diff options
Diffstat (limited to 'contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp | 2876 |
1 files changed, 2876 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp b/contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp new file mode 100644 index 0000000..222f631 --- /dev/null +++ b/contrib/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp @@ -0,0 +1,2876 @@ +//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file +/// \brief This is the parent TargetLowering class for hardware code gen +/// targets. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPUISelLowering.h" +#include "AMDGPU.h" +#include "AMDGPUDiagnosticInfoUnsupported.h" +#include "AMDGPUFrameLowering.h" +#include "AMDGPUIntrinsicInfo.h" +#include "AMDGPURegisterInfo.h" +#include "AMDGPUSubtarget.h" +#include "R600MachineFunctionInfo.h" +#include "SIMachineFunctionInfo.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/IR/DataLayout.h" + +using namespace llvm; + +static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), + ArgFlags.getOrigAlign()); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + + return true; +} + +#include "AMDGPUGenCallingConv.inc" + +// Find a larger type to do a load / store of a vector with. +EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { + unsigned StoreSize = VT.getStoreSizeInBits(); + if (StoreSize <= 32) + return EVT::getIntegerVT(Ctx, StoreSize); + + assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); + return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); +} + +// Type for a vector that will be loaded to. +EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { + unsigned StoreSize = VT.getStoreSizeInBits(); + if (StoreSize <= 32) + return EVT::getIntegerVT(Ctx, 32); + + return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); +} + +AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, + const AMDGPUSubtarget &STI) + : TargetLowering(TM), Subtarget(&STI) { + setOperationAction(ISD::Constant, MVT::i32, Legal); + setOperationAction(ISD::Constant, MVT::i64, Legal); + setOperationAction(ISD::ConstantFP, MVT::f32, Legal); + setOperationAction(ISD::ConstantFP, MVT::f64, Legal); + + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BRIND, MVT::Other, Expand); + + // This is totally unsupported, just custom lower to produce an error. + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); + + // We need to custom lower some of the intrinsics + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + + // Library functions. These default to Expand, but we have instructions + // for them. + setOperationAction(ISD::FCEIL, MVT::f32, Legal); + setOperationAction(ISD::FEXP2, MVT::f32, Legal); + setOperationAction(ISD::FPOW, MVT::f32, Legal); + setOperationAction(ISD::FLOG2, MVT::f32, Legal); + setOperationAction(ISD::FABS, MVT::f32, Legal); + setOperationAction(ISD::FFLOOR, MVT::f32, Legal); + setOperationAction(ISD::FRINT, MVT::f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::f32, Legal); + setOperationAction(ISD::FMINNUM, MVT::f32, Legal); + setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); + + setOperationAction(ISD::FROUND, MVT::f32, Custom); + setOperationAction(ISD::FROUND, MVT::f64, Custom); + + setOperationAction(ISD::FREM, MVT::f32, Custom); + setOperationAction(ISD::FREM, MVT::f64, Custom); + + // v_mad_f32 does not support denormals according to some sources. + if (!Subtarget->hasFP32Denormals()) + setOperationAction(ISD::FMAD, MVT::f32, Legal); + + // Expand to fneg + fadd. + setOperationAction(ISD::FSUB, MVT::f64, Expand); + + // Lower floating point store/load to integer store/load to reduce the number + // of patterns in tablegen. + setOperationAction(ISD::STORE, MVT::f32, Promote); + AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); + + setOperationAction(ISD::STORE, MVT::v2f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); + + setOperationAction(ISD::STORE, MVT::v4f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); + + setOperationAction(ISD::STORE, MVT::v8f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); + + setOperationAction(ISD::STORE, MVT::v16f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); + + setOperationAction(ISD::STORE, MVT::f64, Promote); + AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); + + setOperationAction(ISD::STORE, MVT::v2f64, Promote); + AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); + + // Custom lowering of vector stores is required for local address space + // stores. + setOperationAction(ISD::STORE, MVT::v4i32, Custom); + + setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); + setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); + setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); + + // XXX: This can be change to Custom, once ExpandVectorStores can + // handle 64-bit stores. + setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); + + setTruncStoreAction(MVT::i64, MVT::i16, Expand); + setTruncStoreAction(MVT::i64, MVT::i8, Expand); + setTruncStoreAction(MVT::i64, MVT::i1, Expand); + setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); + setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); + + + setOperationAction(ISD::LOAD, MVT::f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); + + setOperationAction(ISD::LOAD, MVT::v2f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); + + setOperationAction(ISD::LOAD, MVT::v4f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); + + setOperationAction(ISD::LOAD, MVT::v8f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); + + setOperationAction(ISD::LOAD, MVT::v16f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); + + setOperationAction(ISD::LOAD, MVT::f64, Promote); + AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); + + setOperationAction(ISD::LOAD, MVT::v2f64, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); + + setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); + + // There are no 64-bit extloads. These should be done as a 32-bit extload and + // an extension to 64-bit. + for (MVT VT : MVT::integer_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); + setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); + } + + for (MVT VT : MVT::integer_vector_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); + } + + setOperationAction(ISD::BR_CC, MVT::i1, Expand); + + if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { + setOperationAction(ISD::FCEIL, MVT::f64, Custom); + setOperationAction(ISD::FTRUNC, MVT::f64, Custom); + setOperationAction(ISD::FRINT, MVT::f64, Custom); + setOperationAction(ISD::FFLOOR, MVT::f64, Custom); + } + + if (!Subtarget->hasBFI()) { + // fcopysign can be done in a single instruction with BFI. + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + } + + setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); + + setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); + + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); + + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); + setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); + setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); + + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; + for (MVT VT : ScalarIntVTs) { + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + + // GPU does not have divrem function for signed or unsigned. + setOperationAction(ISD::SDIVREM, VT, Custom); + setOperationAction(ISD::UDIVREM, VT, Custom); + + // GPU does not have [S|U]MUL_LOHI functions as a single instruction. + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + } + + if (!Subtarget->hasBCNT(32)) + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + + if (!Subtarget->hasBCNT(64)) + setOperationAction(ISD::CTPOP, MVT::i64, Expand); + + // The hardware supports 32-bit ROTR, but not ROTL. + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i64, Expand); + setOperationAction(ISD::ROTR, MVT::i64, Expand); + + setOperationAction(ISD::MUL, MVT::i64, Expand); + setOperationAction(ISD::MULHU, MVT::i64, Expand); + setOperationAction(ISD::MULHS, MVT::i64, Expand); + setOperationAction(ISD::UDIV, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); + + setOperationAction(ISD::SMIN, MVT::i32, Legal); + setOperationAction(ISD::UMIN, MVT::i32, Legal); + setOperationAction(ISD::SMAX, MVT::i32, Legal); + setOperationAction(ISD::UMAX, MVT::i32, Legal); + + if (!Subtarget->hasFFBH()) + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); + + if (!Subtarget->hasFFBL()) + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); + + static const MVT::SimpleValueType VectorIntTypes[] = { + MVT::v2i32, MVT::v4i32 + }; + + for (MVT VT : VectorIntTypes) { + // Expand the following operations for the current type by default. + setOperationAction(ISD::ADD, VT, Expand); + setOperationAction(ISD::AND, VT, Expand); + setOperationAction(ISD::FP_TO_SINT, VT, Expand); + setOperationAction(ISD::FP_TO_UINT, VT, Expand); + setOperationAction(ISD::MUL, VT, Expand); + setOperationAction(ISD::OR, VT, Expand); + setOperationAction(ISD::SHL, VT, Expand); + setOperationAction(ISD::SRA, VT, Expand); + setOperationAction(ISD::SRL, VT, Expand); + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + setOperationAction(ISD::SUB, VT, Expand); + setOperationAction(ISD::SINT_TO_FP, VT, Expand); + setOperationAction(ISD::UINT_TO_FP, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Custom); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::ADDC, VT, Expand); + setOperationAction(ISD::SUBC, VT, Expand); + setOperationAction(ISD::ADDE, VT, Expand); + setOperationAction(ISD::SUBE, VT, Expand); + setOperationAction(ISD::SELECT, VT, Expand); + setOperationAction(ISD::VSELECT, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + setOperationAction(ISD::XOR, VT, Expand); + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction(ISD::CTPOP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); + } + + static const MVT::SimpleValueType FloatVectorTypes[] = { + MVT::v2f32, MVT::v4f32 + }; + + for (MVT VT : FloatVectorTypes) { + setOperationAction(ISD::FABS, VT, Expand); + setOperationAction(ISD::FMINNUM, VT, Expand); + setOperationAction(ISD::FMAXNUM, VT, Expand); + setOperationAction(ISD::FADD, VT, Expand); + setOperationAction(ISD::FCEIL, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FDIV, VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + setOperationAction(ISD::FFLOOR, VT, Expand); + setOperationAction(ISD::FTRUNC, VT, Expand); + setOperationAction(ISD::FMUL, VT, Expand); + setOperationAction(ISD::FMA, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + setOperationAction(ISD::FSQRT, VT, Expand); + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FSUB, VT, Expand); + setOperationAction(ISD::FNEG, VT, Expand); + setOperationAction(ISD::SELECT, VT, Expand); + setOperationAction(ISD::VSELECT, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); + } + + setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); + setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); + + setTargetDAGCombine(ISD::SHL); + setTargetDAGCombine(ISD::MUL); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::SELECT_CC); + setTargetDAGCombine(ISD::STORE); + + setTargetDAGCombine(ISD::FADD); + setTargetDAGCombine(ISD::FSUB); + + setBooleanContents(ZeroOrNegativeOneBooleanContent); + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + setSchedulingPreference(Sched::RegPressure); + setJumpIsExpensive(true); + + // SI at least has hardware support for floating point exceptions, but no way + // of using or handling them is implemented. They are also optional in OpenCL + // (Section 7.3) + setHasFloatingPointExceptions(false); + + setSelectIsExpensive(false); + PredictableSelectIsExpensive = false; + + setFsqrtIsCheap(true); + + // We want to find all load dependencies for long chains of stores to enable + // merging into very wide vectors. The problem is with vectors with > 4 + // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 + // vectors are a legal type, even though we have to split the loads + // usually. When we can more precisely specify load legality per address + // space, we should be able to make FindBetterChain/MergeConsecutiveStores + // smarter so that they can figure out what to do in 2 iterations without all + // N > 4 stores on the same chain. + GatherAllAliasesMaxDepth = 16; + + // FIXME: Need to really handle these. + MaxStoresPerMemcpy = 4096; + MaxStoresPerMemmove = 4096; + MaxStoresPerMemset = 4096; +} + +//===----------------------------------------------------------------------===// +// Target Information +//===----------------------------------------------------------------------===// + +MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { + return MVT::i32; +} + +bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { + return true; +} + +// The backend supports 32 and 64 bit floating point immediates. +// FIXME: Why are we reporting vectors of FP immediates as legal? +bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + EVT ScalarVT = VT.getScalarType(); + return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); +} + +// We don't want to shrink f64 / f32 constants. +bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { + EVT ScalarVT = VT.getScalarType(); + return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); +} + +bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, + ISD::LoadExtType, + EVT NewVT) const { + + unsigned NewSize = NewVT.getStoreSizeInBits(); + + // If we are reducing to a 32-bit load, this is always better. + if (NewSize == 32) + return true; + + EVT OldVT = N->getValueType(0); + unsigned OldSize = OldVT.getStoreSizeInBits(); + + // Don't produce extloads from sub 32-bit types. SI doesn't have scalar + // extloads, so doing one requires using a buffer_load. In cases where we + // still couldn't use a scalar load, using the wider load shouldn't really + // hurt anything. + + // If the old size already had to be an extload, there's no harm in continuing + // to reduce the width. + return (OldSize < 32); +} + +bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, + EVT CastTy) const { + if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) + return true; + + unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); + unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); + + return ((LScalarSize <= CastScalarSize) || + (CastScalarSize >= 32) || + (LScalarSize < 32)); +} + +// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also +// profitable with the expansion for 64-bit since it's generally good to +// speculate things. +// FIXME: These should really have the size as a parameter. +bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { + return true; +} + +bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { + return true; +} + +//===---------------------------------------------------------------------===// +// Target Properties +//===---------------------------------------------------------------------===// + +bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { + assert(VT.isFloatingPoint()); + return VT == MVT::f32 || VT == MVT::f64; +} + +bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { + assert(VT.isFloatingPoint()); + return VT == MVT::f32 || VT == MVT::f64; +} + +bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, + unsigned NumElem, + unsigned AS) const { + return true; +} + +bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { + // There are few operations which truly have vector input operands. Any vector + // operation is going to involve operations on each component, and a + // build_vector will be a copy per element, so it always makes sense to use a + // build_vector input in place of the extracted element to avoid a copy into a + // super register. + // + // We should probably only do this if all users are extracts only, but this + // should be the common case. + return true; +} + +bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { + // Truncate is just accessing a subregister. + return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); +} + +bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { + // Truncate is just accessing a subregister. + return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && + (Dest->getPrimitiveSizeInBits() % 32 == 0); +} + +bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { + unsigned SrcSize = Src->getScalarSizeInBits(); + unsigned DestSize = Dest->getScalarSizeInBits(); + + return SrcSize == 32 && DestSize == 64; +} + +bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { + // Any register load of a 64-bit value really requires 2 32-bit moves. For all + // practical purposes, the extra mov 0 to load a 64-bit is free. As used, + // this will enable reducing 64-bit operations the 32-bit, which is always + // good. + return Src == MVT::i32 && Dest == MVT::i64; +} + +bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { + return isZExtFree(Val.getValueType(), VT2); +} + +bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { + // There aren't really 64-bit registers, but pairs of 32-bit ones and only a + // limited number of native 64-bit operations. Shrinking an operation to fit + // in a single 32-bit register should always be helpful. As currently used, + // this is much less general than the name suggests, and is only used in + // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is + // not profitable, and may actually be harmful. + return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; +} + +//===---------------------------------------------------------------------===// +// TargetLowering Callbacks +//===---------------------------------------------------------------------===// + +void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, + const SmallVectorImpl<ISD::InputArg> &Ins) const { + + State.AnalyzeFormalArguments(Ins, CC_AMDGPU); +} + +SDValue AMDGPUTargetLowering::LowerReturn( + SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc DL, SelectionDAG &DAG) const { + return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); +} + +//===---------------------------------------------------------------------===// +// Target specific lowering +//===---------------------------------------------------------------------===// + +SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SDValue Callee = CLI.Callee; + SelectionDAG &DAG = CLI.DAG; + + const Function &Fn = *DAG.getMachineFunction().getFunction(); + + StringRef FuncName("<unknown>"); + + if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) + FuncName = G->getSymbol(); + else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + FuncName = G->getGlobal()->getName(); + + DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); + DAG.getContext()->diagnose(NoCalls); + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + const Function &Fn = *DAG.getMachineFunction().getFunction(); + + DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); + DAG.getContext()->diagnose(NoDynamicAlloca); + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: + Op.getNode()->dump(); + llvm_unreachable("Custom lowering code for this" + "instruction is not implemented yet!"); + break; + case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); + case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); + case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); + case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); + case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); + case ISD::FREM: return LowerFREM(Op, DAG); + case ISD::FCEIL: return LowerFCEIL(Op, DAG); + case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); + case ISD::FRINT: return LowerFRINT(Op, DAG); + case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); + case ISD::FROUND: return LowerFROUND(Op, DAG); + case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); + case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); + case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); + case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); + case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + } + return Op; +} + +void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + switch (N->getOpcode()) { + case ISD::SIGN_EXTEND_INREG: + // Different parts of legalization seem to interpret which type of + // sign_extend_inreg is the one to check for custom lowering. The extended + // from type is what really matters, but some places check for custom + // lowering of the result type. This results in trying to use + // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do + // nothing here and let the illegal result integer be handled normally. + return; + case ISD::LOAD: { + SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); + if (!Node) + return; + + Results.push_back(SDValue(Node, 0)); + Results.push_back(SDValue(Node, 1)); + // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode + // function + DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); + return; + } + case ISD::STORE: { + SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); + if (Lowered.getNode()) + Results.push_back(Lowered); + return; + } + default: + return; + } +} + +// FIXME: This implements accesses to initialized globals in the constant +// address space by copying them to private and accessing that. It does not +// properly handle illegal types or vectors. The private vector loads are not +// scalarized, and the illegal scalars hit an assertion. This technique will not +// work well with large initializers, and this should eventually be +// removed. Initialized globals should be placed into a data section that the +// runtime will load into a buffer before the kernel is executed. Uses of the +// global need to be replaced with a pointer loaded from an implicit kernel +// argument into this buffer holding the copy of the data, which will remove the +// need for any of this. +SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, + const GlobalValue *GV, + const SDValue &InitPtr, + SDValue Chain, + SelectionDAG &DAG) const { + const DataLayout &TD = DAG.getDataLayout(); + SDLoc DL(InitPtr); + Type *InitTy = Init->getType(); + + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { + EVT VT = EVT::getEVT(InitTy); + PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); + return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, + MachinePointerInfo(UndefValue::get(PtrTy)), false, + false, TD.getPrefTypeAlignment(InitTy)); + } + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { + EVT VT = EVT::getEVT(CFP->getType()); + PointerType *PtrTy = PointerType::get(CFP->getType(), 0); + return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, + MachinePointerInfo(UndefValue::get(PtrTy)), false, + false, TD.getPrefTypeAlignment(CFP->getType())); + } + + if (StructType *ST = dyn_cast<StructType>(InitTy)) { + const StructLayout *SL = TD.getStructLayout(ST); + + EVT PtrVT = InitPtr.getValueType(); + SmallVector<SDValue, 8> Chains; + + for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { + SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); + SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); + + Constant *Elt = Init->getAggregateElement(I); + Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); + } + + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); + } + + if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { + EVT PtrVT = InitPtr.getValueType(); + + unsigned NumElements; + if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) + NumElements = AT->getNumElements(); + else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) + NumElements = VT->getNumElements(); + else + llvm_unreachable("Unexpected type"); + + unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); + SmallVector<SDValue, 8> Chains; + for (unsigned i = 0; i < NumElements; ++i) { + SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); + SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); + + Constant *Elt = Init->getAggregateElement(i); + Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); + } + + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); + } + + if (isa<UndefValue>(Init)) { + EVT VT = EVT::getEVT(InitTy); + PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); + return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, + MachinePointerInfo(UndefValue::get(PtrTy)), false, + false, TD.getPrefTypeAlignment(InitTy)); + } + + Init->dump(); + llvm_unreachable("Unhandled constant initializer"); +} + +static bool hasDefinedInitializer(const GlobalValue *GV) { + const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); + if (!GVar || !GVar->hasInitializer()) + return false; + + if (isa<UndefValue>(GVar->getInitializer())) + return false; + + return true; +} + +SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, + SDValue Op, + SelectionDAG &DAG) const { + + const DataLayout &DL = DAG.getDataLayout(); + GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = G->getGlobal(); + + switch (G->getAddressSpace()) { + case AMDGPUAS::LOCAL_ADDRESS: { + // XXX: What does the value of G->getOffset() mean? + assert(G->getOffset() == 0 && + "Do not know what to do with an non-zero offset"); + + // TODO: We could emit code to handle the initialization somewhere. + if (hasDefinedInitializer(GV)) + break; + + unsigned Offset; + if (MFI->LocalMemoryObjects.count(GV) == 0) { + uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); + Offset = MFI->LDSSize; + MFI->LocalMemoryObjects[GV] = Offset; + // XXX: Account for alignment? + MFI->LDSSize += Size; + } else { + Offset = MFI->LocalMemoryObjects[GV]; + } + + return DAG.getConstant(Offset, SDLoc(Op), + getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); + } + case AMDGPUAS::CONSTANT_ADDRESS: { + MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); + Type *EltType = GV->getType()->getElementType(); + unsigned Size = DL.getTypeAllocSize(EltType); + unsigned Alignment = DL.getPrefTypeAlignment(EltType); + + MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); + MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); + + int FI = FrameInfo->CreateStackObject(Size, Alignment, false); + SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); + + const GlobalVariable *Var = cast<GlobalVariable>(GV); + if (!Var->hasInitializer()) { + // This has no use, but bugpoint will hit it. + return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); + } + + const Constant *Init = Var->getInitializer(); + SmallVector<SDNode*, 8> WorkList; + + for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), + E = DAG.getEntryNode()->use_end(); I != E; ++I) { + if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) + continue; + WorkList.push_back(*I); + } + SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); + for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), + E = WorkList.end(); I != E; ++I) { + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { + Ops.push_back((*I)->getOperand(i)); + } + DAG.UpdateNodeOperands(*I, Ops); + } + return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); + } + } + + const Function &Fn = *DAG.getMachineFunction().getFunction(); + DiagnosticInfoUnsupported BadInit(Fn, + "initializer for address space"); + DAG.getContext()->diagnose(BadInit); + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, + SelectionDAG &DAG) const { + SmallVector<SDValue, 8> Args; + + for (const SDUse &U : Op->ops()) + DAG.ExtractVectorElements(U.get(), Args); + + return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); +} + +SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, + SelectionDAG &DAG) const { + + SmallVector<SDValue, 8> Args; + unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + EVT VT = Op.getValueType(); + DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, + VT.getVectorNumElements()); + + return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); +} + +SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, + SelectionDAG &DAG) const { + + MachineFunction &MF = DAG.getMachineFunction(); + const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); + + FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); + + unsigned FrameIndex = FIN->getIndex(); + unsigned IgnoredFrameReg; + unsigned Offset = + TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); + return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), + Op.getValueType()); +} + +SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + switch (IntrinsicID) { + default: return Op; + case AMDGPUIntrinsic::AMDGPU_abs: + case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. + return LowerIntrinsicIABS(Op, DAG); + case AMDGPUIntrinsic::AMDGPU_lrp: + return LowerIntrinsicLRP(Op, DAG); + + case AMDGPUIntrinsic::AMDGPU_clamp: + case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. + return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::AMDGPU_div_scale: { + // 3rd parameter required to be a constant. + const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); + if (!Param) + return DAG.getUNDEF(VT); + + // Translate to the operands expected by the machine instruction. The + // first parameter must be the same as the first instruction. + SDValue Numerator = Op.getOperand(1); + SDValue Denominator = Op.getOperand(2); + + // Note this order is opposite of the machine instruction's operations, + // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The + // intrinsic has the numerator as the first operand to match a normal + // division operation. + + SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; + + return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, + Denominator, Numerator); + } + + case Intrinsic::AMDGPU_div_fmas: + return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), + Op.getOperand(4)); + + case Intrinsic::AMDGPU_div_fixup: + return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::AMDGPU_trig_preop: + return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + + case Intrinsic::AMDGPU_rcp: + return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); + + case Intrinsic::AMDGPU_rsq: + return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); + + case AMDGPUIntrinsic::AMDGPU_legacy_rsq: + return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); + + case Intrinsic::AMDGPU_rsq_clamped: + if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { + Type *Type = VT.getTypeForEVT(*DAG.getContext()); + APFloat Max = APFloat::getLargest(Type->getFltSemantics()); + APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); + + SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); + SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, + DAG.getConstantFP(Max, DL, VT)); + return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, + DAG.getConstantFP(Min, DL, VT)); + } else { + return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); + } + + case Intrinsic::AMDGPU_ldexp: + return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), + Op.getOperand(2)); + + case AMDGPUIntrinsic::AMDGPU_imax: + return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), + Op.getOperand(2)); + case AMDGPUIntrinsic::AMDGPU_umax: + return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), + Op.getOperand(2)); + case AMDGPUIntrinsic::AMDGPU_imin: + return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), + Op.getOperand(2)); + case AMDGPUIntrinsic::AMDGPU_umin: + return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), + Op.getOperand(2)); + + case AMDGPUIntrinsic::AMDGPU_umul24: + return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + + case AMDGPUIntrinsic::AMDGPU_imul24: + return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + + case AMDGPUIntrinsic::AMDGPU_umad24: + return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case AMDGPUIntrinsic::AMDGPU_imad24: + return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: + return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); + + case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: + return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); + + case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: + return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); + + case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: + return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); + + case AMDGPUIntrinsic::AMDGPU_bfe_i32: + return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, + Op.getOperand(1), + Op.getOperand(2), + Op.getOperand(3)); + + case AMDGPUIntrinsic::AMDGPU_bfe_u32: + return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, + Op.getOperand(1), + Op.getOperand(2), + Op.getOperand(3)); + + case AMDGPUIntrinsic::AMDGPU_bfi: + return DAG.getNode(AMDGPUISD::BFI, DL, VT, + Op.getOperand(1), + Op.getOperand(2), + Op.getOperand(3)); + + case AMDGPUIntrinsic::AMDGPU_bfm: + return DAG.getNode(AMDGPUISD::BFM, DL, VT, + Op.getOperand(1), + Op.getOperand(2)); + + case Intrinsic::AMDGPU_class: + return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, + Op.getOperand(1), Op.getOperand(2)); + + case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. + return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); + + case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. + return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); + case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. + return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); + case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name + return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); + } +} + +///IABS(a) = SMAX(sub(0, a), a) +SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), + Op.getOperand(1)); + + return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); +} + +/// Linear Interpolation +/// LRP(a, b, c) = muladd(a, b, (1 - a) * c) +SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + // TODO: Should this propagate fast-math-flags? + SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, + DAG.getConstantFP(1.0f, DL, MVT::f32), + Op.getOperand(1)); + SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, + Op.getOperand(3)); + return DAG.getNode(ISD::FADD, DL, VT, + DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), + OneSubAC); +} + +/// \brief Generate Min/Max node +SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, + EVT VT, + SDValue LHS, + SDValue RHS, + SDValue True, + SDValue False, + SDValue CC, + DAGCombinerInfo &DCI) const { + if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) + return SDValue(); + + if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); + switch (CCOpcode) { + case ISD::SETOEQ: + case ISD::SETONE: + case ISD::SETUNE: + case ISD::SETNE: + case ISD::SETUEQ: + case ISD::SETEQ: + case ISD::SETFALSE: + case ISD::SETFALSE2: + case ISD::SETTRUE: + case ISD::SETTRUE2: + case ISD::SETUO: + case ISD::SETO: + break; + case ISD::SETULE: + case ISD::SETULT: { + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); + } + case ISD::SETOLE: + case ISD::SETOLT: + case ISD::SETLE: + case ISD::SETLT: { + // Ordered. Assume ordered for undefined. + + // Only do this after legalization to avoid interfering with other combines + // which might occur. + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && + !DCI.isCalledByLegalizer()) + return SDValue(); + + // We need to permute the operands to get the correct NaN behavior. The + // selected operand is the second one based on the failing compare with NaN, + // so permute it based on the compare type the hardware uses. + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); + } + case ISD::SETUGE: + case ISD::SETUGT: { + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); + } + case ISD::SETGT: + case ISD::SETGE: + case ISD::SETOGE: + case ISD::SETOGT: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && + !DCI.isCalledByLegalizer()) + return SDValue(); + + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); + } + case ISD::SETCC_INVALID: + llvm_unreachable("Invalid setcc condcode!"); + } + return SDValue(); +} + +SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, + SelectionDAG &DAG) const { + LoadSDNode *Load = cast<LoadSDNode>(Op); + EVT MemVT = Load->getMemoryVT(); + EVT MemEltVT = MemVT.getVectorElementType(); + + EVT LoadVT = Op.getValueType(); + EVT EltVT = LoadVT.getVectorElementType(); + EVT PtrVT = Load->getBasePtr().getValueType(); + + unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); + SmallVector<SDValue, 8> Loads; + SmallVector<SDValue, 8> Chains; + + SDLoc SL(Op); + unsigned MemEltSize = MemEltVT.getStoreSize(); + MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); + + for (unsigned i = 0; i < NumElts; ++i) { + SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), + DAG.getConstant(i * MemEltSize, SL, PtrVT)); + + SDValue NewLoad + = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, + Load->getChain(), Ptr, + SrcValue.getWithOffset(i * MemEltSize), + MemEltVT, Load->isVolatile(), Load->isNonTemporal(), + Load->isInvariant(), Load->getAlignment()); + Loads.push_back(NewLoad.getValue(0)); + Chains.push_back(NewLoad.getValue(1)); + } + + SDValue Ops[] = { + DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), + DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) + }; + + return DAG.getMergeValues(Ops, SL); +} + +SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + + // If this is a 2 element vector, we really want to scalarize and not create + // weird 1 element vectors. + if (VT.getVectorNumElements() == 2) + return ScalarizeVectorLoad(Op, DAG); + + LoadSDNode *Load = cast<LoadSDNode>(Op); + SDValue BasePtr = Load->getBasePtr(); + EVT PtrVT = BasePtr.getValueType(); + EVT MemVT = Load->getMemoryVT(); + SDLoc SL(Op); + + const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); + + EVT LoVT, HiVT; + EVT LoMemVT, HiMemVT; + SDValue Lo, Hi; + + std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); + std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); + std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); + + unsigned Size = LoMemVT.getStoreSize(); + unsigned BaseAlign = Load->getAlignment(); + unsigned HiAlign = MinAlign(BaseAlign, Size); + + SDValue LoLoad + = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, + Load->getChain(), BasePtr, + SrcValue, + LoMemVT, Load->isVolatile(), Load->isNonTemporal(), + Load->isInvariant(), BaseAlign); + + SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, + DAG.getConstant(Size, SL, PtrVT)); + + SDValue HiLoad + = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, + Load->getChain(), HiPtr, + SrcValue.getWithOffset(LoMemVT.getStoreSize()), + HiMemVT, Load->isVolatile(), Load->isNonTemporal(), + Load->isInvariant(), HiAlign); + + SDValue Ops[] = { + DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), + DAG.getNode(ISD::TokenFactor, SL, MVT::Other, + LoLoad.getValue(1), HiLoad.getValue(1)) + }; + + return DAG.getMergeValues(Ops, SL); +} + +SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, + SelectionDAG &DAG) const { + StoreSDNode *Store = cast<StoreSDNode>(Op); + EVT MemVT = Store->getMemoryVT(); + unsigned MemBits = MemVT.getSizeInBits(); + + // Byte stores are really expensive, so if possible, try to pack 32-bit vector + // truncating store into an i32 store. + // XXX: We could also handle optimize other vector bitwidths. + if (!MemVT.isVector() || MemBits > 32) { + return SDValue(); + } + + SDLoc DL(Op); + SDValue Value = Store->getValue(); + EVT VT = Value.getValueType(); + EVT ElemVT = VT.getVectorElementType(); + SDValue Ptr = Store->getBasePtr(); + EVT MemEltVT = MemVT.getVectorElementType(); + unsigned MemEltBits = MemEltVT.getSizeInBits(); + unsigned MemNumElements = MemVT.getVectorNumElements(); + unsigned PackedSize = MemVT.getStoreSizeInBits(); + SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); + + assert(Value.getValueType().getScalarSizeInBits() >= 32); + + SDValue PackedValue; + for (unsigned i = 0; i < MemNumElements; ++i) { + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, + DAG.getConstant(i, DL, MVT::i32)); + Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); + Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg + + SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); + Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); + + if (i == 0) { + PackedValue = Elt; + } else { + PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); + } + } + + if (PackedSize < 32) { + EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); + return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, + Store->getMemOperand()->getPointerInfo(), + PackedVT, + Store->isNonTemporal(), Store->isVolatile(), + Store->getAlignment()); + } + + return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, + Store->getMemOperand()->getPointerInfo(), + Store->isVolatile(), Store->isNonTemporal(), + Store->getAlignment()); +} + +SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, + SelectionDAG &DAG) const { + StoreSDNode *Store = cast<StoreSDNode>(Op); + EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); + EVT EltVT = Store->getValue().getValueType().getVectorElementType(); + EVT PtrVT = Store->getBasePtr().getValueType(); + unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); + SDLoc SL(Op); + + SmallVector<SDValue, 8> Chains; + + unsigned EltSize = MemEltVT.getStoreSize(); + MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); + + for (unsigned i = 0, e = NumElts; i != e; ++i) { + SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Store->getValue(), + DAG.getConstant(i, SL, MVT::i32)); + + SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); + SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); + SDValue NewStore = + DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, + SrcValue.getWithOffset(i * EltSize), + MemEltVT, Store->isNonTemporal(), Store->isVolatile(), + Store->getAlignment()); + Chains.push_back(NewStore); + } + + return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); +} + +SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, + SelectionDAG &DAG) const { + StoreSDNode *Store = cast<StoreSDNode>(Op); + SDValue Val = Store->getValue(); + EVT VT = Val.getValueType(); + + // If this is a 2 element vector, we really want to scalarize and not create + // weird 1 element vectors. + if (VT.getVectorNumElements() == 2) + return ScalarizeVectorStore(Op, DAG); + + EVT MemVT = Store->getMemoryVT(); + SDValue Chain = Store->getChain(); + SDValue BasePtr = Store->getBasePtr(); + SDLoc SL(Op); + + EVT LoVT, HiVT; + EVT LoMemVT, HiMemVT; + SDValue Lo, Hi; + + std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); + std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); + std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); + + EVT PtrVT = BasePtr.getValueType(); + SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, + DAG.getConstant(LoMemVT.getStoreSize(), SL, + PtrVT)); + + const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); + unsigned BaseAlign = Store->getAlignment(); + unsigned Size = LoMemVT.getStoreSize(); + unsigned HiAlign = MinAlign(BaseAlign, Size); + + SDValue LoStore + = DAG.getTruncStore(Chain, SL, Lo, + BasePtr, + SrcValue, + LoMemVT, + Store->isNonTemporal(), + Store->isVolatile(), + BaseAlign); + SDValue HiStore + = DAG.getTruncStore(Chain, SL, Hi, + HiPtr, + SrcValue.getWithOffset(Size), + HiMemVT, + Store->isNonTemporal(), + Store->isVolatile(), + HiAlign); + + return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); +} + + +SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + LoadSDNode *Load = cast<LoadSDNode>(Op); + ISD::LoadExtType ExtType = Load->getExtensionType(); + EVT VT = Op.getValueType(); + EVT MemVT = Load->getMemoryVT(); + + if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { + assert(VT == MVT::i1 && "Only i1 non-extloads expected"); + // FIXME: Copied from PPC + // First, load into 32 bits, then truncate to 1 bit. + + SDValue Chain = Load->getChain(); + SDValue BasePtr = Load->getBasePtr(); + MachineMemOperand *MMO = Load->getMemOperand(); + + SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, + BasePtr, MVT::i8, MMO); + + SDValue Ops[] = { + DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), + NewLD.getValue(1) + }; + + return DAG.getMergeValues(Ops, DL); + } + + if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || + Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || + ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) + return SDValue(); + + // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, + // register (2-)byte extract. + + // Get Register holding the target. + SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), + DAG.getConstant(2, DL, MVT::i32)); + // Load the Register. + SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), + Load->getChain(), Ptr, + DAG.getTargetConstant(0, DL, MVT::i32), + Op.getOperand(2)); + + // Get offset within the register. + SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, + Load->getBasePtr(), + DAG.getConstant(0x3, DL, MVT::i32)); + + // Bit offset of target byte (byteIdx * 8). + SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, + DAG.getConstant(3, DL, MVT::i32)); + + // Shift to the right. + Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); + + // Eliminate the upper bits by setting them to ... + EVT MemEltVT = MemVT.getScalarType(); + + // ... ones. + if (ExtType == ISD::SEXTLOAD) { + SDValue MemEltVTNode = DAG.getValueType(MemEltVT); + + SDValue Ops[] = { + DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), + Load->getChain() + }; + + return DAG.getMergeValues(Ops, DL); + } + + // ... or zeros. + SDValue Ops[] = { + DAG.getZeroExtendInReg(Ret, DL, MemEltVT), + Load->getChain() + }; + + return DAG.getMergeValues(Ops, DL); +} + +SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); + if (Result.getNode()) { + return Result; + } + + StoreSDNode *Store = cast<StoreSDNode>(Op); + SDValue Chain = Store->getChain(); + if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || + Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && + Store->getValue().getValueType().isVector()) { + return SplitVectorStore(Op, DAG); + } + + EVT MemVT = Store->getMemoryVT(); + if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && + MemVT.bitsLT(MVT::i32)) { + unsigned Mask = 0; + if (Store->getMemoryVT() == MVT::i8) { + Mask = 0xff; + } else if (Store->getMemoryVT() == MVT::i16) { + Mask = 0xffff; + } + SDValue BasePtr = Store->getBasePtr(); + SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, + DAG.getConstant(2, DL, MVT::i32)); + SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, + Chain, Ptr, + DAG.getTargetConstant(0, DL, MVT::i32)); + + SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, + DAG.getConstant(0x3, DL, MVT::i32)); + + SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, + DAG.getConstant(3, DL, MVT::i32)); + + SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, + Store->getValue()); + + SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); + + SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, + MaskedValue, ShiftAmt); + + SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, + DAG.getConstant(Mask, DL, MVT::i32), + ShiftAmt); + DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, + DAG.getConstant(0xffffffff, DL, MVT::i32)); + Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); + + SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); + return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, + Chain, Value, Ptr, + DAG.getTargetConstant(0, DL, MVT::i32)); + } + return SDValue(); +} + +// This is a shortcut for integer division because we have fast i32<->f32 +// conversions, and fast f32 reciprocal instructions. The fractional part of a +// float is enough to accurately represent up to a 24-bit integer. +SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + MVT IntVT = MVT::i32; + MVT FltVT = MVT::f32; + + ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; + ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; + + if (VT.isVector()) { + unsigned NElts = VT.getVectorNumElements(); + IntVT = MVT::getVectorVT(MVT::i32, NElts); + FltVT = MVT::getVectorVT(MVT::f32, NElts); + } + + unsigned BitSize = VT.getScalarType().getSizeInBits(); + + SDValue jq = DAG.getConstant(1, DL, IntVT); + + if (sign) { + // char|short jq = ia ^ ib; + jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); + + // jq = jq >> (bitsize - 2) + jq = DAG.getNode(ISD::SRA, DL, VT, jq, + DAG.getConstant(BitSize - 2, DL, VT)); + + // jq = jq | 0x1 + jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); + + // jq = (int)jq + jq = DAG.getSExtOrTrunc(jq, DL, IntVT); + } + + // int ia = (int)LHS; + SDValue ia = sign ? + DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); + + // int ib, (int)RHS; + SDValue ib = sign ? + DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); + + // float fa = (float)ia; + SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); + + // float fb = (float)ib; + SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); + + // TODO: Should this propagate fast-math-flags? + // float fq = native_divide(fa, fb); + SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, + fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); + + // fq = trunc(fq); + fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); + + // float fqneg = -fq; + SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); + + // float fr = mad(fqneg, fb, fa); + SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, + DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); + + // int iq = (int)fq; + SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); + + // fr = fabs(fr); + fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); + + // fb = fabs(fb); + fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); + + EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + + // int cv = fr >= fb; + SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); + + // jq = (cv ? jq : 0); + jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); + + // dst = trunc/extend to legal type + iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); + + // dst = iq + jq; + SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); + + // Rem needs compensation, it's easier to recompute it + SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); + Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); + + SDValue Res[2] = { + Div, + Rem + }; + return DAG.getMergeValues(Res, DL); +} + +void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &Results) const { + assert(Op.getValueType() == MVT::i64); + + SDLoc DL(Op); + EVT VT = Op.getValueType(); + EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); + + SDValue one = DAG.getConstant(1, DL, HalfVT); + SDValue zero = DAG.getConstant(0, DL, HalfVT); + + //HiLo split + SDValue LHS = Op.getOperand(0); + SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); + SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); + + SDValue RHS = Op.getOperand(1); + SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); + SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); + + if (VT == MVT::i64 && + DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && + DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { + + SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), + LHS_Lo, RHS_Lo); + + SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); + SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); + Results.push_back(DIV); + Results.push_back(REM); + return; + } + + // Get Speculative values + SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); + SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); + + SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); + SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); + + SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); + SDValue DIV_Lo = zero; + + const unsigned halfBitWidth = HalfVT.getSizeInBits(); + + for (unsigned i = 0; i < halfBitWidth; ++i) { + const unsigned bitPos = halfBitWidth - i - 1; + SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); + // Get value of high bit + SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); + HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); + HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); + + // Shift + REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); + // Add LHS high bit + REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); + + SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); + SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); + + DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); + + // Update REM + SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); + REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); + } + + SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); + Results.push_back(DIV); + Results.push_back(REM); +} + +SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + if (VT == MVT::i64) { + SmallVector<SDValue, 2> Results; + LowerUDIVREM64(Op, DAG, Results); + return DAG.getMergeValues(Results, DL); + } + + SDValue Num = Op.getOperand(0); + SDValue Den = Op.getOperand(1); + + if (VT == MVT::i32) { + if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && + DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { + // TODO: We technically could do this for i64, but shouldn't that just be + // handled by something generally reducing 64-bit division on 32-bit + // values to 32-bit? + return LowerDIVREM24(Op, DAG, false); + } + } + + // RCP = URECIP(Den) = 2^32 / Den + e + // e is rounding error. + SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); + + // RCP_LO = mul(RCP, Den) */ + SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); + + // RCP_HI = mulhu (RCP, Den) */ + SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); + + // NEG_RCP_LO = -RCP_LO + SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), + RCP_LO); + + // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) + SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), + NEG_RCP_LO, RCP_LO, + ISD::SETEQ); + // Calculate the rounding error from the URECIP instruction + // E = mulhu(ABS_RCP_LO, RCP) + SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); + + // RCP_A_E = RCP + E + SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); + + // RCP_S_E = RCP - E + SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); + + // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) + SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), + RCP_A_E, RCP_S_E, + ISD::SETEQ); + // Quotient = mulhu(Tmp0, Num) + SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); + + // Num_S_Remainder = Quotient * Den + SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); + + // Remainder = Num - Num_S_Remainder + SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); + + // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) + SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, + DAG.getConstant(-1, DL, VT), + DAG.getConstant(0, DL, VT), + ISD::SETUGE); + // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) + SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, + Num_S_Remainder, + DAG.getConstant(-1, DL, VT), + DAG.getConstant(0, DL, VT), + ISD::SETUGE); + // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero + SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, + Remainder_GE_Zero); + + // Calculate Division result: + + // Quotient_A_One = Quotient + 1 + SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, + DAG.getConstant(1, DL, VT)); + + // Quotient_S_One = Quotient - 1 + SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, + DAG.getConstant(1, DL, VT)); + + // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) + SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), + Quotient, Quotient_A_One, ISD::SETEQ); + + // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) + Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), + Quotient_S_One, Div, ISD::SETEQ); + + // Calculate Rem result: + + // Remainder_S_Den = Remainder - Den + SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); + + // Remainder_A_Den = Remainder + Den + SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); + + // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) + SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), + Remainder, Remainder_S_Den, ISD::SETEQ); + + // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) + Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), + Remainder_A_Den, Rem, ISD::SETEQ); + SDValue Ops[2] = { + Div, + Rem + }; + return DAG.getMergeValues(Ops, DL); +} + +SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue NegOne = DAG.getConstant(-1, DL, VT); + + if (VT == MVT::i32 && + DAG.ComputeNumSignBits(LHS) > 8 && + DAG.ComputeNumSignBits(RHS) > 8) { + return LowerDIVREM24(Op, DAG, true); + } + if (VT == MVT::i64 && + DAG.ComputeNumSignBits(LHS) > 32 && + DAG.ComputeNumSignBits(RHS) > 32) { + EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); + + //HiLo split + SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); + SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); + SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), + LHS_Lo, RHS_Lo); + SDValue Res[2] = { + DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), + DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) + }; + return DAG.getMergeValues(Res, DL); + } + + SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); + SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); + SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); + SDValue RSign = LHSign; // Remainder sign is the same as LHS + + LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); + RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); + + LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); + RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); + + SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); + SDValue Rem = Div.getValue(1); + + Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); + Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); + + Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); + Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); + + SDValue Res[2] = { + Div, + Rem + }; + return DAG.getMergeValues(Res, DL); +} + +// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) +SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + EVT VT = Op.getValueType(); + SDValue X = Op.getOperand(0); + SDValue Y = Op.getOperand(1); + + // TODO: Should this propagate fast-math-flags? + + SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); + SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); + SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); + + return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); +} + +SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + // result = trunc(src) + // if (src > 0.0 && src != result) + // result += 1.0 + + SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); + + const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); + + SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); + SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); + SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); + + SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); + // TODO: Should this propagate fast-math-flags? + return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); +} + +static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { + const unsigned FractBits = 52; + const unsigned ExpBits = 11; + + SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, + Hi, + DAG.getConstant(FractBits - 32, SL, MVT::i32), + DAG.getConstant(ExpBits, SL, MVT::i32)); + SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, + DAG.getConstant(1023, SL, MVT::i32)); + + return Exp; +} + +SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + assert(Op.getValueType() == MVT::f64); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + const SDValue One = DAG.getConstant(1, SL, MVT::i32); + + SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); + + // Extract the upper half, since this is where we will find the sign and + // exponent. + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); + + SDValue Exp = extractF64Exponent(Hi, SL, DAG); + + const unsigned FractBits = 52; + + // Extract the sign bit. + const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); + SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); + + // Extend back to to 64-bits. + SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, + Zero, SignBit); + SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); + + SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); + const SDValue FractMask + = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); + + SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); + SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); + SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); + + const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); + + SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); + SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); + + SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); + SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); + + return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); +} + +SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + assert(Op.getValueType() == MVT::f64); + + APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); + SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); + SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); + + // TODO: Should this propagate fast-math-flags? + + SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); + SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); + + SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); + + APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); + SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); + SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); + + return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); +} + +SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { + // FNEARBYINT and FRINT are the same, except in their handling of FP + // exceptions. Those aren't really meaningful for us, and OpenCL only has + // rint, so just treat them as equivalent. + return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); +} + +// XXX - May require not supporting f32 denormals? +SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue X = Op.getOperand(0); + + SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); + + // TODO: Should this propagate fast-math-flags? + + SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); + + SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); + + const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); + const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); + + SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); + + SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); + + SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); + + return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); +} + +SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue X = Op.getOperand(0); + + SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + const SDValue One = DAG.getConstant(1, SL, MVT::i32); + const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); + const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); + + SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); + + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); + + SDValue Exp = extractF64Exponent(Hi, SL, DAG); + + const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, + MVT::i64); + + SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); + SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, + DAG.getConstant(INT64_C(0x0008000000000000), SL, + MVT::i64), + Exp); + + SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); + SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, + DAG.getConstant(0, SL, MVT::i64), Tmp0, + ISD::SETNE); + + SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, + D, DAG.getConstant(0, SL, MVT::i64)); + SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); + + K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); + K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); + + SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); + SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); + SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); + + SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, + ExpEqNegOne, + DAG.getConstantFP(1.0, SL, MVT::f64), + DAG.getConstantFP(0.0, SL, MVT::f64)); + + SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); + + K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); + K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); + + return K; +} + +SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + + if (VT == MVT::f32) + return LowerFROUND32(Op, DAG); + + if (VT == MVT::f64) + return LowerFROUND64(Op, DAG); + + llvm_unreachable("unhandled type"); +} + +SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + // result = trunc(src); + // if (src < 0.0 && src != result) + // result += -1.0. + + SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); + + const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); + const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); + + SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); + SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); + SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); + + SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); + // TODO: Should this propagate fast-math-flags? + return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); +} + +SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, + bool Signed) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); + + SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, + DAG.getConstant(0, SL, MVT::i32)); + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, + DAG.getConstant(1, SL, MVT::i32)); + + SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, + SL, MVT::f64, Hi); + + SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); + + SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, + DAG.getConstant(32, SL, MVT::i32)); + // TODO: Should this propagate fast-math-flags? + return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); +} + +SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue S0 = Op.getOperand(0); + if (S0.getValueType() != MVT::i64) + return SDValue(); + + EVT DestVT = Op.getValueType(); + if (DestVT == MVT::f64) + return LowerINT_TO_FP64(Op, DAG, false); + + assert(DestVT == MVT::f32); + + SDLoc DL(Op); + + // f32 uint_to_fp i64 + SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, + DAG.getConstant(0, DL, MVT::i32)); + SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); + SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, + DAG.getConstant(1, DL, MVT::i32)); + SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); + // TODO: Should this propagate fast-math-flags? + FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, + DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 + return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); +} + +SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(0); + if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) + return LowerINT_TO_FP64(Op, DAG, true); + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, + bool Signed) const { + SDLoc SL(Op); + + SDValue Src = Op.getOperand(0); + + SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); + + SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, + MVT::f64); + SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, + MVT::f64); + // TODO: Should this propagate fast-math-flags? + SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); + + SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); + + + SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); + + SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, + MVT::i32, FloorMul); + SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); + + SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); + + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); +} + +SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(0); + + if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) + return LowerFP64_TO_INT(Op, DAG, true); + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(0); + + if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) + return LowerFP64_TO_INT(Op, DAG, false); + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, + SelectionDAG &DAG) const { + EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + MVT VT = Op.getSimpleValueType(); + MVT ScalarVT = VT.getScalarType(); + + if (!VT.isVector()) + return SDValue(); + + SDValue Src = Op.getOperand(0); + SDLoc DL(Op); + + // TODO: Don't scalarize on Evergreen? + unsigned NElts = VT.getVectorNumElements(); + SmallVector<SDValue, 8> Args; + DAG.ExtractVectorElements(Src, Args, 0, NElts); + + SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); + for (unsigned I = 0; I < NElts; ++I) + Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); + + return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); +} + +//===----------------------------------------------------------------------===// +// Custom DAG optimizations +//===----------------------------------------------------------------------===// + +static bool isU24(SDValue Op, SelectionDAG &DAG) { + APInt KnownZero, KnownOne; + EVT VT = Op.getValueType(); + DAG.computeKnownBits(Op, KnownZero, KnownOne); + + return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; +} + +static bool isI24(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + + // In order for this to be a signed 24-bit value, bit 23, must + // be a sign bit. + return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated + // as unsigned 24-bit values. + (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; +} + +static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { + + SelectionDAG &DAG = DCI.DAG; + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT VT = Op.getValueType(); + + APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, true, true); + if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) + DCI.CommitTargetLoweringOpt(TLO); +} + +template <typename IntTy> +static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, + uint32_t Offset, uint32_t Width, SDLoc DL) { + if (Width + Offset < 32) { + uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); + IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); + return DAG.getConstant(Result, DL, MVT::i32); + } + + return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); +} + +static bool usesAllNormalStores(SDNode *LoadVal) { + for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { + if (!ISD::isNormalStore(*I)) + return false; + } + + return true; +} + +// If we have a copy of an illegal type, replace it with a load / store of an +// equivalently sized legal type. This avoids intermediate bit pack / unpack +// instructions emitted when handling extloads and truncstores. Ideally we could +// recognize the pack / unpack pattern to eliminate it. +SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (!DCI.isBeforeLegalize()) + return SDValue(); + + StoreSDNode *SN = cast<StoreSDNode>(N); + SDValue Value = SN->getValue(); + EVT VT = Value.getValueType(); + + if (isTypeLegal(VT) || SN->isVolatile() || + !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) + return SDValue(); + + LoadSDNode *LoadVal = cast<LoadSDNode>(Value); + if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) + return SDValue(); + + EVT MemVT = LoadVal->getMemoryVT(); + + SDLoc SL(N); + SelectionDAG &DAG = DCI.DAG; + EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); + + SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, + LoadVT, SL, + LoadVal->getChain(), + LoadVal->getBasePtr(), + LoadVal->getOffset(), + LoadVT, + LoadVal->getMemOperand()); + + SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); + DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); + + return DAG.getStore(SN->getChain(), SL, NewLoad, + SN->getBasePtr(), SN->getMemOperand()); +} + +SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (N->getValueType(0) != MVT::i64) + return SDValue(); + + // i64 (shl x, 32) -> (build_pair 0, x) + + // Doing this with moves theoretically helps MI optimizations that understand + // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as + // v_lshl_b64. In the SALU case, I think this is slightly worse since it + // doubles the code size and I'm unsure about cycle count. + const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!RHS || RHS->getZExtValue() != 32) + return SDValue(); + + SDValue LHS = N->getOperand(0); + + SDLoc SL(N); + SelectionDAG &DAG = DCI.DAG; + + // Extract low 32-bits. + SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo); +} + +SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + + if (VT.isVector() || VT.getSizeInBits() > 32) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue Mul; + + if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { + N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); + N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); + Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); + } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { + N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); + N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); + Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); + } else { + return SDValue(); + } + + // We need to use sext even for MUL_U24, because MUL_U24 is used + // for signed multiply of 8 and 16-bit types. + return DAG.getSExtOrTrunc(Mul, DL, VT); +} + +SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + switch(N->getOpcode()) { + default: + break; + case ISD::SHL: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + break; + + return performShlCombine(N, DCI); + } + case ISD::MUL: + return performMulCombine(N, DCI); + case AMDGPUISD::MUL_I24: + case AMDGPUISD::MUL_U24: { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + simplifyI24(N0, DCI); + simplifyI24(N1, DCI); + return SDValue(); + } + case ISD::SELECT: { + SDValue Cond = N->getOperand(0); + if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { + EVT VT = N->getValueType(0); + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + SDValue CC = Cond.getOperand(2); + + SDValue True = N->getOperand(1); + SDValue False = N->getOperand(2); + + if (VT == MVT::f32) + return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); + } + + break; + } + case AMDGPUISD::BFE_I32: + case AMDGPUISD::BFE_U32: { + assert(!N->getValueType(0).isVector() && + "Vector handling of BFE not implemented"); + ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); + if (!Width) + break; + + uint32_t WidthVal = Width->getZExtValue() & 0x1f; + if (WidthVal == 0) + return DAG.getConstant(0, DL, MVT::i32); + + ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!Offset) + break; + + SDValue BitsFrom = N->getOperand(0); + uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; + + bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; + + if (OffsetVal == 0) { + // This is already sign / zero extended, so try to fold away extra BFEs. + unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); + + unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); + if (OpSignBits >= SignBits) + return BitsFrom; + + EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); + if (Signed) { + // This is a sign_extend_inreg. Replace it to take advantage of existing + // DAG Combines. If not eliminated, we will match back to BFE during + // selection. + + // TODO: The sext_inreg of extended types ends, although we can could + // handle them in a single BFE. + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, + DAG.getValueType(SmallVT)); + } + + return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); + } + + if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { + if (Signed) { + return constantFoldBFE<int32_t>(DAG, + CVal->getSExtValue(), + OffsetVal, + WidthVal, + DL); + } + + return constantFoldBFE<uint32_t>(DAG, + CVal->getZExtValue(), + OffsetVal, + WidthVal, + DL); + } + + if ((OffsetVal + WidthVal) >= 32) { + SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); + return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, + BitsFrom, ShiftVal); + } + + if (BitsFrom.hasOneUse()) { + APInt Demanded = APInt::getBitsSet(32, + OffsetVal, + OffsetVal + WidthVal); + + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || + TLI.SimplifyDemandedBits(BitsFrom, Demanded, + KnownZero, KnownOne, TLO)) { + DCI.CommitTargetLoweringOpt(TLO); + } + } + + break; + } + + case ISD::STORE: + return performStoreCombine(N, DCI); + } + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Helper functions +//===----------------------------------------------------------------------===// + +void AMDGPUTargetLowering::getOriginalFunctionArgs( + SelectionDAG &DAG, + const Function *F, + const SmallVectorImpl<ISD::InputArg> &Ins, + SmallVectorImpl<ISD::InputArg> &OrigIns) const { + + for (unsigned i = 0, e = Ins.size(); i < e; ++i) { + if (Ins[i].ArgVT == Ins[i].VT) { + OrigIns.push_back(Ins[i]); + continue; + } + + EVT VT; + if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { + // Vector has been split into scalars. + VT = Ins[i].ArgVT.getVectorElementType(); + } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && + Ins[i].ArgVT.getVectorElementType() != + Ins[i].VT.getVectorElementType()) { + // Vector elements have been promoted + VT = Ins[i].ArgVT; + } else { + // Vector has been spilt into smaller vectors. + VT = Ins[i].VT; + } + + ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, + Ins[i].OrigArgIndex, Ins[i].PartOffset); + OrigIns.push_back(Arg); + } +} + +bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { + if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { + return CFP->isExactlyValue(1.0); + } + return isAllOnesConstant(Op); +} + +bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { + if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { + return CFP->getValueAPF().isZero(); + } + return isNullConstant(Op); +} + +SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, + const TargetRegisterClass *RC, + unsigned Reg, EVT VT) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + unsigned VirtualRegister; + if (!MRI.isLiveIn(Reg)) { + VirtualRegister = MRI.createVirtualRegister(RC); + MRI.addLiveIn(Reg, VirtualRegister); + } else { + VirtualRegister = MRI.getLiveInVirtReg(Reg); + } + return DAG.getRegister(VirtualRegister, VT); +} + +uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( + const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { + uint64_t ArgOffset = MFI->ABIArgOffset; + switch (Param) { + case GRID_DIM: + return ArgOffset; + case GRID_OFFSET: + return ArgOffset + 4; + } + llvm_unreachable("unexpected implicit parameter type"); +} + +#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; + +const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((AMDGPUISD::NodeType)Opcode) { + case AMDGPUISD::FIRST_NUMBER: break; + // AMDIL DAG nodes + NODE_NAME_CASE(CALL); + NODE_NAME_CASE(UMUL); + NODE_NAME_CASE(RET_FLAG); + NODE_NAME_CASE(BRANCH_COND); + + // AMDGPU DAG nodes + NODE_NAME_CASE(DWORDADDR) + NODE_NAME_CASE(FRACT) + NODE_NAME_CASE(CLAMP) + NODE_NAME_CASE(COS_HW) + NODE_NAME_CASE(SIN_HW) + NODE_NAME_CASE(FMAX_LEGACY) + NODE_NAME_CASE(FMIN_LEGACY) + NODE_NAME_CASE(FMAX3) + NODE_NAME_CASE(SMAX3) + NODE_NAME_CASE(UMAX3) + NODE_NAME_CASE(FMIN3) + NODE_NAME_CASE(SMIN3) + NODE_NAME_CASE(UMIN3) + NODE_NAME_CASE(URECIP) + NODE_NAME_CASE(DIV_SCALE) + NODE_NAME_CASE(DIV_FMAS) + NODE_NAME_CASE(DIV_FIXUP) + NODE_NAME_CASE(TRIG_PREOP) + NODE_NAME_CASE(RCP) + NODE_NAME_CASE(RSQ) + NODE_NAME_CASE(RSQ_LEGACY) + NODE_NAME_CASE(RSQ_CLAMPED) + NODE_NAME_CASE(LDEXP) + NODE_NAME_CASE(FP_CLASS) + NODE_NAME_CASE(DOT4) + NODE_NAME_CASE(CARRY) + NODE_NAME_CASE(BORROW) + NODE_NAME_CASE(BFE_U32) + NODE_NAME_CASE(BFE_I32) + NODE_NAME_CASE(BFI) + NODE_NAME_CASE(BFM) + NODE_NAME_CASE(MUL_U24) + NODE_NAME_CASE(MUL_I24) + NODE_NAME_CASE(MAD_U24) + NODE_NAME_CASE(MAD_I24) + NODE_NAME_CASE(TEXTURE_FETCH) + NODE_NAME_CASE(EXPORT) + NODE_NAME_CASE(CONST_ADDRESS) + NODE_NAME_CASE(REGISTER_LOAD) + NODE_NAME_CASE(REGISTER_STORE) + NODE_NAME_CASE(LOAD_CONSTANT) + NODE_NAME_CASE(LOAD_INPUT) + NODE_NAME_CASE(SAMPLE) + NODE_NAME_CASE(SAMPLEB) + NODE_NAME_CASE(SAMPLED) + NODE_NAME_CASE(SAMPLEL) + NODE_NAME_CASE(CVT_F32_UBYTE0) + NODE_NAME_CASE(CVT_F32_UBYTE1) + NODE_NAME_CASE(CVT_F32_UBYTE2) + NODE_NAME_CASE(CVT_F32_UBYTE3) + NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) + NODE_NAME_CASE(CONST_DATA_PTR) + case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; + NODE_NAME_CASE(SENDMSG) + NODE_NAME_CASE(INTERP_MOV) + NODE_NAME_CASE(INTERP_P1) + NODE_NAME_CASE(INTERP_P2) + NODE_NAME_CASE(STORE_MSKOR) + NODE_NAME_CASE(TBUFFER_STORE_FORMAT) + case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; + } + return nullptr; +} + +SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, + DAGCombinerInfo &DCI, + unsigned &RefinementSteps, + bool &UseOneConstNR) const { + SelectionDAG &DAG = DCI.DAG; + EVT VT = Operand.getValueType(); + + if (VT == MVT::f32) { + RefinementSteps = 0; + return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); + } + + // TODO: There is also f64 rsq instruction, but the documentation is less + // clear on its precision. + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, + DAGCombinerInfo &DCI, + unsigned &RefinementSteps) const { + SelectionDAG &DAG = DCI.DAG; + EVT VT = Operand.getValueType(); + + if (VT == MVT::f32) { + // Reciprocal, < 1 ulp error. + // + // This reciprocal approximation converges to < 0.5 ulp error with one + // newton rhapson performed with two fused multiple adds (FMAs). + + RefinementSteps = 0; + return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); + } + + // TODO: There is also f64 rcp instruction, but the documentation is less + // clear on its precision. + + return SDValue(); +} + +static void computeKnownBitsForMinMax(const SDValue Op0, + const SDValue Op1, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) { + APInt Op0Zero, Op0One; + APInt Op1Zero, Op1One; + DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); + DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); + + KnownZero = Op0Zero & Op1Zero; + KnownOne = Op0One & Op1One; +} + +void AMDGPUTargetLowering::computeKnownBitsForTargetNode( + const SDValue Op, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) const { + + KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. + + APInt KnownZero2; + APInt KnownOne2; + unsigned Opc = Op.getOpcode(); + + switch (Opc) { + default: + break; + case ISD::INTRINSIC_WO_CHAIN: { + // FIXME: The intrinsic should just use the node. + switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { + case AMDGPUIntrinsic::AMDGPU_imax: + case AMDGPUIntrinsic::AMDGPU_umax: + case AMDGPUIntrinsic::AMDGPU_imin: + case AMDGPUIntrinsic::AMDGPU_umin: + computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), + KnownZero, KnownOne, DAG, Depth); + break; + default: + break; + } + + break; + } + case AMDGPUISD::CARRY: + case AMDGPUISD::BORROW: { + KnownZero = APInt::getHighBitsSet(32, 31); + break; + } + + case AMDGPUISD::BFE_I32: + case AMDGPUISD::BFE_U32: { + ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + if (!CWidth) + return; + + unsigned BitWidth = 32; + uint32_t Width = CWidth->getZExtValue() & 0x1f; + + if (Opc == AMDGPUISD::BFE_U32) + KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); + + break; + } + } +} + +unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( + SDValue Op, + const SelectionDAG &DAG, + unsigned Depth) const { + switch (Op.getOpcode()) { + case AMDGPUISD::BFE_I32: { + ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + if (!Width) + return 1; + + unsigned SignBits = 32 - Width->getZExtValue() + 1; + if (!isNullConstant(Op.getOperand(1))) + return SignBits; + + // TODO: Could probably figure something out with non-0 offsets. + unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); + return std::max(SignBits, Op0SignBits); + } + + case AMDGPUISD::BFE_U32: { + ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; + } + + case AMDGPUISD::CARRY: + case AMDGPUISD::BORROW: + return 31; + + default: + return 1; + } +} |