summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AMDGPU/SIISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/AMDGPU/SIISelLowering.cpp2643
1 files changed, 2643 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AMDGPU/SIISelLowering.cpp b/contrib/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
new file mode 100644
index 0000000..5448675
--- /dev/null
+++ b/contrib/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
@@ -0,0 +1,2643 @@
+//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief Custom DAG lowering for SI
+//
+//===----------------------------------------------------------------------===//
+
+#ifdef _MSC_VER
+// Provide M_PI.
+#define _USE_MATH_DEFINES
+#include <cmath>
+#endif
+
+#include "SIISelLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPUDiagnosticInfoUnsupported.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "SIRegisterInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/Function.h"
+#include "llvm/ADT/SmallString.h"
+
+using namespace llvm;
+
+SITargetLowering::SITargetLowering(TargetMachine &TM,
+ const AMDGPUSubtarget &STI)
+ : AMDGPUTargetLowering(TM, STI) {
+ addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
+ addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
+
+ addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
+ addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
+
+ addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
+ addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
+
+ addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
+ addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
+ addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
+
+ addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
+ addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
+
+ addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
+ addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
+
+ addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
+ addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
+
+ addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
+ addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
+
+ computeRegisterProperties(STI.getRegisterInfo());
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
+
+ setOperationAction(ISD::ADD, MVT::i32, Legal);
+ setOperationAction(ISD::ADDC, MVT::i32, Legal);
+ setOperationAction(ISD::ADDE, MVT::i32, Legal);
+ setOperationAction(ISD::SUBC, MVT::i32, Legal);
+ setOperationAction(ISD::SUBE, MVT::i32, Legal);
+
+ setOperationAction(ISD::FSIN, MVT::f32, Custom);
+ setOperationAction(ISD::FCOS, MVT::f32, Custom);
+
+ setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
+
+ // We need to custom lower vector stores from local memory
+ setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::STORE, MVT::v8i32, Custom);
+ setOperationAction(ISD::STORE, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::STORE, MVT::i1, Custom);
+ setOperationAction(ISD::STORE, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Promote);
+ AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
+
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+
+ setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
+ setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
+
+ setOperationAction(ISD::BSWAP, MVT::i32, Legal);
+ setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
+
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+
+ for (MVT VT : MVT::integer_valuetypes()) {
+ if (VT == MVT::i64)
+ continue;
+
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
+
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
+ }
+
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
+ }
+
+ for (MVT VT : MVT::fp_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
+
+ setTruncStoreAction(MVT::i64, MVT::i32, Expand);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
+
+
+ setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
+
+ setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
+ setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
+
+ setOperationAction(ISD::LOAD, MVT::i1, Custom);
+
+ setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
+
+ setOperationAction(ISD::STORE, MVT::v2i64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
+
+ setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
+ setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
+
+ // These should use UDIVREM, so set them to expand
+ setOperationAction(ISD::UDIV, MVT::i64, Expand);
+ setOperationAction(ISD::UREM, MVT::i64, Expand);
+
+ setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
+ setOperationAction(ISD::SELECT, MVT::i1, Promote);
+
+ setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
+
+
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
+
+ // We only support LOAD/STORE and vector manipulation ops for vectors
+ // with > 4 elements.
+ for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
+ for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
+ switch(Op) {
+ case ISD::LOAD:
+ case ISD::STORE:
+ case ISD::BUILD_VECTOR:
+ case ISD::BITCAST:
+ case ISD::EXTRACT_VECTOR_ELT:
+ case ISD::INSERT_VECTOR_ELT:
+ case ISD::INSERT_SUBVECTOR:
+ case ISD::EXTRACT_SUBVECTOR:
+ case ISD::SCALAR_TO_VECTOR:
+ break;
+ case ISD::CONCAT_VECTORS:
+ setOperationAction(Op, VT, Custom);
+ break;
+ default:
+ setOperationAction(Op, VT, Expand);
+ break;
+ }
+ }
+ }
+
+ // Most operations are naturally 32-bit vector operations. We only support
+ // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
+ for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
+ setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
+ AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
+ AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
+
+ setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
+ AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
+ AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
+ }
+
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::f64, Legal);
+ }
+
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::f32, Custom);
+ setOperationAction(ISD::FDIV, MVT::f64, Custom);
+
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+ setTargetDAGCombine(ISD::FMINNUM);
+ setTargetDAGCombine(ISD::FMAXNUM);
+ setTargetDAGCombine(ISD::SMIN);
+ setTargetDAGCombine(ISD::SMAX);
+ setTargetDAGCombine(ISD::UMIN);
+ setTargetDAGCombine(ISD::UMAX);
+ setTargetDAGCombine(ISD::SETCC);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::UINT_TO_FP);
+
+ // All memory operations. Some folding on the pointer operand is done to help
+ // matching the constant offsets in the addressing modes.
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD);
+ setTargetDAGCombine(ISD::ATOMIC_STORE);
+ setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
+ setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
+ setTargetDAGCombine(ISD::ATOMIC_SWAP);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
+ setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
+
+ setSchedulingPreference(Sched::RegPressure);
+}
+
+//===----------------------------------------------------------------------===//
+// TargetLowering queries
+//===----------------------------------------------------------------------===//
+
+bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
+ EVT) const {
+ // SI has some legal vector types, but no legal vector operations. Say no
+ // shuffles are legal in order to prefer scalarizing some vector operations.
+ return false;
+}
+
+bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
+ // Flat instructions do not have offsets, and only have the register
+ // address.
+ return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
+}
+
+bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
+ // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
+ // additionally can do r + r + i with addr64. 32-bit has more addressing
+ // mode options. Depending on the resource constant, it can also do
+ // (i64 r0) + (i32 r1) * (i14 i).
+ //
+ // Private arrays end up using a scratch buffer most of the time, so also
+ // assume those use MUBUF instructions. Scratch loads / stores are currently
+ // implemented as mubuf instructions with offen bit set, so slightly
+ // different than the normal addr64.
+ if (!isUInt<12>(AM.BaseOffs))
+ return false;
+
+ // FIXME: Since we can split immediate into soffset and immediate offset,
+ // would it make sense to allow any immediate?
+
+ switch (AM.Scale) {
+ case 0: // r + i or just i, depending on HasBaseReg.
+ return true;
+ case 1:
+ return true; // We have r + r or r + i.
+ case 2:
+ if (AM.HasBaseReg) {
+ // Reject 2 * r + r.
+ return false;
+ }
+
+ // Allow 2 * r as r + r
+ // Or 2 * r + i is allowed as r + r + i.
+ return true;
+ default: // Don't allow n * r
+ return false;
+ }
+}
+
+bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS) const {
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AS) {
+ case AMDGPUAS::GLOBAL_ADDRESS: {
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ // Assume the we will use FLAT for all global memory accesses
+ // on VI.
+ // FIXME: This assumption is currently wrong. On VI we still use
+ // MUBUF instructions for the r + i addressing mode. As currently
+ // implemented, the MUBUF instructions only work on buffer < 4GB.
+ // It may be possible to support > 4GB buffers with MUBUF instructions,
+ // by setting the stride value in the resource descriptor which would
+ // increase the size limit to (stride * 4GB). However, this is risky,
+ // because it has never been validated.
+ return isLegalFlatAddressingMode(AM);
+ }
+
+ return isLegalMUBUFAddressingMode(AM);
+ }
+ case AMDGPUAS::CONSTANT_ADDRESS: {
+ // If the offset isn't a multiple of 4, it probably isn't going to be
+ // correctly aligned.
+ if (AM.BaseOffs % 4 != 0)
+ return isLegalMUBUFAddressingMode(AM);
+
+ // There are no SMRD extloads, so if we have to do a small type access we
+ // will use a MUBUF load.
+ // FIXME?: We also need to do this if unaligned, but we don't know the
+ // alignment here.
+ if (DL.getTypeStoreSize(Ty) < 4)
+ return isLegalMUBUFAddressingMode(AM);
+
+ if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ // SMRD instructions have an 8-bit, dword offset on SI.
+ if (!isUInt<8>(AM.BaseOffs / 4))
+ return false;
+ } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
+ // On CI+, this can also be a 32-bit literal constant offset. If it fits
+ // in 8-bits, it can use a smaller encoding.
+ if (!isUInt<32>(AM.BaseOffs / 4))
+ return false;
+ } else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ // On VI, these use the SMEM format and the offset is 20-bit in bytes.
+ if (!isUInt<20>(AM.BaseOffs))
+ return false;
+ } else
+ llvm_unreachable("unhandled generation");
+
+ if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
+ return true;
+
+ if (AM.Scale == 1 && AM.HasBaseReg)
+ return true;
+
+ return false;
+ }
+
+ case AMDGPUAS::PRIVATE_ADDRESS:
+ case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
+ return isLegalMUBUFAddressingMode(AM);
+
+ case AMDGPUAS::LOCAL_ADDRESS:
+ case AMDGPUAS::REGION_ADDRESS: {
+ // Basic, single offset DS instructions allow a 16-bit unsigned immediate
+ // field.
+ // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
+ // an 8-bit dword offset but we don't know the alignment here.
+ if (!isUInt<16>(AM.BaseOffs))
+ return false;
+
+ if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
+ return true;
+
+ if (AM.Scale == 1 && AM.HasBaseReg)
+ return true;
+
+ return false;
+ }
+ case AMDGPUAS::FLAT_ADDRESS:
+ return isLegalFlatAddressingMode(AM);
+
+ default:
+ llvm_unreachable("unhandled address space");
+ }
+}
+
+bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned AddrSpace,
+ unsigned Align,
+ bool *IsFast) const {
+ if (IsFast)
+ *IsFast = false;
+
+ // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
+ // which isn't a simple VT.
+ if (!VT.isSimple() || VT == MVT::Other)
+ return false;
+
+ // TODO - CI+ supports unaligned memory accesses, but this requires driver
+ // support.
+
+ // XXX - The only mention I see of this in the ISA manual is for LDS direct
+ // reads the "byte address and must be dword aligned". Is it also true for the
+ // normal loads and stores?
+ if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
+ // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
+ // aligned, 8 byte access in a single operation using ds_read2/write2_b32
+ // with adjacent offsets.
+ bool AlignedBy4 = (Align % 4 == 0);
+ if (IsFast)
+ *IsFast = AlignedBy4;
+ return AlignedBy4;
+ }
+
+ // Smaller than dword value must be aligned.
+ // FIXME: This should be allowed on CI+
+ if (VT.bitsLT(MVT::i32))
+ return false;
+
+ // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
+ // byte-address are ignored, thus forcing Dword alignment.
+ // This applies to private, global, and constant memory.
+ if (IsFast)
+ *IsFast = true;
+
+ return VT.bitsGT(MVT::i32) && Align % 4 == 0;
+}
+
+EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
+ unsigned SrcAlign, bool IsMemset,
+ bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ // FIXME: Should account for address space here.
+
+ // The default fallback uses the private pointer size as a guess for a type to
+ // use. Make sure we switch these to 64-bit accesses.
+
+ if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
+ return MVT::v4i32;
+
+ if (Size >= 8 && DstAlign >= 4)
+ return MVT::v2i32;
+
+ // Use the default.
+ return MVT::Other;
+}
+
+static bool isFlatGlobalAddrSpace(unsigned AS) {
+ return AS == AMDGPUAS::GLOBAL_ADDRESS ||
+ AS == AMDGPUAS::FLAT_ADDRESS ||
+ AS == AMDGPUAS::CONSTANT_ADDRESS;
+}
+
+bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
+ unsigned DestAS) const {
+ return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
+}
+
+
+bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
+ const MemSDNode *MemNode = cast<MemSDNode>(N);
+ const Value *Ptr = MemNode->getMemOperand()->getValue();
+
+ // UndefValue means this is a load of a kernel input. These are uniform.
+ // Sometimes LDS instructions have constant pointers
+ if (isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) ||
+ isa<GlobalValue>(Ptr))
+ return true;
+
+ const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
+ return I && I->getMetadata("amdgpu.uniform");
+}
+
+TargetLoweringBase::LegalizeTypeAction
+SITargetLowering::getPreferredVectorAction(EVT VT) const {
+ if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
+ return TypeSplitVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
+ return TII->isInlineConstant(Imm);
+}
+
+SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
+ SDLoc SL, SDValue Chain,
+ unsigned Offset, bool Signed) const {
+ const DataLayout &DL = DAG.getDataLayout();
+ MachineFunction &MF = DAG.getMachineFunction();
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
+ unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
+
+ Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+
+ MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
+ PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
+ SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
+ MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
+ SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
+ DAG.getConstant(Offset, SL, PtrVT));
+ SDValue PtrOffset = DAG.getUNDEF(PtrVT);
+ MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
+
+ unsigned Align = DL.getABITypeAlignment(Ty);
+
+ ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
+ if (MemVT.isFloatingPoint())
+ ExtTy = ISD::EXTLOAD;
+
+ return DAG.getLoad(ISD::UNINDEXED, ExtTy,
+ VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
+ false, // isVolatile
+ true, // isNonTemporal
+ true, // isInvariant
+ Align); // Alignment
+}
+
+SDValue SITargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ FunctionType *FType = MF.getFunction()->getFunctionType();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
+
+ if (Subtarget->isAmdHsaOS() && Info->getShaderType() != ShaderType::COMPUTE) {
+ const Function *Fn = MF.getFunction();
+ DiagnosticInfoUnsupported NoGraphicsHSA(*Fn, "non-compute shaders with HSA");
+ DAG.getContext()->diagnose(NoGraphicsHSA);
+ return SDValue();
+ }
+
+ // FIXME: We currently assume all calling conventions are kernels.
+
+ SmallVector<ISD::InputArg, 16> Splits;
+ BitVector Skipped(Ins.size());
+
+ for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
+ const ISD::InputArg &Arg = Ins[i];
+
+ // First check if it's a PS input addr
+ if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
+ !Arg.Flags.isByVal() && PSInputNum <= 15) {
+
+ if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
+ // We can safely skip PS inputs
+ Skipped.set(i);
+ ++PSInputNum;
+ continue;
+ }
+
+ Info->markPSInputAllocated(PSInputNum);
+ if (Arg.Used)
+ Info->PSInputEna |= 1 << PSInputNum;
+
+ ++PSInputNum;
+ }
+
+ // Second split vertices into their elements
+ if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
+ ISD::InputArg NewArg = Arg;
+ NewArg.Flags.setSplit();
+ NewArg.VT = Arg.VT.getVectorElementType();
+
+ // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
+ // three or five element vertex only needs three or five registers,
+ // NOT four or eight.
+ Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
+ unsigned NumElements = ParamType->getVectorNumElements();
+
+ for (unsigned j = 0; j != NumElements; ++j) {
+ Splits.push_back(NewArg);
+ NewArg.PartOffset += NewArg.VT.getStoreSize();
+ }
+
+ } else if (Info->getShaderType() != ShaderType::COMPUTE) {
+ Splits.push_back(Arg);
+ }
+ }
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ // At least one interpolation mode must be enabled or else the GPU will hang.
+ //
+ // Check PSInputAddr instead of PSInputEna. The idea is that if the user set
+ // PSInputAddr, the user wants to enable some bits after the compilation
+ // based on run-time states. Since we can't know what the final PSInputEna
+ // will look like, so we shouldn't do anything here and the user should take
+ // responsibility for the correct programming.
+ //
+ // Otherwise, the following restrictions apply:
+ // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
+ // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
+ // enabled too.
+ if (Info->getShaderType() == ShaderType::PIXEL &&
+ ((Info->getPSInputAddr() & 0x7F) == 0 ||
+ ((Info->getPSInputAddr() & 0xF) == 0 &&
+ Info->isPSInputAllocated(11)))) {
+ CCInfo.AllocateReg(AMDGPU::VGPR0);
+ CCInfo.AllocateReg(AMDGPU::VGPR1);
+ Info->markPSInputAllocated(0);
+ Info->PSInputEna |= 1;
+ }
+
+ if (Info->getShaderType() == ShaderType::COMPUTE) {
+ getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
+ Splits);
+ }
+
+ // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
+ if (Info->hasPrivateSegmentBuffer()) {
+ unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
+ MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
+ CCInfo.AllocateReg(PrivateSegmentBufferReg);
+ }
+
+ if (Info->hasDispatchPtr()) {
+ unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
+ MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
+ CCInfo.AllocateReg(DispatchPtrReg);
+ }
+
+ if (Info->hasKernargSegmentPtr()) {
+ unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
+ MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
+ CCInfo.AllocateReg(InputPtrReg);
+ }
+
+ AnalyzeFormalArguments(CCInfo, Splits);
+
+ SmallVector<SDValue, 16> Chains;
+
+ for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
+
+ const ISD::InputArg &Arg = Ins[i];
+ if (Skipped[i]) {
+ InVals.push_back(DAG.getUNDEF(Arg.VT));
+ continue;
+ }
+
+ CCValAssign &VA = ArgLocs[ArgIdx++];
+ MVT VT = VA.getLocVT();
+
+ if (VA.isMemLoc()) {
+ VT = Ins[i].VT;
+ EVT MemVT = Splits[i].VT;
+ const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
+ VA.getLocMemOffset();
+ // The first 36 bytes of the input buffer contains information about
+ // thread group and global sizes.
+ SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain,
+ Offset, Ins[i].Flags.isSExt());
+ Chains.push_back(Arg.getValue(1));
+
+ auto *ParamTy =
+ dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
+ if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
+ ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
+ // On SI local pointers are just offsets into LDS, so they are always
+ // less than 16-bits. On CI and newer they could potentially be
+ // real pointers, so we can't guarantee their size.
+ Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
+ DAG.getValueType(MVT::i16));
+ }
+
+ InVals.push_back(Arg);
+ Info->ABIArgOffset = Offset + MemVT.getStoreSize();
+ continue;
+ }
+ assert(VA.isRegLoc() && "Parameter must be in a register!");
+
+ unsigned Reg = VA.getLocReg();
+
+ if (VT == MVT::i64) {
+ // For now assume it is a pointer
+ Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
+ &AMDGPU::SReg_64RegClass);
+ Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
+ SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
+ InVals.push_back(Copy);
+ continue;
+ }
+
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
+
+ Reg = MF.addLiveIn(Reg, RC);
+ SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
+
+ if (Arg.VT.isVector()) {
+
+ // Build a vector from the registers
+ Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
+ unsigned NumElements = ParamType->getVectorNumElements();
+
+ SmallVector<SDValue, 4> Regs;
+ Regs.push_back(Val);
+ for (unsigned j = 1; j != NumElements; ++j) {
+ Reg = ArgLocs[ArgIdx++].getLocReg();
+ Reg = MF.addLiveIn(Reg, RC);
+
+ SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
+ Regs.push_back(Copy);
+ }
+
+ // Fill up the missing vector elements
+ NumElements = Arg.VT.getVectorNumElements() - NumElements;
+ Regs.append(NumElements, DAG.getUNDEF(VT));
+
+ InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
+ continue;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
+ // these from the dispatch pointer.
+
+ // Start adding system SGPRs.
+ if (Info->hasWorkGroupIDX()) {
+ unsigned Reg = Info->addWorkGroupIDX();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
+ CCInfo.AllocateReg(Reg);
+ } else
+ llvm_unreachable("work group id x is always enabled");
+
+ if (Info->hasWorkGroupIDY()) {
+ unsigned Reg = Info->addWorkGroupIDY();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info->hasWorkGroupIDZ()) {
+ unsigned Reg = Info->addWorkGroupIDZ();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info->hasWorkGroupInfo()) {
+ unsigned Reg = Info->addWorkGroupInfo();
+ MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info->hasPrivateSegmentWaveByteOffset()) {
+ // Scratch wave offset passed in system SGPR.
+ unsigned PrivateSegmentWaveByteOffsetReg
+ = Info->addPrivateSegmentWaveByteOffset();
+
+ MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
+ CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
+ }
+
+ // Now that we've figured out where the scratch register inputs are, see if
+ // should reserve the arguments and use them directly.
+
+ bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
+
+ if (ST.isAmdHsaOS()) {
+ // TODO: Assume we will spill without optimizations.
+ if (HasStackObjects) {
+ // If we have stack objects, we unquestionably need the private buffer
+ // resource. For the HSA ABI, this will be the first 4 user SGPR
+ // inputs. We can reserve those and use them directly.
+
+ unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
+ MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
+ Info->setScratchRSrcReg(PrivateSegmentBufferReg);
+
+ unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
+ MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
+ Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
+ } else {
+ unsigned ReservedBufferReg
+ = TRI->reservedPrivateSegmentBufferReg(MF);
+ unsigned ReservedOffsetReg
+ = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
+
+ // We tentatively reserve the last registers (skipping the last two
+ // which may contain VCC). After register allocation, we'll replace
+ // these with the ones immediately after those which were really
+ // allocated. In the prologue copies will be inserted from the argument
+ // to these reserved registers.
+ Info->setScratchRSrcReg(ReservedBufferReg);
+ Info->setScratchWaveOffsetReg(ReservedOffsetReg);
+ }
+ } else {
+ unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
+
+ // Without HSA, relocations are used for the scratch pointer and the
+ // buffer resource setup is always inserted in the prologue. Scratch wave
+ // offset is still in an input SGPR.
+ Info->setScratchRSrcReg(ReservedBufferReg);
+
+ if (HasStackObjects) {
+ unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
+ MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
+ Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
+ } else {
+ unsigned ReservedOffsetReg
+ = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
+ Info->setScratchWaveOffsetReg(ReservedOffsetReg);
+ }
+ }
+
+ if (Info->hasWorkItemIDX()) {
+ unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
+ MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
+ CCInfo.AllocateReg(Reg);
+ } else
+ llvm_unreachable("workitem id x should always be enabled");
+
+ if (Info->hasWorkItemIDY()) {
+ unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
+ MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Info->hasWorkItemIDZ()) {
+ unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
+ MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
+ CCInfo.AllocateReg(Reg);
+ }
+
+ if (Chains.empty())
+ return Chain;
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+}
+
+SDValue SITargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+
+ if (Info->getShaderType() == ShaderType::COMPUTE)
+ return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
+ OutVals, DL, DAG);
+
+ Info->setIfReturnsVoid(Outs.size() == 0);
+
+ SmallVector<ISD::OutputArg, 48> Splits;
+ SmallVector<SDValue, 48> SplitVals;
+
+ // Split vectors into their elements.
+ for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
+ const ISD::OutputArg &Out = Outs[i];
+
+ if (Out.VT.isVector()) {
+ MVT VT = Out.VT.getVectorElementType();
+ ISD::OutputArg NewOut = Out;
+ NewOut.Flags.setSplit();
+ NewOut.VT = VT;
+
+ // We want the original number of vector elements here, e.g.
+ // three or five, not four or eight.
+ unsigned NumElements = Out.ArgVT.getVectorNumElements();
+
+ for (unsigned j = 0; j != NumElements; ++j) {
+ SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
+ DAG.getConstant(j, DL, MVT::i32));
+ SplitVals.push_back(Elem);
+ Splits.push_back(NewOut);
+ NewOut.PartOffset += NewOut.VT.getStoreSize();
+ }
+ } else {
+ SplitVals.push_back(OutVals[i]);
+ Splits.push_back(Out);
+ }
+ }
+
+ // CCValAssign - represent the assignment of the return value to a location.
+ SmallVector<CCValAssign, 48> RVLocs;
+
+ // CCState - Info about the registers and stack slots.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze outgoing return values.
+ AnalyzeReturn(CCInfo, Splits);
+
+ SDValue Flag;
+ SmallVector<SDValue, 48> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, realRVLocIdx = 0;
+ i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = SplitVals[realRVLocIdx];
+
+ // Copied from other backends.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
+ break;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // Update chain and glue.
+ RetOps[0] = Chain;
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, RetOps);
+}
+
+MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
+ MachineInstr * MI, MachineBasicBlock * BB) const {
+
+ switch (MI->getOpcode()) {
+ default:
+ return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
+ case AMDGPU::BRANCH:
+ return BB;
+ }
+ return BB;
+}
+
+bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
+ // This currently forces unfolding various combinations of fsub into fma with
+ // free fneg'd operands. As long as we have fast FMA (controlled by
+ // isFMAFasterThanFMulAndFAdd), we should perform these.
+
+ // When fma is quarter rate, for f64 where add / sub are at best half rate,
+ // most of these combines appear to be cycle neutral but save on instruction
+ // count / code size.
+ return true;
+}
+
+EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
+ EVT VT) const {
+ if (!VT.isVector()) {
+ return MVT::i1;
+ }
+ return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
+}
+
+MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
+ return MVT::i32;
+}
+
+// Answering this is somewhat tricky and depends on the specific device which
+// have different rates for fma or all f64 operations.
+//
+// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
+// regardless of which device (although the number of cycles differs between
+// devices), so it is always profitable for f64.
+//
+// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
+// only on full rate devices. Normally, we should prefer selecting v_mad_f32
+// which we can always do even without fused FP ops since it returns the same
+// result as the separate operations and since it is always full
+// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
+// however does not support denormals, so we do report fma as faster if we have
+// a fast fma device and require denormals.
+//
+bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ // This is as fast on some subtargets. However, we always have full rate f32
+ // mad available which returns the same result as the separate operations
+ // which we should prefer over fma. We can't use this if we want to support
+ // denormals, so only report this in these cases.
+ return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG Lowering Operations
+//===----------------------------------------------------------------------===//
+
+SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::LOAD: {
+ SDValue Result = LowerLOAD(Op, DAG);
+ assert((!Result.getNode() ||
+ Result.getNode()->getNumValues() == 2) &&
+ "Load should return a value and a chain");
+ return Result;
+ }
+
+ case ISD::FSIN:
+ case ISD::FCOS:
+ return LowerTrig(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::FDIV: return LowerFDIV(Op, DAG);
+ case ISD::STORE: return LowerSTORE(Op, DAG);
+ case ISD::GlobalAddress: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ return LowerGlobalAddress(MFI, Op, DAG);
+ }
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
+ }
+ return SDValue();
+}
+
+/// \brief Helper function for LowerBRCOND
+static SDNode *findUser(SDValue Value, unsigned Opcode) {
+
+ SDNode *Parent = Value.getNode();
+ for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
+ I != E; ++I) {
+
+ if (I.getUse().get() != Value)
+ continue;
+
+ if (I->getOpcode() == Opcode)
+ return *I;
+ }
+ return nullptr;
+}
+
+SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
+
+ SDLoc SL(Op);
+ FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
+ unsigned FrameIndex = FINode->getIndex();
+
+ // A FrameIndex node represents a 32-bit offset into scratch memory. If
+ // the high bit of a frame index offset were to be set, this would mean
+ // that it represented an offset of ~2GB * 64 = ~128GB from the start of the
+ // scratch buffer, with 64 being the number of threads per wave.
+ //
+ // If we know the machine uses less than 128GB of scratch, then we can
+ // amrk the high bit of the FrameIndex node as known zero,
+ // which is important, because it means in most situations we can
+ // prove that values derived from FrameIndex nodes are non-negative.
+ // This enables us to take advantage of more addressing modes when
+ // accessing scratch buffers, since for scratch reads/writes, the register
+ // offset must always be positive.
+
+ SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
+ if (Subtarget->enableHugeScratchBuffer())
+ return TFI;
+
+ return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
+ DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31)));
+}
+
+/// This transforms the control flow intrinsics to get the branch destination as
+/// last parameter, also switches branch target with BR if the need arise
+SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
+ SelectionDAG &DAG) const {
+
+ SDLoc DL(BRCOND);
+
+ SDNode *Intr = BRCOND.getOperand(1).getNode();
+ SDValue Target = BRCOND.getOperand(2);
+ SDNode *BR = nullptr;
+
+ if (Intr->getOpcode() == ISD::SETCC) {
+ // As long as we negate the condition everything is fine
+ SDNode *SetCC = Intr;
+ assert(SetCC->getConstantOperandVal(1) == 1);
+ assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
+ ISD::SETNE);
+ Intr = SetCC->getOperand(0).getNode();
+
+ } else {
+ // Get the target from BR if we don't negate the condition
+ BR = findUser(BRCOND, ISD::BR);
+ Target = BR->getOperand(1);
+ }
+
+ assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
+
+ // Build the result and
+ ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
+
+ // operands of the new intrinsic call
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(BRCOND.getOperand(0));
+ Ops.append(Intr->op_begin() + 1, Intr->op_end());
+ Ops.push_back(Target);
+
+ // build the new intrinsic call
+ SDNode *Result = DAG.getNode(
+ Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
+ DAG.getVTList(Res), Ops).getNode();
+
+ if (BR) {
+ // Give the branch instruction our target
+ SDValue Ops[] = {
+ BR->getOperand(0),
+ BRCOND.getOperand(2)
+ };
+ SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
+ DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
+ BR = NewBR.getNode();
+ }
+
+ SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
+
+ // Copy the intrinsic results to registers
+ for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
+ SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
+ if (!CopyToReg)
+ continue;
+
+ Chain = DAG.getCopyToReg(
+ Chain, DL,
+ CopyToReg->getOperand(1),
+ SDValue(Result, i - 1),
+ SDValue());
+
+ DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
+ }
+
+ // Remove the old intrinsic from the chain
+ DAG.ReplaceAllUsesOfValueWith(
+ SDValue(Intr, Intr->getNumValues() - 1),
+ Intr->getOperand(0));
+
+ return Chain;
+}
+
+SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
+ SDValue Op,
+ SelectionDAG &DAG) const {
+ GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
+
+ if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
+ return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
+
+ SDLoc DL(GSD);
+ const GlobalValue *GV = GSD->getGlobal();
+ MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace());
+
+ SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
+ return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT, GA);
+}
+
+SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
+ SDValue V) const {
+ // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
+ // so we will end up with redundant moves to m0.
+ //
+ // We can't use S_MOV_B32, because there is no way to specify m0 as the
+ // destination register.
+ //
+ // We have to use them both. Machine cse will combine all the S_MOV_B32
+ // instructions and the register coalescer eliminate the extra copies.
+ SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V);
+ return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32),
+ SDValue(M0, 0), SDValue()); // Glue
+ // A Null SDValue creates
+ // a glue result.
+}
+
+SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
+ SDValue Op,
+ MVT VT,
+ unsigned Offset) const {
+ SDLoc SL(Op);
+ SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
+ DAG.getEntryNode(), Offset, false);
+ // The local size values will have the hi 16-bits as zero.
+ return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
+ DAG.getValueType(VT));
+}
+
+SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto MFI = MF.getInfo<SIMachineFunctionInfo>();
+ const SIRegisterInfo *TRI =
+ static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
+
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+
+ // TODO: Should this propagate fast-math-flags?
+
+ switch (IntrinsicID) {
+ case Intrinsic::amdgcn_dispatch_ptr:
+ if (!Subtarget->isAmdHsaOS()) {
+ DiagnosticInfoUnsupported BadIntrin(*MF.getFunction(),
+ "hsa intrinsic without hsa target");
+ DAG.getContext()->diagnose(BadIntrin);
+ return DAG.getUNDEF(VT);
+ }
+
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_PTR), VT);
+
+ case Intrinsic::r600_read_ngroups_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_X, false);
+ case Intrinsic::r600_read_ngroups_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_Y, false);
+ case Intrinsic::r600_read_ngroups_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::NGROUPS_Z, false);
+ case Intrinsic::r600_read_global_size_x:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
+ case Intrinsic::r600_read_global_size_y:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
+ case Intrinsic::r600_read_global_size_z:
+ return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
+ SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
+ case Intrinsic::r600_read_local_size_x:
+ return lowerImplicitZextParam(DAG, Op, MVT::i16,
+ SI::KernelInputOffsets::LOCAL_SIZE_X);
+ case Intrinsic::r600_read_local_size_y:
+ return lowerImplicitZextParam(DAG, Op, MVT::i16,
+ SI::KernelInputOffsets::LOCAL_SIZE_Y);
+ case Intrinsic::r600_read_local_size_z:
+ return lowerImplicitZextParam(DAG, Op, MVT::i16,
+ SI::KernelInputOffsets::LOCAL_SIZE_Z);
+ case Intrinsic::AMDGPU_read_workdim:
+ // Really only 2 bits.
+ return lowerImplicitZextParam(DAG, Op, MVT::i8,
+ getImplicitParameterOffset(MFI, GRID_DIM));
+ case Intrinsic::r600_read_tgid_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
+ case Intrinsic::r600_read_tgid_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
+ case Intrinsic::r600_read_tgid_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
+ case Intrinsic::r600_read_tidig_x:
+ return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
+ case Intrinsic::r600_read_tidig_y:
+ return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
+ case Intrinsic::r600_read_tidig_z:
+ return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
+ TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
+ case AMDGPUIntrinsic::SI_load_const: {
+ SDValue Ops[] = {
+ Op.getOperand(1),
+ Op.getOperand(2)
+ };
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo(),
+ MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
+ VT.getStoreSize(), 4);
+ return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
+ Op->getVTList(), Ops, VT, MMO);
+ }
+ case AMDGPUIntrinsic::SI_sample:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
+ case AMDGPUIntrinsic::SI_sampleb:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
+ case AMDGPUIntrinsic::SI_sampled:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
+ case AMDGPUIntrinsic::SI_samplel:
+ return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
+ case AMDGPUIntrinsic::SI_vs_load_input:
+ return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_fract:
+ case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
+ return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
+ DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
+ case AMDGPUIntrinsic::SI_fs_constant: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
+ SDValue Glue = M0.getValue(1);
+ return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
+ DAG.getConstant(2, DL, MVT::i32), // P0
+ Op.getOperand(1), Op.getOperand(2), Glue);
+ }
+ case AMDGPUIntrinsic::SI_packf16:
+ if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
+ return DAG.getUNDEF(MVT::i32);
+ return Op;
+ case AMDGPUIntrinsic::SI_fs_interp: {
+ SDValue IJ = Op.getOperand(4);
+ SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
+ DAG.getConstant(0, DL, MVT::i32));
+ SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
+ DAG.getConstant(1, DL, MVT::i32));
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
+ SDValue Glue = M0.getValue(1);
+ SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
+ DAG.getVTList(MVT::f32, MVT::Glue),
+ I, Op.getOperand(1), Op.getOperand(2), Glue);
+ Glue = SDValue(P1.getNode(), 1);
+ return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
+ Op.getOperand(1), Op.getOperand(2), Glue);
+ }
+ case Intrinsic::amdgcn_interp_p1: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
+ SDValue Glue = M0.getValue(1);
+ return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3), Glue);
+ }
+ case Intrinsic::amdgcn_interp_p2: {
+ SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
+ SDValue Glue = SDValue(M0.getNode(), 1);
+ return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
+ Glue);
+ }
+ default:
+ return AMDGPUTargetLowering::LowerOperation(Op, DAG);
+ }
+}
+
+SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDLoc DL(Op);
+ SDValue Chain = Op.getOperand(0);
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+
+ switch (IntrinsicID) {
+ case AMDGPUIntrinsic::SI_sendmsg: {
+ Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
+ SDValue Glue = Chain.getValue(1);
+ return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
+ Op.getOperand(2), Glue);
+ }
+ case AMDGPUIntrinsic::SI_tbuffer_store: {
+ SDValue Ops[] = {
+ Chain,
+ Op.getOperand(2),
+ Op.getOperand(3),
+ Op.getOperand(4),
+ Op.getOperand(5),
+ Op.getOperand(6),
+ Op.getOperand(7),
+ Op.getOperand(8),
+ Op.getOperand(9),
+ Op.getOperand(10),
+ Op.getOperand(11),
+ Op.getOperand(12),
+ Op.getOperand(13),
+ Op.getOperand(14)
+ };
+
+ EVT VT = Op.getOperand(3).getValueType();
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo(),
+ MachineMemOperand::MOStore,
+ VT.getStoreSize(), 4);
+ return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
+ Op->getVTList(), Ops, VT, MMO);
+ }
+ default:
+ return SDValue();
+ }
+}
+
+SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+
+ if (Op.getValueType().isVector()) {
+ assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
+ "Custom lowering for non-i32 vectors hasn't been implemented.");
+ unsigned NumElements = Op.getValueType().getVectorNumElements();
+ assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
+
+ switch (Load->getAddressSpace()) {
+ default: break;
+ case AMDGPUAS::CONSTANT_ADDRESS:
+ if (isMemOpUniform(Load))
+ break;
+ // Non-uniform loads will be selected to MUBUF instructions, so they
+ // have the same legalization requires ments as global and private
+ // loads.
+ //
+ // Fall-through
+ case AMDGPUAS::GLOBAL_ADDRESS:
+ case AMDGPUAS::PRIVATE_ADDRESS:
+ if (NumElements >= 8)
+ return SplitVectorLoad(Op, DAG);
+
+ // v4 loads are supported for private and global memory.
+ if (NumElements <= 4)
+ break;
+ // fall-through
+ case AMDGPUAS::LOCAL_ADDRESS:
+ // If properly aligned, if we split we might be able to use ds_read_b64.
+ return SplitVectorLoad(Op, DAG);
+ }
+ }
+
+ return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
+}
+
+SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
+ const SDValue &Op,
+ SelectionDAG &DAG) const {
+ return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3),
+ Op.getOperand(4));
+}
+
+SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ if (Op.getValueType() != MVT::i64)
+ return SDValue();
+
+ SDLoc DL(Op);
+ SDValue Cond = Op.getOperand(0);
+
+ SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
+ SDValue One = DAG.getConstant(1, DL, MVT::i32);
+
+ SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
+ SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
+
+ SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
+ SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
+
+ SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
+
+ SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
+ SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
+
+ SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
+
+ SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
+ return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
+}
+
+// Catch division cases where we can use shortcuts with rcp and rsq
+// instructions.
+SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ EVT VT = Op.getValueType();
+ bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
+
+ if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
+ if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
+ CLHS->isExactlyValue(1.0)) {
+ // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
+ // the CI documentation has a worst case error of 1 ulp.
+ // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
+ // use it as long as we aren't trying to use denormals.
+
+ // 1.0 / sqrt(x) -> rsq(x)
+ //
+ // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
+ // error seems really high at 2^29 ULP.
+ if (RHS.getOpcode() == ISD::FSQRT)
+ return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
+
+ // 1.0 / x -> rcp(x)
+ return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
+ }
+ }
+
+ if (Unsafe) {
+ // Turn into multiply by the reciprocal.
+ // x / y -> x * (1.0 / y)
+ SDNodeFlags Flags;
+ Flags.setUnsafeAlgebra(true);
+ SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
+ return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
+ SDValue FastLowered = LowerFastFDIV(Op, DAG);
+ if (FastLowered.getNode())
+ return FastLowered;
+
+ // This uses v_rcp_f32 which does not handle denormals. Let this hit a
+ // selection error for now rather than do something incorrect.
+ if (Subtarget->hasFP32Denormals())
+ return SDValue();
+
+ SDLoc SL(Op);
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+
+ SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
+
+ const APFloat K0Val(BitsToFloat(0x6f800000));
+ const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
+
+ const APFloat K1Val(BitsToFloat(0x2f800000));
+ const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
+
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
+
+ EVT SetCCVT =
+ getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
+
+ SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
+
+ SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
+
+ // TODO: Should this propagate fast-math-flags?
+
+ r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
+
+ SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
+
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
+
+ return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
+}
+
+SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
+ if (DAG.getTarget().Options.UnsafeFPMath)
+ return LowerFastFDIV(Op, DAG);
+
+ SDLoc SL(Op);
+ SDValue X = Op.getOperand(0);
+ SDValue Y = Op.getOperand(1);
+
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
+
+ SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
+
+ SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
+
+ SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
+
+ SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
+
+ SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
+
+ SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
+
+ SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
+
+ SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
+
+ SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
+
+ SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
+ NegDivScale0, Mul, DivScale1);
+
+ SDValue Scale;
+
+ if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ // Workaround a hardware bug on SI where the condition output from div_scale
+ // is not usable.
+
+ const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
+
+ // Figure out if the scale to use for div_fmas.
+ SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
+ SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
+ SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
+ SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
+
+ SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
+ SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
+
+ SDValue Scale0Hi
+ = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
+ SDValue Scale1Hi
+ = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
+
+ SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
+ SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
+ Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
+ } else {
+ Scale = DivScale1.getValue(1);
+ }
+
+ SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
+ Fma4, Fma3, Mul, Scale);
+
+ return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
+}
+
+SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::f32)
+ return LowerFDIV32(Op, DAG);
+
+ if (VT == MVT::f64)
+ return LowerFDIV64(Op, DAG);
+
+ llvm_unreachable("Unexpected type for fdiv");
+}
+
+SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ EVT VT = Store->getMemoryVT();
+
+ // These stores are legal.
+ if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
+ if (VT.isVector() && VT.getVectorNumElements() > 4)
+ return ScalarizeVectorStore(Op, DAG);
+ return SDValue();
+ }
+
+ SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
+ if (Ret.getNode())
+ return Ret;
+
+ if (VT.isVector() && VT.getVectorNumElements() >= 8)
+ return SplitVectorStore(Op, DAG);
+
+ if (VT == MVT::i1)
+ return DAG.getTruncStore(Store->getChain(), DL,
+ DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
+ Store->getBasePtr(), MVT::i1, Store->getMemOperand());
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Arg = Op.getOperand(0);
+ // TODO: Should this propagate fast-math-flags?
+ SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
+ DAG.getNode(ISD::FMUL, DL, VT, Arg,
+ DAG.getConstantFP(0.5/M_PI, DL,
+ VT)));
+
+ switch (Op.getOpcode()) {
+ case ISD::FCOS:
+ return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
+ case ISD::FSIN:
+ return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
+ default:
+ llvm_unreachable("Wrong trig opcode");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG optimizations
+//===----------------------------------------------------------------------===//
+
+SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+ EVT ScalarVT = VT.getScalarType();
+ if (ScalarVT != MVT::f32)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue Src = N->getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // TODO: We could try to match extracting the higher bytes, which would be
+ // easier if i8 vectors weren't promoted to i32 vectors, particularly after
+ // types are legalized. v4i8 -> v4f32 is probably the only case to worry
+ // about in practice.
+ if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
+ if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
+ SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
+ DCI.AddToWorklist(Cvt.getNode());
+ return Cvt;
+ }
+ }
+
+ // We are primarily trying to catch operations on illegal vector types
+ // before they are expanded.
+ // For scalars, we can use the more flexible method of checking masked bits
+ // after legalization.
+ if (!DCI.isBeforeLegalize() ||
+ !SrcVT.isVector() ||
+ SrcVT.getVectorElementType() != MVT::i8) {
+ return SDValue();
+ }
+
+ assert(DCI.isBeforeLegalize() && "Unexpected legal type");
+
+ // Weird sized vectors are a pain to handle, but we know 3 is really the same
+ // size as 4.
+ unsigned NElts = SrcVT.getVectorNumElements();
+ if (!SrcVT.isSimple() && NElts != 3)
+ return SDValue();
+
+ // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
+ // prevent a mess from expanding to v4i32 and repacking.
+ if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
+ EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
+ EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
+ LoadSDNode *Load = cast<LoadSDNode>(Src);
+
+ unsigned AS = Load->getAddressSpace();
+ unsigned Align = Load->getAlignment();
+ Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
+
+ // Don't try to replace the load if we have to expand it due to alignment
+ // problems. Otherwise we will end up scalarizing the load, and trying to
+ // repack into the vector for no real reason.
+ if (Align < ABIAlignment &&
+ !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
+ return SDValue();
+ }
+
+ SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
+ Load->getChain(),
+ Load->getBasePtr(),
+ LoadVT,
+ Load->getMemOperand());
+
+ // Make sure successors of the original load stay after it by updating
+ // them to use the new Chain.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
+
+ SmallVector<SDValue, 4> Elts;
+ if (RegVT.isVector())
+ DAG.ExtractVectorElements(NewLoad, Elts);
+ else
+ Elts.push_back(NewLoad);
+
+ SmallVector<SDValue, 4> Ops;
+
+ unsigned EltIdx = 0;
+ for (SDValue Elt : Elts) {
+ unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
+ for (unsigned I = 0; I < ComponentsInElt; ++I) {
+ unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
+ SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
+ DCI.AddToWorklist(Cvt.getNode());
+ Ops.push_back(Cvt);
+ }
+
+ ++EltIdx;
+ }
+
+ assert(Ops.size() == NElts);
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
+ }
+
+ return SDValue();
+}
+
+/// \brief Return true if the given offset Size in bytes can be folded into
+/// the immediate offsets of a memory instruction for the given address space.
+static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
+ const AMDGPUSubtarget &STI) {
+ switch (AS) {
+ case AMDGPUAS::GLOBAL_ADDRESS: {
+ // MUBUF instructions a 12-bit offset in bytes.
+ return isUInt<12>(OffsetSize);
+ }
+ case AMDGPUAS::CONSTANT_ADDRESS: {
+ // SMRD instructions have an 8-bit offset in dwords on SI and
+ // a 20-bit offset in bytes on VI.
+ if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return isUInt<20>(OffsetSize);
+ else
+ return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
+ }
+ case AMDGPUAS::LOCAL_ADDRESS:
+ case AMDGPUAS::REGION_ADDRESS: {
+ // The single offset versions have a 16-bit offset in bytes.
+ return isUInt<16>(OffsetSize);
+ }
+ case AMDGPUAS::PRIVATE_ADDRESS:
+ // Indirect register addressing does not use any offsets.
+ default:
+ return 0;
+ }
+}
+
+// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
+
+// This is a variant of
+// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
+//
+// The normal DAG combiner will do this, but only if the add has one use since
+// that would increase the number of instructions.
+//
+// This prevents us from seeing a constant offset that can be folded into a
+// memory instruction's addressing mode. If we know the resulting add offset of
+// a pointer can be folded into an addressing offset, we can replace the pointer
+// operand with the add of new constant offset. This eliminates one of the uses,
+// and may allow the remaining use to also be simplified.
+//
+SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
+ unsigned AddrSpace,
+ DAGCombinerInfo &DCI) const {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ if (N0.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
+ if (!CN1)
+ return SDValue();
+
+ const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!CAdd)
+ return SDValue();
+
+ // If the resulting offset is too large, we can't fold it into the addressing
+ // mode offset.
+ APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
+ if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+ EVT VT = N->getValueType(0);
+
+ SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
+ SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
+
+ return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
+}
+
+SDValue SITargetLowering::performAndCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (DCI.isBeforeLegalize())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+
+ // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
+ // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ if (LHS.getOpcode() == ISD::SETCC &&
+ RHS.getOpcode() == ISD::SETCC) {
+ ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
+ ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
+
+ SDValue X = LHS.getOperand(0);
+ SDValue Y = RHS.getOperand(0);
+ if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
+ return SDValue();
+
+ if (LCC == ISD::SETO) {
+ if (X != LHS.getOperand(1))
+ return SDValue();
+
+ if (RCC == ISD::SETUNE) {
+ const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
+ if (!C1 || !C1->isInfinity() || C1->isNegative())
+ return SDValue();
+
+ const uint32_t Mask = SIInstrFlags::N_NORMAL |
+ SIInstrFlags::N_SUBNORMAL |
+ SIInstrFlags::N_ZERO |
+ SIInstrFlags::P_ZERO |
+ SIInstrFlags::P_SUBNORMAL |
+ SIInstrFlags::P_NORMAL;
+
+ static_assert(((~(SIInstrFlags::S_NAN |
+ SIInstrFlags::Q_NAN |
+ SIInstrFlags::N_INFINITY |
+ SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
+ "mask not equal");
+
+ SDLoc DL(N);
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
+ X, DAG.getConstant(Mask, DL, MVT::i32));
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performOrCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
+ if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
+ RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
+ SDValue Src = LHS.getOperand(0);
+ if (Src != RHS.getOperand(0))
+ return SDValue();
+
+ const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
+ const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
+ if (!CLHS || !CRHS)
+ return SDValue();
+
+ // Only 10 bits are used.
+ static const uint32_t MaxMask = 0x3ff;
+
+ uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
+ SDLoc DL(N);
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
+ Src, DAG.getConstant(NewMask, DL, MVT::i32));
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performClassCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue Mask = N->getOperand(1);
+
+ // fp_class x, 0 -> false
+ if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
+ if (CMask->isNullValue())
+ return DAG.getConstant(0, SDLoc(N), MVT::i1);
+ }
+
+ return SDValue();
+}
+
+static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
+ switch (Opc) {
+ case ISD::FMAXNUM:
+ return AMDGPUISD::FMAX3;
+ case ISD::SMAX:
+ return AMDGPUISD::SMAX3;
+ case ISD::UMAX:
+ return AMDGPUISD::UMAX3;
+ case ISD::FMINNUM:
+ return AMDGPUISD::FMIN3;
+ case ISD::SMIN:
+ return AMDGPUISD::SMIN3;
+ case ISD::UMIN:
+ return AMDGPUISD::UMIN3;
+ default:
+ llvm_unreachable("Not a min/max opcode");
+ }
+}
+
+SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+
+ unsigned Opc = N->getOpcode();
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // Only do this if the inner op has one use since this will just increases
+ // register pressure for no benefit.
+
+ // max(max(a, b), c)
+ if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
+ SDLoc DL(N);
+ return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
+ DL,
+ N->getValueType(0),
+ Op0.getOperand(0),
+ Op0.getOperand(1),
+ Op1);
+ }
+
+ // max(a, max(b, c))
+ if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
+ SDLoc DL(N);
+ return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
+ DL,
+ N->getValueType(0),
+ Op0,
+ Op1.getOperand(0),
+ Op1.getOperand(1));
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::performSetCCCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc SL(N);
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ EVT VT = LHS.getValueType();
+
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return SDValue();
+
+ // Match isinf pattern
+ // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
+ const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
+ if (!CRHS)
+ return SDValue();
+
+ const APFloat &APF = CRHS->getValueAPF();
+ if (APF.isInfinity() && !APF.isNegative()) {
+ unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
+ return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
+ DAG.getConstant(Mask, SL, MVT::i32));
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ switch (N->getOpcode()) {
+ default:
+ return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+ case ISD::SETCC:
+ return performSetCCCombine(N, DCI);
+ case ISD::FMAXNUM: // TODO: What about fmax_legacy?
+ case ISD::FMINNUM:
+ case ISD::SMAX:
+ case ISD::SMIN:
+ case ISD::UMAX:
+ case ISD::UMIN: {
+ if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
+ N->getValueType(0) != MVT::f64 &&
+ getTargetMachine().getOptLevel() > CodeGenOpt::None)
+ return performMin3Max3Combine(N, DCI);
+ break;
+ }
+
+ case AMDGPUISD::CVT_F32_UBYTE0:
+ case AMDGPUISD::CVT_F32_UBYTE1:
+ case AMDGPUISD::CVT_F32_UBYTE2:
+ case AMDGPUISD::CVT_F32_UBYTE3: {
+ unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
+
+ SDValue Src = N->getOperand(0);
+ APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
+
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
+ TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+
+ break;
+ }
+
+ case ISD::UINT_TO_FP: {
+ return performUCharToFloatCombine(N, DCI);
+ }
+ case ISD::FADD: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ break;
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::f32)
+ break;
+
+ // Only do this if we are not trying to support denormals. v_mad_f32 does
+ // not support denormals ever.
+ if (Subtarget->hasFP32Denormals())
+ break;
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // These should really be instruction patterns, but writing patterns with
+ // source modiifiers is a pain.
+
+ // fadd (fadd (a, a), b) -> mad 2.0, a, b
+ if (LHS.getOpcode() == ISD::FADD) {
+ SDValue A = LHS.getOperand(0);
+ if (A == LHS.getOperand(1)) {
+ const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
+ return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
+ }
+ }
+
+ // fadd (b, fadd (a, a)) -> mad 2.0, a, b
+ if (RHS.getOpcode() == ISD::FADD) {
+ SDValue A = RHS.getOperand(0);
+ if (A == RHS.getOperand(1)) {
+ const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
+ return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
+ }
+ }
+
+ return SDValue();
+ }
+ case ISD::FSUB: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
+ break;
+
+ EVT VT = N->getValueType(0);
+
+ // Try to get the fneg to fold into the source modifier. This undoes generic
+ // DAG combines and folds them into the mad.
+ //
+ // Only do this if we are not trying to support denormals. v_mad_f32 does
+ // not support denormals ever.
+ if (VT == MVT::f32 &&
+ !Subtarget->hasFP32Denormals()) {
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ if (LHS.getOpcode() == ISD::FADD) {
+ // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
+
+ SDValue A = LHS.getOperand(0);
+ if (A == LHS.getOperand(1)) {
+ const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
+ SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
+
+ return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
+ }
+ }
+
+ if (RHS.getOpcode() == ISD::FADD) {
+ // (fsub c, (fadd a, a)) -> mad -2.0, a, c
+
+ SDValue A = RHS.getOperand(0);
+ if (A == RHS.getOperand(1)) {
+ const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
+ return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
+ }
+ }
+
+ return SDValue();
+ }
+
+ break;
+ }
+ case ISD::LOAD:
+ case ISD::STORE:
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE:
+ case ISD::ATOMIC_CMP_SWAP:
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
+ if (DCI.isBeforeLegalize())
+ break;
+
+ MemSDNode *MemNode = cast<MemSDNode>(N);
+ SDValue Ptr = MemNode->getBasePtr();
+
+ // TODO: We could also do this for multiplies.
+ unsigned AS = MemNode->getAddressSpace();
+ if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
+ SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
+ if (NewPtr) {
+ SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
+
+ NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
+ return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
+ }
+ }
+ break;
+ }
+ case ISD::AND:
+ return performAndCombine(N, DCI);
+ case ISD::OR:
+ return performOrCombine(N, DCI);
+ case AMDGPUISD::FP_CLASS:
+ return performClassCombine(N, DCI);
+ }
+ return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
+}
+
+/// \brief Analyze the possible immediate value Op
+///
+/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
+/// and the immediate value if it's a literal immediate
+int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
+
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
+
+ if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
+ if (TII->isInlineConstant(Node->getAPIntValue()))
+ return 0;
+
+ uint64_t Val = Node->getZExtValue();
+ return isUInt<32>(Val) ? Val : -1;
+ }
+
+ if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
+ if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
+ return 0;
+
+ if (Node->getValueType(0) == MVT::f32)
+ return FloatToBits(Node->getValueAPF().convertToFloat());
+
+ return -1;
+ }
+
+ return -1;
+}
+
+/// \brief Helper function for adjustWritemask
+static unsigned SubIdx2Lane(unsigned Idx) {
+ switch (Idx) {
+ default: return 0;
+ case AMDGPU::sub0: return 0;
+ case AMDGPU::sub1: return 1;
+ case AMDGPU::sub2: return 2;
+ case AMDGPU::sub3: return 3;
+ }
+}
+
+/// \brief Adjust the writemask of MIMG instructions
+void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
+ SelectionDAG &DAG) const {
+ SDNode *Users[4] = { };
+ unsigned Lane = 0;
+ unsigned OldDmask = Node->getConstantOperandVal(0);
+ unsigned NewDmask = 0;
+
+ // Try to figure out the used register components
+ for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
+ I != E; ++I) {
+
+ // Abort if we can't understand the usage
+ if (!I->isMachineOpcode() ||
+ I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
+ return;
+
+ // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
+ // Note that subregs are packed, i.e. Lane==0 is the first bit set
+ // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
+ // set, etc.
+ Lane = SubIdx2Lane(I->getConstantOperandVal(1));
+
+ // Set which texture component corresponds to the lane.
+ unsigned Comp;
+ for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
+ assert(Dmask);
+ Comp = countTrailingZeros(Dmask);
+ Dmask &= ~(1 << Comp);
+ }
+
+ // Abort if we have more than one user per component
+ if (Users[Lane])
+ return;
+
+ Users[Lane] = *I;
+ NewDmask |= 1 << Comp;
+ }
+
+ // Abort if there's no change
+ if (NewDmask == OldDmask)
+ return;
+
+ // Adjust the writemask in the node
+ std::vector<SDValue> Ops;
+ Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
+ Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
+ Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
+
+ // If we only got one lane, replace it with a copy
+ // (if NewDmask has only one bit set...)
+ if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
+ SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
+ MVT::i32);
+ SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
+ SDLoc(), Users[Lane]->getValueType(0),
+ SDValue(Node, 0), RC);
+ DAG.ReplaceAllUsesWith(Users[Lane], Copy);
+ return;
+ }
+
+ // Update the users of the node with the new indices
+ for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
+
+ SDNode *User = Users[i];
+ if (!User)
+ continue;
+
+ SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
+
+ switch (Idx) {
+ default: break;
+ case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
+ case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
+ case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
+ }
+ }
+}
+
+static bool isFrameIndexOp(SDValue Op) {
+ if (Op.getOpcode() == ISD::AssertZext)
+ Op = Op.getOperand(0);
+
+ return isa<FrameIndexSDNode>(Op);
+}
+
+/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
+/// with frame index operands.
+/// LLVM assumes that inputs are to these instructions are registers.
+void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
+ SelectionDAG &DAG) const {
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
+ if (!isFrameIndexOp(Node->getOperand(i))) {
+ Ops.push_back(Node->getOperand(i));
+ continue;
+ }
+
+ SDLoc DL(Node);
+ Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
+ Node->getOperand(i).getValueType(),
+ Node->getOperand(i)), 0));
+ }
+
+ DAG.UpdateNodeOperands(Node, Ops);
+}
+
+/// \brief Fold the instructions after selecting them.
+SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
+ SelectionDAG &DAG) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
+
+ if (TII->isMIMG(Node->getMachineOpcode()))
+ adjustWritemask(Node, DAG);
+
+ if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
+ Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
+ legalizeTargetIndependentNode(Node, DAG);
+ return Node;
+ }
+ return Node;
+}
+
+/// \brief Assign the register class depending on the number of
+/// bits set in the writemask
+void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
+ SDNode *Node) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
+
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+
+ if (TII->isVOP3(MI->getOpcode())) {
+ // Make sure constant bus requirements are respected.
+ TII->legalizeOperandsVOP3(MRI, MI);
+ return;
+ }
+
+ if (TII->isMIMG(*MI)) {
+ unsigned VReg = MI->getOperand(0).getReg();
+ unsigned Writemask = MI->getOperand(1).getImm();
+ unsigned BitsSet = 0;
+ for (unsigned i = 0; i < 4; ++i)
+ BitsSet += Writemask & (1 << i) ? 1 : 0;
+
+ const TargetRegisterClass *RC;
+ switch (BitsSet) {
+ default: return;
+ case 1: RC = &AMDGPU::VGPR_32RegClass; break;
+ case 2: RC = &AMDGPU::VReg_64RegClass; break;
+ case 3: RC = &AMDGPU::VReg_96RegClass; break;
+ }
+
+ unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
+ MI->setDesc(TII->get(NewOpcode));
+ MRI.setRegClass(VReg, RC);
+ return;
+ }
+
+ // Replace unused atomics with the no return version.
+ int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
+ if (NoRetAtomicOp != -1) {
+ if (!Node->hasAnyUseOfValue(0)) {
+ MI->setDesc(TII->get(NoRetAtomicOp));
+ MI->RemoveOperand(0);
+ }
+
+ return;
+ }
+}
+
+static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
+ SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
+ return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
+}
+
+MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
+ SDLoc DL,
+ SDValue Ptr) const {
+ const SIInstrInfo *TII =
+ static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
+
+ // Build the half of the subregister with the constants before building the
+ // full 128-bit register. If we are building multiple resource descriptors,
+ // this will allow CSEing of the 2-component register.
+ const SDValue Ops0[] = {
+ DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
+ buildSMovImm32(DAG, DL, 0),
+ DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
+ buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
+ DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
+ };
+
+ SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
+ MVT::v2i32, Ops0), 0);
+
+ // Combine the constants and the pointer.
+ const SDValue Ops1[] = {
+ DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
+ Ptr,
+ DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
+ SubRegHi,
+ DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
+ };
+
+ return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
+}
+
+/// \brief Return a resource descriptor with the 'Add TID' bit enabled
+/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
+/// of the resource descriptor) to create an offset, which is added to
+/// the resource pointer.
+MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
+ SDLoc DL,
+ SDValue Ptr,
+ uint32_t RsrcDword1,
+ uint64_t RsrcDword2And3) const {
+ SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
+ SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
+ if (RsrcDword1) {
+ PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
+ DAG.getConstant(RsrcDword1, DL, MVT::i32)),
+ 0);
+ }
+
+ SDValue DataLo = buildSMovImm32(DAG, DL,
+ RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
+ SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
+
+ const SDValue Ops[] = {
+ DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
+ PtrLo,
+ DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
+ PtrHi,
+ DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
+ DataLo,
+ DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
+ DataHi,
+ DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
+ };
+
+ return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
+}
+
+SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
+ const TargetRegisterClass *RC,
+ unsigned Reg, EVT VT) const {
+ SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
+
+ return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
+ cast<RegisterSDNode>(VReg)->getReg(), VT);
+}
+
+//===----------------------------------------------------------------------===//
+// SI Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+std::pair<unsigned, const TargetRegisterClass *>
+SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 's':
+ case 'r':
+ switch (VT.getSizeInBits()) {
+ default:
+ return std::make_pair(0U, nullptr);
+ case 32:
+ return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
+ case 64:
+ return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
+ case 128:
+ return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
+ case 256:
+ return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
+ }
+
+ case 'v':
+ switch (VT.getSizeInBits()) {
+ default:
+ return std::make_pair(0U, nullptr);
+ case 32:
+ return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
+ case 64:
+ return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
+ case 96:
+ return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
+ case 128:
+ return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
+ case 256:
+ return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
+ case 512:
+ return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
+ }
+ }
+ }
+
+ if (Constraint.size() > 1) {
+ const TargetRegisterClass *RC = nullptr;
+ if (Constraint[1] == 'v') {
+ RC = &AMDGPU::VGPR_32RegClass;
+ } else if (Constraint[1] == 's') {
+ RC = &AMDGPU::SGPR_32RegClass;
+ }
+
+ if (RC) {
+ uint32_t Idx;
+ bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
+ if (!Failed && Idx < RC->getNumRegs())
+ return std::make_pair(RC->getRegister(Idx), RC);
+ }
+ }
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+}
+
+SITargetLowering::ConstraintType
+SITargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 's':
+ case 'v':
+ return C_RegisterClass;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
OpenPOWER on IntegriCloud