summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp1430
1 files changed, 1430 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp b/contrib/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp
new file mode 100644
index 0000000..8b6eea1
--- /dev/null
+++ b/contrib/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp
@@ -0,0 +1,1430 @@
+//===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief R600 Implementation of TargetInstrInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "R600InstrInfo.h"
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "AMDGPUTargetMachine.h"
+#include "R600Defines.h"
+#include "R600MachineFunctionInfo.h"
+#include "R600RegisterInfo.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "AMDGPUGenDFAPacketizer.inc"
+
+R600InstrInfo::R600InstrInfo(const AMDGPUSubtarget &st)
+ : AMDGPUInstrInfo(st), RI() {}
+
+const R600RegisterInfo &R600InstrInfo::getRegisterInfo() const {
+ return RI;
+}
+
+bool R600InstrInfo::isTrig(const MachineInstr &MI) const {
+ return get(MI.getOpcode()).TSFlags & R600_InstFlag::TRIG;
+}
+
+bool R600InstrInfo::isVector(const MachineInstr &MI) const {
+ return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
+}
+
+void
+R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned VectorComponents = 0;
+ if ((AMDGPU::R600_Reg128RegClass.contains(DestReg) ||
+ AMDGPU::R600_Reg128VerticalRegClass.contains(DestReg)) &&
+ (AMDGPU::R600_Reg128RegClass.contains(SrcReg) ||
+ AMDGPU::R600_Reg128VerticalRegClass.contains(SrcReg))) {
+ VectorComponents = 4;
+ } else if((AMDGPU::R600_Reg64RegClass.contains(DestReg) ||
+ AMDGPU::R600_Reg64VerticalRegClass.contains(DestReg)) &&
+ (AMDGPU::R600_Reg64RegClass.contains(SrcReg) ||
+ AMDGPU::R600_Reg64VerticalRegClass.contains(SrcReg))) {
+ VectorComponents = 2;
+ }
+
+ if (VectorComponents > 0) {
+ for (unsigned I = 0; I < VectorComponents; I++) {
+ unsigned SubRegIndex = RI.getSubRegFromChannel(I);
+ buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
+ RI.getSubReg(DestReg, SubRegIndex),
+ RI.getSubReg(SrcReg, SubRegIndex))
+ .addReg(DestReg,
+ RegState::Define | RegState::Implicit);
+ }
+ } else {
+ MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
+ DestReg, SrcReg);
+ NewMI->getOperand(getOperandIdx(*NewMI, AMDGPU::OpName::src0))
+ .setIsKill(KillSrc);
+ }
+}
+
+/// \returns true if \p MBBI can be moved into a new basic.
+bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI) const {
+ for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
+ E = MBBI->operands_end(); I != E; ++I) {
+ if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) &&
+ I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg()))
+ return false;
+ }
+ return true;
+}
+
+bool R600InstrInfo::isMov(unsigned Opcode) const {
+
+
+ switch(Opcode) {
+ default: return false;
+ case AMDGPU::MOV:
+ case AMDGPU::MOV_IMM_F32:
+ case AMDGPU::MOV_IMM_I32:
+ return true;
+ }
+}
+
+// Some instructions act as place holders to emulate operations that the GPU
+// hardware does automatically. This function can be used to check if
+// an opcode falls into this category.
+bool R600InstrInfo::isPlaceHolderOpcode(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return false;
+ case AMDGPU::RETURN:
+ return true;
+ }
+}
+
+bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
+ return false;
+}
+
+bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
+ switch(Opcode) {
+ default: return false;
+ case AMDGPU::CUBE_r600_pseudo:
+ case AMDGPU::CUBE_r600_real:
+ case AMDGPU::CUBE_eg_pseudo:
+ case AMDGPU::CUBE_eg_real:
+ return true;
+ }
+}
+
+bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
+ unsigned TargetFlags = get(Opcode).TSFlags;
+
+ return (TargetFlags & R600_InstFlag::ALU_INST);
+}
+
+bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
+ unsigned TargetFlags = get(Opcode).TSFlags;
+
+ return ((TargetFlags & R600_InstFlag::OP1) |
+ (TargetFlags & R600_InstFlag::OP2) |
+ (TargetFlags & R600_InstFlag::OP3));
+}
+
+bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
+ unsigned TargetFlags = get(Opcode).TSFlags;
+
+ return ((TargetFlags & R600_InstFlag::LDS_1A) |
+ (TargetFlags & R600_InstFlag::LDS_1A1D) |
+ (TargetFlags & R600_InstFlag::LDS_1A2D));
+}
+
+bool R600InstrInfo::isLDSNoRetInstr(unsigned Opcode) const {
+ return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) == -1;
+}
+
+bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
+ return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) != -1;
+}
+
+bool R600InstrInfo::canBeConsideredALU(const MachineInstr *MI) const {
+ if (isALUInstr(MI->getOpcode()))
+ return true;
+ if (isVector(*MI) || isCubeOp(MI->getOpcode()))
+ return true;
+ switch (MI->getOpcode()) {
+ case AMDGPU::PRED_X:
+ case AMDGPU::INTERP_PAIR_XY:
+ case AMDGPU::INTERP_PAIR_ZW:
+ case AMDGPU::INTERP_VEC_LOAD:
+ case AMDGPU::COPY:
+ case AMDGPU::DOT_4:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
+ if (ST.hasCaymanISA())
+ return false;
+ return (get(Opcode).getSchedClass() == AMDGPU::Sched::TransALU);
+}
+
+bool R600InstrInfo::isTransOnly(const MachineInstr *MI) const {
+ return isTransOnly(MI->getOpcode());
+}
+
+bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
+ return (get(Opcode).getSchedClass() == AMDGPU::Sched::VecALU);
+}
+
+bool R600InstrInfo::isVectorOnly(const MachineInstr *MI) const {
+ return isVectorOnly(MI->getOpcode());
+}
+
+bool R600InstrInfo::isExport(unsigned Opcode) const {
+ return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
+}
+
+bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
+ return ST.hasVertexCache() && IS_VTX(get(Opcode));
+}
+
+bool R600InstrInfo::usesVertexCache(const MachineInstr *MI) const {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
+ return MFI->getShaderType() != ShaderType::COMPUTE &&
+ usesVertexCache(MI->getOpcode());
+}
+
+bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
+ return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
+}
+
+bool R600InstrInfo::usesTextureCache(const MachineInstr *MI) const {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
+ return (MFI->getShaderType() == ShaderType::COMPUTE &&
+ usesVertexCache(MI->getOpcode())) ||
+ usesTextureCache(MI->getOpcode());
+}
+
+bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
+ switch (Opcode) {
+ case AMDGPU::KILLGT:
+ case AMDGPU::GROUP_BARRIER:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool R600InstrInfo::usesAddressRegister(MachineInstr *MI) const {
+ return MI->findRegisterUseOperandIdx(AMDGPU::AR_X) != -1;
+}
+
+bool R600InstrInfo::definesAddressRegister(MachineInstr *MI) const {
+ return MI->findRegisterDefOperandIdx(AMDGPU::AR_X) != -1;
+}
+
+bool R600InstrInfo::readsLDSSrcReg(const MachineInstr *MI) const {
+ if (!isALUInstr(MI->getOpcode())) {
+ return false;
+ }
+ for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
+ E = MI->operands_end(); I != E; ++I) {
+ if (!I->isReg() || !I->isUse() ||
+ TargetRegisterInfo::isVirtualRegister(I->getReg()))
+ continue;
+
+ if (AMDGPU::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
+ return true;
+ }
+ return false;
+}
+
+int R600InstrInfo::getSrcIdx(unsigned Opcode, unsigned SrcNum) const {
+ static const unsigned OpTable[] = {
+ AMDGPU::OpName::src0,
+ AMDGPU::OpName::src1,
+ AMDGPU::OpName::src2
+ };
+
+ assert (SrcNum < 3);
+ return getOperandIdx(Opcode, OpTable[SrcNum]);
+}
+
+int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
+ static const unsigned SrcSelTable[][2] = {
+ {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
+ {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
+ {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
+ {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
+ {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
+ {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
+ {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
+ {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
+ {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
+ {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
+ {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W}
+ };
+
+ for (const auto &Row : SrcSelTable) {
+ if (getOperandIdx(Opcode, Row[0]) == (int)SrcIdx) {
+ return getOperandIdx(Opcode, Row[1]);
+ }
+ }
+ return -1;
+}
+
+SmallVector<std::pair<MachineOperand *, int64_t>, 3>
+R600InstrInfo::getSrcs(MachineInstr *MI) const {
+ SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
+
+ if (MI->getOpcode() == AMDGPU::DOT_4) {
+ static const unsigned OpTable[8][2] = {
+ {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
+ {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
+ {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
+ {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
+ {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
+ {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
+ {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
+ {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W},
+ };
+
+ for (unsigned j = 0; j < 8; j++) {
+ MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
+ OpTable[j][0]));
+ unsigned Reg = MO.getReg();
+ if (Reg == AMDGPU::ALU_CONST) {
+ unsigned Sel = MI->getOperand(getOperandIdx(MI->getOpcode(),
+ OpTable[j][1])).getImm();
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
+ continue;
+ }
+
+ }
+ return Result;
+ }
+
+ static const unsigned OpTable[3][2] = {
+ {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
+ {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
+ {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
+ };
+
+ for (unsigned j = 0; j < 3; j++) {
+ int SrcIdx = getOperandIdx(MI->getOpcode(), OpTable[j][0]);
+ if (SrcIdx < 0)
+ break;
+ MachineOperand &MO = MI->getOperand(SrcIdx);
+ unsigned Reg = MI->getOperand(SrcIdx).getReg();
+ if (Reg == AMDGPU::ALU_CONST) {
+ unsigned Sel = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm();
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
+ continue;
+ }
+ if (Reg == AMDGPU::ALU_LITERAL_X) {
+ unsigned Imm = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), AMDGPU::OpName::literal)).getImm();
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Imm));
+ continue;
+ }
+ Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, 0));
+ }
+ return Result;
+}
+
+std::vector<std::pair<int, unsigned> >
+R600InstrInfo::ExtractSrcs(MachineInstr *MI,
+ const DenseMap<unsigned, unsigned> &PV,
+ unsigned &ConstCount) const {
+ ConstCount = 0;
+ ArrayRef<std::pair<MachineOperand *, int64_t>> Srcs = getSrcs(MI);
+ const std::pair<int, unsigned> DummyPair(-1, 0);
+ std::vector<std::pair<int, unsigned> > Result;
+ unsigned i = 0;
+ for (unsigned n = Srcs.size(); i < n; ++i) {
+ unsigned Reg = Srcs[i].first->getReg();
+ unsigned Index = RI.getEncodingValue(Reg) & 0xff;
+ if (Reg == AMDGPU::OQAP) {
+ Result.push_back(std::pair<int, unsigned>(Index, 0));
+ }
+ if (PV.find(Reg) != PV.end()) {
+ // 255 is used to tells its a PS/PV reg
+ Result.push_back(std::pair<int, unsigned>(255, 0));
+ continue;
+ }
+ if (Index > 127) {
+ ConstCount++;
+ Result.push_back(DummyPair);
+ continue;
+ }
+ unsigned Chan = RI.getHWRegChan(Reg);
+ Result.push_back(std::pair<int, unsigned>(Index, Chan));
+ }
+ for (; i < 3; ++i)
+ Result.push_back(DummyPair);
+ return Result;
+}
+
+static std::vector<std::pair<int, unsigned> >
+Swizzle(std::vector<std::pair<int, unsigned> > Src,
+ R600InstrInfo::BankSwizzle Swz) {
+ if (Src[0] == Src[1])
+ Src[1].first = -1;
+ switch (Swz) {
+ case R600InstrInfo::ALU_VEC_012_SCL_210:
+ break;
+ case R600InstrInfo::ALU_VEC_021_SCL_122:
+ std::swap(Src[1], Src[2]);
+ break;
+ case R600InstrInfo::ALU_VEC_102_SCL_221:
+ std::swap(Src[0], Src[1]);
+ break;
+ case R600InstrInfo::ALU_VEC_120_SCL_212:
+ std::swap(Src[0], Src[1]);
+ std::swap(Src[0], Src[2]);
+ break;
+ case R600InstrInfo::ALU_VEC_201:
+ std::swap(Src[0], Src[2]);
+ std::swap(Src[0], Src[1]);
+ break;
+ case R600InstrInfo::ALU_VEC_210:
+ std::swap(Src[0], Src[2]);
+ break;
+ }
+ return Src;
+}
+
+static unsigned
+getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
+ switch (Swz) {
+ case R600InstrInfo::ALU_VEC_012_SCL_210: {
+ unsigned Cycles[3] = { 2, 1, 0};
+ return Cycles[Op];
+ }
+ case R600InstrInfo::ALU_VEC_021_SCL_122: {
+ unsigned Cycles[3] = { 1, 2, 2};
+ return Cycles[Op];
+ }
+ case R600InstrInfo::ALU_VEC_120_SCL_212: {
+ unsigned Cycles[3] = { 2, 1, 2};
+ return Cycles[Op];
+ }
+ case R600InstrInfo::ALU_VEC_102_SCL_221: {
+ unsigned Cycles[3] = { 2, 2, 1};
+ return Cycles[Op];
+ }
+ default:
+ llvm_unreachable("Wrong Swizzle for Trans Slot");
+ return 0;
+ }
+}
+
+/// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
+/// in the same Instruction Group while meeting read port limitations given a
+/// Swz swizzle sequence.
+unsigned R600InstrInfo::isLegalUpTo(
+ const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
+ const std::vector<R600InstrInfo::BankSwizzle> &Swz,
+ const std::vector<std::pair<int, unsigned> > &TransSrcs,
+ R600InstrInfo::BankSwizzle TransSwz) const {
+ int Vector[4][3];
+ memset(Vector, -1, sizeof(Vector));
+ for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
+ const std::vector<std::pair<int, unsigned> > &Srcs =
+ Swizzle(IGSrcs[i], Swz[i]);
+ for (unsigned j = 0; j < 3; j++) {
+ const std::pair<int, unsigned> &Src = Srcs[j];
+ if (Src.first < 0 || Src.first == 255)
+ continue;
+ if (Src.first == GET_REG_INDEX(RI.getEncodingValue(AMDGPU::OQAP))) {
+ if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
+ Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
+ // The value from output queue A (denoted by register OQAP) can
+ // only be fetched during the first cycle.
+ return false;
+ }
+ // OQAP does not count towards the normal read port restrictions
+ continue;
+ }
+ if (Vector[Src.second][j] < 0)
+ Vector[Src.second][j] = Src.first;
+ if (Vector[Src.second][j] != Src.first)
+ return i;
+ }
+ }
+ // Now check Trans Alu
+ for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
+ const std::pair<int, unsigned> &Src = TransSrcs[i];
+ unsigned Cycle = getTransSwizzle(TransSwz, i);
+ if (Src.first < 0)
+ continue;
+ if (Src.first == 255)
+ continue;
+ if (Vector[Src.second][Cycle] < 0)
+ Vector[Src.second][Cycle] = Src.first;
+ if (Vector[Src.second][Cycle] != Src.first)
+ return IGSrcs.size() - 1;
+ }
+ return IGSrcs.size();
+}
+
+/// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
+/// (in lexicographic term) swizzle sequence assuming that all swizzles after
+/// Idx can be skipped
+static bool
+NextPossibleSolution(
+ std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
+ unsigned Idx) {
+ assert(Idx < SwzCandidate.size());
+ int ResetIdx = Idx;
+ while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
+ ResetIdx --;
+ for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
+ SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
+ }
+ if (ResetIdx == -1)
+ return false;
+ int NextSwizzle = SwzCandidate[ResetIdx] + 1;
+ SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
+ return true;
+}
+
+/// Enumerate all possible Swizzle sequence to find one that can meet all
+/// read port requirements.
+bool R600InstrInfo::FindSwizzleForVectorSlot(
+ const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
+ std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
+ const std::vector<std::pair<int, unsigned> > &TransSrcs,
+ R600InstrInfo::BankSwizzle TransSwz) const {
+ unsigned ValidUpTo = 0;
+ do {
+ ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
+ if (ValidUpTo == IGSrcs.size())
+ return true;
+ } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
+ return false;
+}
+
+/// Instructions in Trans slot can't read gpr at cycle 0 if they also read
+/// a const, and can't read a gpr at cycle 1 if they read 2 const.
+static bool
+isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
+ const std::vector<std::pair<int, unsigned> > &TransOps,
+ unsigned ConstCount) {
+ // TransALU can't read 3 constants
+ if (ConstCount > 2)
+ return false;
+ for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
+ const std::pair<int, unsigned> &Src = TransOps[i];
+ unsigned Cycle = getTransSwizzle(TransSwz, i);
+ if (Src.first < 0)
+ continue;
+ if (ConstCount > 0 && Cycle == 0)
+ return false;
+ if (ConstCount > 1 && Cycle == 1)
+ return false;
+ }
+ return true;
+}
+
+bool
+R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
+ const DenseMap<unsigned, unsigned> &PV,
+ std::vector<BankSwizzle> &ValidSwizzle,
+ bool isLastAluTrans)
+ const {
+ //Todo : support shared src0 - src1 operand
+
+ std::vector<std::vector<std::pair<int, unsigned> > > IGSrcs;
+ ValidSwizzle.clear();
+ unsigned ConstCount;
+ BankSwizzle TransBS = ALU_VEC_012_SCL_210;
+ for (unsigned i = 0, e = IG.size(); i < e; ++i) {
+ IGSrcs.push_back(ExtractSrcs(IG[i], PV, ConstCount));
+ unsigned Op = getOperandIdx(IG[i]->getOpcode(),
+ AMDGPU::OpName::bank_swizzle);
+ ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
+ IG[i]->getOperand(Op).getImm());
+ }
+ std::vector<std::pair<int, unsigned> > TransOps;
+ if (!isLastAluTrans)
+ return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
+
+ TransOps = std::move(IGSrcs.back());
+ IGSrcs.pop_back();
+ ValidSwizzle.pop_back();
+
+ static const R600InstrInfo::BankSwizzle TransSwz[] = {
+ ALU_VEC_012_SCL_210,
+ ALU_VEC_021_SCL_122,
+ ALU_VEC_120_SCL_212,
+ ALU_VEC_102_SCL_221
+ };
+ for (unsigned i = 0; i < 4; i++) {
+ TransBS = TransSwz[i];
+ if (!isConstCompatible(TransBS, TransOps, ConstCount))
+ continue;
+ bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
+ TransBS);
+ if (Result) {
+ ValidSwizzle.push_back(TransBS);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+bool
+R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
+ const {
+ assert (Consts.size() <= 12 && "Too many operands in instructions group");
+ unsigned Pair1 = 0, Pair2 = 0;
+ for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
+ unsigned ReadConstHalf = Consts[i] & 2;
+ unsigned ReadConstIndex = Consts[i] & (~3);
+ unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
+ if (!Pair1) {
+ Pair1 = ReadHalfConst;
+ continue;
+ }
+ if (Pair1 == ReadHalfConst)
+ continue;
+ if (!Pair2) {
+ Pair2 = ReadHalfConst;
+ continue;
+ }
+ if (Pair2 != ReadHalfConst)
+ return false;
+ }
+ return true;
+}
+
+bool
+R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
+ const {
+ std::vector<unsigned> Consts;
+ SmallSet<int64_t, 4> Literals;
+ for (unsigned i = 0, n = MIs.size(); i < n; i++) {
+ MachineInstr *MI = MIs[i];
+ if (!isALUInstr(MI->getOpcode()))
+ continue;
+
+ ArrayRef<std::pair<MachineOperand *, int64_t>> Srcs = getSrcs(MI);
+
+ for (unsigned j = 0, e = Srcs.size(); j < e; j++) {
+ std::pair<MachineOperand *, unsigned> Src = Srcs[j];
+ if (Src.first->getReg() == AMDGPU::ALU_LITERAL_X)
+ Literals.insert(Src.second);
+ if (Literals.size() > 4)
+ return false;
+ if (Src.first->getReg() == AMDGPU::ALU_CONST)
+ Consts.push_back(Src.second);
+ if (AMDGPU::R600_KC0RegClass.contains(Src.first->getReg()) ||
+ AMDGPU::R600_KC1RegClass.contains(Src.first->getReg())) {
+ unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
+ unsigned Chan = RI.getHWRegChan(Src.first->getReg());
+ Consts.push_back((Index << 2) | Chan);
+ }
+ }
+ }
+ return fitsConstReadLimitations(Consts);
+}
+
+DFAPacketizer *
+R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
+ const InstrItineraryData *II = STI.getInstrItineraryData();
+ return static_cast<const AMDGPUSubtarget &>(STI).createDFAPacketizer(II);
+}
+
+static bool
+isPredicateSetter(unsigned Opcode) {
+ switch (Opcode) {
+ case AMDGPU::PRED_X:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static MachineInstr *
+findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ while (I != MBB.begin()) {
+ --I;
+ MachineInstr *MI = I;
+ if (isPredicateSetter(MI->getOpcode()))
+ return MI;
+ }
+
+ return nullptr;
+}
+
+static
+bool isJump(unsigned Opcode) {
+ return Opcode == AMDGPU::JUMP || Opcode == AMDGPU::JUMP_COND;
+}
+
+static bool isBranch(unsigned Opcode) {
+ return Opcode == AMDGPU::BRANCH || Opcode == AMDGPU::BRANCH_COND_i32 ||
+ Opcode == AMDGPU::BRANCH_COND_f32;
+}
+
+bool
+R600InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Most of the following comes from the ARM implementation of AnalyzeBranch
+
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return false;
+
+ // AMDGPU::BRANCH* instructions are only available after isel and are not
+ // handled
+ if (isBranch(I->getOpcode()))
+ return true;
+ if (!isJump(static_cast<MachineInstr *>(I)->getOpcode())) {
+ return false;
+ }
+
+ // Remove successive JUMP
+ while (I != MBB.begin() && std::prev(I)->getOpcode() == AMDGPU::JUMP) {
+ MachineBasicBlock::iterator PriorI = std::prev(I);
+ if (AllowModify)
+ I->removeFromParent();
+ I = PriorI;
+ }
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ unsigned LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() ||
+ !isJump(static_cast<MachineInstr *>(--I)->getOpcode())) {
+ if (LastOpc == AMDGPU::JUMP) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (LastOpc == AMDGPU::JUMP_COND) {
+ MachineInstr *predSet = I;
+ while (!isPredicateSetter(predSet->getOpcode())) {
+ predSet = --I;
+ }
+ TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(predSet->getOperand(1));
+ Cond.push_back(predSet->getOperand(2));
+ Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
+ return false;
+ }
+ return true; // Can't handle indirect branch.
+ }
+
+ // Get the instruction before it if it is a terminator.
+ MachineInstr *SecondLastInst = I;
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+
+ // If the block ends with a B and a Bcc, handle it.
+ if (SecondLastOpc == AMDGPU::JUMP_COND && LastOpc == AMDGPU::JUMP) {
+ MachineInstr *predSet = --I;
+ while (!isPredicateSetter(predSet->getOpcode())) {
+ predSet = --I;
+ }
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ FBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(predSet->getOperand(1));
+ Cond.push_back(predSet->getOperand(2));
+ Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+static
+MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
+ for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
+ It != E; ++It) {
+ if (It->getOpcode() == AMDGPU::CF_ALU ||
+ It->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE)
+ return std::prev(It.base());
+ }
+ return MBB.end();
+}
+
+unsigned
+R600InstrInfo::InsertBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ ArrayRef<MachineOperand> Cond,
+ DebugLoc DL) const {
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ if (!FBB) {
+ if (Cond.empty()) {
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(TBB);
+ return 1;
+ } else {
+ MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
+ assert(PredSet && "No previous predicate !");
+ addFlag(PredSet, 0, MO_FLAG_PUSH);
+ PredSet->getOperand(2).setImm(Cond[1].getImm());
+
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
+ .addMBB(TBB)
+ .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ return 1;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
+ return 1;
+ }
+ } else {
+ MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
+ assert(PredSet && "No previous predicate !");
+ addFlag(PredSet, 0, MO_FLAG_PUSH);
+ PredSet->getOperand(2).setImm(Cond[1].getImm());
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
+ .addMBB(TBB)
+ .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
+ BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(FBB);
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ return 2;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
+ return 2;
+ }
+}
+
+unsigned
+R600InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+
+ // Note : we leave PRED* instructions there.
+ // They may be needed when predicating instructions.
+
+ MachineBasicBlock::iterator I = MBB.end();
+
+ if (I == MBB.begin()) {
+ return 0;
+ }
+ --I;
+ switch (I->getOpcode()) {
+ default:
+ return 0;
+ case AMDGPU::JUMP_COND: {
+ MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
+ clearFlag(predSet, 0, MO_FLAG_PUSH);
+ I->eraseFromParent();
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ break;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU));
+ break;
+ }
+ case AMDGPU::JUMP:
+ I->eraseFromParent();
+ break;
+ }
+ I = MBB.end();
+
+ if (I == MBB.begin()) {
+ return 1;
+ }
+ --I;
+ switch (I->getOpcode()) {
+ // FIXME: only one case??
+ default:
+ return 1;
+ case AMDGPU::JUMP_COND: {
+ MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
+ clearFlag(predSet, 0, MO_FLAG_PUSH);
+ I->eraseFromParent();
+ MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
+ if (CfAlu == MBB.end())
+ break;
+ assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
+ CfAlu->setDesc(get(AMDGPU::CF_ALU));
+ break;
+ }
+ case AMDGPU::JUMP:
+ I->eraseFromParent();
+ break;
+ }
+ return 2;
+}
+
+bool
+R600InstrInfo::isPredicated(const MachineInstr *MI) const {
+ int idx = MI->findFirstPredOperandIdx();
+ if (idx < 0)
+ return false;
+
+ unsigned Reg = MI->getOperand(idx).getReg();
+ switch (Reg) {
+ default: return false;
+ case AMDGPU::PRED_SEL_ONE:
+ case AMDGPU::PRED_SEL_ZERO:
+ case AMDGPU::PREDICATE_BIT:
+ return true;
+ }
+}
+
+bool
+R600InstrInfo::isPredicable(MachineInstr *MI) const {
+ // XXX: KILL* instructions can be predicated, but they must be the last
+ // instruction in a clause, so this means any instructions after them cannot
+ // be predicated. Until we have proper support for instruction clauses in the
+ // backend, we will mark KILL* instructions as unpredicable.
+
+ if (MI->getOpcode() == AMDGPU::KILLGT) {
+ return false;
+ } else if (MI->getOpcode() == AMDGPU::CF_ALU) {
+ // If the clause start in the middle of MBB then the MBB has more
+ // than a single clause, unable to predicate several clauses.
+ if (MI->getParent()->begin() != MachineBasicBlock::iterator(MI))
+ return false;
+ // TODO: We don't support KC merging atm
+ if (MI->getOperand(3).getImm() != 0 || MI->getOperand(4).getImm() != 0)
+ return false;
+ return true;
+ } else if (isVector(*MI)) {
+ return false;
+ } else {
+ return AMDGPUInstrInfo::isPredicable(MI);
+ }
+}
+
+
+bool
+R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCyles,
+ unsigned ExtraPredCycles,
+ BranchProbability Probability) const{
+ return true;
+}
+
+bool
+R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumTCycles,
+ unsigned ExtraTCycles,
+ MachineBasicBlock &FMBB,
+ unsigned NumFCycles,
+ unsigned ExtraFCycles,
+ BranchProbability Probability) const {
+ return true;
+}
+
+bool
+R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCyles,
+ BranchProbability Probability)
+ const {
+ return true;
+}
+
+bool
+R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const {
+ return false;
+}
+
+
+bool
+R600InstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ MachineOperand &MO = Cond[1];
+ switch (MO.getImm()) {
+ case OPCODE_IS_ZERO_INT:
+ MO.setImm(OPCODE_IS_NOT_ZERO_INT);
+ break;
+ case OPCODE_IS_NOT_ZERO_INT:
+ MO.setImm(OPCODE_IS_ZERO_INT);
+ break;
+ case OPCODE_IS_ZERO:
+ MO.setImm(OPCODE_IS_NOT_ZERO);
+ break;
+ case OPCODE_IS_NOT_ZERO:
+ MO.setImm(OPCODE_IS_ZERO);
+ break;
+ default:
+ return true;
+ }
+
+ MachineOperand &MO2 = Cond[2];
+ switch (MO2.getReg()) {
+ case AMDGPU::PRED_SEL_ZERO:
+ MO2.setReg(AMDGPU::PRED_SEL_ONE);
+ break;
+ case AMDGPU::PRED_SEL_ONE:
+ MO2.setReg(AMDGPU::PRED_SEL_ZERO);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+bool
+R600InstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ return isPredicateSetter(MI->getOpcode());
+}
+
+
+bool
+R600InstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
+ ArrayRef<MachineOperand> Pred2) const {
+ return false;
+}
+
+
+bool
+R600InstrInfo::PredicateInstruction(MachineInstr *MI,
+ ArrayRef<MachineOperand> Pred) const {
+ int PIdx = MI->findFirstPredOperandIdx();
+
+ if (MI->getOpcode() == AMDGPU::CF_ALU) {
+ MI->getOperand(8).setImm(0);
+ return true;
+ }
+
+ if (MI->getOpcode() == AMDGPU::DOT_4) {
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_X))
+ .setReg(Pred[2].getReg());
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Y))
+ .setReg(Pred[2].getReg());
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Z))
+ .setReg(Pred[2].getReg());
+ MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_W))
+ .setReg(Pred[2].getReg());
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
+ return true;
+ }
+
+ if (PIdx != -1) {
+ MachineOperand &PMO = MI->getOperand(PIdx);
+ PMO.setReg(Pred[2].getReg());
+ MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
+ MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
+ return true;
+ }
+
+ return false;
+}
+
+unsigned int R600InstrInfo::getPredicationCost(const MachineInstr *) const {
+ return 2;
+}
+
+unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI,
+ unsigned *PredCost) const {
+ if (PredCost)
+ *PredCost = 2;
+ return 2;
+}
+
+bool R600InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+
+ switch(MI->getOpcode()) {
+ default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
+ case AMDGPU::R600_EXTRACT_ELT_V2:
+ case AMDGPU::R600_EXTRACT_ELT_V4:
+ buildIndirectRead(MI->getParent(), MI, MI->getOperand(0).getReg(),
+ RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
+ MI->getOperand(2).getReg(),
+ RI.getHWRegChan(MI->getOperand(1).getReg()));
+ break;
+ case AMDGPU::R600_INSERT_ELT_V2:
+ case AMDGPU::R600_INSERT_ELT_V4:
+ buildIndirectWrite(MI->getParent(), MI, MI->getOperand(2).getReg(), // Value
+ RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
+ MI->getOperand(3).getReg(), // Offset
+ RI.getHWRegChan(MI->getOperand(1).getReg())); // Channel
+ break;
+ }
+ MI->eraseFromParent();
+ return true;
+}
+
+void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
+ const MachineFunction &MF) const {
+ const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
+ MF.getSubtarget().getFrameLowering());
+
+ unsigned StackWidth = TFL->getStackWidth(MF);
+ int End = getIndirectIndexEnd(MF);
+
+ if (End == -1)
+ return;
+
+ for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
+ unsigned SuperReg = AMDGPU::R600_Reg128RegClass.getRegister(Index);
+ Reserved.set(SuperReg);
+ for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
+ unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
+ Reserved.set(Reg);
+ }
+ }
+}
+
+unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
+ unsigned Channel) const {
+ // XXX: Remove when we support a stack width > 2
+ assert(Channel == 0);
+ return RegIndex;
+}
+
+const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
+ return &AMDGPU::R600_TReg32_XRegClass;
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const {
+ return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg,
+ unsigned AddrChan) const {
+ unsigned AddrReg;
+ switch (AddrChan) {
+ default: llvm_unreachable("Invalid Channel");
+ case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
+ case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
+ case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
+ case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
+ }
+ MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
+ AMDGPU::AR_X, OffsetReg);
+ setImmOperand(MOVA, AMDGPU::OpName::write, 0);
+
+ MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
+ AddrReg, ValueReg)
+ .addReg(AMDGPU::AR_X,
+ RegState::Implicit | RegState::Kill);
+ setImmOperand(Mov, AMDGPU::OpName::dst_rel, 1);
+ return Mov;
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg) const {
+ return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
+}
+
+MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned ValueReg, unsigned Address,
+ unsigned OffsetReg,
+ unsigned AddrChan) const {
+ unsigned AddrReg;
+ switch (AddrChan) {
+ default: llvm_unreachable("Invalid Channel");
+ case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
+ case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
+ case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
+ case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
+ }
+ MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
+ AMDGPU::AR_X,
+ OffsetReg);
+ setImmOperand(MOVA, AMDGPU::OpName::write, 0);
+ MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
+ ValueReg,
+ AddrReg)
+ .addReg(AMDGPU::AR_X,
+ RegState::Implicit | RegState::Kill);
+ setImmOperand(Mov, AMDGPU::OpName::src0_rel, 1);
+
+ return Mov;
+}
+
+unsigned R600InstrInfo::getMaxAlusPerClause() const {
+ return 115;
+}
+
+MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned Opcode,
+ unsigned DstReg,
+ unsigned Src0Reg,
+ unsigned Src1Reg) const {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
+ DstReg); // $dst
+
+ if (Src1Reg) {
+ MIB.addImm(0) // $update_exec_mask
+ .addImm(0); // $update_predicate
+ }
+ MIB.addImm(1) // $write
+ .addImm(0) // $omod
+ .addImm(0) // $dst_rel
+ .addImm(0) // $dst_clamp
+ .addReg(Src0Reg) // $src0
+ .addImm(0) // $src0_neg
+ .addImm(0) // $src0_rel
+ .addImm(0) // $src0_abs
+ .addImm(-1); // $src0_sel
+
+ if (Src1Reg) {
+ MIB.addReg(Src1Reg) // $src1
+ .addImm(0) // $src1_neg
+ .addImm(0) // $src1_rel
+ .addImm(0) // $src1_abs
+ .addImm(-1); // $src1_sel
+ }
+
+ //XXX: The r600g finalizer expects this to be 1, once we've moved the
+ //scheduling to the backend, we can change the default to 0.
+ MIB.addImm(1) // $last
+ .addReg(AMDGPU::PRED_SEL_OFF) // $pred_sel
+ .addImm(0) // $literal
+ .addImm(0); // $bank_swizzle
+
+ return MIB;
+}
+
+#define OPERAND_CASE(Label) \
+ case Label: { \
+ static const unsigned Ops[] = \
+ { \
+ Label##_X, \
+ Label##_Y, \
+ Label##_Z, \
+ Label##_W \
+ }; \
+ return Ops[Slot]; \
+ }
+
+static unsigned getSlotedOps(unsigned Op, unsigned Slot) {
+ switch (Op) {
+ OPERAND_CASE(AMDGPU::OpName::update_exec_mask)
+ OPERAND_CASE(AMDGPU::OpName::update_pred)
+ OPERAND_CASE(AMDGPU::OpName::write)
+ OPERAND_CASE(AMDGPU::OpName::omod)
+ OPERAND_CASE(AMDGPU::OpName::dst_rel)
+ OPERAND_CASE(AMDGPU::OpName::clamp)
+ OPERAND_CASE(AMDGPU::OpName::src0)
+ OPERAND_CASE(AMDGPU::OpName::src0_neg)
+ OPERAND_CASE(AMDGPU::OpName::src0_rel)
+ OPERAND_CASE(AMDGPU::OpName::src0_abs)
+ OPERAND_CASE(AMDGPU::OpName::src0_sel)
+ OPERAND_CASE(AMDGPU::OpName::src1)
+ OPERAND_CASE(AMDGPU::OpName::src1_neg)
+ OPERAND_CASE(AMDGPU::OpName::src1_rel)
+ OPERAND_CASE(AMDGPU::OpName::src1_abs)
+ OPERAND_CASE(AMDGPU::OpName::src1_sel)
+ OPERAND_CASE(AMDGPU::OpName::pred_sel)
+ default:
+ llvm_unreachable("Wrong Operand");
+ }
+}
+
+#undef OPERAND_CASE
+
+MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
+ MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
+ const {
+ assert (MI->getOpcode() == AMDGPU::DOT_4 && "Not Implemented");
+ unsigned Opcode;
+ if (ST.getGeneration() <= AMDGPUSubtarget::R700)
+ Opcode = AMDGPU::DOT4_r600;
+ else
+ Opcode = AMDGPU::DOT4_eg;
+ MachineBasicBlock::iterator I = MI;
+ MachineOperand &Src0 = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src0, Slot)));
+ MachineOperand &Src1 = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src1, Slot)));
+ MachineInstr *MIB = buildDefaultInstruction(
+ MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
+ static const unsigned Operands[14] = {
+ AMDGPU::OpName::update_exec_mask,
+ AMDGPU::OpName::update_pred,
+ AMDGPU::OpName::write,
+ AMDGPU::OpName::omod,
+ AMDGPU::OpName::dst_rel,
+ AMDGPU::OpName::clamp,
+ AMDGPU::OpName::src0_neg,
+ AMDGPU::OpName::src0_rel,
+ AMDGPU::OpName::src0_abs,
+ AMDGPU::OpName::src0_sel,
+ AMDGPU::OpName::src1_neg,
+ AMDGPU::OpName::src1_rel,
+ AMDGPU::OpName::src1_abs,
+ AMDGPU::OpName::src1_sel,
+ };
+
+ MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
+ getSlotedOps(AMDGPU::OpName::pred_sel, Slot)));
+ MIB->getOperand(getOperandIdx(Opcode, AMDGPU::OpName::pred_sel))
+ .setReg(MO.getReg());
+
+ for (unsigned i = 0; i < 14; i++) {
+ MachineOperand &MO = MI->getOperand(
+ getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
+ assert (MO.isImm());
+ setImmOperand(MIB, Operands[i], MO.getImm());
+ }
+ MIB->getOperand(20).setImm(0);
+ return MIB;
+}
+
+MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg,
+ uint64_t Imm) const {
+ MachineInstr *MovImm = buildDefaultInstruction(BB, I, AMDGPU::MOV, DstReg,
+ AMDGPU::ALU_LITERAL_X);
+ setImmOperand(MovImm, AMDGPU::OpName::literal, Imm);
+ return MovImm;
+}
+
+MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DstReg, unsigned SrcReg) const {
+ return buildDefaultInstruction(*MBB, I, AMDGPU::MOV, DstReg, SrcReg);
+}
+
+int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
+ return getOperandIdx(MI.getOpcode(), Op);
+}
+
+int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
+ return AMDGPU::getNamedOperandIdx(Opcode, Op);
+}
+
+void R600InstrInfo::setImmOperand(MachineInstr *MI, unsigned Op,
+ int64_t Imm) const {
+ int Idx = getOperandIdx(*MI, Op);
+ assert(Idx != -1 && "Operand not supported for this instruction.");
+ assert(MI->getOperand(Idx).isImm());
+ MI->getOperand(Idx).setImm(Imm);
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction flag getters/setters
+//===----------------------------------------------------------------------===//
+
+bool R600InstrInfo::hasFlagOperand(const MachineInstr &MI) const {
+ return GET_FLAG_OPERAND_IDX(get(MI.getOpcode()).TSFlags) != 0;
+}
+
+MachineOperand &R600InstrInfo::getFlagOp(MachineInstr *MI, unsigned SrcIdx,
+ unsigned Flag) const {
+ unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
+ int FlagIndex = 0;
+ if (Flag != 0) {
+ // If we pass something other than the default value of Flag to this
+ // function, it means we are want to set a flag on an instruction
+ // that uses native encoding.
+ assert(HAS_NATIVE_OPERANDS(TargetFlags));
+ bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
+ switch (Flag) {
+ case MO_FLAG_CLAMP:
+ FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::clamp);
+ break;
+ case MO_FLAG_MASK:
+ FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::write);
+ break;
+ case MO_FLAG_NOT_LAST:
+ case MO_FLAG_LAST:
+ FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::last);
+ break;
+ case MO_FLAG_NEG:
+ switch (SrcIdx) {
+ case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_neg); break;
+ case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_neg); break;
+ case 2: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src2_neg); break;
+ }
+ break;
+
+ case MO_FLAG_ABS:
+ assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
+ "instructions.");
+ (void)IsOP3;
+ switch (SrcIdx) {
+ case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_abs); break;
+ case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_abs); break;
+ }
+ break;
+
+ default:
+ FlagIndex = -1;
+ break;
+ }
+ assert(FlagIndex != -1 && "Flag not supported for this instruction");
+ } else {
+ FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
+ assert(FlagIndex != 0 &&
+ "Instruction flags not supported for this instruction");
+ }
+
+ MachineOperand &FlagOp = MI->getOperand(FlagIndex);
+ assert(FlagOp.isImm());
+ return FlagOp;
+}
+
+void R600InstrInfo::addFlag(MachineInstr *MI, unsigned Operand,
+ unsigned Flag) const {
+ unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
+ if (Flag == 0) {
+ return;
+ }
+ if (HAS_NATIVE_OPERANDS(TargetFlags)) {
+ MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
+ if (Flag == MO_FLAG_NOT_LAST) {
+ clearFlag(MI, Operand, MO_FLAG_LAST);
+ } else if (Flag == MO_FLAG_MASK) {
+ clearFlag(MI, Operand, Flag);
+ } else {
+ FlagOp.setImm(1);
+ }
+ } else {
+ MachineOperand &FlagOp = getFlagOp(MI, Operand);
+ FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
+ }
+}
+
+void R600InstrInfo::clearFlag(MachineInstr *MI, unsigned Operand,
+ unsigned Flag) const {
+ unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
+ if (HAS_NATIVE_OPERANDS(TargetFlags)) {
+ MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
+ FlagOp.setImm(0);
+ } else {
+ MachineOperand &FlagOp = getFlagOp(MI);
+ unsigned InstFlags = FlagOp.getImm();
+ InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
+ FlagOp.setImm(InstFlags);
+ }
+}
OpenPOWER on IntegriCloud