summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp573
1 files changed, 573 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
new file mode 100644
index 0000000..9af0e64
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
@@ -0,0 +1,573 @@
+//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64TargetTransformInfo.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/CodeGen/BasicTTIImpl.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64tti"
+
+/// \brief Calculate the cost of materializing a 64-bit value. This helper
+/// method might only calculate a fraction of a larger immediate. Therefore it
+/// is valid to return a cost of ZERO.
+int AArch64TTIImpl::getIntImmCost(int64_t Val) {
+ // Check if the immediate can be encoded within an instruction.
+ if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
+ return 0;
+
+ if (Val < 0)
+ Val = ~Val;
+
+ // Calculate how many moves we will need to materialize this constant.
+ unsigned LZ = countLeadingZeros((uint64_t)Val);
+ return (64 - LZ + 15) / 16;
+}
+
+/// \brief Calculate the cost of materializing the given constant.
+int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ // Sign-extend all constants to a multiple of 64-bit.
+ APInt ImmVal = Imm;
+ if (BitSize & 0x3f)
+ ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
+
+ // Split the constant into 64-bit chunks and calculate the cost for each
+ // chunk.
+ int Cost = 0;
+ for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
+ APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
+ int64_t Val = Tmp.getSExtValue();
+ Cost += getIntImmCost(Val);
+ }
+ // We need at least one instruction to materialze the constant.
+ return std::max(1, Cost);
+}
+
+int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
+ const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ unsigned ImmIdx = ~0U;
+ switch (Opcode) {
+ default:
+ return TTI::TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr.
+ if (Idx == 0)
+ return 2 * TTI::TCC_Basic;
+ return TTI::TCC_Free;
+ case Instruction::Store:
+ ImmIdx = 0;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ ImmIdx = 1;
+ break;
+ // Always return TCC_Free for the shift value of a shift instruction.
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Idx == 1)
+ return TTI::TCC_Free;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ case Instruction::BitCast:
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Select:
+ case Instruction::Ret:
+ case Instruction::Load:
+ break;
+ }
+
+ if (Idx == ImmIdx) {
+ int NumConstants = (BitSize + 63) / 64;
+ int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TTI::TCC_Basic)
+ ? static_cast<int>(TTI::TCC_Free)
+ : Cost;
+ }
+ return AArch64TTIImpl::getIntImmCost(Imm, Ty);
+}
+
+int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ switch (IID) {
+ default:
+ return TTI::TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ if (Idx == 1) {
+ int NumConstants = (BitSize + 63) / 64;
+ int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TTI::TCC_Basic)
+ ? static_cast<int>(TTI::TCC_Free)
+ : Cost;
+ }
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ }
+ return AArch64TTIImpl::getIntImmCost(Imm, Ty);
+}
+
+TargetTransformInfo::PopcntSupportKind
+AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ if (TyWidth == 32 || TyWidth == 64)
+ return TTI::PSK_FastHardware;
+ // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
+ return TTI::PSK_Software;
+}
+
+int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ EVT SrcTy = TLI->getValueType(DL, Src);
+ EVT DstTy = TLI->getValueType(DL, Dst);
+
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+
+ static const TypeConversionCostTblEntry
+ ConversionTbl[] = {
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
+
+ // The number of shll instructions for the extension.
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+
+ // LowerVectorINT_TO_FP:
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
+
+ // Complex: to v2f32
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
+
+ // Complex: to v4f32
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+
+ // Complex: to v8f32
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+
+ // Complex: to v16f32
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
+
+ // Complex: to v2f64
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+
+
+ // LowerVectorFP_TO_INT
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
+
+ // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
+ { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
+
+ // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
+
+ // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
+ };
+
+ if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+}
+
+int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ if (Index != -1U) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
+
+ // This type is legalized to a scalar type.
+ if (!LT.second.isVector())
+ return 0;
+
+ // The type may be split. Normalize the index to the new type.
+ unsigned Width = LT.second.getVectorNumElements();
+ Index = Index % Width;
+
+ // The element at index zero is already inside the vector.
+ if (Index == 0)
+ return 0;
+ }
+
+ // All other insert/extracts cost this much.
+ return 3;
+}
+
+int AArch64TTIImpl::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
+ TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo) {
+ // Legalize the type.
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+
+ if (ISD == ISD::SDIV &&
+ Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
+ // On AArch64, scalar signed division by constants power-of-two are
+ // normally expanded to the sequence ADD + CMP + SELECT + SRA.
+ // The OperandValue properties many not be same as that of previous
+ // operation; conservatively assume OP_None.
+ int Cost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ return Cost;
+ }
+
+ switch (ISD) {
+ default:
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo);
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::XOR:
+ case ISD::OR:
+ case ISD::AND:
+ // These nodes are marked as 'custom' for combining purposes only.
+ // We know that they are legal. See LowerAdd in ISelLowering.
+ return 1 * LT.first;
+ }
+}
+
+int AArch64TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ // In many cases the address computation is not merged into the instruction
+ // addressing mode.
+ return 1;
+}
+
+int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) {
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ // We don't lower some vector selects well that are wider than the register
+ // width.
+ if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
+ // We would need this many instructions to hide the scalarization happening.
+ const int AmortizationCost = 20;
+ static const TypeConversionCostTblEntry
+ VectorSelectTbl[] = {
+ { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
+ { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
+ };
+
+ EVT SelCondTy = TLI->getValueType(DL, CondTy);
+ EVT SelValTy = TLI->getValueType(DL, ValTy);
+ if (SelCondTy.isSimple() && SelValTy.isSimple()) {
+ if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
+ SelCondTy.getSimpleVT(),
+ SelValTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+ }
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment, unsigned AddressSpace) {
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
+
+ if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
+ Src->getVectorElementType()->isIntegerTy(64)) {
+ // Unaligned stores are extremely inefficient. We don't split
+ // unaligned v2i64 stores because the negative impact that has shown in
+ // practice on inlined memcpy code.
+ // We make v2i64 stores expensive so that we will only vectorize if there
+ // are 6 other instructions getting vectorized.
+ int AmortizationCost = 6;
+
+ return LT.first * 2 * AmortizationCost;
+ }
+
+ if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
+ Src->getVectorNumElements() < 8) {
+ // We scalarize the loads/stores because there is not v.4b register and we
+ // have to promote the elements to v.4h.
+ unsigned NumVecElts = Src->getVectorNumElements();
+ unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
+ // We generate 2 instructions per vector element.
+ return NumVectorizableInstsToAmortize * NumVecElts * 2;
+ }
+
+ return LT.first;
+}
+
+int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+ unsigned Factor,
+ ArrayRef<unsigned> Indices,
+ unsigned Alignment,
+ unsigned AddressSpace) {
+ assert(Factor >= 2 && "Invalid interleave factor");
+ assert(isa<VectorType>(VecTy) && "Expect a vector type");
+
+ if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
+ unsigned NumElts = VecTy->getVectorNumElements();
+ Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
+ unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
+
+ // ldN/stN only support legal vector types of size 64 or 128 in bits.
+ if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
+ return Factor;
+ }
+
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace);
+}
+
+int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
+ int Cost = 0;
+ for (auto *I : Tys) {
+ if (!I->isVectorTy())
+ continue;
+ if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
+ Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
+ getMemoryOpCost(Instruction::Load, I, 128, 0);
+ }
+ return Cost;
+}
+
+unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ if (ST->isCortexA57())
+ return 4;
+ return 2;
+}
+
+void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
+ TTI::UnrollingPreferences &UP) {
+ // Enable partial unrolling and runtime unrolling.
+ BaseT::getUnrollingPreferences(L, UP);
+
+ // For inner loop, it is more likely to be a hot one, and the runtime check
+ // can be promoted out from LICM pass, so the overhead is less, let's try
+ // a larger threshold to unroll more loops.
+ if (L->getLoopDepth() > 1)
+ UP.PartialThreshold *= 2;
+
+ // Disable partial & runtime unrolling on -Os.
+ UP.PartialOptSizeThreshold = 0;
+}
+
+Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+ Type *ExpectedType) {
+ switch (Inst->getIntrinsicID()) {
+ default:
+ return nullptr;
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4: {
+ // Create a struct type
+ StructType *ST = dyn_cast<StructType>(ExpectedType);
+ if (!ST)
+ return nullptr;
+ unsigned NumElts = Inst->getNumArgOperands() - 1;
+ if (ST->getNumElements() != NumElts)
+ return nullptr;
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
+ return nullptr;
+ }
+ Value *Res = UndefValue::get(ExpectedType);
+ IRBuilder<> Builder(Inst);
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ Value *L = Inst->getArgOperand(i);
+ Res = Builder.CreateInsertValue(Res, L, i);
+ }
+ return Res;
+ }
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ if (Inst->getType() == ExpectedType)
+ return Inst;
+ return nullptr;
+ }
+}
+
+bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
+ MemIntrinsicInfo &Info) {
+ switch (Inst->getIntrinsicID()) {
+ default:
+ break;
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_ld4:
+ Info.ReadMem = true;
+ Info.WriteMem = false;
+ Info.IsSimple = true;
+ Info.NumMemRefs = 1;
+ Info.PtrVal = Inst->getArgOperand(0);
+ break;
+ case Intrinsic::aarch64_neon_st2:
+ case Intrinsic::aarch64_neon_st3:
+ case Intrinsic::aarch64_neon_st4:
+ Info.ReadMem = false;
+ Info.WriteMem = true;
+ Info.IsSimple = true;
+ Info.NumMemRefs = 1;
+ Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
+ break;
+ }
+
+ switch (Inst->getIntrinsicID()) {
+ default:
+ return false;
+ case Intrinsic::aarch64_neon_ld2:
+ case Intrinsic::aarch64_neon_st2:
+ Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
+ break;
+ case Intrinsic::aarch64_neon_ld3:
+ case Intrinsic::aarch64_neon_st3:
+ Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
+ break;
+ case Intrinsic::aarch64_neon_ld4:
+ case Intrinsic::aarch64_neon_st4:
+ Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
+ break;
+ }
+ return true;
+}
OpenPOWER on IntegriCloud