summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp3015
1 files changed, 3015 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
new file mode 100644
index 0000000..3ef3c8b
--- /dev/null
+++ b/contrib/llvm/lib/Target/AArch64/AArch64InstrInfo.cpp
@@ -0,0 +1,3015 @@
+//===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the AArch64 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64InstrInfo.h"
+#include "AArch64Subtarget.h"
+#include "MCTargetDesc/AArch64AddressingModes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "AArch64GenInstrInfo.inc"
+
+AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
+ : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
+ RI(STI.getTargetTriple()), Subtarget(STI) {}
+
+/// GetInstSize - Return the number of bytes of code the specified
+/// instruction may be. This returns the maximum number of bytes.
+unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const MachineBasicBlock &MBB = *MI->getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ if (MI->getOpcode() == AArch64::INLINEASM)
+ return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
+
+ const MCInstrDesc &Desc = MI->getDesc();
+ switch (Desc.getOpcode()) {
+ default:
+ // Anything not explicitly designated otherwise is a nomal 4-byte insn.
+ return 4;
+ case TargetOpcode::DBG_VALUE:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ return 0;
+ }
+
+ llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
+}
+
+static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
+ SmallVectorImpl<MachineOperand> &Cond) {
+ // Block ends with fall-through condbranch.
+ switch (LastInst->getOpcode()) {
+ default:
+ llvm_unreachable("Unknown branch instruction?");
+ case AArch64::Bcc:
+ Target = LastInst->getOperand(1).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ break;
+ case AArch64::CBZW:
+ case AArch64::CBZX:
+ case AArch64::CBNZW:
+ case AArch64::CBNZX:
+ Target = LastInst->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(-1));
+ Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
+ Cond.push_back(LastInst->getOperand(0));
+ break;
+ case AArch64::TBZW:
+ case AArch64::TBZX:
+ case AArch64::TBNZW:
+ case AArch64::TBNZX:
+ Target = LastInst->getOperand(2).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(-1));
+ Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
+ Cond.push_back(LastInst->getOperand(0));
+ Cond.push_back(LastInst->getOperand(1));
+ }
+}
+
+// Branch analysis.
+bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return false;
+
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ unsigned LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (isUncondBranchOpcode(LastOpc)) {
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+ if (isCondBranchOpcode(LastOpc)) {
+ // Block ends with fall-through condbranch.
+ parseCondBranch(LastInst, TBB, Cond);
+ return false;
+ }
+ return true; // Can't handle indirect branch.
+ }
+
+ // Get the instruction before it if it is a terminator.
+ MachineInstr *SecondLastInst = I;
+ unsigned SecondLastOpc = SecondLastInst->getOpcode();
+
+ // If AllowModify is true and the block ends with two or more unconditional
+ // branches, delete all but the first unconditional branch.
+ if (AllowModify && isUncondBranchOpcode(LastOpc)) {
+ while (isUncondBranchOpcode(SecondLastOpc)) {
+ LastInst->eraseFromParent();
+ LastInst = SecondLastInst;
+ LastOpc = LastInst->getOpcode();
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ // Return now the only terminator is an unconditional branch.
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else {
+ SecondLastInst = I;
+ SecondLastOpc = SecondLastInst->getOpcode();
+ }
+ }
+ }
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with a B and a Bcc, handle it.
+ if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ parseCondBranch(SecondLastInst, TBB, Cond);
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two unconditional branches, handle it. The second
+ // one is not executed, so remove it.
+ if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // ...likewise if it ends with an indirect branch followed by an unconditional
+ // branch.
+ if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return true;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+bool AArch64InstrInfo::ReverseBranchCondition(
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond[0].getImm() != -1) {
+ // Regular Bcc
+ AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
+ Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
+ } else {
+ // Folded compare-and-branch
+ switch (Cond[1].getImm()) {
+ default:
+ llvm_unreachable("Unknown conditional branch!");
+ case AArch64::CBZW:
+ Cond[1].setImm(AArch64::CBNZW);
+ break;
+ case AArch64::CBNZW:
+ Cond[1].setImm(AArch64::CBZW);
+ break;
+ case AArch64::CBZX:
+ Cond[1].setImm(AArch64::CBNZX);
+ break;
+ case AArch64::CBNZX:
+ Cond[1].setImm(AArch64::CBZX);
+ break;
+ case AArch64::TBZW:
+ Cond[1].setImm(AArch64::TBNZW);
+ break;
+ case AArch64::TBNZW:
+ Cond[1].setImm(AArch64::TBZW);
+ break;
+ case AArch64::TBZX:
+ Cond[1].setImm(AArch64::TBNZX);
+ break;
+ case AArch64::TBNZX:
+ Cond[1].setImm(AArch64::TBZX);
+ break;
+ }
+ }
+
+ return false;
+}
+
+unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return 0;
+
+ if (!isUncondBranchOpcode(I->getOpcode()) &&
+ !isCondBranchOpcode(I->getOpcode()))
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin())
+ return 1;
+ --I;
+ if (!isCondBranchOpcode(I->getOpcode()))
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+void AArch64InstrInfo::instantiateCondBranch(
+ MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
+ ArrayRef<MachineOperand> Cond) const {
+ if (Cond[0].getImm() != -1) {
+ // Regular Bcc
+ BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
+ } else {
+ // Folded compare-and-branch
+ // Note that we use addOperand instead of addReg to keep the flags.
+ const MachineInstrBuilder MIB =
+ BuildMI(&MBB, DL, get(Cond[1].getImm())).addOperand(Cond[2]);
+ if (Cond.size() > 3)
+ MIB.addImm(Cond[3].getImm());
+ MIB.addMBB(TBB);
+ }
+}
+
+unsigned AArch64InstrInfo::InsertBranch(
+ MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ if (!FBB) {
+ if (Cond.empty()) // Unconditional branch?
+ BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
+ else
+ instantiateCondBranch(MBB, DL, TBB, Cond);
+ return 1;
+ }
+
+ // Two-way conditional branch.
+ instantiateCondBranch(MBB, DL, TBB, Cond);
+ BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
+ return 2;
+}
+
+// Find the original register that VReg is copied from.
+static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
+ while (TargetRegisterInfo::isVirtualRegister(VReg)) {
+ const MachineInstr *DefMI = MRI.getVRegDef(VReg);
+ if (!DefMI->isFullCopy())
+ return VReg;
+ VReg = DefMI->getOperand(1).getReg();
+ }
+ return VReg;
+}
+
+// Determine if VReg is defined by an instruction that can be folded into a
+// csel instruction. If so, return the folded opcode, and the replacement
+// register.
+static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
+ unsigned *NewVReg = nullptr) {
+ VReg = removeCopies(MRI, VReg);
+ if (!TargetRegisterInfo::isVirtualRegister(VReg))
+ return 0;
+
+ bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
+ const MachineInstr *DefMI = MRI.getVRegDef(VReg);
+ unsigned Opc = 0;
+ unsigned SrcOpNum = 0;
+ switch (DefMI->getOpcode()) {
+ case AArch64::ADDSXri:
+ case AArch64::ADDSWri:
+ // if NZCV is used, do not fold.
+ if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
+ return 0;
+ // fall-through to ADDXri and ADDWri.
+ case AArch64::ADDXri:
+ case AArch64::ADDWri:
+ // add x, 1 -> csinc.
+ if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
+ DefMI->getOperand(3).getImm() != 0)
+ return 0;
+ SrcOpNum = 1;
+ Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
+ break;
+
+ case AArch64::ORNXrr:
+ case AArch64::ORNWrr: {
+ // not x -> csinv, represented as orn dst, xzr, src.
+ unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
+ if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
+ return 0;
+ SrcOpNum = 2;
+ Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
+ break;
+ }
+
+ case AArch64::SUBSXrr:
+ case AArch64::SUBSWrr:
+ // if NZCV is used, do not fold.
+ if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
+ return 0;
+ // fall-through to SUBXrr and SUBWrr.
+ case AArch64::SUBXrr:
+ case AArch64::SUBWrr: {
+ // neg x -> csneg, represented as sub dst, xzr, src.
+ unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
+ if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
+ return 0;
+ SrcOpNum = 2;
+ Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
+ break;
+ }
+ default:
+ return 0;
+ }
+ assert(Opc && SrcOpNum && "Missing parameters");
+
+ if (NewVReg)
+ *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
+ return Opc;
+}
+
+bool AArch64InstrInfo::canInsertSelect(
+ const MachineBasicBlock &MBB, ArrayRef<MachineOperand> Cond,
+ unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
+ int &FalseCycles) const {
+ // Check register classes.
+ const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ const TargetRegisterClass *RC =
+ RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
+ if (!RC)
+ return false;
+
+ // Expanding cbz/tbz requires an extra cycle of latency on the condition.
+ unsigned ExtraCondLat = Cond.size() != 1;
+
+ // GPRs are handled by csel.
+ // FIXME: Fold in x+1, -x, and ~x when applicable.
+ if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
+ AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
+ // Single-cycle csel, csinc, csinv, and csneg.
+ CondCycles = 1 + ExtraCondLat;
+ TrueCycles = FalseCycles = 1;
+ if (canFoldIntoCSel(MRI, TrueReg))
+ TrueCycles = 0;
+ else if (canFoldIntoCSel(MRI, FalseReg))
+ FalseCycles = 0;
+ return true;
+ }
+
+ // Scalar floating point is handled by fcsel.
+ // FIXME: Form fabs, fmin, and fmax when applicable.
+ if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
+ AArch64::FPR32RegClass.hasSubClassEq(RC)) {
+ CondCycles = 5 + ExtraCondLat;
+ TrueCycles = FalseCycles = 2;
+ return true;
+ }
+
+ // Can't do vectors.
+ return false;
+}
+
+void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DstReg,
+ ArrayRef<MachineOperand> Cond,
+ unsigned TrueReg, unsigned FalseReg) const {
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+
+ // Parse the condition code, see parseCondBranch() above.
+ AArch64CC::CondCode CC;
+ switch (Cond.size()) {
+ default:
+ llvm_unreachable("Unknown condition opcode in Cond");
+ case 1: // b.cc
+ CC = AArch64CC::CondCode(Cond[0].getImm());
+ break;
+ case 3: { // cbz/cbnz
+ // We must insert a compare against 0.
+ bool Is64Bit;
+ switch (Cond[1].getImm()) {
+ default:
+ llvm_unreachable("Unknown branch opcode in Cond");
+ case AArch64::CBZW:
+ Is64Bit = 0;
+ CC = AArch64CC::EQ;
+ break;
+ case AArch64::CBZX:
+ Is64Bit = 1;
+ CC = AArch64CC::EQ;
+ break;
+ case AArch64::CBNZW:
+ Is64Bit = 0;
+ CC = AArch64CC::NE;
+ break;
+ case AArch64::CBNZX:
+ Is64Bit = 1;
+ CC = AArch64CC::NE;
+ break;
+ }
+ unsigned SrcReg = Cond[2].getReg();
+ if (Is64Bit) {
+ // cmp reg, #0 is actually subs xzr, reg, #0.
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
+ BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(0);
+ } else {
+ MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
+ BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
+ .addReg(SrcReg)
+ .addImm(0)
+ .addImm(0);
+ }
+ break;
+ }
+ case 4: { // tbz/tbnz
+ // We must insert a tst instruction.
+ switch (Cond[1].getImm()) {
+ default:
+ llvm_unreachable("Unknown branch opcode in Cond");
+ case AArch64::TBZW:
+ case AArch64::TBZX:
+ CC = AArch64CC::EQ;
+ break;
+ case AArch64::TBNZW:
+ case AArch64::TBNZX:
+ CC = AArch64CC::NE;
+ break;
+ }
+ // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
+ if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
+ BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
+ .addReg(Cond[2].getReg())
+ .addImm(
+ AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
+ else
+ BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
+ .addReg(Cond[2].getReg())
+ .addImm(
+ AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
+ break;
+ }
+ }
+
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = nullptr;
+ bool TryFold = false;
+ if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
+ RC = &AArch64::GPR64RegClass;
+ Opc = AArch64::CSELXr;
+ TryFold = true;
+ } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
+ RC = &AArch64::GPR32RegClass;
+ Opc = AArch64::CSELWr;
+ TryFold = true;
+ } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
+ RC = &AArch64::FPR64RegClass;
+ Opc = AArch64::FCSELDrrr;
+ } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
+ RC = &AArch64::FPR32RegClass;
+ Opc = AArch64::FCSELSrrr;
+ }
+ assert(RC && "Unsupported regclass");
+
+ // Try folding simple instructions into the csel.
+ if (TryFold) {
+ unsigned NewVReg = 0;
+ unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
+ if (FoldedOpc) {
+ // The folded opcodes csinc, csinc and csneg apply the operation to
+ // FalseReg, so we need to invert the condition.
+ CC = AArch64CC::getInvertedCondCode(CC);
+ TrueReg = FalseReg;
+ } else
+ FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
+
+ // Fold the operation. Leave any dead instructions for DCE to clean up.
+ if (FoldedOpc) {
+ FalseReg = NewVReg;
+ Opc = FoldedOpc;
+ // The extends the live range of NewVReg.
+ MRI.clearKillFlags(NewVReg);
+ }
+ }
+
+ // Pull all virtual register into the appropriate class.
+ MRI.constrainRegClass(TrueReg, RC);
+ MRI.constrainRegClass(FalseReg, RC);
+
+ // Insert the csel.
+ BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
+ CC);
+}
+
+/// Returns true if a MOVi32imm or MOVi64imm can be expanded to an ORRxx.
+static bool canBeExpandedToORR(const MachineInstr *MI, unsigned BitSize) {
+ uint64_t Imm = MI->getOperand(1).getImm();
+ uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
+ uint64_t Encoding;
+ return AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding);
+}
+
+// FIXME: this implementation should be micro-architecture dependent, so a
+// micro-architecture target hook should be introduced here in future.
+bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr *MI) const {
+ if (!Subtarget.isCortexA57() && !Subtarget.isCortexA53())
+ return MI->isAsCheapAsAMove();
+
+ switch (MI->getOpcode()) {
+ default:
+ return false;
+
+ // add/sub on register without shift
+ case AArch64::ADDWri:
+ case AArch64::ADDXri:
+ case AArch64::SUBWri:
+ case AArch64::SUBXri:
+ return (MI->getOperand(3).getImm() == 0);
+
+ // logical ops on immediate
+ case AArch64::ANDWri:
+ case AArch64::ANDXri:
+ case AArch64::EORWri:
+ case AArch64::EORXri:
+ case AArch64::ORRWri:
+ case AArch64::ORRXri:
+ return true;
+
+ // logical ops on register without shift
+ case AArch64::ANDWrr:
+ case AArch64::ANDXrr:
+ case AArch64::BICWrr:
+ case AArch64::BICXrr:
+ case AArch64::EONWrr:
+ case AArch64::EONXrr:
+ case AArch64::EORWrr:
+ case AArch64::EORXrr:
+ case AArch64::ORNWrr:
+ case AArch64::ORNXrr:
+ case AArch64::ORRWrr:
+ case AArch64::ORRXrr:
+ return true;
+ // If MOVi32imm or MOVi64imm can be expanded into ORRWri or
+ // ORRXri, it is as cheap as MOV
+ case AArch64::MOVi32imm:
+ return canBeExpandedToORR(MI, 32);
+ case AArch64::MOVi64imm:
+ return canBeExpandedToORR(MI, 64);
+ }
+
+ llvm_unreachable("Unknown opcode to check as cheap as a move!");
+}
+
+bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case AArch64::SBFMXri: // aka sxtw
+ case AArch64::UBFMXri: // aka uxtw
+ // Check for the 32 -> 64 bit extension case, these instructions can do
+ // much more.
+ if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
+ return false;
+ // This is a signed or unsigned 32 -> 64 bit extension.
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ SubIdx = AArch64::sub_32;
+ return true;
+ }
+}
+
+bool
+AArch64InstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
+ MachineInstr *MIb,
+ AliasAnalysis *AA) const {
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ unsigned BaseRegA = 0, BaseRegB = 0;
+ int OffsetA = 0, OffsetB = 0;
+ int WidthA = 0, WidthB = 0;
+
+ assert(MIa && MIa->mayLoadOrStore() && "MIa must be a load or store.");
+ assert(MIb && MIb->mayLoadOrStore() && "MIb must be a load or store.");
+
+ if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
+ MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
+ return false;
+
+ // Retrieve the base register, offset from the base register and width. Width
+ // is the size of memory that is being loaded/stored (e.g. 1, 2, 4, 8). If
+ // base registers are identical, and the offset of a lower memory access +
+ // the width doesn't overlap the offset of a higher memory access,
+ // then the memory accesses are different.
+ if (getMemOpBaseRegImmOfsWidth(MIa, BaseRegA, OffsetA, WidthA, TRI) &&
+ getMemOpBaseRegImmOfsWidth(MIb, BaseRegB, OffsetB, WidthB, TRI)) {
+ if (BaseRegA == BaseRegB) {
+ int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
+ int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
+ int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
+ if (LowOffset + LowWidth <= HighOffset)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// analyzeCompare - For a comparison instruction, return the source registers
+/// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
+/// Return true if the comparison instruction can be analyzed.
+bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &CmpMask,
+ int &CmpValue) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSWrs:
+ case AArch64::SUBSWrx:
+ case AArch64::SUBSXrr:
+ case AArch64::SUBSXrs:
+ case AArch64::SUBSXrx:
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWrs:
+ case AArch64::ADDSWrx:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXrs:
+ case AArch64::ADDSXrx:
+ // Replace SUBSWrr with SUBWrr if NZCV is not used.
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = MI->getOperand(2).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case AArch64::SUBSWri:
+ case AArch64::ADDSWri:
+ case AArch64::SUBSXri:
+ case AArch64::ADDSXri:
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ // FIXME: In order to convert CmpValue to 0 or 1
+ CmpValue = (MI->getOperand(2).getImm() != 0);
+ return true;
+ case AArch64::ANDSWri:
+ case AArch64::ANDSXri:
+ // ANDS does not use the same encoding scheme as the others xxxS
+ // instructions.
+ SrcReg = MI->getOperand(1).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ // FIXME:The return val type of decodeLogicalImmediate is uint64_t,
+ // while the type of CmpValue is int. When converting uint64_t to int,
+ // the high 32 bits of uint64_t will be lost.
+ // In fact it causes a bug in spec2006-483.xalancbmk
+ // CmpValue is only used to compare with zero in OptimizeCompareInstr
+ CmpValue = (AArch64_AM::decodeLogicalImmediate(
+ MI->getOperand(2).getImm(),
+ MI->getOpcode() == AArch64::ANDSWri ? 32 : 64) != 0);
+ return true;
+ }
+
+ return false;
+}
+
+static bool UpdateOperandRegClass(MachineInstr *Instr) {
+ MachineBasicBlock *MBB = Instr->getParent();
+ assert(MBB && "Can't get MachineBasicBlock here");
+ MachineFunction *MF = MBB->getParent();
+ assert(MF && "Can't get MachineFunction here");
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+
+ for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
+ ++OpIdx) {
+ MachineOperand &MO = Instr->getOperand(OpIdx);
+ const TargetRegisterClass *OpRegCstraints =
+ Instr->getRegClassConstraint(OpIdx, TII, TRI);
+
+ // If there's no constraint, there's nothing to do.
+ if (!OpRegCstraints)
+ continue;
+ // If the operand is a frame index, there's nothing to do here.
+ // A frame index operand will resolve correctly during PEI.
+ if (MO.isFI())
+ continue;
+
+ assert(MO.isReg() &&
+ "Operand has register constraints without being a register!");
+
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (!OpRegCstraints->contains(Reg))
+ return false;
+ } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
+ !MRI->constrainRegClass(Reg, OpRegCstraints))
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Return the opcode that does not set flags when possible - otherwise
+/// return the original opcode. The caller is responsible to do the actual
+/// substitution and legality checking.
+static unsigned convertFlagSettingOpcode(const MachineInstr *MI) {
+ // Don't convert all compare instructions, because for some the zero register
+ // encoding becomes the sp register.
+ bool MIDefinesZeroReg = false;
+ if (MI->definesRegister(AArch64::WZR) || MI->definesRegister(AArch64::XZR))
+ MIDefinesZeroReg = true;
+
+ switch (MI->getOpcode()) {
+ default:
+ return MI->getOpcode();
+ case AArch64::ADDSWrr:
+ return AArch64::ADDWrr;
+ case AArch64::ADDSWri:
+ return MIDefinesZeroReg ? AArch64::ADDSWri : AArch64::ADDWri;
+ case AArch64::ADDSWrs:
+ return MIDefinesZeroReg ? AArch64::ADDSWrs : AArch64::ADDWrs;
+ case AArch64::ADDSWrx:
+ return AArch64::ADDWrx;
+ case AArch64::ADDSXrr:
+ return AArch64::ADDXrr;
+ case AArch64::ADDSXri:
+ return MIDefinesZeroReg ? AArch64::ADDSXri : AArch64::ADDXri;
+ case AArch64::ADDSXrs:
+ return MIDefinesZeroReg ? AArch64::ADDSXrs : AArch64::ADDXrs;
+ case AArch64::ADDSXrx:
+ return AArch64::ADDXrx;
+ case AArch64::SUBSWrr:
+ return AArch64::SUBWrr;
+ case AArch64::SUBSWri:
+ return MIDefinesZeroReg ? AArch64::SUBSWri : AArch64::SUBWri;
+ case AArch64::SUBSWrs:
+ return MIDefinesZeroReg ? AArch64::SUBSWrs : AArch64::SUBWrs;
+ case AArch64::SUBSWrx:
+ return AArch64::SUBWrx;
+ case AArch64::SUBSXrr:
+ return AArch64::SUBXrr;
+ case AArch64::SUBSXri:
+ return MIDefinesZeroReg ? AArch64::SUBSXri : AArch64::SUBXri;
+ case AArch64::SUBSXrs:
+ return MIDefinesZeroReg ? AArch64::SUBSXrs : AArch64::SUBXrs;
+ case AArch64::SUBSXrx:
+ return AArch64::SUBXrx;
+ }
+}
+
+/// True when condition code could be modified on the instruction
+/// trace starting at from and ending at to.
+static bool modifiesConditionCode(MachineInstr *From, MachineInstr *To,
+ const bool CheckOnlyCCWrites,
+ const TargetRegisterInfo *TRI) {
+ // We iterate backward starting \p To until we hit \p From
+ MachineBasicBlock::iterator I = To, E = From, B = To->getParent()->begin();
+
+ // Early exit if To is at the beginning of the BB.
+ if (I == B)
+ return true;
+
+ // Check whether the definition of SrcReg is in the same basic block as
+ // Compare. If not, assume the condition code gets modified on some path.
+ if (To->getParent() != From->getParent())
+ return true;
+
+ // Check that NZCV isn't set on the trace.
+ for (--I; I != E; --I) {
+ const MachineInstr &Instr = *I;
+
+ if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
+ (!CheckOnlyCCWrites && Instr.readsRegister(AArch64::NZCV, TRI)))
+ // This instruction modifies or uses NZCV after the one we want to
+ // change.
+ return true;
+ if (I == B)
+ // We currently don't allow the instruction trace to cross basic
+ // block boundaries
+ return true;
+ }
+ return false;
+}
+/// optimizeCompareInstr - Convert the instruction supplying the argument to the
+/// comparison into one that sets the zero bit in the flags register.
+bool AArch64InstrInfo::optimizeCompareInstr(
+ MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
+ int CmpValue, const MachineRegisterInfo *MRI) const {
+
+ // Replace SUBSWrr with SUBWrr if NZCV is not used.
+ int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
+ if (Cmp_NZCV != -1) {
+ if (CmpInstr->definesRegister(AArch64::WZR) ||
+ CmpInstr->definesRegister(AArch64::XZR)) {
+ CmpInstr->eraseFromParent();
+ return true;
+ }
+ unsigned Opc = CmpInstr->getOpcode();
+ unsigned NewOpc = convertFlagSettingOpcode(CmpInstr);
+ if (NewOpc == Opc)
+ return false;
+ const MCInstrDesc &MCID = get(NewOpc);
+ CmpInstr->setDesc(MCID);
+ CmpInstr->RemoveOperand(Cmp_NZCV);
+ bool succeeded = UpdateOperandRegClass(CmpInstr);
+ (void)succeeded;
+ assert(succeeded && "Some operands reg class are incompatible!");
+ return true;
+ }
+
+ // Continue only if we have a "ri" where immediate is zero.
+ // FIXME:CmpValue has already been converted to 0 or 1 in analyzeCompare
+ // function.
+ assert((CmpValue == 0 || CmpValue == 1) && "CmpValue must be 0 or 1!");
+ if (CmpValue != 0 || SrcReg2 != 0)
+ return false;
+
+ // CmpInstr is a Compare instruction if destination register is not used.
+ if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
+ return false;
+
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI)
+ return false;
+
+ bool CheckOnlyCCWrites = false;
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ if (modifiesConditionCode(MI, CmpInstr, CheckOnlyCCWrites, TRI))
+ return false;
+
+ unsigned NewOpc = MI->getOpcode();
+ switch (MI->getOpcode()) {
+ default:
+ return false;
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXri:
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXrr:
+ case AArch64::SUBSXri:
+ break;
+ case AArch64::ADDWrr: NewOpc = AArch64::ADDSWrr; break;
+ case AArch64::ADDWri: NewOpc = AArch64::ADDSWri; break;
+ case AArch64::ADDXrr: NewOpc = AArch64::ADDSXrr; break;
+ case AArch64::ADDXri: NewOpc = AArch64::ADDSXri; break;
+ case AArch64::ADCWr: NewOpc = AArch64::ADCSWr; break;
+ case AArch64::ADCXr: NewOpc = AArch64::ADCSXr; break;
+ case AArch64::SUBWrr: NewOpc = AArch64::SUBSWrr; break;
+ case AArch64::SUBWri: NewOpc = AArch64::SUBSWri; break;
+ case AArch64::SUBXrr: NewOpc = AArch64::SUBSXrr; break;
+ case AArch64::SUBXri: NewOpc = AArch64::SUBSXri; break;
+ case AArch64::SBCWr: NewOpc = AArch64::SBCSWr; break;
+ case AArch64::SBCXr: NewOpc = AArch64::SBCSXr; break;
+ case AArch64::ANDWri: NewOpc = AArch64::ANDSWri; break;
+ case AArch64::ANDXri: NewOpc = AArch64::ANDSXri; break;
+ }
+
+ // Scan forward for the use of NZCV.
+ // When checking against MI: if it's a conditional code requires
+ // checking of V bit, then this is not safe to do.
+ // It is safe to remove CmpInstr if NZCV is redefined or killed.
+ // If we are done with the basic block, we need to check whether NZCV is
+ // live-out.
+ bool IsSafe = false;
+ for (MachineBasicBlock::iterator I = CmpInstr,
+ E = CmpInstr->getParent()->end();
+ !IsSafe && ++I != E;) {
+ const MachineInstr &Instr = *I;
+ for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
+ ++IO) {
+ const MachineOperand &MO = Instr.getOperand(IO);
+ if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) {
+ IsSafe = true;
+ break;
+ }
+ if (!MO.isReg() || MO.getReg() != AArch64::NZCV)
+ continue;
+ if (MO.isDef()) {
+ IsSafe = true;
+ break;
+ }
+
+ // Decode the condition code.
+ unsigned Opc = Instr.getOpcode();
+ AArch64CC::CondCode CC;
+ switch (Opc) {
+ default:
+ return false;
+ case AArch64::Bcc:
+ CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm();
+ break;
+ case AArch64::CSINVWr:
+ case AArch64::CSINVXr:
+ case AArch64::CSINCWr:
+ case AArch64::CSINCXr:
+ case AArch64::CSELWr:
+ case AArch64::CSELXr:
+ case AArch64::CSNEGWr:
+ case AArch64::CSNEGXr:
+ case AArch64::FCSELSrrr:
+ case AArch64::FCSELDrrr:
+ CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm();
+ break;
+ }
+
+ // It is not safe to remove Compare instruction if Overflow(V) is used.
+ switch (CC) {
+ default:
+ // NZCV can be used multiple times, we should continue.
+ break;
+ case AArch64CC::VS:
+ case AArch64CC::VC:
+ case AArch64CC::GE:
+ case AArch64CC::LT:
+ case AArch64CC::GT:
+ case AArch64CC::LE:
+ return false;
+ }
+ }
+ }
+
+ // If NZCV is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if (!IsSafe) {
+ MachineBasicBlock *ParentBlock = CmpInstr->getParent();
+ for (auto *MBB : ParentBlock->successors())
+ if (MBB->isLiveIn(AArch64::NZCV))
+ return false;
+ }
+
+ // Update the instruction to set NZCV.
+ MI->setDesc(get(NewOpc));
+ CmpInstr->eraseFromParent();
+ bool succeeded = UpdateOperandRegClass(MI);
+ (void)succeeded;
+ assert(succeeded && "Some operands reg class are incompatible!");
+ MI->addRegisterDefined(AArch64::NZCV, TRI);
+ return true;
+}
+
+bool
+AArch64InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ if (MI->getOpcode() != TargetOpcode::LOAD_STACK_GUARD)
+ return false;
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned Reg = MI->getOperand(0).getReg();
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MI->memoperands_begin())->getValue());
+ const TargetMachine &TM = MBB.getParent()->getTarget();
+ unsigned char OpFlags = Subtarget.ClassifyGlobalReference(GV, TM);
+ const unsigned char MO_NC = AArch64II::MO_NC;
+
+ if ((OpFlags & AArch64II::MO_GOT) != 0) {
+ BuildMI(MBB, MI, DL, get(AArch64::LOADgot), Reg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_GOT);
+ BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
+ .addReg(Reg, RegState::Kill).addImm(0)
+ .addMemOperand(*MI->memoperands_begin());
+ } else if (TM.getCodeModel() == CodeModel::Large) {
+ BuildMI(MBB, MI, DL, get(AArch64::MOVZXi), Reg)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G3).addImm(48);
+ BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G2 | MO_NC).addImm(32);
+ BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G1 | MO_NC).addImm(16);
+ BuildMI(MBB, MI, DL, get(AArch64::MOVKXi), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, AArch64II::MO_G0 | MO_NC).addImm(0);
+ BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
+ .addReg(Reg, RegState::Kill).addImm(0)
+ .addMemOperand(*MI->memoperands_begin());
+ } else {
+ BuildMI(MBB, MI, DL, get(AArch64::ADRP), Reg)
+ .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
+ unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | MO_NC;
+ BuildMI(MBB, MI, DL, get(AArch64::LDRXui), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addGlobalAddress(GV, 0, LoFlags)
+ .addMemOperand(*MI->memoperands_begin());
+ }
+
+ MBB.erase(MI);
+
+ return true;
+}
+
+/// Return true if this is this instruction has a non-zero immediate
+bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::ADDSWrs:
+ case AArch64::ADDSXrs:
+ case AArch64::ADDWrs:
+ case AArch64::ADDXrs:
+ case AArch64::ANDSWrs:
+ case AArch64::ANDSXrs:
+ case AArch64::ANDWrs:
+ case AArch64::ANDXrs:
+ case AArch64::BICSWrs:
+ case AArch64::BICSXrs:
+ case AArch64::BICWrs:
+ case AArch64::BICXrs:
+ case AArch64::CRC32Brr:
+ case AArch64::CRC32CBrr:
+ case AArch64::CRC32CHrr:
+ case AArch64::CRC32CWrr:
+ case AArch64::CRC32CXrr:
+ case AArch64::CRC32Hrr:
+ case AArch64::CRC32Wrr:
+ case AArch64::CRC32Xrr:
+ case AArch64::EONWrs:
+ case AArch64::EONXrs:
+ case AArch64::EORWrs:
+ case AArch64::EORXrs:
+ case AArch64::ORNWrs:
+ case AArch64::ORNXrs:
+ case AArch64::ORRWrs:
+ case AArch64::ORRXrs:
+ case AArch64::SUBSWrs:
+ case AArch64::SUBSXrs:
+ case AArch64::SUBWrs:
+ case AArch64::SUBXrs:
+ if (MI->getOperand(3).isImm()) {
+ unsigned val = MI->getOperand(3).getImm();
+ return (val != 0);
+ }
+ break;
+ }
+ return false;
+}
+
+/// Return true if this is this instruction has a non-zero immediate
+bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::ADDSWrx:
+ case AArch64::ADDSXrx:
+ case AArch64::ADDSXrx64:
+ case AArch64::ADDWrx:
+ case AArch64::ADDXrx:
+ case AArch64::ADDXrx64:
+ case AArch64::SUBSWrx:
+ case AArch64::SUBSXrx:
+ case AArch64::SUBSXrx64:
+ case AArch64::SUBWrx:
+ case AArch64::SUBXrx:
+ case AArch64::SUBXrx64:
+ if (MI->getOperand(3).isImm()) {
+ unsigned val = MI->getOperand(3).getImm();
+ return (val != 0);
+ }
+ break;
+ }
+
+ return false;
+}
+
+// Return true if this instruction simply sets its single destination register
+// to zero. This is equivalent to a register rename of the zero-register.
+bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::MOVZWi:
+ case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
+ if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
+ assert(MI->getDesc().getNumOperands() == 3 &&
+ MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
+ return true;
+ }
+ break;
+ case AArch64::ANDWri: // and Rd, Rzr, #imm
+ return MI->getOperand(1).getReg() == AArch64::WZR;
+ case AArch64::ANDXri:
+ return MI->getOperand(1).getReg() == AArch64::XZR;
+ case TargetOpcode::COPY:
+ return MI->getOperand(1).getReg() == AArch64::WZR;
+ }
+ return false;
+}
+
+// Return true if this instruction simply renames a general register without
+// modifying bits.
+bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case TargetOpcode::COPY: {
+ // GPR32 copies will by lowered to ORRXrs
+ unsigned DstReg = MI->getOperand(0).getReg();
+ return (AArch64::GPR32RegClass.contains(DstReg) ||
+ AArch64::GPR64RegClass.contains(DstReg));
+ }
+ case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
+ if (MI->getOperand(1).getReg() == AArch64::XZR) {
+ assert(MI->getDesc().getNumOperands() == 4 &&
+ MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
+ return true;
+ }
+ break;
+ case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
+ if (MI->getOperand(2).getImm() == 0) {
+ assert(MI->getDesc().getNumOperands() == 4 &&
+ MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
+ return true;
+ }
+ break;
+ }
+ return false;
+}
+
+// Return true if this instruction simply renames a general register without
+// modifying bits.
+bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case TargetOpcode::COPY: {
+ // FPR64 copies will by lowered to ORR.16b
+ unsigned DstReg = MI->getOperand(0).getReg();
+ return (AArch64::FPR64RegClass.contains(DstReg) ||
+ AArch64::FPR128RegClass.contains(DstReg));
+ }
+ case AArch64::ORRv16i8:
+ if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
+ assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
+ "invalid ORRv16i8 operands");
+ return true;
+ }
+ break;
+ }
+ return false;
+}
+
+unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::LDRWui:
+ case AArch64::LDRXui:
+ case AArch64::LDRBui:
+ case AArch64::LDRHui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::STRWui:
+ case AArch64::STRXui:
+ case AArch64::STRBui:
+ case AArch64::STRHui:
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
+ MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+/// Return true if this is load/store scales or extends its register offset.
+/// This refers to scaling a dynamic index as opposed to scaled immediates.
+/// MI should be a memory op that allows scaled addressing.
+bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default:
+ break;
+ case AArch64::LDRBBroW:
+ case AArch64::LDRBroW:
+ case AArch64::LDRDroW:
+ case AArch64::LDRHHroW:
+ case AArch64::LDRHroW:
+ case AArch64::LDRQroW:
+ case AArch64::LDRSBWroW:
+ case AArch64::LDRSBXroW:
+ case AArch64::LDRSHWroW:
+ case AArch64::LDRSHXroW:
+ case AArch64::LDRSWroW:
+ case AArch64::LDRSroW:
+ case AArch64::LDRWroW:
+ case AArch64::LDRXroW:
+ case AArch64::STRBBroW:
+ case AArch64::STRBroW:
+ case AArch64::STRDroW:
+ case AArch64::STRHHroW:
+ case AArch64::STRHroW:
+ case AArch64::STRQroW:
+ case AArch64::STRSroW:
+ case AArch64::STRWroW:
+ case AArch64::STRXroW:
+ case AArch64::LDRBBroX:
+ case AArch64::LDRBroX:
+ case AArch64::LDRDroX:
+ case AArch64::LDRHHroX:
+ case AArch64::LDRHroX:
+ case AArch64::LDRQroX:
+ case AArch64::LDRSBWroX:
+ case AArch64::LDRSBXroX:
+ case AArch64::LDRSHWroX:
+ case AArch64::LDRSHXroX:
+ case AArch64::LDRSWroX:
+ case AArch64::LDRSroX:
+ case AArch64::LDRWroX:
+ case AArch64::LDRXroX:
+ case AArch64::STRBBroX:
+ case AArch64::STRBroX:
+ case AArch64::STRDroX:
+ case AArch64::STRHHroX:
+ case AArch64::STRHroX:
+ case AArch64::STRQroX:
+ case AArch64::STRSroX:
+ case AArch64::STRWroX:
+ case AArch64::STRXroX:
+
+ unsigned Val = MI->getOperand(3).getImm();
+ AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
+ return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
+ }
+ return false;
+}
+
+/// Check all MachineMemOperands for a hint to suppress pairing.
+bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
+ assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
+ "Too many target MO flags");
+ for (auto *MM : MI->memoperands()) {
+ if (MM->getFlags() &
+ (MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Set a flag on the first MachineMemOperand to suppress pairing.
+void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
+ if (MI->memoperands_empty())
+ return;
+
+ assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
+ "Too many target MO flags");
+ (*MI->memoperands_begin())
+ ->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
+}
+
+bool
+AArch64InstrInfo::getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
+ unsigned &Offset,
+ const TargetRegisterInfo *TRI) const {
+ switch (LdSt->getOpcode()) {
+ default:
+ return false;
+ case AArch64::STRSui:
+ case AArch64::STRDui:
+ case AArch64::STRQui:
+ case AArch64::STRXui:
+ case AArch64::STRWui:
+ case AArch64::LDRSui:
+ case AArch64::LDRDui:
+ case AArch64::LDRQui:
+ case AArch64::LDRXui:
+ case AArch64::LDRWui:
+ if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
+ return false;
+ BaseReg = LdSt->getOperand(1).getReg();
+ MachineFunction &MF = *LdSt->getParent()->getParent();
+ unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
+ Offset = LdSt->getOperand(2).getImm() * Width;
+ return true;
+ };
+}
+
+bool AArch64InstrInfo::getMemOpBaseRegImmOfsWidth(
+ MachineInstr *LdSt, unsigned &BaseReg, int &Offset, int &Width,
+ const TargetRegisterInfo *TRI) const {
+ // Handle only loads/stores with base register followed by immediate offset.
+ if (LdSt->getNumOperands() != 3)
+ return false;
+ if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
+ return false;
+
+ // Offset is calculated as the immediate operand multiplied by the scaling factor.
+ // Unscaled instructions have scaling factor set to 1.
+ int Scale = 0;
+ switch (LdSt->getOpcode()) {
+ default:
+ return false;
+ case AArch64::LDURQi:
+ case AArch64::STURQi:
+ Width = 16;
+ Scale = 1;
+ break;
+ case AArch64::LDURXi:
+ case AArch64::LDURDi:
+ case AArch64::STURXi:
+ case AArch64::STURDi:
+ Width = 8;
+ Scale = 1;
+ break;
+ case AArch64::LDURWi:
+ case AArch64::LDURSi:
+ case AArch64::LDURSWi:
+ case AArch64::STURWi:
+ case AArch64::STURSi:
+ Width = 4;
+ Scale = 1;
+ break;
+ case AArch64::LDURHi:
+ case AArch64::LDURHHi:
+ case AArch64::LDURSHXi:
+ case AArch64::LDURSHWi:
+ case AArch64::STURHi:
+ case AArch64::STURHHi:
+ Width = 2;
+ Scale = 1;
+ break;
+ case AArch64::LDURBi:
+ case AArch64::LDURBBi:
+ case AArch64::LDURSBXi:
+ case AArch64::LDURSBWi:
+ case AArch64::STURBi:
+ case AArch64::STURBBi:
+ Width = 1;
+ Scale = 1;
+ break;
+ case AArch64::LDRQui:
+ case AArch64::STRQui:
+ Scale = Width = 16;
+ break;
+ case AArch64::LDRXui:
+ case AArch64::LDRDui:
+ case AArch64::STRXui:
+ case AArch64::STRDui:
+ Scale = Width = 8;
+ break;
+ case AArch64::LDRWui:
+ case AArch64::LDRSui:
+ case AArch64::STRWui:
+ case AArch64::STRSui:
+ Scale = Width = 4;
+ break;
+ case AArch64::LDRHui:
+ case AArch64::LDRHHui:
+ case AArch64::STRHui:
+ case AArch64::STRHHui:
+ Scale = Width = 2;
+ break;
+ case AArch64::LDRBui:
+ case AArch64::LDRBBui:
+ case AArch64::STRBui:
+ case AArch64::STRBBui:
+ Scale = Width = 1;
+ break;
+ };
+
+ BaseReg = LdSt->getOperand(1).getReg();
+ Offset = LdSt->getOperand(2).getImm() * Scale;
+ return true;
+}
+
+/// Detect opportunities for ldp/stp formation.
+///
+/// Only called for LdSt for which getMemOpBaseRegImmOfs returns true.
+bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
+ MachineInstr *SecondLdSt,
+ unsigned NumLoads) const {
+ // Only cluster up to a single pair.
+ if (NumLoads > 1)
+ return false;
+ if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
+ return false;
+ // getMemOpBaseRegImmOfs guarantees that oper 2 isImm.
+ unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
+ // Allow 6 bits of positive range.
+ if (Ofs1 > 64)
+ return false;
+ // The caller should already have ordered First/SecondLdSt by offset.
+ unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
+ return Ofs1 + 1 == Ofs2;
+}
+
+bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
+ MachineInstr *Second) const {
+ if (Subtarget.isCyclone()) {
+ // Cyclone can fuse CMN, CMP, TST followed by Bcc.
+ unsigned SecondOpcode = Second->getOpcode();
+ if (SecondOpcode == AArch64::Bcc) {
+ switch (First->getOpcode()) {
+ default:
+ return false;
+ case AArch64::SUBSWri:
+ case AArch64::ADDSWri:
+ case AArch64::ANDSWri:
+ case AArch64::SUBSXri:
+ case AArch64::ADDSXri:
+ case AArch64::ANDSXri:
+ return true;
+ }
+ }
+ // Cyclone B0 also supports ALU operations followed by CBZ/CBNZ.
+ if (SecondOpcode == AArch64::CBNZW || SecondOpcode == AArch64::CBNZX ||
+ SecondOpcode == AArch64::CBZW || SecondOpcode == AArch64::CBZX) {
+ switch (First->getOpcode()) {
+ default:
+ return false;
+ case AArch64::ADDWri:
+ case AArch64::ADDXri:
+ case AArch64::ANDWri:
+ case AArch64::ANDXri:
+ case AArch64::EORWri:
+ case AArch64::EORXri:
+ case AArch64::ORRWri:
+ case AArch64::ORRXri:
+ case AArch64::SUBWri:
+ case AArch64::SUBXri:
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(
+ MachineFunction &MF, int FrameIx, uint64_t Offset, const MDNode *Var,
+ const MDNode *Expr, DebugLoc DL) const {
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
+ .addFrameIndex(FrameIx)
+ .addImm(0)
+ .addImm(Offset)
+ .addMetadata(Var)
+ .addMetadata(Expr);
+ return &*MIB;
+}
+
+static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
+ unsigned Reg, unsigned SubIdx,
+ unsigned State,
+ const TargetRegisterInfo *TRI) {
+ if (!SubIdx)
+ return MIB.addReg(Reg, State);
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
+ return MIB.addReg(Reg, State, SubIdx);
+}
+
+static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
+ unsigned NumRegs) {
+ // We really want the positive remainder mod 32 here, that happens to be
+ // easily obtainable with a mask.
+ return ((DestReg - SrcReg) & 0x1f) < NumRegs;
+}
+
+void AArch64InstrInfo::copyPhysRegTuple(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
+ llvm::ArrayRef<unsigned> Indices) const {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register copy without NEON");
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
+ uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
+ unsigned NumRegs = Indices.size();
+
+ int SubReg = 0, End = NumRegs, Incr = 1;
+ if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
+ SubReg = NumRegs - 1;
+ End = -1;
+ Incr = -1;
+ }
+
+ for (; SubReg != End; SubReg += Incr) {
+ const MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opcode));
+ AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
+ AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
+ AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
+ }
+}
+
+void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ if (AArch64::GPR32spRegClass.contains(DestReg) &&
+ (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+
+ if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
+ // If either operand is WSP, expand to ADD #0.
+ if (Subtarget.hasZeroCycleRegMove()) {
+ // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
+ unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ // This instruction is reading and writing X registers. This may upset
+ // the register scavenger and machine verifier, so we need to indicate
+ // that we are reading an undefined value from SrcRegX, but a proper
+ // value from SrcReg.
+ BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
+ .addReg(SrcRegX, RegState::Undef)
+ .addImm(0)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
+ .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addImm(0)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ }
+ } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
+ BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ } else {
+ if (Subtarget.hasZeroCycleRegMove()) {
+ // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
+ unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
+ &AArch64::GPR64spRegClass);
+ // This instruction is reading and writing X registers. This may upset
+ // the register scavenger and machine verifier, so we need to indicate
+ // that we are reading an undefined value from SrcRegX, but a proper
+ // value from SrcReg.
+ BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
+ .addReg(AArch64::XZR)
+ .addReg(SrcRegX, RegState::Undef)
+ .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
+ } else {
+ // Otherwise, expand to ORR WZR.
+ BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
+ .addReg(AArch64::WZR)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ }
+ return;
+ }
+
+ if (AArch64::GPR64spRegClass.contains(DestReg) &&
+ (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
+ if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
+ // If either operand is SP, expand to ADD #0.
+ BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addImm(0)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
+ BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
+ AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
+ } else {
+ // Otherwise, expand to ORR XZR.
+ BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
+ .addReg(AArch64::XZR)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ // Copy a DDDD register quad by copying the individual sub-registers.
+ if (AArch64::DDDDRegClass.contains(DestReg) &&
+ AArch64::DDDDRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
+ AArch64::dsub2, AArch64::dsub3 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
+ Indices);
+ return;
+ }
+
+ // Copy a DDD register triple by copying the individual sub-registers.
+ if (AArch64::DDDRegClass.contains(DestReg) &&
+ AArch64::DDDRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
+ AArch64::dsub2 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
+ Indices);
+ return;
+ }
+
+ // Copy a DD register pair by copying the individual sub-registers.
+ if (AArch64::DDRegClass.contains(DestReg) &&
+ AArch64::DDRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
+ Indices);
+ return;
+ }
+
+ // Copy a QQQQ register quad by copying the individual sub-registers.
+ if (AArch64::QQQQRegClass.contains(DestReg) &&
+ AArch64::QQQQRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
+ AArch64::qsub2, AArch64::qsub3 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
+ Indices);
+ return;
+ }
+
+ // Copy a QQQ register triple by copying the individual sub-registers.
+ if (AArch64::QQQRegClass.contains(DestReg) &&
+ AArch64::QQQRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
+ AArch64::qsub2 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
+ Indices);
+ return;
+ }
+
+ // Copy a QQ register pair by copying the individual sub-registers.
+ if (AArch64::QQRegClass.contains(DestReg) &&
+ AArch64::QQRegClass.contains(SrcReg)) {
+ static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
+ copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
+ Indices);
+ return;
+ }
+
+ if (AArch64::FPR128RegClass.contains(DestReg) &&
+ AArch64::FPR128RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::STRQpre))
+ .addReg(AArch64::SP, RegState::Define)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addReg(AArch64::SP)
+ .addImm(-16);
+ BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
+ .addReg(AArch64::SP, RegState::Define)
+ .addReg(DestReg, RegState::Define)
+ .addReg(AArch64::SP)
+ .addImm(16);
+ }
+ return;
+ }
+
+ if (AArch64::FPR64RegClass.contains(DestReg) &&
+ AArch64::FPR64RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ if (AArch64::FPR32RegClass.contains(DestReg) &&
+ AArch64::FPR32RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ if (AArch64::FPR16RegClass.contains(DestReg) &&
+ AArch64::FPR16RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
+ &AArch64::FPR32RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
+ &AArch64::FPR32RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ if (AArch64::FPR8RegClass.contains(DestReg) &&
+ AArch64::FPR8RegClass.contains(SrcReg)) {
+ if(Subtarget.hasNEON()) {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
+ &AArch64::FPR128RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
+ &AArch64::FPR128RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
+ .addReg(SrcReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ } else {
+ DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
+ &AArch64::FPR32RegClass);
+ SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
+ &AArch64::FPR32RegClass);
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ }
+ return;
+ }
+
+ // Copies between GPR64 and FPR64.
+ if (AArch64::FPR64RegClass.contains(DestReg) &&
+ AArch64::GPR64RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (AArch64::GPR64RegClass.contains(DestReg) &&
+ AArch64::FPR64RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ // Copies between GPR32 and FPR32.
+ if (AArch64::FPR32RegClass.contains(DestReg) &&
+ AArch64::GPR32RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (AArch64::GPR32RegClass.contains(DestReg) &&
+ AArch64::FPR32RegClass.contains(SrcReg)) {
+ BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+
+ if (DestReg == AArch64::NZCV) {
+ assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
+ BuildMI(MBB, I, DL, get(AArch64::MSR))
+ .addImm(AArch64SysReg::NZCV)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
+ return;
+ }
+
+ if (SrcReg == AArch64::NZCV) {
+ assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
+ BuildMI(MBB, I, DL, get(AArch64::MRS))
+ .addReg(DestReg)
+ .addImm(AArch64SysReg::NZCV)
+ .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
+ return;
+ }
+
+ llvm_unreachable("unimplemented reg-to-reg copy");
+}
+
+void AArch64InstrInfo::storeRegToStackSlot(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
+ bool isKill, int FI, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+
+ MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
+ unsigned Opc = 0;
+ bool Offset = true;
+ switch (RC->getSize()) {
+ case 1:
+ if (AArch64::FPR8RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRBui;
+ break;
+ case 2:
+ if (AArch64::FPR16RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRHui;
+ break;
+ case 4:
+ if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::STRWui;
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg))
+ MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
+ else
+ assert(SrcReg != AArch64::WSP);
+ } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRSui;
+ break;
+ case 8:
+ if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::STRXui;
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg))
+ MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
+ else
+ assert(SrcReg != AArch64::SP);
+ } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRDui;
+ break;
+ case 16:
+ if (AArch64::FPR128RegClass.hasSubClassEq(RC))
+ Opc = AArch64::STRQui;
+ else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Twov1d, Offset = false;
+ }
+ break;
+ case 24:
+ if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Threev1d, Offset = false;
+ }
+ break;
+ case 32:
+ if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Fourv1d, Offset = false;
+ } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Twov2d, Offset = false;
+ }
+ break;
+ case 48:
+ if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Threev2d, Offset = false;
+ }
+ break;
+ case 64:
+ if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register store without NEON");
+ Opc = AArch64::ST1Fourv2d, Offset = false;
+ }
+ break;
+ }
+ assert(Opc && "Unknown register class");
+
+ const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI);
+
+ if (Offset)
+ MI.addImm(0);
+ MI.addMemOperand(MMO);
+}
+
+void AArch64InstrInfo::loadRegFromStackSlot(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
+ int FI, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL;
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ unsigned Align = MFI.getObjectAlignment(FI);
+ MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
+
+ unsigned Opc = 0;
+ bool Offset = true;
+ switch (RC->getSize()) {
+ case 1:
+ if (AArch64::FPR8RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRBui;
+ break;
+ case 2:
+ if (AArch64::FPR16RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRHui;
+ break;
+ case 4:
+ if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::LDRWui;
+ if (TargetRegisterInfo::isVirtualRegister(DestReg))
+ MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
+ else
+ assert(DestReg != AArch64::WSP);
+ } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRSui;
+ break;
+ case 8:
+ if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
+ Opc = AArch64::LDRXui;
+ if (TargetRegisterInfo::isVirtualRegister(DestReg))
+ MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
+ else
+ assert(DestReg != AArch64::SP);
+ } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRDui;
+ break;
+ case 16:
+ if (AArch64::FPR128RegClass.hasSubClassEq(RC))
+ Opc = AArch64::LDRQui;
+ else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Twov1d, Offset = false;
+ }
+ break;
+ case 24:
+ if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Threev1d, Offset = false;
+ }
+ break;
+ case 32:
+ if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Fourv1d, Offset = false;
+ } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Twov2d, Offset = false;
+ }
+ break;
+ case 48:
+ if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Threev2d, Offset = false;
+ }
+ break;
+ case 64:
+ if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
+ assert(Subtarget.hasNEON() &&
+ "Unexpected register load without NEON");
+ Opc = AArch64::LD1Fourv2d, Offset = false;
+ }
+ break;
+ }
+ assert(Opc && "Unknown register class");
+
+ const MachineInstrBuilder MI = BuildMI(MBB, MBBI, DL, get(Opc))
+ .addReg(DestReg, getDefRegState(true))
+ .addFrameIndex(FI);
+ if (Offset)
+ MI.addImm(0);
+ MI.addMemOperand(MMO);
+}
+
+void llvm::emitFrameOffset(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg, int Offset,
+ const TargetInstrInfo *TII,
+ MachineInstr::MIFlag Flag, bool SetNZCV) {
+ if (DestReg == SrcReg && Offset == 0)
+ return;
+
+ bool isSub = Offset < 0;
+ if (isSub)
+ Offset = -Offset;
+
+ // FIXME: If the offset won't fit in 24-bits, compute the offset into a
+ // scratch register. If DestReg is a virtual register, use it as the
+ // scratch register; otherwise, create a new virtual register (to be
+ // replaced by the scavenger at the end of PEI). That case can be optimized
+ // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
+ // register can be loaded with offset%8 and the add/sub can use an extending
+ // instruction with LSL#3.
+ // Currently the function handles any offsets but generates a poor sequence
+ // of code.
+ // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
+
+ unsigned Opc;
+ if (SetNZCV)
+ Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
+ else
+ Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
+ const unsigned MaxEncoding = 0xfff;
+ const unsigned ShiftSize = 12;
+ const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
+ while (((unsigned)Offset) >= (1 << ShiftSize)) {
+ unsigned ThisVal;
+ if (((unsigned)Offset) > MaxEncodableValue) {
+ ThisVal = MaxEncodableValue;
+ } else {
+ ThisVal = Offset & MaxEncodableValue;
+ }
+ assert((ThisVal >> ShiftSize) <= MaxEncoding &&
+ "Encoding cannot handle value that big");
+ BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
+ .addReg(SrcReg)
+ .addImm(ThisVal >> ShiftSize)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
+ .setMIFlag(Flag);
+
+ SrcReg = DestReg;
+ Offset -= ThisVal;
+ if (Offset == 0)
+ return;
+ }
+ BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
+ .addReg(SrcReg)
+ .addImm(Offset)
+ .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
+ .setMIFlag(Flag);
+}
+
+MachineInstr *AArch64InstrInfo::foldMemoryOperandImpl(
+ MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
+ MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
+ // This is a bit of a hack. Consider this instruction:
+ //
+ // %vreg0<def> = COPY %SP; GPR64all:%vreg0
+ //
+ // We explicitly chose GPR64all for the virtual register so such a copy might
+ // be eliminated by RegisterCoalescer. However, that may not be possible, and
+ // %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
+ // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
+ //
+ // To prevent that, we are going to constrain the %vreg0 register class here.
+ //
+ // <rdar://problem/11522048>
+ //
+ if (MI->isCopy()) {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ if (SrcReg == AArch64::SP &&
+ TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
+ return nullptr;
+ }
+ if (DstReg == AArch64::SP &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
+ return nullptr;
+ }
+ }
+
+ // Cannot fold.
+ return nullptr;
+}
+
+int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
+ bool *OutUseUnscaledOp,
+ unsigned *OutUnscaledOp,
+ int *EmittableOffset) {
+ int Scale = 1;
+ bool IsSigned = false;
+ // The ImmIdx should be changed case by case if it is not 2.
+ unsigned ImmIdx = 2;
+ unsigned UnscaledOp = 0;
+ // Set output values in case of early exit.
+ if (EmittableOffset)
+ *EmittableOffset = 0;
+ if (OutUseUnscaledOp)
+ *OutUseUnscaledOp = false;
+ if (OutUnscaledOp)
+ *OutUnscaledOp = 0;
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
+ // Vector spills/fills can't take an immediate offset.
+ case AArch64::LD1Twov2d:
+ case AArch64::LD1Threev2d:
+ case AArch64::LD1Fourv2d:
+ case AArch64::LD1Twov1d:
+ case AArch64::LD1Threev1d:
+ case AArch64::LD1Fourv1d:
+ case AArch64::ST1Twov2d:
+ case AArch64::ST1Threev2d:
+ case AArch64::ST1Fourv2d:
+ case AArch64::ST1Twov1d:
+ case AArch64::ST1Threev1d:
+ case AArch64::ST1Fourv1d:
+ return AArch64FrameOffsetCannotUpdate;
+ case AArch64::PRFMui:
+ Scale = 8;
+ UnscaledOp = AArch64::PRFUMi;
+ break;
+ case AArch64::LDRXui:
+ Scale = 8;
+ UnscaledOp = AArch64::LDURXi;
+ break;
+ case AArch64::LDRWui:
+ Scale = 4;
+ UnscaledOp = AArch64::LDURWi;
+ break;
+ case AArch64::LDRBui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURBi;
+ break;
+ case AArch64::LDRHui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURHi;
+ break;
+ case AArch64::LDRSui:
+ Scale = 4;
+ UnscaledOp = AArch64::LDURSi;
+ break;
+ case AArch64::LDRDui:
+ Scale = 8;
+ UnscaledOp = AArch64::LDURDi;
+ break;
+ case AArch64::LDRQui:
+ Scale = 16;
+ UnscaledOp = AArch64::LDURQi;
+ break;
+ case AArch64::LDRBBui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURBBi;
+ break;
+ case AArch64::LDRHHui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURHHi;
+ break;
+ case AArch64::LDRSBXui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURSBXi;
+ break;
+ case AArch64::LDRSBWui:
+ Scale = 1;
+ UnscaledOp = AArch64::LDURSBWi;
+ break;
+ case AArch64::LDRSHXui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURSHXi;
+ break;
+ case AArch64::LDRSHWui:
+ Scale = 2;
+ UnscaledOp = AArch64::LDURSHWi;
+ break;
+ case AArch64::LDRSWui:
+ Scale = 4;
+ UnscaledOp = AArch64::LDURSWi;
+ break;
+
+ case AArch64::STRXui:
+ Scale = 8;
+ UnscaledOp = AArch64::STURXi;
+ break;
+ case AArch64::STRWui:
+ Scale = 4;
+ UnscaledOp = AArch64::STURWi;
+ break;
+ case AArch64::STRBui:
+ Scale = 1;
+ UnscaledOp = AArch64::STURBi;
+ break;
+ case AArch64::STRHui:
+ Scale = 2;
+ UnscaledOp = AArch64::STURHi;
+ break;
+ case AArch64::STRSui:
+ Scale = 4;
+ UnscaledOp = AArch64::STURSi;
+ break;
+ case AArch64::STRDui:
+ Scale = 8;
+ UnscaledOp = AArch64::STURDi;
+ break;
+ case AArch64::STRQui:
+ Scale = 16;
+ UnscaledOp = AArch64::STURQi;
+ break;
+ case AArch64::STRBBui:
+ Scale = 1;
+ UnscaledOp = AArch64::STURBBi;
+ break;
+ case AArch64::STRHHui:
+ Scale = 2;
+ UnscaledOp = AArch64::STURHHi;
+ break;
+
+ case AArch64::LDPXi:
+ case AArch64::LDPDi:
+ case AArch64::STPXi:
+ case AArch64::STPDi:
+ case AArch64::LDNPXi:
+ case AArch64::LDNPDi:
+ case AArch64::STNPXi:
+ case AArch64::STNPDi:
+ ImmIdx = 3;
+ IsSigned = true;
+ Scale = 8;
+ break;
+ case AArch64::LDPQi:
+ case AArch64::STPQi:
+ case AArch64::LDNPQi:
+ case AArch64::STNPQi:
+ ImmIdx = 3;
+ IsSigned = true;
+ Scale = 16;
+ break;
+ case AArch64::LDPWi:
+ case AArch64::LDPSi:
+ case AArch64::STPWi:
+ case AArch64::STPSi:
+ case AArch64::LDNPWi:
+ case AArch64::LDNPSi:
+ case AArch64::STNPWi:
+ case AArch64::STNPSi:
+ ImmIdx = 3;
+ IsSigned = true;
+ Scale = 4;
+ break;
+
+ case AArch64::LDURXi:
+ case AArch64::LDURWi:
+ case AArch64::LDURBi:
+ case AArch64::LDURHi:
+ case AArch64::LDURSi:
+ case AArch64::LDURDi:
+ case AArch64::LDURQi:
+ case AArch64::LDURHHi:
+ case AArch64::LDURBBi:
+ case AArch64::LDURSBXi:
+ case AArch64::LDURSBWi:
+ case AArch64::LDURSHXi:
+ case AArch64::LDURSHWi:
+ case AArch64::LDURSWi:
+ case AArch64::STURXi:
+ case AArch64::STURWi:
+ case AArch64::STURBi:
+ case AArch64::STURHi:
+ case AArch64::STURSi:
+ case AArch64::STURDi:
+ case AArch64::STURQi:
+ case AArch64::STURBBi:
+ case AArch64::STURHHi:
+ Scale = 1;
+ break;
+ }
+
+ Offset += MI.getOperand(ImmIdx).getImm() * Scale;
+
+ bool useUnscaledOp = false;
+ // If the offset doesn't match the scale, we rewrite the instruction to
+ // use the unscaled instruction instead. Likewise, if we have a negative
+ // offset (and have an unscaled op to use).
+ if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
+ useUnscaledOp = true;
+
+ // Use an unscaled addressing mode if the instruction has a negative offset
+ // (or if the instruction is already using an unscaled addressing mode).
+ unsigned MaskBits;
+ if (IsSigned) {
+ // ldp/stp instructions.
+ MaskBits = 7;
+ Offset /= Scale;
+ } else if (UnscaledOp == 0 || useUnscaledOp) {
+ MaskBits = 9;
+ IsSigned = true;
+ Scale = 1;
+ } else {
+ MaskBits = 12;
+ IsSigned = false;
+ Offset /= Scale;
+ }
+
+ // Attempt to fold address computation.
+ int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
+ int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
+ if (Offset >= MinOff && Offset <= MaxOff) {
+ if (EmittableOffset)
+ *EmittableOffset = Offset;
+ Offset = 0;
+ } else {
+ int NewOff = Offset < 0 ? MinOff : MaxOff;
+ if (EmittableOffset)
+ *EmittableOffset = NewOff;
+ Offset = (Offset - NewOff) * Scale;
+ }
+ if (OutUseUnscaledOp)
+ *OutUseUnscaledOp = useUnscaledOp;
+ if (OutUnscaledOp)
+ *OutUnscaledOp = UnscaledOp;
+ return AArch64FrameOffsetCanUpdate |
+ (Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
+}
+
+bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ unsigned FrameReg, int &Offset,
+ const AArch64InstrInfo *TII) {
+ unsigned Opcode = MI.getOpcode();
+ unsigned ImmIdx = FrameRegIdx + 1;
+
+ if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
+ Offset += MI.getOperand(ImmIdx).getImm();
+ emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
+ MI.getOperand(0).getReg(), FrameReg, Offset, TII,
+ MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
+ MI.eraseFromParent();
+ Offset = 0;
+ return true;
+ }
+
+ int NewOffset;
+ unsigned UnscaledOp;
+ bool UseUnscaledOp;
+ int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
+ &UnscaledOp, &NewOffset);
+ if (Status & AArch64FrameOffsetCanUpdate) {
+ if (Status & AArch64FrameOffsetIsLegal)
+ // Replace the FrameIndex with FrameReg.
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ if (UseUnscaledOp)
+ MI.setDesc(TII->get(UnscaledOp));
+
+ MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
+ return Offset == 0;
+ }
+
+ return false;
+}
+
+void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(AArch64::HINT);
+ NopInst.addOperand(MCOperand::createImm(0));
+}
+/// useMachineCombiner - return true when a target supports MachineCombiner
+bool AArch64InstrInfo::useMachineCombiner() const {
+ // AArch64 supports the combiner
+ return true;
+}
+//
+// True when Opc sets flag
+static bool isCombineInstrSettingFlag(unsigned Opc) {
+ switch (Opc) {
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWri:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXri:
+ case AArch64::SUBSWrr:
+ case AArch64::SUBSXrr:
+ // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
+ case AArch64::SUBSWri:
+ case AArch64::SUBSXri:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+//
+// 32b Opcodes that can be combined with a MUL
+static bool isCombineInstrCandidate32(unsigned Opc) {
+ switch (Opc) {
+ case AArch64::ADDWrr:
+ case AArch64::ADDWri:
+ case AArch64::SUBWrr:
+ case AArch64::ADDSWrr:
+ case AArch64::ADDSWri:
+ case AArch64::SUBSWrr:
+ // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
+ case AArch64::SUBWri:
+ case AArch64::SUBSWri:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+//
+// 64b Opcodes that can be combined with a MUL
+static bool isCombineInstrCandidate64(unsigned Opc) {
+ switch (Opc) {
+ case AArch64::ADDXrr:
+ case AArch64::ADDXri:
+ case AArch64::SUBXrr:
+ case AArch64::ADDSXrr:
+ case AArch64::ADDSXri:
+ case AArch64::SUBSXrr:
+ // Note: MSUB Wd,Wn,Wm,Wi -> Wd = Wi - WnxWm, not Wd=WnxWm - Wi.
+ case AArch64::SUBXri:
+ case AArch64::SUBSXri:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+//
+// Opcodes that can be combined with a MUL
+static bool isCombineInstrCandidate(unsigned Opc) {
+ return (isCombineInstrCandidate32(Opc) || isCombineInstrCandidate64(Opc));
+}
+
+static bool canCombineWithMUL(MachineBasicBlock &MBB, MachineOperand &MO,
+ unsigned MulOpc, unsigned ZeroReg) {
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ MachineInstr *MI = nullptr;
+ // We need a virtual register definition.
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ MI = MRI.getUniqueVRegDef(MO.getReg());
+ // And it needs to be in the trace (otherwise, it won't have a depth).
+ if (!MI || MI->getParent() != &MBB || (unsigned)MI->getOpcode() != MulOpc)
+ return false;
+
+ assert(MI->getNumOperands() >= 4 && MI->getOperand(0).isReg() &&
+ MI->getOperand(1).isReg() && MI->getOperand(2).isReg() &&
+ MI->getOperand(3).isReg() && "MAdd/MSub must have a least 4 regs");
+
+ // The third input reg must be zero.
+ if (MI->getOperand(3).getReg() != ZeroReg)
+ return false;
+
+ // Must only used by the user we combine with.
+ if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
+ return false;
+
+ return true;
+}
+
+/// Return true when there is potentially a faster code sequence
+/// for an instruction chain ending in \p Root. All potential patterns are
+/// listed
+/// in the \p Pattern vector. Pattern should be sorted in priority order since
+/// the pattern evaluator stops checking as soon as it finds a faster sequence.
+
+bool AArch64InstrInfo::getMachineCombinerPatterns(
+ MachineInstr &Root,
+ SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
+ unsigned Opc = Root.getOpcode();
+ MachineBasicBlock &MBB = *Root.getParent();
+ bool Found = false;
+
+ if (!isCombineInstrCandidate(Opc))
+ return 0;
+ if (isCombineInstrSettingFlag(Opc)) {
+ int Cmp_NZCV = Root.findRegisterDefOperandIdx(AArch64::NZCV, true);
+ // When NZCV is live bail out.
+ if (Cmp_NZCV == -1)
+ return 0;
+ unsigned NewOpc = convertFlagSettingOpcode(&Root);
+ // When opcode can't change bail out.
+ // CHECKME: do we miss any cases for opcode conversion?
+ if (NewOpc == Opc)
+ return 0;
+ Opc = NewOpc;
+ }
+
+ switch (Opc) {
+ default:
+ break;
+ case AArch64::ADDWrr:
+ assert(Root.getOperand(1).isReg() && Root.getOperand(2).isReg() &&
+ "ADDWrr does not have register operands");
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULADDW_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULADDW_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::ADDXrr:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULADDX_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULADDX_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBWrr:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULSUBW_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULSUBW_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBXrr:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULSUBX_OP1);
+ Found = true;
+ }
+ if (canCombineWithMUL(MBB, Root.getOperand(2), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULSUBX_OP2);
+ Found = true;
+ }
+ break;
+ case AArch64::ADDWri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULADDWI_OP1);
+ Found = true;
+ }
+ break;
+ case AArch64::ADDXri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULADDXI_OP1);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBWri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDWrrr,
+ AArch64::WZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULSUBWI_OP1);
+ Found = true;
+ }
+ break;
+ case AArch64::SUBXri:
+ if (canCombineWithMUL(MBB, Root.getOperand(1), AArch64::MADDXrrr,
+ AArch64::XZR)) {
+ Patterns.push_back(MachineCombinerPattern::MULSUBXI_OP1);
+ Found = true;
+ }
+ break;
+ }
+ return Found;
+}
+
+/// genMadd - Generate madd instruction and combine mul and add.
+/// Example:
+/// MUL I=A,B,0
+/// ADD R,I,C
+/// ==> MADD R,A,B,C
+/// \param Root is the ADD instruction
+/// \param [out] InsInstrs is a vector of machine instructions and will
+/// contain the generated madd instruction
+/// \param IdxMulOpd is index of operand in Root that is the result of
+/// the MUL. In the example above IdxMulOpd is 1.
+/// \param MaddOpc the opcode fo the madd instruction
+static MachineInstr *genMadd(MachineFunction &MF, MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII, MachineInstr &Root,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ unsigned IdxMulOpd, unsigned MaddOpc,
+ const TargetRegisterClass *RC) {
+ assert(IdxMulOpd == 1 || IdxMulOpd == 2);
+
+ unsigned IdxOtherOpd = IdxMulOpd == 1 ? 2 : 1;
+ MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
+ unsigned ResultReg = Root.getOperand(0).getReg();
+ unsigned SrcReg0 = MUL->getOperand(1).getReg();
+ bool Src0IsKill = MUL->getOperand(1).isKill();
+ unsigned SrcReg1 = MUL->getOperand(2).getReg();
+ bool Src1IsKill = MUL->getOperand(2).isKill();
+ unsigned SrcReg2 = Root.getOperand(IdxOtherOpd).getReg();
+ bool Src2IsKill = Root.getOperand(IdxOtherOpd).isKill();
+
+ if (TargetRegisterInfo::isVirtualRegister(ResultReg))
+ MRI.constrainRegClass(ResultReg, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
+ MRI.constrainRegClass(SrcReg0, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
+ MRI.constrainRegClass(SrcReg1, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg2))
+ MRI.constrainRegClass(SrcReg2, RC);
+
+ MachineInstrBuilder MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc),
+ ResultReg)
+ .addReg(SrcReg0, getKillRegState(Src0IsKill))
+ .addReg(SrcReg1, getKillRegState(Src1IsKill))
+ .addReg(SrcReg2, getKillRegState(Src2IsKill));
+ // Insert the MADD
+ InsInstrs.push_back(MIB);
+ return MUL;
+}
+
+/// genMaddR - Generate madd instruction and combine mul and add using
+/// an extra virtual register
+/// Example - an ADD intermediate needs to be stored in a register:
+/// MUL I=A,B,0
+/// ADD R,I,Imm
+/// ==> ORR V, ZR, Imm
+/// ==> MADD R,A,B,V
+/// \param Root is the ADD instruction
+/// \param [out] InsInstrs is a vector of machine instructions and will
+/// contain the generated madd instruction
+/// \param IdxMulOpd is index of operand in Root that is the result of
+/// the MUL. In the example above IdxMulOpd is 1.
+/// \param MaddOpc the opcode fo the madd instruction
+/// \param VR is a virtual register that holds the value of an ADD operand
+/// (V in the example above).
+static MachineInstr *genMaddR(MachineFunction &MF, MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII, MachineInstr &Root,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ unsigned IdxMulOpd, unsigned MaddOpc,
+ unsigned VR, const TargetRegisterClass *RC) {
+ assert(IdxMulOpd == 1 || IdxMulOpd == 2);
+
+ MachineInstr *MUL = MRI.getUniqueVRegDef(Root.getOperand(IdxMulOpd).getReg());
+ unsigned ResultReg = Root.getOperand(0).getReg();
+ unsigned SrcReg0 = MUL->getOperand(1).getReg();
+ bool Src0IsKill = MUL->getOperand(1).isKill();
+ unsigned SrcReg1 = MUL->getOperand(2).getReg();
+ bool Src1IsKill = MUL->getOperand(2).isKill();
+
+ if (TargetRegisterInfo::isVirtualRegister(ResultReg))
+ MRI.constrainRegClass(ResultReg, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg0))
+ MRI.constrainRegClass(SrcReg0, RC);
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg1))
+ MRI.constrainRegClass(SrcReg1, RC);
+ if (TargetRegisterInfo::isVirtualRegister(VR))
+ MRI.constrainRegClass(VR, RC);
+
+ MachineInstrBuilder MIB = BuildMI(MF, Root.getDebugLoc(), TII->get(MaddOpc),
+ ResultReg)
+ .addReg(SrcReg0, getKillRegState(Src0IsKill))
+ .addReg(SrcReg1, getKillRegState(Src1IsKill))
+ .addReg(VR);
+ // Insert the MADD
+ InsInstrs.push_back(MIB);
+ return MUL;
+}
+
+/// When getMachineCombinerPatterns() finds potential patterns,
+/// this function generates the instructions that could replace the
+/// original code sequence
+void AArch64InstrInfo::genAlternativeCodeSequence(
+ MachineInstr &Root, MachineCombinerPattern Pattern,
+ SmallVectorImpl<MachineInstr *> &InsInstrs,
+ SmallVectorImpl<MachineInstr *> &DelInstrs,
+ DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
+ MachineBasicBlock &MBB = *Root.getParent();
+ MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
+ MachineFunction &MF = *MBB.getParent();
+ const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
+
+ MachineInstr *MUL;
+ const TargetRegisterClass *RC;
+ unsigned Opc;
+ switch (Pattern) {
+ default:
+ // signal error.
+ break;
+ case MachineCombinerPattern::MULADDW_OP1:
+ case MachineCombinerPattern::MULADDX_OP1:
+ // MUL I=A,B,0
+ // ADD R,I,C
+ // ==> MADD R,A,B,C
+ // --- Create(MADD);
+ if (Pattern == MachineCombinerPattern::MULADDW_OP1) {
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 1, Opc, RC);
+ break;
+ case MachineCombinerPattern::MULADDW_OP2:
+ case MachineCombinerPattern::MULADDX_OP2:
+ // MUL I=A,B,0
+ // ADD R,C,I
+ // ==> MADD R,A,B,C
+ // --- Create(MADD);
+ if (Pattern == MachineCombinerPattern::MULADDW_OP2) {
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
+ break;
+ case MachineCombinerPattern::MULADDWI_OP1:
+ case MachineCombinerPattern::MULADDXI_OP1: {
+ // MUL I=A,B,0
+ // ADD R,I,Imm
+ // ==> ORR V, ZR, Imm
+ // ==> MADD R,A,B,V
+ // --- Create(MADD);
+ const TargetRegisterClass *OrrRC;
+ unsigned BitSize, OrrOpc, ZeroReg;
+ if (Pattern == MachineCombinerPattern::MULADDWI_OP1) {
+ OrrOpc = AArch64::ORRWri;
+ OrrRC = &AArch64::GPR32spRegClass;
+ BitSize = 32;
+ ZeroReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ OrrOpc = AArch64::ORRXri;
+ OrrRC = &AArch64::GPR64spRegClass;
+ BitSize = 64;
+ ZeroReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ unsigned NewVR = MRI.createVirtualRegister(OrrRC);
+ uint64_t Imm = Root.getOperand(2).getImm();
+
+ if (Root.getOperand(3).isImm()) {
+ unsigned Val = Root.getOperand(3).getImm();
+ Imm = Imm << Val;
+ }
+ uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
+ MachineInstrBuilder MIB1 =
+ BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
+ .addReg(ZeroReg)
+ .addImm(Encoding);
+ InsInstrs.push_back(MIB1);
+ InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
+ MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
+ }
+ break;
+ }
+ case MachineCombinerPattern::MULSUBW_OP1:
+ case MachineCombinerPattern::MULSUBX_OP1: {
+ // MUL I=A,B,0
+ // SUB R,I, C
+ // ==> SUB V, 0, C
+ // ==> MADD R,A,B,V // = -C + A*B
+ // --- Create(MADD);
+ const TargetRegisterClass *SubRC;
+ unsigned SubOpc, ZeroReg;
+ if (Pattern == MachineCombinerPattern::MULSUBW_OP1) {
+ SubOpc = AArch64::SUBWrr;
+ SubRC = &AArch64::GPR32spRegClass;
+ ZeroReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ SubOpc = AArch64::SUBXrr;
+ SubRC = &AArch64::GPR64spRegClass;
+ ZeroReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ unsigned NewVR = MRI.createVirtualRegister(SubRC);
+ // SUB NewVR, 0, C
+ MachineInstrBuilder MIB1 =
+ BuildMI(MF, Root.getDebugLoc(), TII->get(SubOpc), NewVR)
+ .addReg(ZeroReg)
+ .addOperand(Root.getOperand(2));
+ InsInstrs.push_back(MIB1);
+ InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
+ MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
+ break;
+ }
+ case MachineCombinerPattern::MULSUBW_OP2:
+ case MachineCombinerPattern::MULSUBX_OP2:
+ // MUL I=A,B,0
+ // SUB R,C,I
+ // ==> MSUB R,A,B,C (computes C - A*B)
+ // --- Create(MSUB);
+ if (Pattern == MachineCombinerPattern::MULSUBW_OP2) {
+ Opc = AArch64::MSUBWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ Opc = AArch64::MSUBXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ MUL = genMadd(MF, MRI, TII, Root, InsInstrs, 2, Opc, RC);
+ break;
+ case MachineCombinerPattern::MULSUBWI_OP1:
+ case MachineCombinerPattern::MULSUBXI_OP1: {
+ // MUL I=A,B,0
+ // SUB R,I, Imm
+ // ==> ORR V, ZR, -Imm
+ // ==> MADD R,A,B,V // = -Imm + A*B
+ // --- Create(MADD);
+ const TargetRegisterClass *OrrRC;
+ unsigned BitSize, OrrOpc, ZeroReg;
+ if (Pattern == MachineCombinerPattern::MULSUBWI_OP1) {
+ OrrOpc = AArch64::ORRWri;
+ OrrRC = &AArch64::GPR32spRegClass;
+ BitSize = 32;
+ ZeroReg = AArch64::WZR;
+ Opc = AArch64::MADDWrrr;
+ RC = &AArch64::GPR32RegClass;
+ } else {
+ OrrOpc = AArch64::ORRXri;
+ OrrRC = &AArch64::GPR64spRegClass;
+ BitSize = 64;
+ ZeroReg = AArch64::XZR;
+ Opc = AArch64::MADDXrrr;
+ RC = &AArch64::GPR64RegClass;
+ }
+ unsigned NewVR = MRI.createVirtualRegister(OrrRC);
+ int Imm = Root.getOperand(2).getImm();
+ if (Root.getOperand(3).isImm()) {
+ unsigned Val = Root.getOperand(3).getImm();
+ Imm = Imm << Val;
+ }
+ uint64_t UImm = -Imm << (64 - BitSize) >> (64 - BitSize);
+ uint64_t Encoding;
+ if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
+ MachineInstrBuilder MIB1 =
+ BuildMI(MF, Root.getDebugLoc(), TII->get(OrrOpc), NewVR)
+ .addReg(ZeroReg)
+ .addImm(Encoding);
+ InsInstrs.push_back(MIB1);
+ InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
+ MUL = genMaddR(MF, MRI, TII, Root, InsInstrs, 1, Opc, NewVR, RC);
+ }
+ break;
+ }
+ } // end switch (Pattern)
+ // Record MUL and ADD/SUB for deletion
+ DelInstrs.push_back(MUL);
+ DelInstrs.push_back(&Root);
+
+ return;
+}
+
+/// \brief Replace csincr-branch sequence by simple conditional branch
+///
+/// Examples:
+/// 1.
+/// csinc w9, wzr, wzr, <condition code>
+/// tbnz w9, #0, 0x44
+/// to
+/// b.<inverted condition code>
+///
+/// 2.
+/// csinc w9, wzr, wzr, <condition code>
+/// tbz w9, #0, 0x44
+/// to
+/// b.<condition code>
+///
+/// \param MI Conditional Branch
+/// \return True when the simple conditional branch is generated
+///
+bool AArch64InstrInfo::optimizeCondBranch(MachineInstr *MI) const {
+ bool IsNegativeBranch = false;
+ bool IsTestAndBranch = false;
+ unsigned TargetBBInMI = 0;
+ switch (MI->getOpcode()) {
+ default:
+ llvm_unreachable("Unknown branch instruction?");
+ case AArch64::Bcc:
+ return false;
+ case AArch64::CBZW:
+ case AArch64::CBZX:
+ TargetBBInMI = 1;
+ break;
+ case AArch64::CBNZW:
+ case AArch64::CBNZX:
+ TargetBBInMI = 1;
+ IsNegativeBranch = true;
+ break;
+ case AArch64::TBZW:
+ case AArch64::TBZX:
+ TargetBBInMI = 2;
+ IsTestAndBranch = true;
+ break;
+ case AArch64::TBNZW:
+ case AArch64::TBNZX:
+ TargetBBInMI = 2;
+ IsNegativeBranch = true;
+ IsTestAndBranch = true;
+ break;
+ }
+ // So we increment a zero register and test for bits other
+ // than bit 0? Conservatively bail out in case the verifier
+ // missed this case.
+ if (IsTestAndBranch && MI->getOperand(1).getImm())
+ return false;
+
+ // Find Definition.
+ assert(MI->getParent() && "Incomplete machine instruciton\n");
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ unsigned VReg = MI->getOperand(0).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VReg))
+ return false;
+
+ MachineInstr *DefMI = MRI->getVRegDef(VReg);
+
+ // Look for CSINC
+ if (!(DefMI->getOpcode() == AArch64::CSINCWr &&
+ DefMI->getOperand(1).getReg() == AArch64::WZR &&
+ DefMI->getOperand(2).getReg() == AArch64::WZR) &&
+ !(DefMI->getOpcode() == AArch64::CSINCXr &&
+ DefMI->getOperand(1).getReg() == AArch64::XZR &&
+ DefMI->getOperand(2).getReg() == AArch64::XZR))
+ return false;
+
+ if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) != -1)
+ return false;
+
+ AArch64CC::CondCode CC =
+ (AArch64CC::CondCode)DefMI->getOperand(3).getImm();
+ bool CheckOnlyCCWrites = true;
+ // Convert only when the condition code is not modified between
+ // the CSINC and the branch. The CC may be used by other
+ // instructions in between.
+ if (modifiesConditionCode(DefMI, MI, CheckOnlyCCWrites, &getRegisterInfo()))
+ return false;
+ MachineBasicBlock &RefToMBB = *MBB;
+ MachineBasicBlock *TBB = MI->getOperand(TargetBBInMI).getMBB();
+ DebugLoc DL = MI->getDebugLoc();
+ if (IsNegativeBranch)
+ CC = AArch64CC::getInvertedCondCode(CC);
+ BuildMI(RefToMBB, MI, DL, get(AArch64::Bcc)).addImm(CC).addMBB(TBB);
+ MI->eraseFromParent();
+ return true;
+}
+
+std::pair<unsigned, unsigned>
+AArch64InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
+ const unsigned Mask = AArch64II::MO_FRAGMENT;
+ return std::make_pair(TF & Mask, TF & ~Mask);
+}
+
+ArrayRef<std::pair<unsigned, const char *>>
+AArch64InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
+ using namespace AArch64II;
+ static const std::pair<unsigned, const char *> TargetFlags[] = {
+ {MO_PAGE, "aarch64-page"},
+ {MO_PAGEOFF, "aarch64-pageoff"},
+ {MO_G3, "aarch64-g3"},
+ {MO_G2, "aarch64-g2"},
+ {MO_G1, "aarch64-g1"},
+ {MO_G0, "aarch64-g0"},
+ {MO_HI12, "aarch64-hi12"}};
+ return makeArrayRef(TargetFlags);
+}
+
+ArrayRef<std::pair<unsigned, const char *>>
+AArch64InstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
+ using namespace AArch64II;
+ static const std::pair<unsigned, const char *> TargetFlags[] = {
+ {MO_GOT, "aarch64-got"},
+ {MO_NC, "aarch64-nc"},
+ {MO_TLS, "aarch64-tls"},
+ {MO_CONSTPOOL, "aarch64-constant-pool"}};
+ return makeArrayRef(TargetFlags);
+}
OpenPOWER on IntegriCloud