diff options
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h')
-rw-r--r-- | contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h | 760 |
1 files changed, 760 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h new file mode 100644 index 0000000..648b1df --- /dev/null +++ b/contrib/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h @@ -0,0 +1,760 @@ +//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the AArch64 addressing mode implementation stuff. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H +#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include <cassert> + +namespace llvm { + +/// AArch64_AM - AArch64 Addressing Mode Stuff +namespace AArch64_AM { + +//===----------------------------------------------------------------------===// +// Shifts +// + +enum ShiftExtendType { + InvalidShiftExtend = -1, + LSL = 0, + LSR, + ASR, + ROR, + MSL, + + UXTB, + UXTH, + UXTW, + UXTX, + + SXTB, + SXTH, + SXTW, + SXTX, +}; + +/// getShiftName - Get the string encoding for the shift type. +static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) { + switch (ST) { + default: llvm_unreachable("unhandled shift type!"); + case AArch64_AM::LSL: return "lsl"; + case AArch64_AM::LSR: return "lsr"; + case AArch64_AM::ASR: return "asr"; + case AArch64_AM::ROR: return "ror"; + case AArch64_AM::MSL: return "msl"; + case AArch64_AM::UXTB: return "uxtb"; + case AArch64_AM::UXTH: return "uxth"; + case AArch64_AM::UXTW: return "uxtw"; + case AArch64_AM::UXTX: return "uxtx"; + case AArch64_AM::SXTB: return "sxtb"; + case AArch64_AM::SXTH: return "sxth"; + case AArch64_AM::SXTW: return "sxtw"; + case AArch64_AM::SXTX: return "sxtx"; + } + return nullptr; +} + +/// getShiftType - Extract the shift type. +static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) { + switch ((Imm >> 6) & 0x7) { + default: return AArch64_AM::InvalidShiftExtend; + case 0: return AArch64_AM::LSL; + case 1: return AArch64_AM::LSR; + case 2: return AArch64_AM::ASR; + case 3: return AArch64_AM::ROR; + case 4: return AArch64_AM::MSL; + } +} + +/// getShiftValue - Extract the shift value. +static inline unsigned getShiftValue(unsigned Imm) { + return Imm & 0x3f; +} + +/// getShifterImm - Encode the shift type and amount: +/// imm: 6-bit shift amount +/// shifter: 000 ==> lsl +/// 001 ==> lsr +/// 010 ==> asr +/// 011 ==> ror +/// 100 ==> msl +/// {8-6} = shifter +/// {5-0} = imm +static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, + unsigned Imm) { + assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!"); + unsigned STEnc = 0; + switch (ST) { + default: llvm_unreachable("Invalid shift requested"); + case AArch64_AM::LSL: STEnc = 0; break; + case AArch64_AM::LSR: STEnc = 1; break; + case AArch64_AM::ASR: STEnc = 2; break; + case AArch64_AM::ROR: STEnc = 3; break; + case AArch64_AM::MSL: STEnc = 4; break; + } + return (STEnc << 6) | (Imm & 0x3f); +} + +//===----------------------------------------------------------------------===// +// Extends +// + +/// getArithShiftValue - get the arithmetic shift value. +static inline unsigned getArithShiftValue(unsigned Imm) { + return Imm & 0x7; +} + +/// getExtendType - Extract the extend type for operands of arithmetic ops. +static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) { + assert((Imm & 0x7) == Imm && "invalid immediate!"); + switch (Imm) { + default: llvm_unreachable("Compiler bug!"); + case 0: return AArch64_AM::UXTB; + case 1: return AArch64_AM::UXTH; + case 2: return AArch64_AM::UXTW; + case 3: return AArch64_AM::UXTX; + case 4: return AArch64_AM::SXTB; + case 5: return AArch64_AM::SXTH; + case 6: return AArch64_AM::SXTW; + case 7: return AArch64_AM::SXTX; + } +} + +static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) { + return getExtendType((Imm >> 3) & 0x7); +} + +/// Mapping from extend bits to required operation: +/// shifter: 000 ==> uxtb +/// 001 ==> uxth +/// 010 ==> uxtw +/// 011 ==> uxtx +/// 100 ==> sxtb +/// 101 ==> sxth +/// 110 ==> sxtw +/// 111 ==> sxtx +inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) { + switch (ET) { + default: llvm_unreachable("Invalid extend type requested"); + case AArch64_AM::UXTB: return 0; break; + case AArch64_AM::UXTH: return 1; break; + case AArch64_AM::UXTW: return 2; break; + case AArch64_AM::UXTX: return 3; break; + case AArch64_AM::SXTB: return 4; break; + case AArch64_AM::SXTH: return 5; break; + case AArch64_AM::SXTW: return 6; break; + case AArch64_AM::SXTX: return 7; break; + } +} + +/// getArithExtendImm - Encode the extend type and shift amount for an +/// arithmetic instruction: +/// imm: 3-bit extend amount +/// {5-3} = shifter +/// {2-0} = imm3 +static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, + unsigned Imm) { + assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!"); + return (getExtendEncoding(ET) << 3) | (Imm & 0x7); +} + +/// getMemDoShift - Extract the "do shift" flag value for load/store +/// instructions. +static inline bool getMemDoShift(unsigned Imm) { + return (Imm & 0x1) != 0; +} + +/// getExtendType - Extract the extend type for the offset operand of +/// loads/stores. +static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) { + return getExtendType((Imm >> 1) & 0x7); +} + +/// getExtendImm - Encode the extend type and amount for a load/store inst: +/// doshift: should the offset be scaled by the access size +/// shifter: 000 ==> uxtb +/// 001 ==> uxth +/// 010 ==> uxtw +/// 011 ==> uxtx +/// 100 ==> sxtb +/// 101 ==> sxth +/// 110 ==> sxtw +/// 111 ==> sxtx +/// {3-1} = shifter +/// {0} = doshift +static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET, + bool DoShift) { + return (getExtendEncoding(ET) << 1) | unsigned(DoShift); +} + +static inline uint64_t ror(uint64_t elt, unsigned size) { + return ((elt & 1) << (size-1)) | (elt >> 1); +} + +/// processLogicalImmediate - Determine if an immediate value can be encoded +/// as the immediate operand of a logical instruction for the given register +/// size. If so, return true with "encoding" set to the encoded value in +/// the form N:immr:imms. +static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize, + uint64_t &Encoding) { + if (Imm == 0ULL || Imm == ~0ULL || + (RegSize != 64 && (Imm >> RegSize != 0 || Imm == ~0U))) + return false; + + // First, determine the element size. + unsigned Size = RegSize; + + do { + Size /= 2; + uint64_t Mask = (1ULL << Size) - 1; + + if ((Imm & Mask) != ((Imm >> Size) & Mask)) { + Size *= 2; + break; + } + } while (Size > 2); + + // Second, determine the rotation to make the element be: 0^m 1^n. + uint32_t CTO, I; + uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size); + Imm &= Mask; + + if (isShiftedMask_64(Imm)) { + I = countTrailingZeros(Imm); + assert(I < 64 && "undefined behavior"); + CTO = countTrailingOnes(Imm >> I); + } else { + Imm |= ~Mask; + if (!isShiftedMask_64(~Imm)) + return false; + + unsigned CLO = countLeadingOnes(Imm); + I = 64 - CLO; + CTO = CLO + countTrailingOnes(Imm) - (64 - Size); + } + + // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n + // to our target value, where I is the number of RORs to go the opposite + // direction. + assert(Size > I && "I should be smaller than element size"); + unsigned Immr = (Size - I) & (Size - 1); + + // If size has a 1 in the n'th bit, create a value that has zeroes in + // bits [0, n] and ones above that. + uint64_t NImms = ~(Size-1) << 1; + + // Or the CTO value into the low bits, which must be below the Nth bit + // bit mentioned above. + NImms |= (CTO-1); + + // Extract the seventh bit and toggle it to create the N field. + unsigned N = ((NImms >> 6) & 1) ^ 1; + + Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f); + return true; +} + +/// isLogicalImmediate - Return true if the immediate is valid for a logical +/// immediate instruction of the given register size. Return false otherwise. +static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) { + uint64_t encoding; + return processLogicalImmediate(imm, regSize, encoding); +} + +/// encodeLogicalImmediate - Return the encoded immediate value for a logical +/// immediate instruction of the given register size. +static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) { + uint64_t encoding = 0; + bool res = processLogicalImmediate(imm, regSize, encoding); + assert(res && "invalid logical immediate"); + (void)res; + return encoding; +} + +/// decodeLogicalImmediate - Decode a logical immediate value in the form +/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the +/// integer value it represents with regSize bits. +static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) { + // Extract the N, imms, and immr fields. + unsigned N = (val >> 12) & 1; + unsigned immr = (val >> 6) & 0x3f; + unsigned imms = val & 0x3f; + + assert((regSize == 64 || N == 0) && "undefined logical immediate encoding"); + int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); + assert(len >= 0 && "undefined logical immediate encoding"); + unsigned size = (1 << len); + unsigned R = immr & (size - 1); + unsigned S = imms & (size - 1); + assert(S != size - 1 && "undefined logical immediate encoding"); + uint64_t pattern = (1ULL << (S + 1)) - 1; + for (unsigned i = 0; i < R; ++i) + pattern = ror(pattern, size); + + // Replicate the pattern to fill the regSize. + while (size != regSize) { + pattern |= (pattern << size); + size *= 2; + } + return pattern; +} + +/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value +/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits) +/// is a valid encoding for an integer value with regSize bits. +static inline bool isValidDecodeLogicalImmediate(uint64_t val, + unsigned regSize) { + // Extract the N and imms fields needed for checking. + unsigned N = (val >> 12) & 1; + unsigned imms = val & 0x3f; + + if (regSize == 32 && N != 0) // undefined logical immediate encoding + return false; + int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f)); + if (len < 0) // undefined logical immediate encoding + return false; + unsigned size = (1 << len); + unsigned S = imms & (size - 1); + if (S == size - 1) // undefined logical immediate encoding + return false; + + return true; +} + +//===----------------------------------------------------------------------===// +// Floating-point Immediates +// +static inline float getFPImmFloat(unsigned Imm) { + // We expect an 8-bit binary encoding of a floating-point number here. + union { + uint32_t I; + float F; + } FPUnion; + + uint8_t Sign = (Imm >> 7) & 0x1; + uint8_t Exp = (Imm >> 4) & 0x7; + uint8_t Mantissa = Imm & 0xf; + + // 8-bit FP iEEEE Float Encoding + // abcd efgh aBbbbbbc defgh000 00000000 00000000 + // + // where B = NOT(b); + + FPUnion.I = 0; + FPUnion.I |= Sign << 31; + FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; + FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; + FPUnion.I |= (Exp & 0x3) << 23; + FPUnion.I |= Mantissa << 19; + return FPUnion.F; +} + +/// getFP16Imm - Return an 8-bit floating-point version of the 16-bit +/// floating-point value. If the value cannot be represented as an 8-bit +/// floating-point value, then return -1. +static inline int getFP16Imm(const APInt &Imm) { + uint32_t Sign = Imm.lshr(15).getZExtValue() & 1; + int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15 + int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits + + // We can handle 4 bits of mantissa. + // mantissa = (16+UInt(e:f:g:h))/16. + if (Mantissa & 0x3f) + return -1; + Mantissa >>= 6; + + // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 + if (Exp < -3 || Exp > 4) + return -1; + Exp = ((Exp+3) & 0x7) ^ 4; + + return ((int)Sign << 7) | (Exp << 4) | Mantissa; +} + +static inline int getFP16Imm(const APFloat &FPImm) { + return getFP16Imm(FPImm.bitcastToAPInt()); +} + +/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit +/// floating-point value. If the value cannot be represented as an 8-bit +/// floating-point value, then return -1. +static inline int getFP32Imm(const APInt &Imm) { + uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; + int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 + int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits + + // We can handle 4 bits of mantissa. + // mantissa = (16+UInt(e:f:g:h))/16. + if (Mantissa & 0x7ffff) + return -1; + Mantissa >>= 19; + if ((Mantissa & 0xf) != Mantissa) + return -1; + + // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 + if (Exp < -3 || Exp > 4) + return -1; + Exp = ((Exp+3) & 0x7) ^ 4; + + return ((int)Sign << 7) | (Exp << 4) | Mantissa; +} + +static inline int getFP32Imm(const APFloat &FPImm) { + return getFP32Imm(FPImm.bitcastToAPInt()); +} + +/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit +/// floating-point value. If the value cannot be represented as an 8-bit +/// floating-point value, then return -1. +static inline int getFP64Imm(const APInt &Imm) { + uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; + int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 + uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; + + // We can handle 4 bits of mantissa. + // mantissa = (16+UInt(e:f:g:h))/16. + if (Mantissa & 0xffffffffffffULL) + return -1; + Mantissa >>= 48; + if ((Mantissa & 0xf) != Mantissa) + return -1; + + // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 + if (Exp < -3 || Exp > 4) + return -1; + Exp = ((Exp+3) & 0x7) ^ 4; + + return ((int)Sign << 7) | (Exp << 4) | Mantissa; +} + +static inline int getFP64Imm(const APFloat &FPImm) { + return getFP64Imm(FPImm.bitcastToAPInt()); +} + +//===--------------------------------------------------------------------===// +// AdvSIMD Modified Immediates +//===--------------------------------------------------------------------===// + +// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh +static inline bool isAdvSIMDModImmType1(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + ((Imm & 0xffffff00ffffff00ULL) == 0); +} + +static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) { + return (Imm & 0xffULL); +} + +static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 32) | EncVal; +} + +// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 +static inline bool isAdvSIMDModImmType2(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + ((Imm & 0xffff00ffffff00ffULL) == 0); +} + +static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) { + return (Imm & 0xff00ULL) >> 8; +} + +static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 40) | (EncVal << 8); +} + +// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 +static inline bool isAdvSIMDModImmType3(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + ((Imm & 0xff00ffffff00ffffULL) == 0); +} + +static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) { + return (Imm & 0xff0000ULL) >> 16; +} + +static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 48) | (EncVal << 16); +} + +// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 +static inline bool isAdvSIMDModImmType4(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + ((Imm & 0x00ffffff00ffffffULL) == 0); +} + +static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) { + return (Imm & 0xff000000ULL) >> 24; +} + +static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 56) | (EncVal << 24); +} + +// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh +static inline bool isAdvSIMDModImmType5(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) && + ((Imm & 0xff00ff00ff00ff00ULL) == 0); +} + +static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) { + return (Imm & 0xffULL); +} + +static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal; +} + +// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 +static inline bool isAdvSIMDModImmType6(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) && + ((Imm & 0x00ff00ff00ff00ffULL) == 0); +} + +static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) { + return (Imm & 0xff00ULL) >> 8; +} + +static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8); +} + +// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF +static inline bool isAdvSIMDModImmType7(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL); +} + +static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) { + return (Imm & 0xff00ULL) >> 8; +} + +static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL; +} + +// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF +static inline bool isAdvSIMDModImmType8(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL); +} + +static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) { + uint64_t EncVal = Imm; + return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL; +} + +static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) { + return (Imm & 0x00ff0000ULL) >> 16; +} + +// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh +static inline bool isAdvSIMDModImmType9(uint64_t Imm) { + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + ((Imm >> 48) == (Imm & 0x0000ffffULL)) && + ((Imm >> 56) == (Imm & 0x000000ffULL)); +} + +static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) { + return (Imm & 0xffULL); +} + +static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) { + uint64_t EncVal = Imm; + EncVal |= (EncVal << 8); + EncVal |= (EncVal << 16); + EncVal |= (EncVal << 32); + return EncVal; +} + +// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh +// cmode: 1110, op: 1 +static inline bool isAdvSIMDModImmType10(uint64_t Imm) { + uint64_t ByteA = Imm & 0xff00000000000000ULL; + uint64_t ByteB = Imm & 0x00ff000000000000ULL; + uint64_t ByteC = Imm & 0x0000ff0000000000ULL; + uint64_t ByteD = Imm & 0x000000ff00000000ULL; + uint64_t ByteE = Imm & 0x00000000ff000000ULL; + uint64_t ByteF = Imm & 0x0000000000ff0000ULL; + uint64_t ByteG = Imm & 0x000000000000ff00ULL; + uint64_t ByteH = Imm & 0x00000000000000ffULL; + + return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) && + (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) && + (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) && + (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) && + (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) && + (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) && + (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) && + (ByteH == 0ULL || ByteH == 0x00000000000000ffULL); +} + +static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) { + uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0; + uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0; + uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0; + uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0; + uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0; + uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0; + uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0; + uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0; + + uint8_t EncVal = BitA; + EncVal <<= 1; + EncVal |= BitB; + EncVal <<= 1; + EncVal |= BitC; + EncVal <<= 1; + EncVal |= BitD; + EncVal <<= 1; + EncVal |= BitE; + EncVal <<= 1; + EncVal |= BitF; + EncVal <<= 1; + EncVal |= BitG; + EncVal <<= 1; + EncVal |= BitH; + return EncVal; +} + +static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) { + uint64_t EncVal = 0; + if (Imm & 0x80) EncVal |= 0xff00000000000000ULL; + if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL; + if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL; + if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL; + if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL; + if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL; + if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL; + if (Imm & 0x01) EncVal |= 0x00000000000000ffULL; + return EncVal; +} + +// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00 +static inline bool isAdvSIMDModImmType11(uint64_t Imm) { + uint64_t BString = (Imm & 0x7E000000ULL) >> 25; + return ((Imm >> 32) == (Imm & 0xffffffffULL)) && + (BString == 0x1f || BString == 0x20) && + ((Imm & 0x0007ffff0007ffffULL) == 0); +} + +static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) { + uint8_t BitA = (Imm & 0x80000000ULL) != 0; + uint8_t BitB = (Imm & 0x20000000ULL) != 0; + uint8_t BitC = (Imm & 0x01000000ULL) != 0; + uint8_t BitD = (Imm & 0x00800000ULL) != 0; + uint8_t BitE = (Imm & 0x00400000ULL) != 0; + uint8_t BitF = (Imm & 0x00200000ULL) != 0; + uint8_t BitG = (Imm & 0x00100000ULL) != 0; + uint8_t BitH = (Imm & 0x00080000ULL) != 0; + + uint8_t EncVal = BitA; + EncVal <<= 1; + EncVal |= BitB; + EncVal <<= 1; + EncVal |= BitC; + EncVal <<= 1; + EncVal |= BitD; + EncVal <<= 1; + EncVal |= BitE; + EncVal <<= 1; + EncVal |= BitF; + EncVal <<= 1; + EncVal |= BitG; + EncVal <<= 1; + EncVal |= BitH; + return EncVal; +} + +static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) { + uint64_t EncVal = 0; + if (Imm & 0x80) EncVal |= 0x80000000ULL; + if (Imm & 0x40) EncVal |= 0x3e000000ULL; + else EncVal |= 0x40000000ULL; + if (Imm & 0x20) EncVal |= 0x01000000ULL; + if (Imm & 0x10) EncVal |= 0x00800000ULL; + if (Imm & 0x08) EncVal |= 0x00400000ULL; + if (Imm & 0x04) EncVal |= 0x00200000ULL; + if (Imm & 0x02) EncVal |= 0x00100000ULL; + if (Imm & 0x01) EncVal |= 0x00080000ULL; + return (EncVal << 32) | EncVal; +} + +// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00 +static inline bool isAdvSIMDModImmType12(uint64_t Imm) { + uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54; + return ((BString == 0xff || BString == 0x100) && + ((Imm & 0x0000ffffffffffffULL) == 0)); +} + +static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) { + uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0; + uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0; + uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0; + uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0; + uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0; + uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0; + uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0; + uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0; + + uint8_t EncVal = BitA; + EncVal <<= 1; + EncVal |= BitB; + EncVal <<= 1; + EncVal |= BitC; + EncVal <<= 1; + EncVal |= BitD; + EncVal <<= 1; + EncVal |= BitE; + EncVal <<= 1; + EncVal |= BitF; + EncVal <<= 1; + EncVal |= BitG; + EncVal <<= 1; + EncVal |= BitH; + return EncVal; +} + +static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) { + uint64_t EncVal = 0; + if (Imm & 0x80) EncVal |= 0x8000000000000000ULL; + if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL; + else EncVal |= 0x4000000000000000ULL; + if (Imm & 0x20) EncVal |= 0x0020000000000000ULL; + if (Imm & 0x10) EncVal |= 0x0010000000000000ULL; + if (Imm & 0x08) EncVal |= 0x0008000000000000ULL; + if (Imm & 0x04) EncVal |= 0x0004000000000000ULL; + if (Imm & 0x02) EncVal |= 0x0002000000000000ULL; + if (Imm & 0x01) EncVal |= 0x0001000000000000ULL; + return (EncVal << 32) | EncVal; +} + +} // end namespace AArch64_AM + +} // end namespace llvm + +#endif |