return PCLabelId;
+}
+
+void ARMBaseInstrInfo::
+reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const {
+ unsigned Opcode = Orig->getOpcode();
+ switch (Opcode) {
+ default: {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
+ MBB.insert(I, MI);
+ break;
+ }
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ MachineFunction &MF = *MBB.getParent();
+ unsigned CPI = Orig->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
+ DestReg)
+ .addConstantPoolIndex(CPI).addImm(PCLabelId);
+ MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
+ break;
+ }
+ }
+}
+
+MachineInstr *
+ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
+ MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
+ switch(Orig->getOpcode()) {
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ unsigned CPI = Orig->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ Orig->getOperand(1).setIndex(CPI);
+ Orig->getOperand(2).setImm(PCLabelId);
+ break;
+ }
+ }
+ return MI;
+}
+
+bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
+ const MachineInstr *MI1,
+ const MachineRegisterInfo *MRI) const {
+ unsigned Opcode = MI0->getOpcode();
+ if (Opcode == ARM::t2LDRpci ||
+ Opcode == ARM::t2LDRpci_pic ||
+ Opcode == ARM::tLDRpci ||
+ Opcode == ARM::tLDRpci_pic ||
+ Opcode == ARM::LDRLIT_ga_pcrel ||
+ Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
+ Opcode == ARM::tLDRLIT_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_pcrel) {
+ if (MI1->getOpcode() != Opcode)
+ return false;
+ if (MI0->getNumOperands() != MI1->getNumOperands())
+ return false;
+
+ const MachineOperand &MO0 = MI0->getOperand(1);
+ const MachineOperand &MO1 = MI1->getOperand(1);
+ if (MO0.getOffset() != MO1.getOffset())
+ return false;
+
+ if (Opcode == ARM::LDRLIT_ga_pcrel ||
+ Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
+ Opcode == ARM::tLDRLIT_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_pcrel)
+ // Ignore the PC labels.
+ return MO0.getGlobal() == MO1.getGlobal();
+
+ const MachineFunction *MF = MI0->getParent()->getParent();
+ const MachineConstantPool *MCP = MF->getConstantPool();
+ int CPI0 = MO0.getIndex();
+ int CPI1 = MO1.getIndex();
+ const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
+ const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
+ bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
+ bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
+ if (isARMCP0 && isARMCP1) {
+ ARMConstantPoolValue *ACPV0 =
+ static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
+ ARMConstantPoolValue *ACPV1 =
+ static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
+ return ACPV0->hasSameValue(ACPV1);
+ } else if (!isARMCP0 && !isARMCP1) {
+ return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
+ }
+ return false;
+ } else if (Opcode == ARM::PICLDR) {
+ if (MI1->getOpcode() != Opcode)
+ return false;
+ if (MI0->getNumOperands() != MI1->getNumOperands())
+ return false;
+
+ unsigned Addr0 = MI0->getOperand(1).getReg();
+ unsigned Addr1 = MI1->getOperand(1).getReg();
+ if (Addr0 != Addr1) {
+ if (!MRI ||
+ !TargetRegisterInfo::isVirtualRegister(Addr0) ||
+ !TargetRegisterInfo::isVirtualRegister(Addr1))
+ return false;
+
+ // This assumes SSA form.
+ MachineInstr *Def0 = MRI->getVRegDef(Addr0);
+ MachineInstr *Def1 = MRI->getVRegDef(Addr1);
+ // Check if the loaded value, e.g. a constantpool of a global address, are
+ // the same.
+ if (!produceSameValue(Def0, Def1, MRI))
+ return false;
+ }
+
+ for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
+ // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
+ const MachineOperand &MO0 = MI0->getOperand(i);
+ const MachineOperand &MO1 = MI1->getOperand(i);
+ if (!MO0.isIdenticalTo(MO1))
+ return false;
+ }
+ return true;
+ }
+
+ return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
+}
+
+/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
+/// determine if two loads are loading from the same base address. It should
+/// only return true if the base pointers are the same and the only differences
+/// between the two addresses is the offset. It also returns the offsets by
+/// reference.
+///
+/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
+/// is permanently disabled.
+bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1,
+ int64_t &Offset2) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
+ return false;
+
+ switch (Load1->getMachineOpcode()) {
+ default:
+ return false;
+ case ARM::LDRi12:
+ case ARM::LDRBi12:
+ case ARM::LDRD:
+ case ARM::LDRH:
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRDi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ break;
+ }
+
+ switch (Load2->getMachineOpcode()) {
+ default:
+ return false;
+ case ARM::LDRi12:
+ case ARM::LDRBi12:
+ case ARM::LDRD:
+ case ARM::LDRH:
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ break;
+ }
+
+ // Check if base addresses and chain operands match.
+ if (Load1->getOperand(0) != Load2->getOperand(0) ||
+ Load1->getOperand(4) != Load2->getOperand(4))
+ return false;
+
+ // Index should be Reg0.
+ if (Load1->getOperand(3) != Load2->getOperand(3))
+ return false;
+
+ // Determine the offsets.
+ if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
+ isa<ConstantSDNode>(Load2->getOperand(1))) {
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
+ Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
+ return true;
+ }
+
+ return false;
+}
+
+/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
+/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
+/// be scheduled togther. On some targets if two loads are loading from
+/// addresses in the same cache line, it's better if they are scheduled
+/// together. This function takes two integers that represent the load offsets
+/// from the common base address. It returns true if it decides it's desirable
+/// to schedule the two loads together. "NumLoads" is the number of loads that
+/// have already been scheduled after Load1.
+///
+/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
+/// is permanently disabled.
+bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ assert(Offset2 > Offset1);
+
+ if ((Offset2 - Offset1) / 8 > 64)
+ return false;
+
+ // Check if the machine opcodes are different. If they are different
+ // then we consider them to not be of the same base address,
+ // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
+ // In this case, they are considered to be the same because they are different
+ // encoding forms of the same basic instruction.
+ if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
+ !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
+ Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
+ (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
+ Load2->getMachineOpcode() == ARM::t2LDRBi8)))
+ return false; // FIXME: overly conservative?
+
+ // Four loads in a row should be sufficient.
+ if (NumLoads >= 3)
+ return false;
+
+ return true;
+}
+
+bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Debug info is never a scheduling boundary. It's necessary to be explicit
+ // due to the special treatment of IT instructions below, otherwise a
+ // dbg_value followed by an IT will result in the IT instruction being
+ // considered a scheduling hazard, which is wrong. It should be the actual
+ // instruction preceding the dbg_value instruction(s), just like it is
+ // when debug info is not present.
+ if (MI->isDebugValue())
+ return false;
+
+ // Terminators and labels can't be scheduled around.
+ if (MI->isTerminator() || MI->isPosition())
+ return true;
+
+ // Treat the start of the IT block as a scheduling boundary, but schedule
+ // t2IT along with all instructions following it.
+ // FIXME: This is a big hammer. But the alternative is to add all potential
+ // true and anti dependencies to IT block instructions as implicit operands
+ // to the t2IT instruction. The added compile time and complexity does not
+ // seem worth it.
+ MachineBasicBlock::const_iterator I = MI;
+ // Make sure to skip any dbg_value instructions
+ while (++I != MBB->end() && I->isDebugValue())
+ ;
+ if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
+ return true;
+
+ // Don't attempt to schedule around any instruction that defines
+ // a stack-oriented pointer, as it's unlikely to be profitable. This
+ // saves compile time, because it doesn't require every single
+ // stack slot reference to depend on the instruction that does the
+ // modification.
+ // Calls don't actually change the stack pointer, even if they have imp-defs.
+ // No ARM calling conventions change the stack pointer. (X86 calling
+ // conventions sometimes do).
+ if (!MI->isCall() && MI->definesRegister(ARM::SP))
+ return true;
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ BranchProbability Probability) const {
+ if (!NumCycles)
+ return false;
+
+ // If we are optimizing for size, see if the branch in the predecessor can be
+ // lowered to cbn?z by the constant island lowering pass, and return false if
+ // so. This results in a shorter instruction sequence.
+ if (MBB.getParent()->getFunction()->optForSize()) {
+ MachineBasicBlock *Pred = *MBB.pred_begin();
+ if (!Pred->empty()) {
+ MachineInstr *LastMI = &*Pred->rbegin();
+ if (LastMI->getOpcode() == ARM::t2Bcc) {
+ MachineBasicBlock::iterator CmpMI = LastMI;
+ if (CmpMI != Pred->begin()) {
+ --CmpMI;
+ if (CmpMI->getOpcode() == ARM::tCMPi8 ||
+ CmpMI->getOpcode() == ARM::t2CMPri) {
+ unsigned Reg = CmpMI->getOperand(0).getReg();
+ unsigned PredReg = 0;
+ ARMCC::CondCodes P = getInstrPredicate(CmpMI, PredReg);
+ if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
+ isARMLowRegister(Reg))
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ // Attempt to estimate the relative costs of predication versus branching.
+ // Here we scale up each component of UnpredCost to avoid precision issue when
+ // scaling NumCycles by Probability.
+ const unsigned ScalingUpFactor = 1024;
+ unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor);
+ UnpredCost += ScalingUpFactor; // The branch itself
+ UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
+
+ return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost;
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned TCycles, unsigned TExtra,
+ MachineBasicBlock &FMBB,
+ unsigned FCycles, unsigned FExtra,
+ BranchProbability Probability) const {
+ if (!TCycles || !FCycles)
+ return false;
+
+ // Attempt to estimate the relative costs of predication versus branching.
+ // Here we scale up each component of UnpredCost to avoid precision issue when
+ // scaling TCycles/FCycles by Probability.
+ const unsigned ScalingUpFactor = 1024;
+ unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
+ unsigned FUnpredCost =
+ Probability.getCompl().scale(FCycles * ScalingUpFactor);
+ unsigned UnpredCost = TUnpredCost + FUnpredCost;
+ UnpredCost += 1 * ScalingUpFactor; // The branch itself
+ UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
+
+ return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost;
+}
+
+bool
+ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const {
+ // Reduce false anti-dependencies to let Swift's out-of-order execution
+ // engine do its thing.
+ return Subtarget.isSwift();
+}
+
+/// getInstrPredicate - If instruction is predicated, returns its predicate
+/// condition, otherwise returns AL. It also returns the condition code
+/// register by reference.
+ARMCC::CondCodes
+llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
+ int PIdx = MI->findFirstPredOperandIdx();
+ if (PIdx == -1) {
+ PredReg = 0;
+ return ARMCC::AL;
+ }
+
+ PredReg = MI->getOperand(PIdx+1).getReg();
+ return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
+}
+
+
+unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
+ if (Opc == ARM::B)
+ return ARM::Bcc;
+ if (Opc == ARM::tB)
+ return ARM::tBcc;
+ if (Opc == ARM::t2B)
+ return ARM::t2Bcc;
+
+ llvm_unreachable("Unknown unconditional branch opcode!");
+}
+
+MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr *MI,
+ bool NewMI,
+ unsigned OpIdx1,
+ unsigned OpIdx2) const {
+ switch (MI->getOpcode()) {
+ case ARM::MOVCCr:
+ case ARM::t2MOVCCr: {
+ // MOVCC can be commuted by inverting the condition.
+ unsigned PredReg = 0;
+ ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
+ // MOVCC AL can't be inverted. Shouldn't happen.
+ if (CC == ARMCC::AL || PredReg != ARM::CPSR)
+ return nullptr;
+ MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
+ if (!MI)
+ return nullptr;
+ // After swapping the MOVCC operands, also invert the condition.
+ MI->getOperand(MI->findFirstPredOperandIdx())
+ .setImm(ARMCC::getOppositeCondition(CC));
+ return MI;
+ }
+ }
+ return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
+}
+
+/// Identify instructions that can be folded into a MOVCC instruction, and
+/// return the defining instruction.
+static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
+ const MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return nullptr;
+ if (!MRI.hasOneNonDBGUse(Reg))
+ return nullptr;
+ MachineInstr *MI = MRI.getVRegDef(Reg);
+ if (!MI)
+ return nullptr;
+ // MI is folded into the MOVCC by predicating it.
+ if (!MI->isPredicable())
+ return nullptr;
+ // Check if MI has any non-dead defs or physreg uses. This also detects
+ // predicated instructions which will be reading CPSR.
+ for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ // Reject frame index operands, PEI can't handle the predicated pseudos.
+ if (MO.isFI() || MO.isCPI() || MO.isJTI())
+ return nullptr;
+ if (!MO.isReg())
+ continue;
+ // MI can't have any tied operands, that would conflict with predication.
+ if (MO.isTied())
+ return nullptr;
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ return nullptr;
+ if (MO.isDef() && !MO.isDead())
+ return nullptr;
+ }
+ bool DontMoveAcrossStores = true;
+ if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
+ return nullptr;
+ return MI;
+}
+
+bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
+ SmallVectorImpl<MachineOperand> &Cond,
+ unsigned &TrueOp, unsigned &FalseOp,
+ bool &Optimizable) const {
+ assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ // MOVCC operands:
+ // 0: Def.
+ // 1: True use.
+ // 2: False use.
+ // 3: Condition code.
+ // 4: CPSR use.
+ TrueOp = 1;
+ FalseOp = 2;
+ Cond.push_back(MI->getOperand(3));
+ Cond.push_back(MI->getOperand(4));
+ // We can always fold a def.
+ Optimizable = true;
+ return false;
+}
+
+MachineInstr *
+ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
+ SmallPtrSetImpl<MachineInstr *> &SeenMIs,
+ bool PreferFalse) const {
+ assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
+ bool Invert = !DefMI;
+ if (!DefMI)
+ DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
+ if (!DefMI)
+ return nullptr;
+
+ // Find new register class to use.
+ MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
+ unsigned DestReg = MI->getOperand(0).getReg();
+ const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
+ if (!MRI.constrainRegClass(DestReg, PreviousClass))
+ return nullptr;
+
+ // Create a new predicated version of DefMI.
+ // Rfalse is the first use.
+ MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ DefMI->getDesc(), DestReg);
+
+ // Copy all the DefMI operands, excluding its (null) predicate.
+ const MCInstrDesc &DefDesc = DefMI->getDesc();
+ for (unsigned i = 1, e = DefDesc.getNumOperands();
+ i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
+ NewMI.addOperand(DefMI->getOperand(i));
+
+ unsigned CondCode = MI->getOperand(3).getImm();
+ if (Invert)
+ NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
+ else
+ NewMI.addImm(CondCode);
+ NewMI.addOperand(MI->getOperand(4));
+
+ // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
+ if (NewMI->hasOptionalDef())
+ AddDefaultCC(NewMI);
+
+ // The output register value when the predicate is false is an implicit
+ // register operand tied to the first def.
+ // The tie makes the register allocator ensure the FalseReg is allocated the
+ // same register as operand 0.
+ FalseReg.setImplicit();
+ NewMI.addOperand(FalseReg);
+ NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
+
+ // Update SeenMIs set: register newly created MI and erase removed DefMI.
+ SeenMIs.insert(NewMI);
+ SeenMIs.erase(DefMI);
+
+ // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
+ // DefMI would be invalid when tranferred inside the loop. Checking for a
+ // loop is expensive, but at least remove kill flags if they are in different
+ // BBs.
+ if (DefMI->getParent() != MI->getParent())
+ NewMI->clearKillInfo();
+
+ // The caller will erase MI, but not DefMI.
+ DefMI->eraseFromParent();
+ return NewMI;
+}
+
+/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
+/// instruction is encoded with an 'S' bit is determined by the optional CPSR
+/// def operand.
+///
+/// This will go away once we can teach tblgen how to set the optional CPSR def
+/// operand itself.
+struct AddSubFlagsOpcodePair {
+ uint16_t PseudoOpc;
+ uint16_t MachineOpc;
+};
+
+static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
+ {ARM::ADDSri, ARM::ADDri},
+ {ARM::ADDSrr, ARM::ADDrr},
+ {ARM::ADDSrsi, ARM::ADDrsi},
+ {ARM::ADDSrsr, ARM::ADDrsr},
+
+ {ARM::SUBSri, ARM::SUBri},
+ {ARM::SUBSrr, ARM::SUBrr},
+ {ARM::SUBSrsi, ARM::SUBrsi},
+ {ARM::SUBSrsr, ARM::SUBrsr},
+
+ {ARM::RSBSri, ARM::RSBri},
+ {ARM::RSBSrsi, ARM::RSBrsi},
+ {ARM::RSBSrsr, ARM::RSBrsr},
+
+ {ARM::t2ADDSri, ARM::t2ADDri},
+ {ARM::t2ADDSrr, ARM::t2ADDrr},
+ {ARM::t2ADDSrs, ARM::t2ADDrs},
+
+ {ARM::t2SUBSri, ARM::t2SUBri},
+ {ARM::t2SUBSrr, ARM::t2SUBrr},
+ {ARM::t2SUBSrs, ARM::t2SUBrs},
+
+ {ARM::t2RSBSri, ARM::t2RSBri},
+ {ARM::t2RSBSrs, ARM::t2RSBrs},
+};
+
+unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
+ for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
+ if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
+ return AddSubFlagsOpcodeMap[i].MachineOpc;
+ return 0;
+}
+
+void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI, DebugLoc dl,
+ unsigned DestReg, unsigned BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, unsigned PredReg,
+ const ARMBaseInstrInfo &TII, unsigned MIFlags) {
+ if (NumBytes == 0 && DestReg != BaseReg) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
+ .setMIFlags(MIFlags);
+ return;
+ }
+
+ bool isSub = NumBytes < 0;
+ if (isSub) NumBytes = -NumBytes;
+
+ while (NumBytes) {
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
+ unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
+ assert(ThisVal && "Didn't extract field correctly");
+
+ // We will handle these bits from offset, clear them.
+ NumBytes &= ~ThisVal;
+
+ assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
+
+ // Build the new ADD / SUB.
+ unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
+ .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
+ .setMIFlags(MIFlags);
+ BaseReg = DestReg;
+ }
+}
+
+bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
+ MachineFunction &MF, MachineInstr *MI,
+ unsigned NumBytes) {
+ // This optimisation potentially adds lots of load and store
+ // micro-operations, it's only really a great benefit to code-size.
+ if (!MF.getFunction()->optForMinSize())
+ return false;
+
+ // If only one register is pushed/popped, LLVM can use an LDR/STR
+ // instead. We can't modify those so make sure we're dealing with an
+ // instruction we understand.
+ bool IsPop = isPopOpcode(MI->getOpcode());
+ bool IsPush = isPushOpcode(MI->getOpcode());
+ if (!IsPush && !IsPop)
+ return false;
+
+ bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
+ MI->getOpcode() == ARM::VLDMDIA_UPD;
+ bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
+ MI->getOpcode() == ARM::tPOP ||
+ MI->getOpcode() == ARM::tPOP_RET;
+
+ assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
+ MI->getOperand(1).getReg() == ARM::SP)) &&
+ "trying to fold sp update into non-sp-updating push/pop");
+
+ // The VFP push & pop act on D-registers, so we can only fold an adjustment
+ // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
+ // if this is violated.
+ if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
+ return false;
+
+ // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
+ // pred) so the list starts at 4. Thumb1 starts after the predicate.
+ int RegListIdx = IsT1PushPop ? 2 : 4;
+
+ // Calculate the space we'll need in terms of registers.
+ unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
+ unsigned RD0Reg, RegsNeeded;
+ if (IsVFPPushPop) {
+ RD0Reg = ARM::D0;
+ RegsNeeded = NumBytes / 8;
+ } else {
+ RD0Reg = ARM::R0;
+ RegsNeeded = NumBytes / 4;
+ }
+
+ // We're going to have to strip all list operands off before
+ // re-adding them since the order matters, so save the existing ones
+ // for later.
+ SmallVector<MachineOperand, 4> RegList;
+ for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
+ RegList.push_back(MI->getOperand(i));
+
+ const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
+ const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
+
+ // Now try to find enough space in the reglist to allocate NumBytes.
+ for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
+ --CurReg) {
+ if (!IsPop) {
+ // Pushing any register is completely harmless, mark the
+ // register involved as undef since we don't care about it in
+ // the slightest.
+ RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
+ false, false, true));
+ --RegsNeeded;
+ continue;
+ }
+
+ // However, we can only pop an extra register if it's not live. For
+ // registers live within the function we might clobber a return value
+ // register; the other way a register can be live here is if it's
+ // callee-saved.
+ if (isCalleeSavedRegister(CurReg, CSRegs) ||
+ MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
+ MachineBasicBlock::LQR_Dead) {
+ // VFP pops don't allow holes in the register list, so any skip is fatal
+ // for our transformation. GPR pops do, so we should just keep looking.
+ if (IsVFPPushPop)
+ return false;
+ else
+ continue;
+ }
+
+ // Mark the unimportant registers as <def,dead> in the POP.
+ RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
+ true));
+ --RegsNeeded;
+ }
+
+ if (RegsNeeded > 0)
+ return false;
+
+ // Finally we know we can profitably perform the optimisation so go
+ // ahead: strip all existing registers off and add them back again
+ // in the right order.
+ for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
+ MI->RemoveOperand(i);
+
+ // Add the complete list back in.
+ MachineInstrBuilder MIB(MF, &*MI);
+ for (int i = RegList.size() - 1; i >= 0; --i)
+ MIB.addOperand(RegList[i]);
+
+ return true;
+}
+
+bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) {
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ bool isSub = false;
+
+ // Memory operands in inline assembly always use AddrMode2.
+ if (Opcode == ARM::INLINEASM)
+ AddrMode = ARMII::AddrMode2;
+
+ if (Opcode == ARM::ADDri) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+ if (Offset == 0) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::MOVr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.RemoveOperand(FrameRegIdx+1);
+ Offset = 0;
+ return true;
+ } else if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ MI.setDesc(TII.get(ARM::SUBri));
+ }
+
+ // Common case: small offset, fits into instruction.
+ if (ARM_AM::getSOImmVal(Offset) != -1) {
+ // Replace the FrameIndex with sp / fp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, pull as much of the immedidate into this ADDri/SUBri
+ // as possible.
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
+ unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
+
+ // We will handle these bits from offset, clear them.
+ Offset &= ~ThisImmVal;
+
+ // Get the properly encoded SOImmVal field.
+ assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
+ "Bit extraction didn't work?");
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
+ } else {
+ unsigned ImmIdx = 0;
+ int InstrOffs = 0;
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ switch (AddrMode) {
+ case ARMII::AddrMode_i12: {
+ ImmIdx = FrameRegIdx + 1;
+ InstrOffs = MI.getOperand(ImmIdx).getImm();
+ NumBits = 12;
+ break;
+ }
+ case ARMII::AddrMode2: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 12;
+ break;
+ }
+ case ARMII::AddrMode3: {
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ break;
+ }
+ case ARMII::AddrMode4:
+ case ARMII::AddrMode6:
+ // Can't fold any offset even if it's zero.
+ return false;
+ case ARMII::AddrMode5: {
+ ImmIdx = FrameRegIdx+1;
+ InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ Scale = 4;
+ break;
+ }
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+
+ Offset += InstrOffs * Scale;
+ assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ }
+
+ // Attempt to fold address comp. if opcode has offset bits
+ if (NumBits > 0) {
+ // Common case: small offset, fits into instruction.
+ MachineOperand &ImmOp = MI.getOperand(ImmIdx);
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with sp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ // FIXME: When addrmode2 goes away, this will simplify (like the
+ // T2 version), as the LDR.i12 versions don't need the encoding
+ // tricks for the offset value.
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
+ ImmedOffset = ImmedOffset & Mask;
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask*Scale);
+ }
+ }
+
+ Offset = (isSub) ? -Offset : Offset;
+ return Offset == 0;
+}
+
+/// analyzeCompare - For a comparison instruction, return the source registers
+/// in SrcReg and SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool ARMBaseInstrInfo::
+analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
+ int &CmpMask, int &CmpValue) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::CMPri:
+ case ARM::t2CMPri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI->getOperand(1).getImm();
+ return true;
+ case ARM::CMPrr:
+ case ARM::t2CMPrr:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = MI->getOperand(1).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case ARM::TSTri:
+ case ARM::t2TSTri:
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = MI->getOperand(1).getImm();
+ CmpValue = 0;
+ return true;
+ }
+
+ return false;
+}
+
+/// isSuitableForMask - Identify a suitable 'and' instruction that
+/// operates on the given source register and applies the same mask
+/// as a 'tst' instruction. Provide a limited look-through for copies.
+/// When successful, MI will hold the found instruction.
+static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
+ int CmpMask, bool CommonUse) {
+ switch (MI->getOpcode()) {
+ case ARM::ANDri:
+ case ARM::t2ANDri:
+ if (CmpMask != MI->getOperand(2).getImm())
+ return false;
+ if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
+ return true;
+ break;
+ }
+
+ return false;
+}
+
+/// getSwappedCondition - assume the flags are set by MI(a,b), return
+/// the condition code if we modify the instructions such that flags are
+/// set by MI(b,a).
+inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
+ switch (CC) {
+ default: return ARMCC::AL;
+ case ARMCC::EQ: return ARMCC::EQ;
+ case ARMCC::NE: return ARMCC::NE;
+ case ARMCC::HS: return ARMCC::LS;
+ case ARMCC::LO: return ARMCC::HI;
+ case ARMCC::HI: return ARMCC::LO;
+ case ARMCC::LS: return ARMCC::HS;
+ case ARMCC::GE: return ARMCC::LE;
+ case ARMCC::LT: return ARMCC::GT;
+ case ARMCC::GT: return ARMCC::LT;
+ case ARMCC::LE: return ARMCC::GE;
+ }
+}
+
+/// isRedundantFlagInstr - check whether the first instruction, whose only
+/// purpose is to update flags, can be made redundant.
+/// CMPrr can be made redundant by SUBrr if the operands are the same.
+/// CMPri can be made redundant by SUBri if the operands are the same.
+/// This function can be extended later on.
+inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
+ unsigned SrcReg2, int ImmValue,
+ MachineInstr *OI) {
+ if ((CmpI->getOpcode() == ARM::CMPrr ||
+ CmpI->getOpcode() == ARM::t2CMPrr) &&
+ (OI->getOpcode() == ARM::SUBrr ||
+ OI->getOpcode() == ARM::t2SUBrr) &&
+ ((OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getReg() == SrcReg2) ||
+ (OI->getOperand(1).getReg() == SrcReg2 &&
+ OI->getOperand(2).getReg() == SrcReg)))
+ return true;
+
+ if ((CmpI->getOpcode() == ARM::CMPri ||
+ CmpI->getOpcode() == ARM::t2CMPri) &&
+ (OI->getOpcode() == ARM::SUBri ||
+ OI->getOpcode() == ARM::t2SUBri) &&
+ OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getImm() == ImmValue)
+ return true;
+ return false;
+}
+
+/// optimizeCompareInstr - Convert the instruction supplying the argument to the
+/// comparison into one that sets the zero bit in the flags register;
+/// Remove a redundant Compare instruction if an earlier instruction can set the
+/// flags in the same way as Compare.
+/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
+/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
+/// condition code of instructions which use the flags.
+bool ARMBaseInstrInfo::
+optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
+ int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const {
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+
+ // Masked compares sometimes use the same register as the corresponding 'and'.
+ if (CmpMask != ~0) {
+ if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
+ MI = nullptr;
+ for (MachineRegisterInfo::use_instr_iterator
+ UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
+ UI != UE; ++UI) {
+ if (UI->getParent() != CmpInstr->getParent()) continue;
+ MachineInstr *PotentialAND = &*UI;
+ if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
+ isPredicated(PotentialAND))
+ continue;
+ MI = PotentialAND;
+ break;
+ }
+ if (!MI) return false;
+ }
+ }
+
+ // Get ready to iterate backward from CmpInstr.
+ MachineBasicBlock::iterator I = CmpInstr, E = MI,
+ B = CmpInstr->getParent()->begin();
+
+ // Early exit if CmpInstr is at the beginning of the BB.
+ if (I == B) return false;
+
+ // There are two possible candidates which can be changed to set CPSR:
+ // One is MI, the other is a SUB instruction.
+ // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
+ // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
+ MachineInstr *Sub = nullptr;
+ if (SrcReg2 != 0)
+ // MI is not a candidate for CMPrr.
+ MI = nullptr;
+ else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
+ // Conservatively refuse to convert an instruction which isn't in the same
+ // BB as the comparison.
+ // For CMPri w/ CmpValue != 0, a Sub may still be a candidate.
+ // Thus we cannot return here.
+ if (CmpInstr->getOpcode() == ARM::CMPri ||
+ CmpInstr->getOpcode() == ARM::t2CMPri)
+ MI = nullptr;
+ else
+ return false;
+ }
+
+ // Check that CPSR isn't set between the comparison instruction and the one we
+ // want to change. At the same time, search for Sub.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ --I;
+ for (; I != E; --I) {
+ const MachineInstr &Instr = *I;
+
+ if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
+ Instr.readsRegister(ARM::CPSR, TRI))
+ // This instruction modifies or uses CPSR after the one we want to
+ // change. We can't do this transformation.
+ return false;
+
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
+ Sub = &*I;
+ break;
+ }
+
+ if (I == B)
+ // The 'and' is below the comparison instruction.
+ return false;
+ }
+
+ // Return false if no candidates exist.
+ if (!MI && !Sub)
+ return false;
+
+ // The single candidate is called MI.
+ if (!MI) MI = Sub;
+
+ // We can't use a predicated instruction - it doesn't always write the flags.
+ if (isPredicated(MI))
+ return false;
+
+ switch (MI->getOpcode()) {
+ default: break;
+ case ARM::RSBrr:
+ case ARM::RSBri:
+ case ARM::RSCrr:
+ case ARM::RSCri:
+ case ARM::ADDrr:
+ case ARM::ADDri:
+ case ARM::ADCrr:
+ case ARM::ADCri:
+ case ARM::SUBrr:
+ case ARM::SUBri:
+ case ARM::SBCrr:
+ case ARM::SBCri:
+ case ARM::t2RSBri:
+ case ARM::t2ADDrr:
+ case ARM::t2ADDri:
+ case ARM::t2ADCrr:
+ case ARM::t2ADCri:
+ case ARM::t2SUBrr:
+ case ARM::t2SUBri:
+ case ARM::t2SBCrr:
+ case ARM::t2SBCri:
+ case ARM::ANDrr:
+ case ARM::ANDri:
+ case ARM::t2ANDrr:
+ case ARM::t2ANDri:
+ case ARM::ORRrr:
+ case ARM::ORRri:
+ case ARM::t2ORRrr:
+ case ARM::t2ORRri:
+ case ARM::EORrr:
+ case ARM::EORri:
+ case ARM::t2EORrr:
+ case ARM::t2EORri: {
+ // Scan forward for the use of CPSR
+ // When checking against MI: if it's a conditional code that requires
+ // checking of the V bit or C bit, then this is not safe to do.
+ // It is safe to remove CmpInstr if CPSR is redefined or killed.
+ // If we are done with the basic block, we need to check whether CPSR is
+ // live-out.
+ SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
+ OperandsToUpdate;
+ bool isSafe = false;
+ I = CmpInstr;
+ E = CmpInstr->getParent()->end();
+ while (!isSafe && ++I != E) {
+ const MachineInstr &Instr = *I;
+ for (unsigned IO = 0, EO = Instr.getNumOperands();
+ !isSafe && IO != EO; ++IO) {
+ const MachineOperand &MO = Instr.getOperand(IO);
+ if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
+ isSafe = true;
+ break;
+ }
+ if (!MO.isReg() || MO.getReg() != ARM::CPSR)
+ continue;
+ if (MO.isDef()) {
+ isSafe = true;
+ break;
+ }
+ // Condition code is after the operand before CPSR except for VSELs.
+ ARMCC::CondCodes CC;
+ bool IsInstrVSel = true;
+ switch (Instr.getOpcode()) {
+ default:
+ IsInstrVSel = false;
+ CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
+ break;
+ case ARM::VSELEQD:
+ case ARM::VSELEQS:
+ CC = ARMCC::EQ;
+ break;
+ case ARM::VSELGTD:
+ case ARM::VSELGTS:
+ CC = ARMCC::GT;
+ break;
+ case ARM::VSELGED:
+ case ARM::VSELGES:
+ CC = ARMCC::GE;
+ break;
+ case ARM::VSELVSS:
+ case ARM::VSELVSD:
+ CC = ARMCC::VS;
+ break;
+ }
+
+ if (Sub) {
+ ARMCC::CondCodes NewCC = getSwappedCondition(CC);
+ if (NewCC == ARMCC::AL)
+ return false;
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
+ // on CMP needs to be updated to be based on SUB.
+ // Push the condition code operands to OperandsToUpdate.
+ // If it is safe to remove CmpInstr, the condition code of these
+ // operands will be modified.
+ if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
+ Sub->getOperand(2).getReg() == SrcReg) {
+ // VSel doesn't support condition code update.
+ if (IsInstrVSel)
+ return false;
+ OperandsToUpdate.push_back(
+ std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
+ }
+ } else {
+ // No Sub, so this is x = <op> y, z; cmp x, 0.
+ switch (CC) {
+ case ARMCC::EQ: // Z
+ case ARMCC::NE: // Z
+ case ARMCC::MI: // N
+ case ARMCC::PL: // N
+ case ARMCC::AL: // none
+ // CPSR can be used multiple times, we should continue.
+ break;
+ case ARMCC::HS: // C
+ case ARMCC::LO: // C
+ case ARMCC::VS: // V
+ case ARMCC::VC: // V
+ case ARMCC::HI: // C Z
+ case ARMCC::LS: // C Z
+ case ARMCC::GE: // N V
+ case ARMCC::LT: // N V
+ case ARMCC::GT: // Z N V
+ case ARMCC::LE: // Z N V
+ // The instruction uses the V bit or C bit which is not safe.
+ return false;
+ }
+ }
+ }
+ }
+
+ // If CPSR is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if (!isSafe) {
+ MachineBasicBlock *MBB = CmpInstr->getParent();
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ if ((*SI)->isLiveIn(ARM::CPSR))
+ return false;
+ }
+
+ // Toggle the optional operand to CPSR.
+ MI->getOperand(5).setReg(ARM::CPSR);
+ MI->getOperand(5).setIsDef(true);
+ assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
+ CmpInstr->eraseFromParent();
+
+ // Modify the condition code of operands in OperandsToUpdate.
+ // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
+ // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
+ OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
+ MachineInstr *DefMI, unsigned Reg,
+ MachineRegisterInfo *MRI) const {
+ // Fold large immediates into add, sub, or, xor.
+ unsigned DefOpc = DefMI->getOpcode();
+ if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
+ return false;
+ if (!DefMI->getOperand(1).isImm())
+ // Could be t2MOVi32imm <ga:xx>
+ return false;
+
+ if (!MRI->hasOneNonDBGUse(Reg))
+ return false;
+
+ const MCInstrDesc &DefMCID = DefMI->getDesc();
+ if (DefMCID.hasOptionalDef()) {
+ unsigned NumOps = DefMCID.getNumOperands();
+ const MachineOperand &MO = DefMI->getOperand(NumOps-1);
+ if (MO.getReg() == ARM::CPSR && !MO.isDead())
+ // If DefMI defines CPSR and it is not dead, it's obviously not safe
+ // to delete DefMI.
+ return false;
+ }
+
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ if (UseMCID.hasOptionalDef()) {
+ unsigned NumOps = UseMCID.getNumOperands();
+ if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
+ // If the instruction sets the flag, do not attempt this optimization
+ // since it may change the semantics of the code.
+ return false;
+ }
+
+ unsigned UseOpc = UseMI->getOpcode();
+ unsigned NewUseOpc = 0;
+ uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
+ uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
+ bool Commute = false;
+ switch (UseOpc) {
+ default: return false;
+ case ARM::SUBrr:
+ case ARM::ADDrr:
+ case ARM::ORRrr:
+ case ARM::EORrr:
+ case ARM::t2SUBrr:
+ case ARM::t2ADDrr:
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr: {
+ Commute = UseMI->getOperand(2).getReg() != Reg;
+ switch (UseOpc) {
+ default: break;
+ case ARM::SUBrr: {
+ if (Commute)
+ return false;
+ ImmVal = -ImmVal;
+ NewUseOpc = ARM::SUBri;
+ // Fallthrough
+ }
+ case ARM::ADDrr:
+ case ARM::ORRrr:
+ case ARM::EORrr: {
+ if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
+ case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
+ case ARM::EORrr: NewUseOpc = ARM::EORri; break;
+ }
+ break;
+ }
+ case ARM::t2SUBrr: {
+ if (Commute)
+ return false;
+ ImmVal = -ImmVal;
+ NewUseOpc = ARM::t2SUBri;
+ // Fallthrough
+ }
+ case ARM::t2ADDrr:
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr: {
+ if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
+ case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
+ case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ unsigned OpIdx = Commute ? 2 : 1;
+ unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
+ bool isKill = UseMI->getOperand(OpIdx).isKill();
+ unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
+ AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
+ UseMI, UseMI->getDebugLoc(),
+ get(NewUseOpc), NewReg)
+ .addReg(Reg1, getKillRegState(isKill))
+ .addImm(SOImmValV1)));
+ UseMI->setDesc(get(NewUseOpc));
+ UseMI->getOperand(1).setReg(NewReg);
+ UseMI->getOperand(1).setIsKill();
+ UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
+ DefMI->eraseFromParent();
+ return true;
+}
+
+static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
+ const MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: {
+ const MCInstrDesc &Desc = MI->getDesc();
+ int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
+ assert(UOps >= 0 && "bad # UOps");
+ return UOps;
+ }
+
+ case ARM::LDRrs:
+ case ARM::LDRBrs:
+ case ARM::STRrs:
+ case ARM::STRBrs: {
+ unsigned ShOpVal = MI->getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 1;
+ return 2;
+ }
+
+ case ARM::LDRH:
+ case ARM::STRH: {
+ if (!MI->getOperand(2).getReg())
+ return 1;
+
+ unsigned ShOpVal = MI->getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 1;
+ return 2;
+ }
+
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
+
+ case ARM::LDRSB_POST:
+ case ARM::LDRSH_POST: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ return (Rt == Rm) ? 4 : 3;
+ }
+
+ case ARM::LDR_PRE_REG:
+ case ARM::LDRB_PRE_REG: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rt == Rm)
+ return 3;
+ unsigned ShOpVal = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 2;
+ return 3;
+ }
+
+ case ARM::STR_PRE_REG:
+ case ARM::STRB_PRE_REG: {
+ unsigned ShOpVal = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 2;
+ return 3;
+ }
+
+ case ARM::LDRH_PRE:
+ case ARM::STRH_PRE: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (!Rm)
+ return 2;
+ if (Rt == Rm)
+ return 3;
+ return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
+ ? 3 : 2;
+ }
+
+ case ARM::LDR_POST_REG:
+ case ARM::LDRB_POST_REG:
+ case ARM::LDRH_POST: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ return (Rt == Rm) ? 3 : 2;
+ }
+
+ case ARM::LDR_PRE_IMM:
+ case ARM::LDRB_PRE_IMM:
+ case ARM::LDR_POST_IMM:
+ case ARM::LDRB_POST_IMM:
+ case ARM::STRB_POST_IMM:
+ case ARM::STRB_POST_REG:
+ case ARM::STRB_PRE_IMM:
+ case ARM::STRH_POST:
+ case ARM::STR_POST_IMM:
+ case ARM::STR_POST_REG:
+ case ARM::STR_PRE_IMM:
+ return 2;
+
+ case ARM::LDRSB_PRE:
+ case ARM::LDRSH_PRE: {
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rm == 0)
+ return 3;
+ unsigned Rt = MI->getOperand(0).getReg();
+ if (Rt == Rm)
+ return 4;
+ unsigned ShOpVal = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 3;
+ return 4;
+ }
+
+ case ARM::LDRD: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(2).getReg();
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
+ return (Rt == Rn) ? 3 : 2;
+ }
+
+ case ARM::STRD: {
+ unsigned Rm = MI->getOperand(3).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
+ return 2;
+ }
+
+ case ARM::LDRD_POST:
+ case ARM::t2LDRD_POST:
+ return 3;
+
+ case ARM::STRD_POST:
+ case ARM::t2STRD_POST:
+ return 4;
+
+ case ARM::LDRD_PRE: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(3).getReg();
+ unsigned Rm = MI->getOperand(4).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
+ return (Rt == Rn) ? 4 : 3;
+ }
+
+ case ARM::t2LDRD_PRE: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(3).getReg();
+ return (Rt == Rn) ? 4 : 3;
+ }
+
+ case ARM::STRD_PRE: {
+ unsigned Rm = MI->getOperand(4).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
+ return 3;
+ }
+
+ case ARM::t2STRD_PRE:
+ return 3;
+
+ case ARM::t2LDR_POST:
+ case ARM::t2LDRB_POST:
+ case ARM::t2LDRB_PRE:
+ case ARM::t2LDRSBi12:
+ case ARM::t2LDRSBi8:
+ case ARM::t2LDRSBpci:
+ case ARM::t2LDRSBs:
+ case ARM::t2LDRH_POST:
+ case ARM::t2LDRH_PRE:
+ case ARM::t2LDRSBT:
+ case ARM::t2LDRSB_POST:
+ case ARM::t2LDRSB_PRE:
+ case ARM::t2LDRSH_POST:
+ case ARM::t2LDRSH_PRE:
+ case ARM::t2LDRSHi12:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRSHpci:
+ case ARM::t2LDRSHs:
+ return 2;
+
+ case ARM::t2LDRDi8: {
+ unsigned Rt = MI->getOperand(0).getReg();
+ unsigned Rn = MI->getOperand(2).getReg();
+ return (Rt == Rn) ? 3 : 2;
+ }
+
+ case ARM::t2STRB_POST:
+ case ARM::t2STRB_PRE:
+ case ARM::t2STRBs:
+ case ARM::t2STRDi8:
+ case ARM::t2STRH_POST:
+ case ARM::t2STRH_PRE:
+ case ARM::t2STRHs:
+ case ARM::t2STR_POST:
+ case ARM::t2STR_PRE:
+ case ARM::t2STRs:
+ return 2;
+ }
+}
+
+// Return the number of 32-bit words loaded by LDM or stored by STM. If this
+// can't be easily determined return 0 (missing MachineMemOperand).
+//
+// FIXME: The current MachineInstr design does not support relying on machine
+// mem operands to determine the width of a memory access. Instead, we expect
+// the target to provide this information based on the instruction opcode and
+// operands. However, using MachineMemOperand is the best solution now for
+// two reasons:
+//
+// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
+// operands. This is much more dangerous than using the MachineMemOperand
+// sizes because CodeGen passes can insert/remove optional machine operands. In
+// fact, it's totally incorrect for preRA passes and appears to be wrong for
+// postRA passes as well.
+//
+// 2) getNumLDMAddresses is only used by the scheduling machine model and any
+// machine model that calls this should handle the unknown (zero size) case.
+//
+// Long term, we should require a target hook that verifies MachineMemOperand
+// sizes during MC lowering. That target hook should be local to MC lowering
+// because we can't ensure that it is aware of other MI forms. Doing this will
+// ensure that MachineMemOperands are correctly propagated through all passes.
+unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
+ unsigned Size = 0;
+ for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
+ E = MI->memoperands_end(); I != E; ++I) {
+ Size += (*I)->getSize();
+ }
+ return Size / 4;
+}
+
+unsigned
+ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
+ const MachineInstr *MI) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ const MCInstrDesc &Desc = MI->getDesc();
+ unsigned Class = Desc.getSchedClass();
+ int ItinUOps = ItinData->getNumMicroOps(Class);
+ if (ItinUOps >= 0) {
+ if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
+ return getNumMicroOpsSwiftLdSt(ItinData, MI);
+
+ return ItinUOps;
+ }
+
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unexpected multi-uops instruction!");
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+
+ // The number of uOps for load / store multiple are determined by the number
+ // registers.
+ //
+ // On Cortex-A8, each pair of register loads / stores can be scheduled on the
+ // same cycle. The scheduling for the first load / store must be done
+ // separately by assuming the address is not 64-bit aligned.
+ //
+ // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
+ // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
+ // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD: {
+ unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
+ return (NumRegs / 2) + (NumRegs % 2) + 1;
+ }
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
+ if (Subtarget.isSwift()) {
+ int UOps = 1 + NumRegs; // One for address computation, one for each ld / st.
+ switch (Opc) {
+ default: break;
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ ++UOps; // One for base register writeback.
+ break;
+ case ARM::LDMIA_RET:
+ case ARM::tPOP_RET:
+ case ARM::t2LDMIA_RET:
+ UOps += 2; // One for base reg wb, one for write to pc.
+ break;
+ }
+ return UOps;
+ } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ if (NumRegs < 4)
+ return 2;
+ // 4 registers would be issued: 2, 2.
+ // 5 registers would be issued: 2, 2, 1.
+ int A8UOps = (NumRegs / 2);
+ if (NumRegs % 2)
+ ++A8UOps;
+ return A8UOps;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ int A9UOps = (NumRegs / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((NumRegs % 2) ||
+ !MI->hasOneMemOperand() ||
+ (*MI->memoperands_begin())->getAlignment() < 8)
+ ++A9UOps;
+ return A9UOps;
+ } else {
+ // Assume the worst.
+ return NumRegs;
+ }
+ }
+ }
+}
+
+int
+ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ int DefCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // (regno / 2) + (regno % 2) + 1
+ DefCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++DefCycle;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ DefCycle = RegNo;
+ bool isSLoad = false;
+
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ isSLoad = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
+ ++DefCycle;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+int
+ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ int DefCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // 4 registers would be issued: 1, 2, 1.
+ // 5 registers would be issued: 1, 2, 2.
+ DefCycle = RegNo / 2;
+ if (DefCycle < 1)
+ DefCycle = 1;
+ // Result latency is issue cycle + 2: E2.
+ DefCycle += 2;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ DefCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || DefAlign < 8)
+ ++DefCycle;
+ // Result latency is AGU cycles + 2.
+ DefCycle += 2;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+int
+ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ int UseCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // (regno / 2) + (regno % 2) + 1
+ UseCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++UseCycle;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ UseCycle = RegNo;
+ bool isSStore = false;
+
+ switch (UseMCID.getOpcode()) {
+ default: break;
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ isSStore = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSStore && (RegNo % 2)) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = RegNo + 2;
+ }
+
+ return UseCycle;
+}
+
+int
+ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID,
+ unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ int UseCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ UseCycle = RegNo / 2;
+ if (UseCycle < 2)
+ UseCycle = 2;
+ // Read in E3.
+ UseCycle += 2;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ UseCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = 1;
+ }
+ return UseCycle;
+}
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID,
+ unsigned DefIdx, unsigned DefAlign,
+ const MCInstrDesc &UseMCID,
+ unsigned UseIdx, unsigned UseAlign) const {
+ unsigned DefClass = DefMCID.getSchedClass();
+ unsigned UseClass = UseMCID.getSchedClass();
+
+ if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+
+ // This may be a def / use of a variable_ops instruction, the operand
+ // latency might be determinable dynamically. Let the target try to
+ // figure it out.
+ int DefCycle = -1;
+ bool LdmBypass = false;
+ switch (DefMCID.getOpcode()) {
+ default:
+ DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ break;
+
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ LdmBypass = 1;
+ DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+ }
+
+ if (DefCycle == -1)
+ // We can't seem to determine the result latency of the def, assume it's 2.
+ DefCycle = 2;
+
+ int UseCycle = -1;
+ switch (UseMCID.getOpcode()) {
+ default:
+ UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
+ break;
+
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+ }
+
+ if (UseCycle == -1)
+ // Assume it's read in the first stage.
+ UseCycle = 1;
+
+ UseCycle = DefCycle - UseCycle + 1;
+ if (UseCycle > 0) {
+ if (LdmBypass) {
+ // It's a variable_ops instruction so we can't use DefIdx here. Just use
+ // first def operand.
+ if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
+ UseClass, UseIdx))
+ --UseCycle;
+ } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
+ UseClass, UseIdx)) {
+ --UseCycle;
+ }
+ }
+
+ return UseCycle;
+}
+
+static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
+ const MachineInstr *MI, unsigned Reg,
+ unsigned &DefIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_iterator I = MI; ++I;
+ MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
+ assert(II->isInsideBundle() && "Empty bundle?");
+
+ int Idx = -1;
+ while (II->isInsideBundle()) {
+ Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
+ if (Idx != -1)
+ break;
+ --II;
+ ++Dist;
+ }
+
+ assert(Idx != -1 && "Cannot find bundled definition!");
+ DefIdx = Idx;
+ return &*II;
+}
+
+static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
+ const MachineInstr *MI, unsigned Reg,
+ unsigned &UseIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_instr_iterator II = ++MI->getIterator();
+ assert(II->isInsideBundle() && "Empty bundle?");
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+
+ // FIXME: This doesn't properly handle multiple uses.
+ int Idx = -1;
+ while (II != E && II->isInsideBundle()) {
+ Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
+ if (Idx != -1)
+ break;
+ if (II->getOpcode() != ARM::t2IT)
+ ++Dist;
+ ++II;
+ }
+
+ if (Idx == -1) {
+ Dist = 0;
+ return nullptr;
+ }
+
+ UseIdx = Idx;
+ return &*II;
+}
+
+/// Return the number of cycles to add to (or subtract from) the static
+/// itinerary based on the def opcode and alignment. The caller will ensure that
+/// adjusted latency is at least one cycle.
+static int adjustDefLatency(const ARMSubtarget &Subtarget,
+ const MachineInstr *DefMI,
+ const MCInstrDesc *DefMCID, unsigned DefAlign) {
+ int Adjust = 0;
+ if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefMI->getOperand(3).getImm();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ --Adjust;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefMI->getOperand(3).getImm();
+ if (ShAmt == 0 || ShAmt == 2)
+ --Adjust;
+ break;
+ }
+ }
+ } else if (Subtarget.isSwift()) {
+ // FIXME: Properly handle all of the latency adjustments for address
+ // writeback.
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefMI->getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ Adjust -= 2;
+ else if (!isSub &&
+ ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
+ --Adjust;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefMI->getOperand(3).getImm();
+ if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
+ Adjust -= 2;
+ break;
+ }
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.isLikeA9()) {
+ switch (DefMCID->getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8:
+ case ARM::VLD2q16:
+ case ARM::VLD2q32:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8wb_fixed:
+ case ARM::VLD2q16wb_fixed:
+ case ARM::VLD2q32wb_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8wb_register:
+ case ARM::VLD2q16wb_register:
+ case ARM::VLD2q32wb_register:
+ case ARM::VLD3d8:
+ case ARM::VLD3d16:
+ case ARM::VLD3d32:
+ case ARM::VLD1d64T:
+ case ARM::VLD3d8_UPD:
+ case ARM::VLD3d16_UPD:
+ case ARM::VLD3d32_UPD:
+ case ARM::VLD1d64Twb_fixed:
+ case ARM::VLD1d64Twb_register:
+ case ARM::VLD3q8_UPD:
+ case ARM::VLD3q16_UPD:
+ case ARM::VLD3q32_UPD:
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD1d64Q:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ case ARM::VLD1d64Qwb_fixed:
+ case ARM::VLD1d64Qwb_register:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD4DUPd8:
+ case ARM::VLD4DUPd16:
+ case ARM::VLD4DUPd32:
+ case ARM::VLD4DUPd8_UPD:
+ case ARM::VLD4DUPd16_UPD:
+ case ARM::VLD4DUPd32_UPD:
+ case ARM::VLD1LNd8:
+ case ARM::VLD1LNd16:
+ case ARM::VLD1LNd32:
+ case ARM::VLD1LNd8_UPD:
+ case ARM::VLD1LNd16_UPD:
+ case ARM::VLD1LNd32_UPD:
+ case ARM::VLD2LNd8:
+ case ARM::VLD2LNd16:
+ case ARM::VLD2LNd32:
+ case ARM::VLD2LNq16:
+ case ARM::VLD2LNq32:
+ case ARM::VLD2LNd8_UPD:
+ case ARM::VLD2LNd16_UPD:
+ case ARM::VLD2LNd32_UPD:
+ case ARM::VLD2LNq16_UPD:
+ case ARM::VLD2LNq32_UPD:
+ case ARM::VLD4LNd8:
+ case ARM::VLD4LNd16:
+ case ARM::VLD4LNd32:
+ case ARM::VLD4LNq16:
+ case ARM::VLD4LNq32:
+ case ARM::VLD4LNd8_UPD:
+ case ARM::VLD4LNd16_UPD:
+ case ARM::VLD4LNd32_UPD:
+ case ARM::VLD4LNq16_UPD:
+ case ARM::VLD4LNq32_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ ++Adjust;
+ break;
+ }
+ }
+ return Adjust;
+}
+
+
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const {
+ // No operand latency. The caller may fall back to getInstrLatency.
+ if (!ItinData || ItinData->isEmpty())
+ return -1;
+
+ const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
+ unsigned Reg = DefMO.getReg();
+ const MCInstrDesc *DefMCID = &DefMI->getDesc();
+ const MCInstrDesc *UseMCID = &UseMI->getDesc();
+
+ unsigned DefAdj = 0;
+ if (DefMI->isBundle()) {
+ DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
+ DefMCID = &DefMI->getDesc();
+ }
+ if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
+ DefMI->isRegSequence() || DefMI->isImplicitDef()) {
+ return 1;
+ }
+
+ unsigned UseAdj = 0;
+ if (UseMI->isBundle()) {
+ unsigned NewUseIdx;
+ const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
+ Reg, NewUseIdx, UseAdj);
+ if (!NewUseMI)
+ return -1;
+
+ UseMI = NewUseMI;
+ UseIdx = NewUseIdx;
+ UseMCID = &UseMI->getDesc();
+ }
+
+ if (Reg == ARM::CPSR) {
+ if (DefMI->getOpcode() == ARM::FMSTAT) {
+ // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
+ return Subtarget.isLikeA9() ? 1 : 20;
+ }
+
+ // CPSR set and branch can be paired in the same cycle.
+ if (UseMI->isBranch())
+ return 0;
+
+ // Otherwise it takes the instruction latency (generally one).
+ unsigned Latency = getInstrLatency(ItinData, DefMI);
+
+ // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
+ // its uses. Instructions which are otherwise scheduled between them may
+ // incur a code size penalty (not able to use the CPSR setting 16-bit
+ // instructions).
+ if (Latency > 0 && Subtarget.isThumb2()) {
+ const MachineFunction *MF = DefMI->getParent()->getParent();
+ // FIXME: Use Function::optForSize().
+ if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
+ --Latency;
+ }
+ return Latency;
+ }
+
+ if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
+ return -1;
+
+ unsigned DefAlign = DefMI->hasOneMemOperand()
+ ? (*DefMI->memoperands_begin())->getAlignment() : 0;
+ unsigned UseAlign = UseMI->hasOneMemOperand()
+ ? (*UseMI->memoperands_begin())->getAlignment() : 0;
+
+ // Get the itinerary's latency if possible, and handle variable_ops.
+ int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
+ *UseMCID, UseIdx, UseAlign);
+ // Unable to find operand latency. The caller may resort to getInstrLatency.
+ if (Latency < 0)
+ return Latency;
+
+ // Adjust for IT block position.
+ int Adj = DefAdj + UseAdj;
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
+ if (Adj >= 0 || (int)Latency > -Adj) {
+ return Latency + Adj;
+ }
+ // Return the itinerary latency, which may be zero but not less than zero.
+ return Latency;
+}
+
+int
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const {
+ if (!DefNode->isMachineOpcode())
+ return 1;
+
+ const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
+
+ if (isZeroCost(DefMCID.Opcode))
+ return 0;
+
+ if (!ItinData || ItinData->isEmpty())
+ return DefMCID.mayLoad() ? 3 : 1;
+
+ if (!UseNode->isMachineOpcode()) {
+ int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
+ if (Subtarget.isLikeA9() || Subtarget.isSwift())
+ return Latency <= 2 ? 1 : Latency - 1;
+ else
+ return Latency <= 3 ? 1 : Latency - 2;
+ }
+
+ const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
+ const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
+ unsigned DefAlign = !DefMN->memoperands_empty()
+ ? (*DefMN->memoperands_begin())->getAlignment() : 0;
+ const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
+ unsigned UseAlign = !UseMN->memoperands_empty()
+ ? (*UseMN->memoperands_begin())->getAlignment() : 0;
+ int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
+ UseMCID, UseIdx, UseAlign);
+
+ if (Latency > 1 &&
+ (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
+ Subtarget.isCortexA7())) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ --Latency;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ if (ShAmt == 0 || ShAmt == 2)
+ --Latency;
+ break;
+ }
+ }
+ } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
+ // FIXME: Properly handle all of the latency adjustments for address
+ // writeback.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal =
+ cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ Latency -= 2;
+ else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
+ --Latency;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl 0-3 only.
+ Latency -= 2;
+ break;
+ }
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.isLikeA9())
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8Pseudo:
+ case ARM::VLD2q16Pseudo:
+ case ARM::VLD2q32Pseudo:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8PseudoWB_fixed:
+ case ARM::VLD2q16PseudoWB_fixed:
+ case ARM::VLD2q32PseudoWB_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8PseudoWB_register:
+ case ARM::VLD2q16PseudoWB_register:
+ case ARM::VLD2q32PseudoWB_register:
+ case ARM::VLD3d8Pseudo:
+ case ARM::VLD3d16Pseudo:
+ case ARM::VLD3d32Pseudo:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d64TPseudoWB_fixed:
+ case ARM::VLD3d8Pseudo_UPD:
+ case ARM::VLD3d16Pseudo_UPD:
+ case ARM::VLD3d32Pseudo_UPD:
+ case ARM::VLD3q8Pseudo_UPD:
+ case ARM::VLD3q16Pseudo_UPD:
+ case ARM::VLD3q32Pseudo_UPD:
+ case ARM::VLD3q8oddPseudo:
+ case ARM::VLD3q16oddPseudo:
+ case ARM::VLD3q32oddPseudo:
+ case ARM::VLD3q8oddPseudo_UPD:
+ case ARM::VLD3q16oddPseudo_UPD:
+ case ARM::VLD3q32oddPseudo_UPD:
+ case ARM::VLD4d8Pseudo:
+ case ARM::VLD4d16Pseudo:
+ case ARM::VLD4d32Pseudo:
+ case ARM::VLD1d64QPseudo:
+ case ARM::VLD1d64QPseudoWB_fixed:
+ case ARM::VLD4d8Pseudo_UPD:
+ case ARM::VLD4d16Pseudo_UPD:
+ case ARM::VLD4d32Pseudo_UPD:
+ case ARM::VLD4q8Pseudo_UPD:
+ case ARM::VLD4q16Pseudo_UPD:
+ case ARM::VLD4q32Pseudo_UPD:
+ case ARM::VLD4q8oddPseudo:
+ case ARM::VLD4q16oddPseudo:
+ case ARM::VLD4q32oddPseudo:
+ case ARM::VLD4q8oddPseudo_UPD:
+ case ARM::VLD4q16oddPseudo_UPD:
+ case ARM::VLD4q32oddPseudo_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD4DUPd8Pseudo:
+ case ARM::VLD4DUPd16Pseudo:
+ case ARM::VLD4DUPd32Pseudo:
+ case ARM::VLD4DUPd8Pseudo_UPD:
+ case ARM::VLD4DUPd16Pseudo_UPD:
+ case ARM::VLD4DUPd32Pseudo_UPD:
+ case ARM::VLD1LNq8Pseudo:
+ case ARM::VLD1LNq16Pseudo:
+ case ARM::VLD1LNq32Pseudo:
+ case ARM::VLD1LNq8Pseudo_UPD:
+ case ARM::VLD1LNq16Pseudo_UPD:
+ case ARM::VLD1LNq32Pseudo_UPD:
+ case ARM::VLD2LNd8Pseudo:
+ case ARM::VLD2LNd16Pseudo:
+ case ARM::VLD2LNd32Pseudo:
+ case ARM::VLD2LNq16Pseudo:
+ case ARM::VLD2LNq32Pseudo:
+ case ARM::VLD2LNd8Pseudo_UPD:
+ case ARM::VLD2LNd16Pseudo_UPD:
+ case ARM::VLD2LNd32Pseudo_UPD:
+ case ARM::VLD2LNq16Pseudo_UPD:
+ case ARM::VLD2LNq32Pseudo_UPD:
+ case ARM::VLD4LNd8Pseudo:
+ case ARM::VLD4LNd16Pseudo:
+ case ARM::VLD4LNd32Pseudo:
+ case ARM::VLD4LNq16Pseudo:
+ case ARM::VLD4LNq32Pseudo:
+ case ARM::VLD4LNd8Pseudo_UPD:
+ case ARM::VLD4LNd16Pseudo_UPD:
+ case ARM::VLD4LNd32Pseudo_UPD:
+ case ARM::VLD4LNq16Pseudo_UPD:
+ case ARM::VLD4LNq32Pseudo_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ ++Latency;
+ break;
+ }
+
+ return Latency;
+}
+
+unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
+ if (MI->isCopyLike() || MI->isInsertSubreg() ||
+ MI->isRegSequence() || MI->isImplicitDef())
+ return 0;
+
+ if (MI->isBundle())
+ return 0;
+
+ const MCInstrDesc &MCID = MI->getDesc();
+
+ if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
+ // When predicated, CPSR is an additional source operand for CPSR updating
+ // instructions, this apparently increases their latencies.
+ return 1;
+ }
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost) const {
+ if (MI->isCopyLike() || MI->isInsertSubreg() ||
+ MI->isRegSequence() || MI->isImplicitDef())
+ return 1;
+
+ // An instruction scheduler typically runs on unbundled instructions, however
+ // other passes may query the latency of a bundled instruction.
+ if (MI->isBundle()) {
+ unsigned Latency = 0;
+ MachineBasicBlock::const_instr_iterator I = MI->getIterator();
+ MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ if (I->getOpcode() != ARM::t2IT)
+ Latency += getInstrLatency(ItinData, &*I, PredCost);
+ }
+ return Latency;
+ }
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
+ // When predicated, CPSR is an additional source operand for CPSR updating
+ // instructions, this apparently increases their latencies.
+ *PredCost = 1;
+ }
+ // Be sure to call getStageLatency for an empty itinerary in case it has a
+ // valid MinLatency property.
+ if (!ItinData)
+ return MI->mayLoad() ? 3 : 1;
+
+ unsigned Class = MCID.getSchedClass();
+
+ // For instructions with variable uops, use uops as latency.
+ if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
+ return getNumMicroOps(ItinData, MI);
+
+ // For the common case, fall back on the itinerary's latency.
+ unsigned Latency = ItinData->getStageLatency(Class);
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ unsigned DefAlign = MI->hasOneMemOperand()
+ ? (*MI->memoperands_begin())->getAlignment() : 0;
+ int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
+ if (Adj >= 0 || (int)Latency > -Adj) {
+ return Latency + Adj;
+ }
+ return Latency;
+}
+
+int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *Node) const {
+ if (!Node->isMachineOpcode())
+ return 1;
+
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ unsigned Opcode = Node->getMachineOpcode();
+ switch (Opcode) {
+ default:
+ return ItinData->getStageLatency(get(Opcode).getSchedClass());
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+ }
+}
+
+bool ARMBaseInstrInfo::
+hasHighOperandLatency(const TargetSchedModel &SchedModel,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI, unsigned UseIdx) const {
+ unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
+ unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
+ if (Subtarget.isCortexA8() &&
+ (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
+ // CortexA8 VFP instructions are not pipelined.
+ return true;
+
+ // Hoist VFP / NEON instructions with 4 or higher latency.
+ unsigned Latency
+ = SchedModel.computeOperandLatency(DefMI, DefIdx, UseMI, UseIdx);
+ if (Latency <= 3)
+ return false;
+ return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
+ UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
+}
+
+bool ARMBaseInstrInfo::
+hasLowDefLatency(const TargetSchedModel &SchedModel,
+ const MachineInstr *DefMI, unsigned DefIdx) const {
+ const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
+ if (!ItinData || ItinData->isEmpty())
+ return false;
+
+ unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
+ if (DDomain == ARMII::DomainGeneral) {
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ return (DefCycle != -1 && DefCycle <= 2);
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
+ StringRef &ErrInfo) const {
+ if (convertAddSubFlagsOpcode(MI->getOpcode())) {
+ ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
+ return false;
+ }
+ return true;
+}
+
+// LoadStackGuard has so far only been implemented for MachO. Different code
+// sequence is needed for other targets.
+void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
+ unsigned LoadImmOpc,
+ unsigned LoadOpc,
+ Reloc::Model RM) const {
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Reg = MI->getOperand(0).getReg();
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MI->memoperands_begin())->getValue());
+ MachineInstrBuilder MIB;
+
+ BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
+ .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
+
+ if (Subtarget.GVIsIndirectSymbol(GV, RM)) {
+ MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
+ MIB.addReg(Reg, RegState::Kill).addImm(0);
+ unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
+ MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
+ MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 4, 4);
+ MIB.addMemOperand(MMO);
+ AddDefaultPred(MIB);
+ }
+
+ MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
+ MIB.addReg(Reg, RegState::Kill).addImm(0);
+ MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ AddDefaultPred(MIB);
+}
+
+bool
+ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
+ unsigned &AddSubOpc,
+ bool &NegAcc, bool &HasLane) const {
+ DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
+ if (I == MLxEntryMap.end())
+ return false;
+
+ const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
+ MulOpc = Entry.MulOpc;
+ AddSubOpc = Entry.AddSubOpc;
+ NegAcc = Entry.NegAcc;
+ HasLane = Entry.HasLane;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Execution domains.
+//===----------------------------------------------------------------------===//
+//
+// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
+// and some can go down both. The vmov instructions go down the VFP pipeline,
+// but they can be changed to vorr equivalents that are executed by the NEON
+// pipeline.
+//
+// We use the following execution domain numbering:
+//
+enum ARMExeDomain {
+ ExeGeneric = 0,
+ ExeVFP = 1,
+ ExeNEON = 2
+};
+//
+// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
+//
+std::pair<uint16_t, uint16_t>
+ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
+ // If we don't have access to NEON instructions then we won't be able
+ // to swizzle anything to the NEON domain. Check to make sure.
+ if (Subtarget.hasNEON()) {
+ // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
+ // if they are not predicated.
+ if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
+ return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
+
+ // CortexA9 is particularly picky about mixing the two and wants these
+ // converted.
+ if (Subtarget.isCortexA9() && !isPredicated(MI) &&
+ (MI->getOpcode() == ARM::VMOVRS || MI->getOpcode() == ARM::VMOVSR ||
+ MI->getOpcode() == ARM::VMOVS))
+ return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
+ }
+ // No other instructions can be swizzled, so just determine their domain.
+ unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
+
+ if (Domain & ARMII::DomainNEON)
+ return std::make_pair(ExeNEON, 0);
+
+ // Certain instructions can go either way on Cortex-A8.
+ // Treat them as NEON instructions.
+ if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
+ return std::make_pair(ExeNEON, 0);
+
+ if (Domain & ARMII::DomainVFP)
+ return std::make_pair(ExeVFP, 0);
+
+ return std::make_pair(ExeGeneric, 0);
+}
+
+static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
+ unsigned SReg, unsigned &Lane) {
+ unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
+ Lane = 0;
+
+ if (DReg != ARM::NoRegister)
+ return DReg;
+
+ Lane = 1;
+ DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
+
+ assert(DReg && "S-register with no D super-register?");
+ return DReg;
+}
+
+/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
+/// set ImplicitSReg to a register number that must be marked as implicit-use or
+/// zero if no register needs to be defined as implicit-use.
+///
+/// If the function cannot determine if an SPR should be marked implicit use or
+/// not, it returns false.
+///
+/// This function handles cases where an instruction is being modified from taking
+/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
+/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
+/// lane of the DPR).
+///
+/// If the other SPR is defined, an implicit-use of it should be added. Else,
+/// (including the case where the DPR itself is defined), it should not.
+///
+static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
+ MachineInstr *MI,
+ unsigned DReg, unsigned Lane,
+ unsigned &ImplicitSReg) {
+ // If the DPR is defined or used already, the other SPR lane will be chained
+ // correctly, so there is nothing to be done.
+ if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
+ ImplicitSReg = 0;
+ return true;
+ }
+
+ // Otherwise we need to go searching to see if the SPR is set explicitly.
+ ImplicitSReg = TRI->getSubReg(DReg,
+ (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
+ MachineBasicBlock::LivenessQueryResult LQR =
+ MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
+
+ if (LQR == MachineBasicBlock::LQR_Live)
+ return true;
+ else if (LQR == MachineBasicBlock::LQR_Unknown)
+ return false;
+
+ // If the register is known not to be live, there is no need to add an
+ // implicit-use.
+ ImplicitSReg = 0;
+ return true;
+}
+
+void
+ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
+ unsigned DstReg, SrcReg, DReg;
+ unsigned Lane;
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("cannot handle opcode!");
+ break;
+ case ARM::VMOVD:
+ if (Domain != ExeNEON)
+ break;
+
+ // Zap the predicate operands.
+ assert(!isPredicated(MI) && "Cannot predicate a VORRd");
+
+ // Make sure we've got NEON instructions.
+ assert(Subtarget.hasNEON() && "VORRd requires NEON");
+
+ // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
+ MI->setDesc(get(ARM::VORRd));
+ AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
+ .addReg(SrcReg)
+ .addReg(SrcReg));
+ break;
+ case ARM::VMOVRS:
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
+
+ // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
+
+ // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
+ // Note that DSrc has been widened and the other lane may be undef, which
+ // contaminates the entire register.
+ MI->setDesc(get(ARM::VGETLNi32));
+ AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
+ .addReg(DReg, RegState::Undef)
+ .addImm(Lane));
+
+ // The old source should be an implicit use, otherwise we might think it
+ // was dead before here.
+ MIB.addReg(SrcReg, RegState::Implicit);
+ break;
+ case ARM::VMOVSR: {
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
+
+ // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
+
+ unsigned ImplicitSReg;
+ if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
+ break;
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
+ // Again DDst may be undefined at the beginning of this instruction.
+ MI->setDesc(get(ARM::VSETLNi32));
+ MIB.addReg(DReg, RegState::Define)
+ .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
+ .addReg(SrcReg)
+ .addImm(Lane);
+ AddDefaultPred(MIB);
+
+ // The narrower destination must be marked as set to keep previous chains
+ // in place.
+ MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+ case ARM::VMOVS: {
+ if (Domain != ExeNEON)
+ break;
+
+ // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+
+ unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
+ DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
+ DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
+
+ unsigned ImplicitSReg;
+ if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
+ break;
+
+ for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
+ MI->RemoveOperand(i-1);
+
+ if (DSrc == DDst) {
+ // Destination can be:
+ // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
+ MI->setDesc(get(ARM::VDUPLN32d));
+ MIB.addReg(DDst, RegState::Define)
+ .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
+ .addImm(SrcLane);
+ AddDefaultPred(MIB);
+
+ // Neither the source or the destination are naturally represented any
+ // more, so add them in manually.
+ MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
+ MIB.addReg(SrcReg, RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+
+ // In general there's no single instruction that can perform an S <-> S
+ // move in NEON space, but a pair of VEXT instructions *can* do the
+ // job. It turns out that the VEXTs needed will only use DSrc once, with
+ // the position based purely on the combination of lane-0 and lane-1
+ // involved. For example
+ // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
+ // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
+ // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
+ // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
+ //
+ // Pattern of the MachineInstrs is:
+ // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
+ MachineInstrBuilder NewMIB;
+ NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ get(ARM::VEXTd32), DDst);
+
+ // On the first instruction, both DSrc and DDst may be <undef> if present.
+ // Specifically when the original instruction didn't have them as an
+ // <imp-use>.
+ unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
+ bool CurUndef = !MI->readsRegister(CurReg, TRI);
+ NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
+ CurUndef = !MI->readsRegister(CurReg, TRI);
+ NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ NewMIB.addImm(1);
+ AddDefaultPred(NewMIB);
+
+ if (SrcLane == DstLane)
+ NewMIB.addReg(SrcReg, RegState::Implicit);
+
+ MI->setDesc(get(ARM::VEXTd32));
+ MIB.addReg(DDst, RegState::Define);
+
+ // On the second instruction, DDst has definitely been defined above, so
+ // it is not <undef>. DSrc, if present, can be <undef> as above.
+ CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
+ CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
+ MIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
+ CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
+ MIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ MIB.addImm(1);
+ AddDefaultPred(MIB);
+
+ if (SrcLane != DstLane)
+ MIB.addReg(SrcReg, RegState::Implicit);
+
+ // As before, the original destination is no longer represented, add it
+ // implicitly.
+ MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+ }
+
+}
+
+//===----------------------------------------------------------------------===//
+// Partial register updates
+//===----------------------------------------------------------------------===//
+//
+// Swift renames NEON registers with 64-bit granularity. That means any
+// instruction writing an S-reg implicitly reads the containing D-reg. The
+// problem is mostly avoided by translating f32 operations to v2f32 operations
+// on D-registers, but f32 loads are still a problem.
+//
+// These instructions can load an f32 into a NEON register:
+//
+// VLDRS - Only writes S, partial D update.
+// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
+// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
+//
+// FCONSTD can be used as a dependency-breaking instruction.
+unsigned ARMBaseInstrInfo::
+getPartialRegUpdateClearance(const MachineInstr *MI,
+ unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ if (!SwiftPartialUpdateClearance ||
+ !(Subtarget.isSwift() || Subtarget.isCortexA15()))
+ return 0;
+
+ assert(TRI && "Need TRI instance");
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ if (MO.readsReg())
+ return 0;
+ unsigned Reg = MO.getReg();
+ int UseOp = -1;
+
+ switch(MI->getOpcode()) {
+ // Normal instructions writing only an S-register.
+ case ARM::VLDRS:
+ case ARM::FCONSTS:
+ case ARM::VMOVSR:
+ case ARM::VMOVv8i8:
+ case ARM::VMOVv4i16:
+ case ARM::VMOVv2i32:
+ case ARM::VMOVv2f32:
+ case ARM::VMOVv1i64:
+ UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
+ break;
+
+ // Explicitly reads the dependency.
+ case ARM::VLD1LNd32:
+ UseOp = 3;
+ break;
+ default:
+ return 0;
+ }
+
+ // If this instruction actually reads a value from Reg, there is no unwanted
+ // dependency.
+ if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
+ return 0;
+
+ // We must be able to clobber the whole D-reg.
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // Virtual register must be a foo:ssub_0<def,undef> operand.
+ if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
+ return 0;
+ } else if (ARM::SPRRegClass.contains(Reg)) {
+ // Physical register: MI must define the full D-reg.
+ unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ if (!DReg || !MI->definesRegister(DReg, TRI))
+ return 0;
+ }
+
+ // MI has an unwanted D-register dependency.
+ // Avoid defs in the previous N instructrions.
+ return SwiftPartialUpdateClearance;
+}
+
+// Break a partial register dependency after getPartialRegUpdateClearance
+// returned non-zero.
+void ARMBaseInstrInfo::
+breakPartialRegDependency(MachineBasicBlock::iterator MI,
+ unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
+ assert(TRI && "Need TRI instance");
+
+ const MachineOperand &MO = MI->getOperand(OpNum);
+ unsigned Reg = MO.getReg();
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ "Can't break virtual register dependencies.");
+ unsigned DReg = Reg;
+
+ // If MI defines an S-reg, find the corresponding D super-register.
+ if (ARM::SPRRegClass.contains(Reg)) {
+ DReg = ARM::D0 + (Reg - ARM::S0) / 2;
+ assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
+ }
+
+ assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
+ assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
+
+ // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
+ // the full D-register by loading the same value to both lanes. The
+ // instruction is micro-coded with 2 uops, so don't do this until we can
+ // properly schedule micro-coded instructions. The dispatcher stalls cause
+ // too big regressions.
+
+ // Insert the dependency-breaking FCONSTD before MI.
+ // 96 is the encoding of 0.5, but the actual value doesn't matter here.
+ AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ get(ARM::FCONSTD), DReg).addImm(96));
+ MI->addRegisterKilled(DReg, TRI, true);
+}
+
+bool ARMBaseInstrInfo::hasNOP() const {
+ return Subtarget.getFeatureBits()[ARM::HasV6KOps];
+}
+
+bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
+ if (MI->getNumOperands() < 4)
+ return true;
+ unsigned ShOpVal = MI->getOperand(3).getImm();
+ unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
+ // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
+ if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
+ ((ShImm == 1 || ShImm == 2) &&
+ ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
+ return true;
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VMOVDRR:
+ // dX = VMOVDRR rY, rZ
+ // is the same as:
+ // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
+ // Populate the InputRegs accordingly.
+ // rY
+ const MachineOperand *MOReg = &MI.getOperand(1);
+ InputRegs.push_back(
+ RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0));
+ // rZ
+ MOReg = &MI.getOperand(2);
+ InputRegs.push_back(
+ RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1));
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
+
+bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPairAndIdx &InputReg) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VMOVRRD:
+ // rX, rY = VMOVRRD dZ
+ // is the same as:
+ // rX = EXTRACT_SUBREG dZ, ssub_0
+ // rY = EXTRACT_SUBREG dZ, ssub_1
+ const MachineOperand &MOReg = MI.getOperand(2);
+ InputReg.Reg = MOReg.getReg();
+ InputReg.SubReg = MOReg.getSubReg();
+ InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
+
+bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
+ RegSubRegPairAndIdx &InsertedReg) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VSETLNi32:
+ // dX = VSETLNi32 dY, rZ, imm
+ const MachineOperand &MOBaseReg = MI.getOperand(1);
+ const MachineOperand &MOInsertedReg = MI.getOperand(2);
+ const MachineOperand &MOIndex = MI.getOperand(3);
+ BaseReg.Reg = MOBaseReg.getReg();
+ BaseReg.SubReg = MOBaseReg.getSubReg();
+
+ InsertedReg.Reg = MOInsertedReg.getReg();
+ InsertedReg.SubReg = MOInsertedReg.getSubReg();
+ InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
OpenPOWER on IntegriCloud