diff options
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp | 10064 |
1 files changed, 10064 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp new file mode 100644 index 0000000..9f5beff --- /dev/null +++ b/contrib/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp @@ -0,0 +1,10064 @@ +//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the AArch64TargetLowering class. +// +//===----------------------------------------------------------------------===// + +#include "AArch64ISelLowering.h" +#include "AArch64CallingConvention.h" +#include "AArch64MachineFunctionInfo.h" +#include "AArch64PerfectShuffle.h" +#include "AArch64Subtarget.h" +#include "AArch64TargetMachine.h" +#include "AArch64TargetObjectFile.h" +#include "MCTargetDesc/AArch64AddressingModes.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +#define DEBUG_TYPE "aarch64-lower" + +STATISTIC(NumTailCalls, "Number of tail calls"); +STATISTIC(NumShiftInserts, "Number of vector shift inserts"); + +// Place holder until extr generation is tested fully. +static cl::opt<bool> +EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden, + cl::desc("Allow AArch64 (or (shift)(shift))->extract"), + cl::init(true)); + +static cl::opt<bool> +EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, + cl::desc("Allow AArch64 SLI/SRI formation"), + cl::init(false)); + +// FIXME: The necessary dtprel relocations don't seem to be supported +// well in the GNU bfd and gold linkers at the moment. Therefore, by +// default, for now, fall back to GeneralDynamic code generation. +cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration( + "aarch64-elf-ldtls-generation", cl::Hidden, + cl::desc("Allow AArch64 Local Dynamic TLS code generation"), + cl::init(false)); + +/// Value type used for condition codes. +static const MVT MVT_CC = MVT::i32; + +AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, + const AArch64Subtarget &STI) + : TargetLowering(TM), Subtarget(&STI) { + + // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so + // we have to make something up. Arbitrarily, choose ZeroOrOne. + setBooleanContents(ZeroOrOneBooleanContent); + // When comparing vectors the result sets the different elements in the + // vector to all-one or all-zero. + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + // Set up the register classes. + addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); + addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); + + if (Subtarget->hasFPARMv8()) { + addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); + addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); + addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); + addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); + } + + if (Subtarget->hasNEON()) { + addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); + addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); + // Someone set us up the NEON. + addDRTypeForNEON(MVT::v2f32); + addDRTypeForNEON(MVT::v8i8); + addDRTypeForNEON(MVT::v4i16); + addDRTypeForNEON(MVT::v2i32); + addDRTypeForNEON(MVT::v1i64); + addDRTypeForNEON(MVT::v1f64); + addDRTypeForNEON(MVT::v4f16); + + addQRTypeForNEON(MVT::v4f32); + addQRTypeForNEON(MVT::v2f64); + addQRTypeForNEON(MVT::v16i8); + addQRTypeForNEON(MVT::v8i16); + addQRTypeForNEON(MVT::v4i32); + addQRTypeForNEON(MVT::v2i64); + addQRTypeForNEON(MVT::v8f16); + } + + // Compute derived properties from the register classes + computeRegisterProperties(Subtarget->getRegisterInfo()); + + // Provide all sorts of operation actions + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::SETCC, MVT::i32, Custom); + setOperationAction(ISD::SETCC, MVT::i64, Custom); + setOperationAction(ISD::SETCC, MVT::f32, Custom); + setOperationAction(ISD::SETCC, MVT::f64, Custom); + setOperationAction(ISD::BRCOND, MVT::Other, Expand); + setOperationAction(ISD::BR_CC, MVT::i32, Custom); + setOperationAction(ISD::BR_CC, MVT::i64, Custom); + setOperationAction(ISD::BR_CC, MVT::f32, Custom); + setOperationAction(ISD::BR_CC, MVT::f64, Custom); + setOperationAction(ISD::SELECT, MVT::i32, Custom); + setOperationAction(ISD::SELECT, MVT::i64, Custom); + setOperationAction(ISD::SELECT, MVT::f32, Custom); + setOperationAction(ISD::SELECT, MVT::f64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::JumpTable, MVT::i64, Custom); + + setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); + setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); + + setOperationAction(ISD::FREM, MVT::f32, Expand); + setOperationAction(ISD::FREM, MVT::f64, Expand); + setOperationAction(ISD::FREM, MVT::f80, Expand); + + // Custom lowering hooks are needed for XOR + // to fold it into CSINC/CSINV. + setOperationAction(ISD::XOR, MVT::i32, Custom); + setOperationAction(ISD::XOR, MVT::i64, Custom); + + // Virtually no operation on f128 is legal, but LLVM can't expand them when + // there's a valid register class, so we need custom operations in most cases. + setOperationAction(ISD::FABS, MVT::f128, Expand); + setOperationAction(ISD::FADD, MVT::f128, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); + setOperationAction(ISD::FCOS, MVT::f128, Expand); + setOperationAction(ISD::FDIV, MVT::f128, Custom); + setOperationAction(ISD::FMA, MVT::f128, Expand); + setOperationAction(ISD::FMUL, MVT::f128, Custom); + setOperationAction(ISD::FNEG, MVT::f128, Expand); + setOperationAction(ISD::FPOW, MVT::f128, Expand); + setOperationAction(ISD::FREM, MVT::f128, Expand); + setOperationAction(ISD::FRINT, MVT::f128, Expand); + setOperationAction(ISD::FSIN, MVT::f128, Expand); + setOperationAction(ISD::FSINCOS, MVT::f128, Expand); + setOperationAction(ISD::FSQRT, MVT::f128, Expand); + setOperationAction(ISD::FSUB, MVT::f128, Custom); + setOperationAction(ISD::FTRUNC, MVT::f128, Expand); + setOperationAction(ISD::SETCC, MVT::f128, Custom); + setOperationAction(ISD::BR_CC, MVT::f128, Custom); + setOperationAction(ISD::SELECT, MVT::f128, Custom); + setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); + setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); + + // Lowering for many of the conversions is actually specified by the non-f128 + // type. The LowerXXX function will be trivial when f128 isn't involved. + setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); + setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); + setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); + + // Variable arguments. + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VAARG, MVT::Other, Custom); + setOperationAction(ISD::VACOPY, MVT::Other, Custom); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + + // Variable-sized objects. + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); + + // Constant pool entries + setOperationAction(ISD::ConstantPool, MVT::i64, Custom); + + // BlockAddress + setOperationAction(ISD::BlockAddress, MVT::i64, Custom); + + // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. + setOperationAction(ISD::ADDC, MVT::i32, Custom); + setOperationAction(ISD::ADDE, MVT::i32, Custom); + setOperationAction(ISD::SUBC, MVT::i32, Custom); + setOperationAction(ISD::SUBE, MVT::i32, Custom); + setOperationAction(ISD::ADDC, MVT::i64, Custom); + setOperationAction(ISD::ADDE, MVT::i64, Custom); + setOperationAction(ISD::SUBC, MVT::i64, Custom); + setOperationAction(ISD::SUBE, MVT::i64, Custom); + + // AArch64 lacks both left-rotate and popcount instructions. + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i64, Expand); + for (MVT VT : MVT::vector_valuetypes()) { + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + } + + // AArch64 doesn't have {U|S}MUL_LOHI. + setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); + setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); + + + // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero + // counterparts, which AArch64 supports directly. + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); + + setOperationAction(ISD::CTPOP, MVT::i32, Custom); + setOperationAction(ISD::CTPOP, MVT::i64, Custom); + + setOperationAction(ISD::SDIVREM, MVT::i32, Expand); + setOperationAction(ISD::SDIVREM, MVT::i64, Expand); + for (MVT VT : MVT::vector_valuetypes()) { + setOperationAction(ISD::SDIVREM, VT, Expand); + setOperationAction(ISD::UDIVREM, VT, Expand); + } + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i64, Expand); + setOperationAction(ISD::UDIVREM, MVT::i32, Expand); + setOperationAction(ISD::UDIVREM, MVT::i64, Expand); + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i64, Expand); + + // Custom lower Add/Sub/Mul with overflow. + setOperationAction(ISD::SADDO, MVT::i32, Custom); + setOperationAction(ISD::SADDO, MVT::i64, Custom); + setOperationAction(ISD::UADDO, MVT::i32, Custom); + setOperationAction(ISD::UADDO, MVT::i64, Custom); + setOperationAction(ISD::SSUBO, MVT::i32, Custom); + setOperationAction(ISD::SSUBO, MVT::i64, Custom); + setOperationAction(ISD::USUBO, MVT::i32, Custom); + setOperationAction(ISD::USUBO, MVT::i64, Custom); + setOperationAction(ISD::SMULO, MVT::i32, Custom); + setOperationAction(ISD::SMULO, MVT::i64, Custom); + setOperationAction(ISD::UMULO, MVT::i32, Custom); + setOperationAction(ISD::UMULO, MVT::i64, Custom); + + setOperationAction(ISD::FSIN, MVT::f32, Expand); + setOperationAction(ISD::FSIN, MVT::f64, Expand); + setOperationAction(ISD::FCOS, MVT::f32, Expand); + setOperationAction(ISD::FCOS, MVT::f64, Expand); + setOperationAction(ISD::FPOW, MVT::f32, Expand); + setOperationAction(ISD::FPOW, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // f16 is a storage-only type, always promote it to f32. + setOperationAction(ISD::SETCC, MVT::f16, Promote); + setOperationAction(ISD::BR_CC, MVT::f16, Promote); + setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); + setOperationAction(ISD::SELECT, MVT::f16, Promote); + setOperationAction(ISD::FADD, MVT::f16, Promote); + setOperationAction(ISD::FSUB, MVT::f16, Promote); + setOperationAction(ISD::FMUL, MVT::f16, Promote); + setOperationAction(ISD::FDIV, MVT::f16, Promote); + setOperationAction(ISD::FREM, MVT::f16, Promote); + setOperationAction(ISD::FMA, MVT::f16, Promote); + setOperationAction(ISD::FNEG, MVT::f16, Promote); + setOperationAction(ISD::FABS, MVT::f16, Promote); + setOperationAction(ISD::FCEIL, MVT::f16, Promote); + setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); + setOperationAction(ISD::FCOS, MVT::f16, Promote); + setOperationAction(ISD::FFLOOR, MVT::f16, Promote); + setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); + setOperationAction(ISD::FPOW, MVT::f16, Promote); + setOperationAction(ISD::FPOWI, MVT::f16, Promote); + setOperationAction(ISD::FRINT, MVT::f16, Promote); + setOperationAction(ISD::FSIN, MVT::f16, Promote); + setOperationAction(ISD::FSINCOS, MVT::f16, Promote); + setOperationAction(ISD::FSQRT, MVT::f16, Promote); + setOperationAction(ISD::FEXP, MVT::f16, Promote); + setOperationAction(ISD::FEXP2, MVT::f16, Promote); + setOperationAction(ISD::FLOG, MVT::f16, Promote); + setOperationAction(ISD::FLOG2, MVT::f16, Promote); + setOperationAction(ISD::FLOG10, MVT::f16, Promote); + setOperationAction(ISD::FROUND, MVT::f16, Promote); + setOperationAction(ISD::FTRUNC, MVT::f16, Promote); + setOperationAction(ISD::FMINNUM, MVT::f16, Promote); + setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); + setOperationAction(ISD::FMINNAN, MVT::f16, Promote); + setOperationAction(ISD::FMAXNAN, MVT::f16, Promote); + + // v4f16 is also a storage-only type, so promote it to v4f32 when that is + // known to be safe. + setOperationAction(ISD::FADD, MVT::v4f16, Promote); + setOperationAction(ISD::FSUB, MVT::v4f16, Promote); + setOperationAction(ISD::FMUL, MVT::v4f16, Promote); + setOperationAction(ISD::FDIV, MVT::v4f16, Promote); + setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote); + setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote); + AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); + AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); + AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); + AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); + AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32); + AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32); + + // Expand all other v4f16 operations. + // FIXME: We could generate better code by promoting some operations to + // a pair of v4f32s + setOperationAction(ISD::FABS, MVT::v4f16, Expand); + setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); + setOperationAction(ISD::FCOS, MVT::v4f16, Expand); + setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); + setOperationAction(ISD::FMA, MVT::v4f16, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); + setOperationAction(ISD::FNEG, MVT::v4f16, Expand); + setOperationAction(ISD::FPOW, MVT::v4f16, Expand); + setOperationAction(ISD::FPOWI, MVT::v4f16, Expand); + setOperationAction(ISD::FREM, MVT::v4f16, Expand); + setOperationAction(ISD::FROUND, MVT::v4f16, Expand); + setOperationAction(ISD::FRINT, MVT::v4f16, Expand); + setOperationAction(ISD::FSIN, MVT::v4f16, Expand); + setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand); + setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); + setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); + setOperationAction(ISD::SETCC, MVT::v4f16, Expand); + setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); + setOperationAction(ISD::SELECT, MVT::v4f16, Expand); + setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); + setOperationAction(ISD::FEXP, MVT::v4f16, Expand); + setOperationAction(ISD::FEXP2, MVT::v4f16, Expand); + setOperationAction(ISD::FLOG, MVT::v4f16, Expand); + setOperationAction(ISD::FLOG2, MVT::v4f16, Expand); + setOperationAction(ISD::FLOG10, MVT::v4f16, Expand); + + + // v8f16 is also a storage-only type, so expand it. + setOperationAction(ISD::FABS, MVT::v8f16, Expand); + setOperationAction(ISD::FADD, MVT::v8f16, Expand); + setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); + setOperationAction(ISD::FCOS, MVT::v8f16, Expand); + setOperationAction(ISD::FDIV, MVT::v8f16, Expand); + setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); + setOperationAction(ISD::FMA, MVT::v8f16, Expand); + setOperationAction(ISD::FMUL, MVT::v8f16, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); + setOperationAction(ISD::FNEG, MVT::v8f16, Expand); + setOperationAction(ISD::FPOW, MVT::v8f16, Expand); + setOperationAction(ISD::FPOWI, MVT::v8f16, Expand); + setOperationAction(ISD::FREM, MVT::v8f16, Expand); + setOperationAction(ISD::FROUND, MVT::v8f16, Expand); + setOperationAction(ISD::FRINT, MVT::v8f16, Expand); + setOperationAction(ISD::FSIN, MVT::v8f16, Expand); + setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand); + setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); + setOperationAction(ISD::FSUB, MVT::v8f16, Expand); + setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); + setOperationAction(ISD::SETCC, MVT::v8f16, Expand); + setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); + setOperationAction(ISD::SELECT, MVT::v8f16, Expand); + setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); + setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); + setOperationAction(ISD::FEXP, MVT::v8f16, Expand); + setOperationAction(ISD::FEXP2, MVT::v8f16, Expand); + setOperationAction(ISD::FLOG, MVT::v8f16, Expand); + setOperationAction(ISD::FLOG2, MVT::v8f16, Expand); + setOperationAction(ISD::FLOG10, MVT::v8f16, Expand); + + // AArch64 has implementations of a lot of rounding-like FP operations. + for (MVT Ty : {MVT::f32, MVT::f64}) { + setOperationAction(ISD::FFLOOR, Ty, Legal); + setOperationAction(ISD::FNEARBYINT, Ty, Legal); + setOperationAction(ISD::FCEIL, Ty, Legal); + setOperationAction(ISD::FRINT, Ty, Legal); + setOperationAction(ISD::FTRUNC, Ty, Legal); + setOperationAction(ISD::FROUND, Ty, Legal); + setOperationAction(ISD::FMINNUM, Ty, Legal); + setOperationAction(ISD::FMAXNUM, Ty, Legal); + setOperationAction(ISD::FMINNAN, Ty, Legal); + setOperationAction(ISD::FMAXNAN, Ty, Legal); + } + + setOperationAction(ISD::PREFETCH, MVT::Other, Custom); + + // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. + // This requires the Performance Monitors extension. + if (Subtarget->hasPerfMon()) + setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); + + if (Subtarget->isTargetMachO()) { + // For iOS, we don't want to the normal expansion of a libcall to + // sincos. We want to issue a libcall to __sincos_stret to avoid memory + // traffic. + setOperationAction(ISD::FSINCOS, MVT::f64, Custom); + setOperationAction(ISD::FSINCOS, MVT::f32, Custom); + } else { + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + } + + // Make floating-point constants legal for the large code model, so they don't + // become loads from the constant pool. + if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { + setOperationAction(ISD::ConstantFP, MVT::f32, Legal); + setOperationAction(ISD::ConstantFP, MVT::f64, Legal); + } + + // AArch64 does not have floating-point extending loads, i1 sign-extending + // load, floating-point truncating stores, or v2i32->v2i16 truncating store. + for (MVT VT : MVT::fp_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); + } + for (MVT VT : MVT::integer_valuetypes()) + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); + + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + setTruncStoreAction(MVT::f128, MVT::f80, Expand); + setTruncStoreAction(MVT::f128, MVT::f64, Expand); + setTruncStoreAction(MVT::f128, MVT::f32, Expand); + setTruncStoreAction(MVT::f128, MVT::f16, Expand); + + setOperationAction(ISD::BITCAST, MVT::i16, Custom); + setOperationAction(ISD::BITCAST, MVT::f16, Custom); + + // Indexed loads and stores are supported. + for (unsigned im = (unsigned)ISD::PRE_INC; + im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { + setIndexedLoadAction(im, MVT::i8, Legal); + setIndexedLoadAction(im, MVT::i16, Legal); + setIndexedLoadAction(im, MVT::i32, Legal); + setIndexedLoadAction(im, MVT::i64, Legal); + setIndexedLoadAction(im, MVT::f64, Legal); + setIndexedLoadAction(im, MVT::f32, Legal); + setIndexedLoadAction(im, MVT::f16, Legal); + setIndexedStoreAction(im, MVT::i8, Legal); + setIndexedStoreAction(im, MVT::i16, Legal); + setIndexedStoreAction(im, MVT::i32, Legal); + setIndexedStoreAction(im, MVT::i64, Legal); + setIndexedStoreAction(im, MVT::f64, Legal); + setIndexedStoreAction(im, MVT::f32, Legal); + setIndexedStoreAction(im, MVT::f16, Legal); + } + + // Trap. + setOperationAction(ISD::TRAP, MVT::Other, Legal); + + // We combine OR nodes for bitfield operations. + setTargetDAGCombine(ISD::OR); + + // Vector add and sub nodes may conceal a high-half opportunity. + // Also, try to fold ADD into CSINC/CSINV.. + setTargetDAGCombine(ISD::ADD); + setTargetDAGCombine(ISD::SUB); + + setTargetDAGCombine(ISD::XOR); + setTargetDAGCombine(ISD::SINT_TO_FP); + setTargetDAGCombine(ISD::UINT_TO_FP); + + setTargetDAGCombine(ISD::FP_TO_SINT); + setTargetDAGCombine(ISD::FP_TO_UINT); + setTargetDAGCombine(ISD::FDIV); + + setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); + + setTargetDAGCombine(ISD::ANY_EXTEND); + setTargetDAGCombine(ISD::ZERO_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND); + setTargetDAGCombine(ISD::BITCAST); + setTargetDAGCombine(ISD::CONCAT_VECTORS); + setTargetDAGCombine(ISD::STORE); + if (Subtarget->supportsAddressTopByteIgnored()) + setTargetDAGCombine(ISD::LOAD); + + setTargetDAGCombine(ISD::MUL); + + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::VSELECT); + + setTargetDAGCombine(ISD::INTRINSIC_VOID); + setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); + setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); + setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + + MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8; + MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4; + MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4; + + setStackPointerRegisterToSaveRestore(AArch64::SP); + + setSchedulingPreference(Sched::Hybrid); + + // Enable TBZ/TBNZ + MaskAndBranchFoldingIsLegal = true; + EnableExtLdPromotion = true; + + setMinFunctionAlignment(2); + + setHasExtractBitsInsn(true); + + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + + if (Subtarget->hasNEON()) { + // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to + // silliness like this: + setOperationAction(ISD::FABS, MVT::v1f64, Expand); + setOperationAction(ISD::FADD, MVT::v1f64, Expand); + setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); + setOperationAction(ISD::FCOS, MVT::v1f64, Expand); + setOperationAction(ISD::FDIV, MVT::v1f64, Expand); + setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); + setOperationAction(ISD::FMA, MVT::v1f64, Expand); + setOperationAction(ISD::FMUL, MVT::v1f64, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); + setOperationAction(ISD::FNEG, MVT::v1f64, Expand); + setOperationAction(ISD::FPOW, MVT::v1f64, Expand); + setOperationAction(ISD::FREM, MVT::v1f64, Expand); + setOperationAction(ISD::FROUND, MVT::v1f64, Expand); + setOperationAction(ISD::FRINT, MVT::v1f64, Expand); + setOperationAction(ISD::FSIN, MVT::v1f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); + setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); + setOperationAction(ISD::FSUB, MVT::v1f64, Expand); + setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); + setOperationAction(ISD::SETCC, MVT::v1f64, Expand); + setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); + setOperationAction(ISD::SELECT, MVT::v1f64, Expand); + setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); + setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); + + setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); + setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); + setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); + + setOperationAction(ISD::MUL, MVT::v1i64, Expand); + + // AArch64 doesn't have a direct vector ->f32 conversion instructions for + // elements smaller than i32, so promote the input to i32 first. + setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote); + // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16 + // -> v8f16 conversions. + setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote); + // Similarly, there is no direct i32 -> f64 vector conversion instruction. + setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); + // Or, direct i32 -> f16 vector conversion. Set it so custom, so the + // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 + setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); + + // AArch64 doesn't have MUL.2d: + setOperationAction(ISD::MUL, MVT::v2i64, Expand); + // Custom handling for some quad-vector types to detect MULL. + setOperationAction(ISD::MUL, MVT::v8i16, Custom); + setOperationAction(ISD::MUL, MVT::v4i32, Custom); + setOperationAction(ISD::MUL, MVT::v2i64, Custom); + + setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); + setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); + // Likewise, narrowing and extending vector loads/stores aren't handled + // directly. + for (MVT VT : MVT::vector_valuetypes()) { + setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); + + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + + setOperationAction(ISD::BSWAP, VT, Expand); + + for (MVT InnerVT : MVT::vector_valuetypes()) { + setTruncStoreAction(VT, InnerVT, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); + } + } + + // AArch64 has implementations of a lot of rounding-like FP operations. + for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) { + setOperationAction(ISD::FFLOOR, Ty, Legal); + setOperationAction(ISD::FNEARBYINT, Ty, Legal); + setOperationAction(ISD::FCEIL, Ty, Legal); + setOperationAction(ISD::FRINT, Ty, Legal); + setOperationAction(ISD::FTRUNC, Ty, Legal); + setOperationAction(ISD::FROUND, Ty, Legal); + } + } + + // Prefer likely predicted branches to selects on out-of-order cores. + if (Subtarget->isCortexA57()) + PredictableSelectIsExpensive = true; +} + +void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) { + if (VT == MVT::v2f32 || VT == MVT::v4f16) { + setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); + AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32); + + setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); + AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32); + } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) { + setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); + AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64); + + setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); + AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64); + } + + // Mark vector float intrinsics as expand. + if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { + setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand); + + // But we do support custom-lowering for FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, VT.getSimpleVT(), Custom); + } + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom); + setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom); + setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); + setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); + setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); + setOperationAction(ISD::AND, VT.getSimpleVT(), Custom); + setOperationAction(ISD::OR, VT.getSimpleVT(), Custom); + setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom); + setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); + + setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); + setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); + setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand); + for (MVT InnerVT : MVT::all_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand); + + // CNT supports only B element sizes. + if (VT != MVT::v8i8 && VT != MVT::v16i8) + setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand); + + setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); + setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); + setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); + setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); + setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); + + setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom); + setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom); + + // [SU][MIN|MAX] are available for all NEON types apart from i64. + if (!VT.isFloatingPoint() && + VT.getSimpleVT() != MVT::v2i64 && VT.getSimpleVT() != MVT::v1i64) + for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) + setOperationAction(Opcode, VT.getSimpleVT(), Legal); + + // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!). + if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16) + for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN, + ISD::FMINNUM, ISD::FMAXNUM}) + setOperationAction(Opcode, VT.getSimpleVT(), Legal); + + if (Subtarget->isLittleEndian()) { + for (unsigned im = (unsigned)ISD::PRE_INC; + im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { + setIndexedLoadAction(im, VT.getSimpleVT(), Legal); + setIndexedStoreAction(im, VT.getSimpleVT(), Legal); + } + } +} + +void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { + addRegisterClass(VT, &AArch64::FPR64RegClass); + addTypeForNEON(VT, MVT::v2i32); +} + +void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { + addRegisterClass(VT, &AArch64::FPR128RegClass); + addTypeForNEON(VT, MVT::v4i32); +} + +EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, + EVT VT) const { + if (!VT.isVector()) + return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +/// computeKnownBitsForTargetNode - Determine which of the bits specified in +/// Mask are known to be either zero or one and return them in the +/// KnownZero/KnownOne bitsets. +void AArch64TargetLowering::computeKnownBitsForTargetNode( + const SDValue Op, APInt &KnownZero, APInt &KnownOne, + const SelectionDAG &DAG, unsigned Depth) const { + switch (Op.getOpcode()) { + default: + break; + case AArch64ISD::CSEL: { + APInt KnownZero2, KnownOne2; + DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1); + DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1); + KnownZero &= KnownZero2; + KnownOne &= KnownOne2; + break; + } + case ISD::INTRINSIC_W_CHAIN: { + ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); + Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); + switch (IntID) { + default: return; + case Intrinsic::aarch64_ldaxr: + case Intrinsic::aarch64_ldxr: { + unsigned BitWidth = KnownOne.getBitWidth(); + EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); + unsigned MemBits = VT.getScalarType().getSizeInBits(); + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); + return; + } + } + break; + } + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_VOID: { + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + switch (IntNo) { + default: + break; + case Intrinsic::aarch64_neon_umaxv: + case Intrinsic::aarch64_neon_uminv: { + // Figure out the datatype of the vector operand. The UMINV instruction + // will zero extend the result, so we can mark as known zero all the + // bits larger than the element datatype. 32-bit or larget doesn't need + // this as those are legal types and will be handled by isel directly. + MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); + unsigned BitWidth = KnownZero.getBitWidth(); + if (VT == MVT::v8i8 || VT == MVT::v16i8) { + assert(BitWidth >= 8 && "Unexpected width!"); + APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); + KnownZero |= Mask; + } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { + assert(BitWidth >= 16 && "Unexpected width!"); + APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); + KnownZero |= Mask; + } + break; + } break; + } + } + } +} + +MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, + EVT) const { + return MVT::i64; +} + +bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, + unsigned AddrSpace, + unsigned Align, + bool *Fast) const { + if (Subtarget->requiresStrictAlign()) + return false; + + // FIXME: This is mostly true for Cyclone, but not necessarily others. + if (Fast) { + // FIXME: Define an attribute for slow unaligned accesses instead of + // relying on the CPU type as a proxy. + // On Cyclone, unaligned 128-bit stores are slow. + *Fast = !Subtarget->isCyclone() || VT.getStoreSize() != 16 || + // See comments in performSTORECombine() for more details about + // these conditions. + + // Code that uses clang vector extensions can mark that it + // wants unaligned accesses to be treated as fast by + // underspecifying alignment to be 1 or 2. + Align <= 2 || + + // Disregard v2i64. Memcpy lowering produces those and splitting + // them regresses performance on micro-benchmarks and olden/bh. + VT == MVT::v2i64; + } + return true; +} + +FastISel * +AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) const { + return AArch64::createFastISel(funcInfo, libInfo); +} + +const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((AArch64ISD::NodeType)Opcode) { + case AArch64ISD::FIRST_NUMBER: break; + case AArch64ISD::CALL: return "AArch64ISD::CALL"; + case AArch64ISD::ADRP: return "AArch64ISD::ADRP"; + case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow"; + case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot"; + case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG"; + case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND"; + case AArch64ISD::CSEL: return "AArch64ISD::CSEL"; + case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL"; + case AArch64ISD::CSINV: return "AArch64ISD::CSINV"; + case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG"; + case AArch64ISD::CSINC: return "AArch64ISD::CSINC"; + case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; + case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ"; + case AArch64ISD::ADC: return "AArch64ISD::ADC"; + case AArch64ISD::SBC: return "AArch64ISD::SBC"; + case AArch64ISD::ADDS: return "AArch64ISD::ADDS"; + case AArch64ISD::SUBS: return "AArch64ISD::SUBS"; + case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; + case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; + case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; + case AArch64ISD::CCMP: return "AArch64ISD::CCMP"; + case AArch64ISD::CCMN: return "AArch64ISD::CCMN"; + case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP"; + case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; + case AArch64ISD::DUP: return "AArch64ISD::DUP"; + case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8"; + case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16"; + case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32"; + case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64"; + case AArch64ISD::MOVI: return "AArch64ISD::MOVI"; + case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift"; + case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit"; + case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl"; + case AArch64ISD::FMOV: return "AArch64ISD::FMOV"; + case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift"; + case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl"; + case AArch64ISD::BICi: return "AArch64ISD::BICi"; + case AArch64ISD::ORRi: return "AArch64ISD::ORRi"; + case AArch64ISD::BSL: return "AArch64ISD::BSL"; + case AArch64ISD::NEG: return "AArch64ISD::NEG"; + case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; + case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1"; + case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2"; + case AArch64ISD::UZP1: return "AArch64ISD::UZP1"; + case AArch64ISD::UZP2: return "AArch64ISD::UZP2"; + case AArch64ISD::TRN1: return "AArch64ISD::TRN1"; + case AArch64ISD::TRN2: return "AArch64ISD::TRN2"; + case AArch64ISD::REV16: return "AArch64ISD::REV16"; + case AArch64ISD::REV32: return "AArch64ISD::REV32"; + case AArch64ISD::REV64: return "AArch64ISD::REV64"; + case AArch64ISD::EXT: return "AArch64ISD::EXT"; + case AArch64ISD::VSHL: return "AArch64ISD::VSHL"; + case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR"; + case AArch64ISD::VASHR: return "AArch64ISD::VASHR"; + case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ"; + case AArch64ISD::CMGE: return "AArch64ISD::CMGE"; + case AArch64ISD::CMGT: return "AArch64ISD::CMGT"; + case AArch64ISD::CMHI: return "AArch64ISD::CMHI"; + case AArch64ISD::CMHS: return "AArch64ISD::CMHS"; + case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ"; + case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE"; + case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT"; + case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz"; + case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz"; + case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz"; + case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz"; + case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz"; + case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz"; + case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz"; + case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz"; + case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz"; + case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz"; + case AArch64ISD::SADDV: return "AArch64ISD::SADDV"; + case AArch64ISD::UADDV: return "AArch64ISD::UADDV"; + case AArch64ISD::SMINV: return "AArch64ISD::SMINV"; + case AArch64ISD::UMINV: return "AArch64ISD::UMINV"; + case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV"; + case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV"; + case AArch64ISD::NOT: return "AArch64ISD::NOT"; + case AArch64ISD::BIT: return "AArch64ISD::BIT"; + case AArch64ISD::CBZ: return "AArch64ISD::CBZ"; + case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ"; + case AArch64ISD::TBZ: return "AArch64ISD::TBZ"; + case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ"; + case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; + case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH"; + case AArch64ISD::SITOF: return "AArch64ISD::SITOF"; + case AArch64ISD::UITOF: return "AArch64ISD::UITOF"; + case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST"; + case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I"; + case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I"; + case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I"; + case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I"; + case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I"; + case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; + case AArch64ISD::LD2post: return "AArch64ISD::LD2post"; + case AArch64ISD::LD3post: return "AArch64ISD::LD3post"; + case AArch64ISD::LD4post: return "AArch64ISD::LD4post"; + case AArch64ISD::ST2post: return "AArch64ISD::ST2post"; + case AArch64ISD::ST3post: return "AArch64ISD::ST3post"; + case AArch64ISD::ST4post: return "AArch64ISD::ST4post"; + case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post"; + case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post"; + case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post"; + case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post"; + case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post"; + case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post"; + case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost"; + case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost"; + case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost"; + case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost"; + case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost"; + case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost"; + case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost"; + case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost"; + case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost"; + case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost"; + case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; + case AArch64ISD::SMULL: return "AArch64ISD::SMULL"; + case AArch64ISD::UMULL: return "AArch64ISD::UMULL"; + } + return nullptr; +} + +MachineBasicBlock * +AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, + MachineBasicBlock *MBB) const { + // We materialise the F128CSEL pseudo-instruction as some control flow and a + // phi node: + + // OrigBB: + // [... previous instrs leading to comparison ...] + // b.ne TrueBB + // b EndBB + // TrueBB: + // ; Fallthrough + // EndBB: + // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] + + MachineFunction *MF = MBB->getParent(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + DebugLoc DL = MI->getDebugLoc(); + MachineFunction::iterator It = ++MBB->getIterator(); + + unsigned DestReg = MI->getOperand(0).getReg(); + unsigned IfTrueReg = MI->getOperand(1).getReg(); + unsigned IfFalseReg = MI->getOperand(2).getReg(); + unsigned CondCode = MI->getOperand(3).getImm(); + bool NZCVKilled = MI->getOperand(4).isKill(); + + MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); + MF->insert(It, TrueBB); + MF->insert(It, EndBB); + + // Transfer rest of current basic-block to EndBB + EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), + MBB->end()); + EndBB->transferSuccessorsAndUpdatePHIs(MBB); + + BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); + BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); + MBB->addSuccessor(TrueBB); + MBB->addSuccessor(EndBB); + + // TrueBB falls through to the end. + TrueBB->addSuccessor(EndBB); + + if (!NZCVKilled) { + TrueBB->addLiveIn(AArch64::NZCV); + EndBB->addLiveIn(AArch64::NZCV); + } + + BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) + .addReg(IfTrueReg) + .addMBB(TrueBB) + .addReg(IfFalseReg) + .addMBB(MBB); + + MI->eraseFromParent(); + return EndBB; +} + +MachineBasicBlock * +AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + switch (MI->getOpcode()) { + default: +#ifndef NDEBUG + MI->dump(); +#endif + llvm_unreachable("Unexpected instruction for custom inserter!"); + + case AArch64::F128CSEL: + return EmitF128CSEL(MI, BB); + + case TargetOpcode::STACKMAP: + case TargetOpcode::PATCHPOINT: + return emitPatchPoint(MI, BB); + } +} + +//===----------------------------------------------------------------------===// +// AArch64 Lowering private implementation. +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Lowering Code +//===----------------------------------------------------------------------===// + +/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 +/// CC +static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { + switch (CC) { + default: + llvm_unreachable("Unknown condition code!"); + case ISD::SETNE: + return AArch64CC::NE; + case ISD::SETEQ: + return AArch64CC::EQ; + case ISD::SETGT: + return AArch64CC::GT; + case ISD::SETGE: + return AArch64CC::GE; + case ISD::SETLT: + return AArch64CC::LT; + case ISD::SETLE: + return AArch64CC::LE; + case ISD::SETUGT: + return AArch64CC::HI; + case ISD::SETUGE: + return AArch64CC::HS; + case ISD::SETULT: + return AArch64CC::LO; + case ISD::SETULE: + return AArch64CC::LS; + } +} + +/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. +static void changeFPCCToAArch64CC(ISD::CondCode CC, + AArch64CC::CondCode &CondCode, + AArch64CC::CondCode &CondCode2) { + CondCode2 = AArch64CC::AL; + switch (CC) { + default: + llvm_unreachable("Unknown FP condition!"); + case ISD::SETEQ: + case ISD::SETOEQ: + CondCode = AArch64CC::EQ; + break; + case ISD::SETGT: + case ISD::SETOGT: + CondCode = AArch64CC::GT; + break; + case ISD::SETGE: + case ISD::SETOGE: + CondCode = AArch64CC::GE; + break; + case ISD::SETOLT: + CondCode = AArch64CC::MI; + break; + case ISD::SETOLE: + CondCode = AArch64CC::LS; + break; + case ISD::SETONE: + CondCode = AArch64CC::MI; + CondCode2 = AArch64CC::GT; + break; + case ISD::SETO: + CondCode = AArch64CC::VC; + break; + case ISD::SETUO: + CondCode = AArch64CC::VS; + break; + case ISD::SETUEQ: + CondCode = AArch64CC::EQ; + CondCode2 = AArch64CC::VS; + break; + case ISD::SETUGT: + CondCode = AArch64CC::HI; + break; + case ISD::SETUGE: + CondCode = AArch64CC::PL; + break; + case ISD::SETLT: + case ISD::SETULT: + CondCode = AArch64CC::LT; + break; + case ISD::SETLE: + case ISD::SETULE: + CondCode = AArch64CC::LE; + break; + case ISD::SETNE: + case ISD::SETUNE: + CondCode = AArch64CC::NE; + break; + } +} + +/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 +/// CC usable with the vector instructions. Fewer operations are available +/// without a real NZCV register, so we have to use less efficient combinations +/// to get the same effect. +static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, + AArch64CC::CondCode &CondCode, + AArch64CC::CondCode &CondCode2, + bool &Invert) { + Invert = false; + switch (CC) { + default: + // Mostly the scalar mappings work fine. + changeFPCCToAArch64CC(CC, CondCode, CondCode2); + break; + case ISD::SETUO: + Invert = true; // Fallthrough + case ISD::SETO: + CondCode = AArch64CC::MI; + CondCode2 = AArch64CC::GE; + break; + case ISD::SETUEQ: + case ISD::SETULT: + case ISD::SETULE: + case ISD::SETUGT: + case ISD::SETUGE: + // All of the compare-mask comparisons are ordered, but we can switch + // between the two by a double inversion. E.g. ULE == !OGT. + Invert = true; + changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2); + break; + } +} + +static bool isLegalArithImmed(uint64_t C) { + // Matches AArch64DAGToDAGISel::SelectArithImmed(). + return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); +} + +static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, + SDLoc dl, SelectionDAG &DAG) { + EVT VT = LHS.getValueType(); + + if (VT.isFloatingPoint()) + return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); + + // The CMP instruction is just an alias for SUBS, and representing it as + // SUBS means that it's possible to get CSE with subtract operations. + // A later phase can perform the optimization of setting the destination + // register to WZR/XZR if it ends up being unused. + unsigned Opcode = AArch64ISD::SUBS; + + if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on + // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags + // can be set differently by this operation. It comes down to whether + // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then + // everything is fine. If not then the optimization is wrong. Thus general + // comparisons are only valid if op2 != 0. + + // So, finally, the only LLVM-native comparisons that don't mention C and V + // are SETEQ and SETNE. They're the only ones we can safely use CMN for in + // the absence of information about op2. + Opcode = AArch64ISD::ADDS; + RHS = RHS.getOperand(1); + } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) && + !isUnsignedIntSetCC(CC)) { + // Similarly, (CMP (and X, Y), 0) can be implemented with a TST + // (a.k.a. ANDS) except that the flags are only guaranteed to work for one + // of the signed comparisons. + Opcode = AArch64ISD::ANDS; + RHS = LHS.getOperand(1); + LHS = LHS.getOperand(0); + } + + return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) + .getValue(1); +} + +/// \defgroup AArch64CCMP CMP;CCMP matching +/// +/// These functions deal with the formation of CMP;CCMP;... sequences. +/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of +/// a comparison. They set the NZCV flags to a predefined value if their +/// predicate is false. This allows to express arbitrary conjunctions, for +/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))" +/// expressed as: +/// cmp A +/// ccmp B, inv(CB), CA +/// check for CB flags +/// +/// In general we can create code for arbitrary "... (and (and A B) C)" +/// sequences. We can also implement some "or" expressions, because "(or A B)" +/// is equivalent to "not (and (not A) (not B))" and we can implement some +/// negation operations: +/// We can negate the results of a single comparison by inverting the flags +/// used when the predicate fails and inverting the flags tested in the next +/// instruction; We can also negate the results of the whole previous +/// conditional compare sequence by inverting the flags tested in the next +/// instruction. However there is no way to negate the result of a partial +/// sequence. +/// +/// Therefore on encountering an "or" expression we can negate the subtree on +/// one side and have to be able to push the negate to the leafs of the subtree +/// on the other side (see also the comments in code). As complete example: +/// "or (or (setCA (cmp A)) (setCB (cmp B))) +/// (and (setCC (cmp C)) (setCD (cmp D)))" +/// is transformed to +/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D)))) +/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" +/// and implemented as: +/// cmp C +/// ccmp D, inv(CD), CC +/// ccmp A, CA, inv(CD) +/// ccmp B, CB, inv(CA) +/// check for CB flags +/// A counterexample is "or (and A B) (and C D)" which cannot be implemented +/// by conditional compare sequences. +/// @{ + +/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. +static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, + ISD::CondCode CC, SDValue CCOp, + SDValue Condition, unsigned NZCV, + SDLoc DL, SelectionDAG &DAG) { + unsigned Opcode = 0; + if (LHS.getValueType().isFloatingPoint()) + Opcode = AArch64ISD::FCCMP; + else if (RHS.getOpcode() == ISD::SUB) { + SDValue SubOp0 = RHS.getOperand(0); + if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { + // See emitComparison() on why we can only do this for SETEQ and SETNE. + Opcode = AArch64ISD::CCMN; + RHS = RHS.getOperand(1); + } + } + if (Opcode == 0) + Opcode = AArch64ISD::CCMP; + + SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); + return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); +} + +/// Returns true if @p Val is a tree of AND/OR/SETCC operations. +/// CanPushNegate is set to true if we can push a negate operation through +/// the tree in a was that we are left with AND operations and negate operations +/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to +/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be +/// brought into such a form. +static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanPushNegate, + unsigned Depth = 0) { + if (!Val.hasOneUse()) + return false; + unsigned Opcode = Val->getOpcode(); + if (Opcode == ISD::SETCC) { + CanPushNegate = true; + return true; + } + // Protect against stack overflow. + if (Depth > 15) + return false; + if (Opcode == ISD::AND || Opcode == ISD::OR) { + SDValue O0 = Val->getOperand(0); + SDValue O1 = Val->getOperand(1); + bool CanPushNegateL; + if (!isConjunctionDisjunctionTree(O0, CanPushNegateL, Depth+1)) + return false; + bool CanPushNegateR; + if (!isConjunctionDisjunctionTree(O1, CanPushNegateR, Depth+1)) + return false; + // We cannot push a negate through an AND operation (it would become an OR), + // we can however change a (not (or x y)) to (and (not x) (not y)) if we can + // push the negate through the x/y subtrees. + CanPushNegate = (Opcode == ISD::OR) && CanPushNegateL && CanPushNegateR; + return true; + } + return false; +} + +/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain +/// of CCMP/CFCMP ops. See @ref AArch64CCMP. +/// Tries to transform the given i1 producing node @p Val to a series compare +/// and conditional compare operations. @returns an NZCV flags producing node +/// and sets @p OutCC to the flags that should be tested or returns SDValue() if +/// transformation was not possible. +/// On recursive invocations @p PushNegate may be set to true to have negation +/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate +/// for the comparisons in the current subtree; @p Depth limits the search +/// depth to avoid stack overflow. +static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val, + AArch64CC::CondCode &OutCC, bool PushNegate = false, + SDValue CCOp = SDValue(), AArch64CC::CondCode Predicate = AArch64CC::AL, + unsigned Depth = 0) { + // We're at a tree leaf, produce a conditional comparison operation. + unsigned Opcode = Val->getOpcode(); + if (Opcode == ISD::SETCC) { + SDValue LHS = Val->getOperand(0); + SDValue RHS = Val->getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get(); + bool isInteger = LHS.getValueType().isInteger(); + if (PushNegate) + CC = getSetCCInverse(CC, isInteger); + SDLoc DL(Val); + // Determine OutCC and handle FP special case. + if (isInteger) { + OutCC = changeIntCCToAArch64CC(CC); + } else { + assert(LHS.getValueType().isFloatingPoint()); + AArch64CC::CondCode ExtraCC; + changeFPCCToAArch64CC(CC, OutCC, ExtraCC); + // Surpisingly some floating point conditions can't be tested with a + // single condition code. Construct an additional comparison in this case. + // See comment below on how we deal with OR conditions. + if (ExtraCC != AArch64CC::AL) { + SDValue ExtraCmp; + if (!CCOp.getNode()) + ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); + else { + SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC); + // Note that we want the inverse of ExtraCC, so NZCV is not inversed. + unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC); + ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, + NZCV, DL, DAG); + } + CCOp = ExtraCmp; + Predicate = AArch64CC::getInvertedCondCode(ExtraCC); + OutCC = AArch64CC::getInvertedCondCode(OutCC); + } + } + + // Produce a normal comparison if we are first in the chain + if (!CCOp.getNode()) + return emitComparison(LHS, RHS, CC, DL, DAG); + // Otherwise produce a ccmp. + SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC); + AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); + unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); + return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL, + DAG); + } else if ((Opcode != ISD::AND && Opcode != ISD::OR) || !Val->hasOneUse()) + return SDValue(); + + assert((Opcode == ISD::OR || !PushNegate) + && "Can only push negate through OR operation"); + + // Check if both sides can be transformed. + SDValue LHS = Val->getOperand(0); + SDValue RHS = Val->getOperand(1); + bool CanPushNegateL; + if (!isConjunctionDisjunctionTree(LHS, CanPushNegateL, Depth+1)) + return SDValue(); + bool CanPushNegateR; + if (!isConjunctionDisjunctionTree(RHS, CanPushNegateR, Depth+1)) + return SDValue(); + + // Do we need to negate our operands? + bool NegateOperands = Opcode == ISD::OR; + // We can negate the results of all previous operations by inverting the + // predicate flags giving us a free negation for one side. For the other side + // we need to be able to push the negation to the leafs of the tree. + if (NegateOperands) { + if (!CanPushNegateL && !CanPushNegateR) + return SDValue(); + // Order the side where we can push the negate through to LHS. + if (!CanPushNegateL && CanPushNegateR) + std::swap(LHS, RHS); + } else { + bool NeedsNegOutL = LHS->getOpcode() == ISD::OR; + bool NeedsNegOutR = RHS->getOpcode() == ISD::OR; + if (NeedsNegOutL && NeedsNegOutR) + return SDValue(); + // Order the side where we need to negate the output flags to RHS so it + // gets emitted first. + if (NeedsNegOutL) + std::swap(LHS, RHS); + } + + // Emit RHS. If we want to negate the tree we only need to push a negate + // through if we are already in a PushNegate case, otherwise we can negate + // the "flags to test" afterwards. + AArch64CC::CondCode RHSCC; + SDValue CmpR = emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, PushNegate, + CCOp, Predicate, Depth+1); + if (NegateOperands && !PushNegate) + RHSCC = AArch64CC::getInvertedCondCode(RHSCC); + // Emit LHS. We must push the negate through if we need to negate it. + SDValue CmpL = emitConjunctionDisjunctionTree(DAG, LHS, OutCC, NegateOperands, + CmpR, RHSCC, Depth+1); + // If we transformed an OR to and AND then we have to negate the result + // (or absorb a PushNegate resulting in a double negation). + if (Opcode == ISD::OR && !PushNegate) + OutCC = AArch64CC::getInvertedCondCode(OutCC); + return CmpL; +} + +/// @} + +static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, + SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) { + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { + EVT VT = RHS.getValueType(); + uint64_t C = RHSC->getZExtValue(); + if (!isLegalArithImmed(C)) { + // Constant does not fit, try adjusting it by one? + switch (CC) { + default: + break; + case ISD::SETLT: + case ISD::SETGE: + if ((VT == MVT::i32 && C != 0x80000000 && + isLegalArithImmed((uint32_t)(C - 1))) || + (VT == MVT::i64 && C != 0x80000000ULL && + isLegalArithImmed(C - 1ULL))) { + CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; + C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; + RHS = DAG.getConstant(C, dl, VT); + } + break; + case ISD::SETULT: + case ISD::SETUGE: + if ((VT == MVT::i32 && C != 0 && + isLegalArithImmed((uint32_t)(C - 1))) || + (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { + CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; + C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; + RHS = DAG.getConstant(C, dl, VT); + } + break; + case ISD::SETLE: + case ISD::SETGT: + if ((VT == MVT::i32 && C != INT32_MAX && + isLegalArithImmed((uint32_t)(C + 1))) || + (VT == MVT::i64 && C != INT64_MAX && + isLegalArithImmed(C + 1ULL))) { + CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; + C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; + RHS = DAG.getConstant(C, dl, VT); + } + break; + case ISD::SETULE: + case ISD::SETUGT: + if ((VT == MVT::i32 && C != UINT32_MAX && + isLegalArithImmed((uint32_t)(C + 1))) || + (VT == MVT::i64 && C != UINT64_MAX && + isLegalArithImmed(C + 1ULL))) { + CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; + C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; + RHS = DAG.getConstant(C, dl, VT); + } + break; + } + } + } + SDValue Cmp; + AArch64CC::CondCode AArch64CC; + if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { + const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS); + + // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. + // For the i8 operand, the largest immediate is 255, so this can be easily + // encoded in the compare instruction. For the i16 operand, however, the + // largest immediate cannot be encoded in the compare. + // Therefore, use a sign extending load and cmn to avoid materializing the + // -1 constant. For example, + // movz w1, #65535 + // ldrh w0, [x0, #0] + // cmp w0, w1 + // > + // ldrsh w0, [x0, #0] + // cmn w0, #1 + // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) + // if and only if (sext LHS) == (sext RHS). The checks are in place to + // ensure both the LHS and RHS are truly zero extended and to make sure the + // transformation is profitable. + if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) && + cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && + cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && + LHS.getNode()->hasNUsesOfValue(1, 0)) { + int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); + if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { + SDValue SExt = + DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, + DAG.getValueType(MVT::i16)); + Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, + RHS.getValueType()), + CC, dl, DAG); + AArch64CC = changeIntCCToAArch64CC(CC); + } + } + + if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { + if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) { + if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) + AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); + } + } + } + + if (!Cmp) { + Cmp = emitComparison(LHS, RHS, CC, dl, DAG); + AArch64CC = changeIntCCToAArch64CC(CC); + } + AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); + return Cmp; +} + +static std::pair<SDValue, SDValue> +getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { + assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && + "Unsupported value type"); + SDValue Value, Overflow; + SDLoc DL(Op); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + unsigned Opc = 0; + switch (Op.getOpcode()) { + default: + llvm_unreachable("Unknown overflow instruction!"); + case ISD::SADDO: + Opc = AArch64ISD::ADDS; + CC = AArch64CC::VS; + break; + case ISD::UADDO: + Opc = AArch64ISD::ADDS; + CC = AArch64CC::HS; + break; + case ISD::SSUBO: + Opc = AArch64ISD::SUBS; + CC = AArch64CC::VS; + break; + case ISD::USUBO: + Opc = AArch64ISD::SUBS; + CC = AArch64CC::LO; + break; + // Multiply needs a little bit extra work. + case ISD::SMULO: + case ISD::UMULO: { + CC = AArch64CC::NE; + bool IsSigned = Op.getOpcode() == ISD::SMULO; + if (Op.getValueType() == MVT::i32) { + unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + // For a 32 bit multiply with overflow check we want the instruction + // selector to generate a widening multiply (SMADDL/UMADDL). For that we + // need to generate the following pattern: + // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) + LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); + RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); + SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); + SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, + DAG.getConstant(0, DL, MVT::i64)); + // On AArch64 the upper 32 bits are always zero extended for a 32 bit + // operation. We need to clear out the upper 32 bits, because we used a + // widening multiply that wrote all 64 bits. In the end this should be a + // noop. + Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); + if (IsSigned) { + // The signed overflow check requires more than just a simple check for + // any bit set in the upper 32 bits of the result. These bits could be + // just the sign bits of a negative number. To perform the overflow + // check we have to arithmetic shift right the 32nd bit of the result by + // 31 bits. Then we compare the result to the upper 32 bits. + SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, + DAG.getConstant(32, DL, MVT::i64)); + UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); + SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, + DAG.getConstant(31, DL, MVT::i64)); + // It is important that LowerBits is last, otherwise the arithmetic + // shift will not be folded into the compare (SUBS). + SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); + Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) + .getValue(1); + } else { + // The overflow check for unsigned multiply is easy. We only need to + // check if any of the upper 32 bits are set. This can be done with a + // CMP (shifted register). For that we need to generate the following + // pattern: + // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) + SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, + DAG.getConstant(32, DL, MVT::i64)); + SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); + Overflow = + DAG.getNode(AArch64ISD::SUBS, DL, VTs, + DAG.getConstant(0, DL, MVT::i64), + UpperBits).getValue(1); + } + break; + } + assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); + // For the 64 bit multiply + Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); + if (IsSigned) { + SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); + SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, + DAG.getConstant(63, DL, MVT::i64)); + // It is important that LowerBits is last, otherwise the arithmetic + // shift will not be folded into the compare (SUBS). + SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); + Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) + .getValue(1); + } else { + SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); + SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); + Overflow = + DAG.getNode(AArch64ISD::SUBS, DL, VTs, + DAG.getConstant(0, DL, MVT::i64), + UpperBits).getValue(1); + } + break; + } + } // switch (...) + + if (Opc) { + SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); + + // Emit the AArch64 operation with overflow check. + Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); + Overflow = Value.getValue(1); + } + return std::make_pair(Value, Overflow); +} + +SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, + RTLIB::Libcall Call) const { + SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); + return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first; +} + +static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { + SDValue Sel = Op.getOperand(0); + SDValue Other = Op.getOperand(1); + + // If neither operand is a SELECT_CC, give up. + if (Sel.getOpcode() != ISD::SELECT_CC) + std::swap(Sel, Other); + if (Sel.getOpcode() != ISD::SELECT_CC) + return Op; + + // The folding we want to perform is: + // (xor x, (select_cc a, b, cc, 0, -1) ) + // --> + // (csel x, (xor x, -1), cc ...) + // + // The latter will get matched to a CSINV instruction. + + ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); + SDValue LHS = Sel.getOperand(0); + SDValue RHS = Sel.getOperand(1); + SDValue TVal = Sel.getOperand(2); + SDValue FVal = Sel.getOperand(3); + SDLoc dl(Sel); + + // FIXME: This could be generalized to non-integer comparisons. + if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) + return Op; + + ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); + ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); + + // The values aren't constants, this isn't the pattern we're looking for. + if (!CFVal || !CTVal) + return Op; + + // We can commute the SELECT_CC by inverting the condition. This + // might be needed to make this fit into a CSINV pattern. + if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { + std::swap(TVal, FVal); + std::swap(CTVal, CFVal); + CC = ISD::getSetCCInverse(CC, true); + } + + // If the constants line up, perform the transform! + if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { + SDValue CCVal; + SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); + + FVal = Other; + TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, + DAG.getConstant(-1ULL, dl, Other.getValueType())); + + return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, + CCVal, Cmp); + } + + return Op; +} + +static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + + unsigned Opc; + bool ExtraOp = false; + switch (Op.getOpcode()) { + default: + llvm_unreachable("Invalid code"); + case ISD::ADDC: + Opc = AArch64ISD::ADDS; + break; + case ISD::SUBC: + Opc = AArch64ISD::SUBS; + break; + case ISD::ADDE: + Opc = AArch64ISD::ADCS; + ExtraOp = true; + break; + case ISD::SUBE: + Opc = AArch64ISD::SBCS; + ExtraOp = true; + break; + } + + if (!ExtraOp) + return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); + return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), + Op.getOperand(2)); +} + +static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) + return SDValue(); + + SDLoc dl(Op); + AArch64CC::CondCode CC; + // The actual operation that sets the overflow or carry flag. + SDValue Value, Overflow; + std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); + + // We use 0 and 1 as false and true values. + SDValue TVal = DAG.getConstant(1, dl, MVT::i32); + SDValue FVal = DAG.getConstant(0, dl, MVT::i32); + + // We use an inverted condition, because the conditional select is inverted + // too. This will allow it to be selected to a single instruction: + // CSINC Wd, WZR, WZR, invert(cond). + SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); + Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, + CCVal, Overflow); + + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); +} + +// Prefetch operands are: +// 1: Address to prefetch +// 2: bool isWrite +// 3: int locality (0 = no locality ... 3 = extreme locality) +// 4: bool isDataCache +static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { + SDLoc DL(Op); + unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); + unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); + unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); + + bool IsStream = !Locality; + // When the locality number is set + if (Locality) { + // The front-end should have filtered out the out-of-range values + assert(Locality <= 3 && "Prefetch locality out-of-range"); + // The locality degree is the opposite of the cache speed. + // Put the number the other way around. + // The encoding starts at 0 for level 1 + Locality = 3 - Locality; + } + + // built the mask value encoding the expected behavior. + unsigned PrfOp = (IsWrite << 4) | // Load/Store bit + (!IsData << 3) | // IsDataCache bit + (Locality << 1) | // Cache level bits + (unsigned)IsStream; // Stream bit + return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), + DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); +} + +SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); + + RTLIB::Libcall LC; + LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); + + return LowerF128Call(Op, DAG, LC); +} + +SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, + SelectionDAG &DAG) const { + if (Op.getOperand(0).getValueType() != MVT::f128) { + // It's legal except when f128 is involved + return Op; + } + + RTLIB::Libcall LC; + LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); + + // FP_ROUND node has a second operand indicating whether it is known to be + // precise. That doesn't take part in the LibCall so we can't directly use + // LowerF128Call. + SDValue SrcVal = Op.getOperand(0); + return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, + SDLoc(Op)).first; +} + +static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { + // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. + // Any additional optimization in this function should be recorded + // in the cost tables. + EVT InVT = Op.getOperand(0).getValueType(); + EVT VT = Op.getValueType(); + unsigned NumElts = InVT.getVectorNumElements(); + + // f16 vectors are promoted to f32 before a conversion. + if (InVT.getVectorElementType() == MVT::f16) { + MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); + SDLoc dl(Op); + return DAG.getNode( + Op.getOpcode(), dl, Op.getValueType(), + DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); + } + + if (VT.getSizeInBits() < InVT.getSizeInBits()) { + SDLoc dl(Op); + SDValue Cv = + DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), + Op.getOperand(0)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); + } + + if (VT.getSizeInBits() > InVT.getSizeInBits()) { + SDLoc dl(Op); + MVT ExtVT = + MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), + VT.getVectorNumElements()); + SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); + return DAG.getNode(Op.getOpcode(), dl, VT, Ext); + } + + // Type changing conversions are illegal. + return Op; +} + +SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, + SelectionDAG &DAG) const { + if (Op.getOperand(0).getValueType().isVector()) + return LowerVectorFP_TO_INT(Op, DAG); + + // f16 conversions are promoted to f32. + if (Op.getOperand(0).getValueType() == MVT::f16) { + SDLoc dl(Op); + return DAG.getNode( + Op.getOpcode(), dl, Op.getValueType(), + DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0))); + } + + if (Op.getOperand(0).getValueType() != MVT::f128) { + // It's legal except when f128 is involved + return Op; + } + + RTLIB::Libcall LC; + if (Op.getOpcode() == ISD::FP_TO_SINT) + LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); + else + LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); + + SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); + return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first; +} + +static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { + // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. + // Any additional optimization in this function should be recorded + // in the cost tables. + EVT VT = Op.getValueType(); + SDLoc dl(Op); + SDValue In = Op.getOperand(0); + EVT InVT = In.getValueType(); + + if (VT.getSizeInBits() < InVT.getSizeInBits()) { + MVT CastVT = + MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), + InVT.getVectorNumElements()); + In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); + return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl)); + } + + if (VT.getSizeInBits() > InVT.getSizeInBits()) { + unsigned CastOpc = + Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + EVT CastVT = VT.changeVectorElementTypeToInteger(); + In = DAG.getNode(CastOpc, dl, CastVT, In); + return DAG.getNode(Op.getOpcode(), dl, VT, In); + } + + return Op; +} + +SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + if (Op.getValueType().isVector()) + return LowerVectorINT_TO_FP(Op, DAG); + + // f16 conversions are promoted to f32. + if (Op.getValueType() == MVT::f16) { + SDLoc dl(Op); + return DAG.getNode( + ISD::FP_ROUND, dl, MVT::f16, + DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)), + DAG.getIntPtrConstant(0, dl)); + } + + // i128 conversions are libcalls. + if (Op.getOperand(0).getValueType() == MVT::i128) + return SDValue(); + + // Other conversions are legal, unless it's to the completely software-based + // fp128. + if (Op.getValueType() != MVT::f128) + return Op; + + RTLIB::Libcall LC; + if (Op.getOpcode() == ISD::SINT_TO_FP) + LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); + else + LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); + + return LowerF128Call(Op, DAG, LC); +} + +SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, + SelectionDAG &DAG) const { + // For iOS, we want to call an alternative entry point: __sincos_stret, + // which returns the values in two S / D registers. + SDLoc dl(Op); + SDValue Arg = Op.getOperand(0); + EVT ArgVT = Arg.getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + + ArgListTy Args; + ArgListEntry Entry; + + Entry.Node = Arg; + Entry.Ty = ArgTy; + Entry.isSExt = false; + Entry.isZExt = false; + Args.push_back(Entry); + + const char *LibcallName = + (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; + SDValue Callee = + DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); + + StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr); + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) + .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0); + + std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); + return CallResult.first; +} + +static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { + if (Op.getValueType() != MVT::f16) + return SDValue(); + + assert(Op.getOperand(0).getValueType() == MVT::i16); + SDLoc DL(Op); + + Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); + Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); + return SDValue( + DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op, + DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), + 0); +} + +static EVT getExtensionTo64Bits(const EVT &OrigVT) { + if (OrigVT.getSizeInBits() >= 64) + return OrigVT; + + assert(OrigVT.isSimple() && "Expecting a simple value type"); + + MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; + switch (OrigSimpleTy) { + default: llvm_unreachable("Unexpected Vector Type"); + case MVT::v2i8: + case MVT::v2i16: + return MVT::v2i32; + case MVT::v4i8: + return MVT::v4i16; + } +} + +static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, + const EVT &OrigTy, + const EVT &ExtTy, + unsigned ExtOpcode) { + // The vector originally had a size of OrigTy. It was then extended to ExtTy. + // We expect the ExtTy to be 128-bits total. If the OrigTy is less than + // 64-bits we need to insert a new extension so that it will be 64-bits. + assert(ExtTy.is128BitVector() && "Unexpected extension size"); + if (OrigTy.getSizeInBits() >= 64) + return N; + + // Must extend size to at least 64 bits to be used as an operand for VMULL. + EVT NewVT = getExtensionTo64Bits(OrigTy); + + return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); +} + +static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, + bool isSigned) { + EVT VT = N->getValueType(0); + + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + for (const SDValue &Elt : N->op_values()) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { + unsigned EltSize = VT.getVectorElementType().getSizeInBits(); + unsigned HalfSize = EltSize / 2; + if (isSigned) { + if (!isIntN(HalfSize, C->getSExtValue())) + return false; + } else { + if (!isUIntN(HalfSize, C->getZExtValue())) + return false; + } + continue; + } + return false; + } + + return true; +} + +static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { + if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) + return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, + N->getOperand(0)->getValueType(0), + N->getValueType(0), + N->getOpcode()); + + assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); + EVT VT = N->getValueType(0); + SDLoc dl(N); + unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; + unsigned NumElts = VT.getVectorNumElements(); + MVT TruncVT = MVT::getIntegerVT(EltSize); + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0; i != NumElts; ++i) { + ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); + const APInt &CInt = C->getAPIntValue(); + // Element types smaller than 32 bits are not legal, so use i32 elements. + // The values are implicitly truncated so sext vs. zext doesn't matter. + Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); + } + return DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::getVectorVT(TruncVT, NumElts), Ops); +} + +static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { + if (N->getOpcode() == ISD::SIGN_EXTEND) + return true; + if (isExtendedBUILD_VECTOR(N, DAG, true)) + return true; + return false; +} + +static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { + if (N->getOpcode() == ISD::ZERO_EXTEND) + return true; + if (isExtendedBUILD_VECTOR(N, DAG, false)) + return true; + return false; +} + +static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { + unsigned Opcode = N->getOpcode(); + if (Opcode == ISD::ADD || Opcode == ISD::SUB) { + SDNode *N0 = N->getOperand(0).getNode(); + SDNode *N1 = N->getOperand(1).getNode(); + return N0->hasOneUse() && N1->hasOneUse() && + isSignExtended(N0, DAG) && isSignExtended(N1, DAG); + } + return false; +} + +static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { + unsigned Opcode = N->getOpcode(); + if (Opcode == ISD::ADD || Opcode == ISD::SUB) { + SDNode *N0 = N->getOperand(0).getNode(); + SDNode *N1 = N->getOperand(1).getNode(); + return N0->hasOneUse() && N1->hasOneUse() && + isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); + } + return false; +} + +static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { + // Multiplications are only custom-lowered for 128-bit vectors so that + // VMULL can be detected. Otherwise v2i64 multiplications are not legal. + EVT VT = Op.getValueType(); + assert(VT.is128BitVector() && VT.isInteger() && + "unexpected type for custom-lowering ISD::MUL"); + SDNode *N0 = Op.getOperand(0).getNode(); + SDNode *N1 = Op.getOperand(1).getNode(); + unsigned NewOpc = 0; + bool isMLA = false; + bool isN0SExt = isSignExtended(N0, DAG); + bool isN1SExt = isSignExtended(N1, DAG); + if (isN0SExt && isN1SExt) + NewOpc = AArch64ISD::SMULL; + else { + bool isN0ZExt = isZeroExtended(N0, DAG); + bool isN1ZExt = isZeroExtended(N1, DAG); + if (isN0ZExt && isN1ZExt) + NewOpc = AArch64ISD::UMULL; + else if (isN1SExt || isN1ZExt) { + // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these + // into (s/zext A * s/zext C) + (s/zext B * s/zext C) + if (isN1SExt && isAddSubSExt(N0, DAG)) { + NewOpc = AArch64ISD::SMULL; + isMLA = true; + } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { + NewOpc = AArch64ISD::UMULL; + isMLA = true; + } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { + std::swap(N0, N1); + NewOpc = AArch64ISD::UMULL; + isMLA = true; + } + } + + if (!NewOpc) { + if (VT == MVT::v2i64) + // Fall through to expand this. It is not legal. + return SDValue(); + else + // Other vector multiplications are legal. + return Op; + } + } + + // Legalize to a S/UMULL instruction + SDLoc DL(Op); + SDValue Op0; + SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); + if (!isMLA) { + Op0 = skipExtensionForVectorMULL(N0, DAG); + assert(Op0.getValueType().is64BitVector() && + Op1.getValueType().is64BitVector() && + "unexpected types for extended operands to VMULL"); + return DAG.getNode(NewOpc, DL, VT, Op0, Op1); + } + // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during + // isel lowering to take advantage of no-stall back to back s/umul + s/umla. + // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 + SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); + SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); + EVT Op1VT = Op1.getValueType(); + return DAG.getNode(N0->getOpcode(), DL, VT, + DAG.getNode(NewOpc, DL, VT, + DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), + DAG.getNode(NewOpc, DL, VT, + DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); +} + +SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + SDLoc dl(Op); + switch (IntNo) { + default: return SDValue(); // Don't custom lower most intrinsics. + case Intrinsic::aarch64_thread_pointer: { + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); + } + case Intrinsic::aarch64_neon_smax: + return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + case Intrinsic::aarch64_neon_umax: + return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + case Intrinsic::aarch64_neon_smin: + return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + case Intrinsic::aarch64_neon_umin: + return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + } +} + +SDValue AArch64TargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: + llvm_unreachable("unimplemented operand"); + return SDValue(); + case ISD::BITCAST: + return LowerBITCAST(Op, DAG); + case ISD::GlobalAddress: + return LowerGlobalAddress(Op, DAG); + case ISD::GlobalTLSAddress: + return LowerGlobalTLSAddress(Op, DAG); + case ISD::SETCC: + return LowerSETCC(Op, DAG); + case ISD::BR_CC: + return LowerBR_CC(Op, DAG); + case ISD::SELECT: + return LowerSELECT(Op, DAG); + case ISD::SELECT_CC: + return LowerSELECT_CC(Op, DAG); + case ISD::JumpTable: + return LowerJumpTable(Op, DAG); + case ISD::ConstantPool: + return LowerConstantPool(Op, DAG); + case ISD::BlockAddress: + return LowerBlockAddress(Op, DAG); + case ISD::VASTART: + return LowerVASTART(Op, DAG); + case ISD::VACOPY: + return LowerVACOPY(Op, DAG); + case ISD::VAARG: + return LowerVAARG(Op, DAG); + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUBC: + case ISD::SUBE: + return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: + return LowerXALUO(Op, DAG); + case ISD::FADD: + return LowerF128Call(Op, DAG, RTLIB::ADD_F128); + case ISD::FSUB: + return LowerF128Call(Op, DAG, RTLIB::SUB_F128); + case ISD::FMUL: + return LowerF128Call(Op, DAG, RTLIB::MUL_F128); + case ISD::FDIV: + return LowerF128Call(Op, DAG, RTLIB::DIV_F128); + case ISD::FP_ROUND: + return LowerFP_ROUND(Op, DAG); + case ISD::FP_EXTEND: + return LowerFP_EXTEND(Op, DAG); + case ISD::FRAMEADDR: + return LowerFRAMEADDR(Op, DAG); + case ISD::RETURNADDR: + return LowerRETURNADDR(Op, DAG); + case ISD::INSERT_VECTOR_ELT: + return LowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: + return LowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::BUILD_VECTOR: + return LowerBUILD_VECTOR(Op, DAG); + case ISD::VECTOR_SHUFFLE: + return LowerVECTOR_SHUFFLE(Op, DAG); + case ISD::EXTRACT_SUBVECTOR: + return LowerEXTRACT_SUBVECTOR(Op, DAG); + case ISD::SRA: + case ISD::SRL: + case ISD::SHL: + return LowerVectorSRA_SRL_SHL(Op, DAG); + case ISD::SHL_PARTS: + return LowerShiftLeftParts(Op, DAG); + case ISD::SRL_PARTS: + case ISD::SRA_PARTS: + return LowerShiftRightParts(Op, DAG); + case ISD::CTPOP: + return LowerCTPOP(Op, DAG); + case ISD::FCOPYSIGN: + return LowerFCOPYSIGN(Op, DAG); + case ISD::AND: + return LowerVectorAND(Op, DAG); + case ISD::OR: + return LowerVectorOR(Op, DAG); + case ISD::XOR: + return LowerXOR(Op, DAG); + case ISD::PREFETCH: + return LowerPREFETCH(Op, DAG); + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + return LowerINT_TO_FP(Op, DAG); + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + return LowerFP_TO_INT(Op, DAG); + case ISD::FSINCOS: + return LowerFSINCOS(Op, DAG); + case ISD::MUL: + return LowerMUL(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: + return LowerINTRINSIC_WO_CHAIN(Op, DAG); + } +} + +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +//===----------------------------------------------------------------------===// + +#include "AArch64GenCallingConv.inc" + +/// Selects the correct CCAssignFn for a given CallingConvention value. +CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, + bool IsVarArg) const { + switch (CC) { + default: + llvm_unreachable("Unsupported calling convention."); + case CallingConv::WebKit_JS: + return CC_AArch64_WebKit_JS; + case CallingConv::GHC: + return CC_AArch64_GHC; + case CallingConv::C: + case CallingConv::Fast: + if (!Subtarget->isTargetDarwin()) + return CC_AArch64_AAPCS; + return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS; + } +} + +SDValue AArch64TargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + // At this point, Ins[].VT may already be promoted to i32. To correctly + // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and + // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. + // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here + // we use a special version of AnalyzeFormalArguments to pass in ValVT and + // LocVT. + unsigned NumArgs = Ins.size(); + Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); + unsigned CurArgIdx = 0; + for (unsigned i = 0; i != NumArgs; ++i) { + MVT ValVT = Ins[i].VT; + if (Ins[i].isOrigArg()) { + std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); + CurArgIdx = Ins[i].getOrigArgIndex(); + + // Get type of the original argument. + EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), + /*AllowUnknown*/ true); + MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; + // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. + if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) + ValVT = MVT::i8; + else if (ActualMVT == MVT::i16) + ValVT = MVT::i16; + } + CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); + bool Res = + AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); + assert(!Res && "Call operand has unhandled type"); + (void)Res; + } + assert(ArgLocs.size() == Ins.size()); + SmallVector<SDValue, 16> ArgValues; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + + if (Ins[i].Flags.isByVal()) { + // Byval is used for HFAs in the PCS, but the system should work in a + // non-compliant manner for larger structs. + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + int Size = Ins[i].Flags.getByValSize(); + unsigned NumRegs = (Size + 7) / 8; + + // FIXME: This works on big-endian for composite byvals, which are the common + // case. It should also work for fundamental types too. + unsigned FrameIdx = + MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); + SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); + InVals.push_back(FrameIdxN); + + continue; + } + + if (VA.isRegLoc()) { + // Arguments stored in registers. + EVT RegVT = VA.getLocVT(); + + SDValue ArgValue; + const TargetRegisterClass *RC; + + if (RegVT == MVT::i32) + RC = &AArch64::GPR32RegClass; + else if (RegVT == MVT::i64) + RC = &AArch64::GPR64RegClass; + else if (RegVT == MVT::f16) + RC = &AArch64::FPR16RegClass; + else if (RegVT == MVT::f32) + RC = &AArch64::FPR32RegClass; + else if (RegVT == MVT::f64 || RegVT.is64BitVector()) + RC = &AArch64::FPR64RegClass; + else if (RegVT == MVT::f128 || RegVT.is128BitVector()) + RC = &AArch64::FPR128RegClass; + else + llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); + + // Transform the arguments in physical registers into virtual ones. + unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); + ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); + + // If this is an 8, 16 or 32-bit value, it is really passed promoted + // to 64 bits. Insert an assert[sz]ext to capture this, then + // truncate to the right size. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); + break; + case CCValAssign::AExt: + case CCValAssign::SExt: + case CCValAssign::ZExt: + // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt + // nodes after our lowering. + assert(RegVT == Ins[i].VT && "incorrect register location selected"); + break; + } + + InVals.push_back(ArgValue); + + } else { // VA.isRegLoc() + assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); + unsigned ArgOffset = VA.getLocMemOffset(); + unsigned ArgSize = VA.getValVT().getSizeInBits() / 8; + + uint32_t BEAlign = 0; + if (!Subtarget->isLittleEndian() && ArgSize < 8 && + !Ins[i].Flags.isInConsecutiveRegs()) + BEAlign = 8 - ArgSize; + + int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); + + // Create load nodes to retrieve arguments from the stack. + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue ArgValue; + + // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) + ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; + MVT MemVT = VA.getValVT(); + + switch (VA.getLocInfo()) { + default: + break; + case CCValAssign::BCvt: + MemVT = VA.getLocVT(); + break; + case CCValAssign::SExt: + ExtType = ISD::SEXTLOAD; + break; + case CCValAssign::ZExt: + ExtType = ISD::ZEXTLOAD; + break; + case CCValAssign::AExt: + ExtType = ISD::EXTLOAD; + break; + } + + ArgValue = DAG.getExtLoad( + ExtType, DL, VA.getLocVT(), Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), + MemVT, false, false, false, 0); + + InVals.push_back(ArgValue); + } + } + + // varargs + if (isVarArg) { + if (!Subtarget->isTargetDarwin()) { + // The AAPCS variadic function ABI is identical to the non-variadic + // one. As a result there may be more arguments in registers and we should + // save them for future reference. + saveVarArgRegisters(CCInfo, DAG, DL, Chain); + } + + AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); + // This will point to the next argument passed via stack. + unsigned StackOffset = CCInfo.getNextStackOffset(); + // We currently pass all varargs at 8-byte alignment. + StackOffset = ((StackOffset + 7) & ~7); + AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true)); + } + + AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); + unsigned StackArgSize = CCInfo.getNextStackOffset(); + bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; + if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { + // This is a non-standard ABI so by fiat I say we're allowed to make full + // use of the stack area to be popped, which must be aligned to 16 bytes in + // any case: + StackArgSize = RoundUpToAlignment(StackArgSize, 16); + + // If we're expected to restore the stack (e.g. fastcc) then we'll be adding + // a multiple of 16. + FuncInfo->setArgumentStackToRestore(StackArgSize); + + // This realignment carries over to the available bytes below. Our own + // callers will guarantee the space is free by giving an aligned value to + // CALLSEQ_START. + } + // Even if we're not expected to free up the space, it's useful to know how + // much is there while considering tail calls (because we can reuse it). + FuncInfo->setBytesInStackArgArea(StackArgSize); + + return Chain; +} + +void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, + SelectionDAG &DAG, SDLoc DL, + SDValue &Chain) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + SmallVector<SDValue, 8> MemOps; + + static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, + AArch64::X3, AArch64::X4, AArch64::X5, + AArch64::X6, AArch64::X7 }; + static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); + unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); + + unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); + int GPRIdx = 0; + if (GPRSaveSize != 0) { + GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); + + SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT); + + for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { + unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); + SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); + SDValue Store = DAG.getStore( + Val.getValue(1), DL, Val, FIN, + MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false, + false, 0); + MemOps.push_back(Store); + FIN = + DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); + } + } + FuncInfo->setVarArgsGPRIndex(GPRIdx); + FuncInfo->setVarArgsGPRSize(GPRSaveSize); + + if (Subtarget->hasFPARMv8()) { + static const MCPhysReg FPRArgRegs[] = { + AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, + AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; + static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); + unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); + + unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); + int FPRIdx = 0; + if (FPRSaveSize != 0) { + FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); + + SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); + + for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { + unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); + SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); + + SDValue Store = DAG.getStore( + Val.getValue(1), DL, Val, FIN, + MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16), + false, false, 0); + MemOps.push_back(Store); + FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, + DAG.getConstant(16, DL, PtrVT)); + } + } + FuncInfo->setVarArgsFPRIndex(FPRIdx); + FuncInfo->setVarArgsFPRSize(FPRSaveSize); + } + + if (!MemOps.empty()) { + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); + } +} + +/// LowerCallResult - Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +SDValue AArch64TargetLowering::LowerCallResult( + SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals, bool isThisReturn, + SDValue ThisVal) const { + CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS + ? RetCC_AArch64_WebKit_JS + : RetCC_AArch64_AAPCS; + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign VA = RVLocs[i]; + + // Pass 'this' value directly from the argument to return value, to avoid + // reg unit interference + if (i == 0 && isThisReturn) { + assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && + "unexpected return calling convention register assignment"); + InVals.push_back(ThisVal); + continue; + } + + SDValue Val = + DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); + Chain = Val.getValue(1); + InFlag = Val.getValue(2); + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::BCvt: + Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); + break; + } + + InVals.push_back(Val); + } + + return Chain; +} + +bool AArch64TargetLowering::isEligibleForTailCallOptimization( + SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, + bool isCalleeStructRet, bool isCallerStructRet, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { + // For CallingConv::C this function knows whether the ABI needs + // changing. That's not true for other conventions so they will have to opt in + // manually. + if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) + return false; + + const MachineFunction &MF = DAG.getMachineFunction(); + const Function *CallerF = MF.getFunction(); + CallingConv::ID CallerCC = CallerF->getCallingConv(); + bool CCMatch = CallerCC == CalleeCC; + + // Byval parameters hand the function a pointer directly into the stack area + // we want to reuse during a tail call. Working around this *is* possible (see + // X86) but less efficient and uglier in LowerCall. + for (Function::const_arg_iterator i = CallerF->arg_begin(), + e = CallerF->arg_end(); + i != e; ++i) + if (i->hasByValAttr()) + return false; + + if (getTargetMachine().Options.GuaranteedTailCallOpt) { + if (IsTailCallConvention(CalleeCC) && CCMatch) + return true; + return false; + } + + // Externally-defined functions with weak linkage should not be + // tail-called on AArch64 when the OS does not support dynamic + // pre-emption of symbols, as the AAELF spec requires normal calls + // to undefined weak functions to be replaced with a NOP or jump to the + // next instruction. The behaviour of branch instructions in this + // situation (as used for tail calls) is implementation-defined, so we + // cannot rely on the linker replacing the tail call with a return. + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + const GlobalValue *GV = G->getGlobal(); + const Triple &TT = getTargetMachine().getTargetTriple(); + if (GV->hasExternalWeakLinkage() && + (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) + return false; + } + + // Now we search for cases where we can use a tail call without changing the + // ABI. Sibcall is used in some places (particularly gcc) to refer to this + // concept. + + // I want anyone implementing a new calling convention to think long and hard + // about this assert. + assert((!isVarArg || CalleeCC == CallingConv::C) && + "Unexpected variadic calling convention"); + + if (isVarArg && !Outs.empty()) { + // At least two cases here: if caller is fastcc then we can't have any + // memory arguments (we'd be expected to clean up the stack afterwards). If + // caller is C then we could potentially use its argument area. + + // FIXME: for now we take the most conservative of these in both cases: + // disallow all variadic memory operands. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); + for (const CCValAssign &ArgLoc : ArgLocs) + if (!ArgLoc.isRegLoc()) + return false; + } + + // If the calling conventions do not match, then we'd better make sure the + // results are returned in the same way as what the caller expects. + if (!CCMatch) { + SmallVector<CCValAssign, 16> RVLocs1; + CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, + *DAG.getContext()); + CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg)); + + SmallVector<CCValAssign, 16> RVLocs2; + CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, + *DAG.getContext()); + CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg)); + + if (RVLocs1.size() != RVLocs2.size()) + return false; + for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { + if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) + return false; + if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) + return false; + if (RVLocs1[i].isRegLoc()) { + if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) + return false; + } else { + if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) + return false; + } + } + } + + // Nothing more to check if the callee is taking no arguments + if (Outs.empty()) + return true; + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); + + const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); + + // If the stack arguments for this call would fit into our own save area then + // the call can be made tail. + return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); +} + +SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, + SelectionDAG &DAG, + MachineFrameInfo *MFI, + int ClobberedFI) const { + SmallVector<SDValue, 8> ArgChains; + int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); + int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; + + // Include the original chain at the beginning of the list. When this is + // used by target LowerCall hooks, this helps legalize find the + // CALLSEQ_BEGIN node. + ArgChains.push_back(Chain); + + // Add a chain value for each stack argument corresponding + for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), + UE = DAG.getEntryNode().getNode()->use_end(); + U != UE; ++U) + if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) + if (FI->getIndex() < 0) { + int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); + int64_t InLastByte = InFirstByte; + InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; + + if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || + (FirstByte <= InFirstByte && InFirstByte <= LastByte)) + ArgChains.push_back(SDValue(L, 1)); + } + + // Build a tokenfactor for all the chains. + return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); +} + +bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, + bool TailCallOpt) const { + return CallCC == CallingConv::Fast && TailCallOpt; +} + +bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { + return CallCC == CallingConv::Fast; +} + +/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, +/// and add input and output parameter nodes. +SDValue +AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &DL = CLI.DL; + SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; + SmallVector<SDValue, 32> &OutVals = CLI.OutVals; + SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + + MachineFunction &MF = DAG.getMachineFunction(); + bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); + bool IsThisReturn = false; + + AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); + bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; + bool IsSibCall = false; + + if (IsTailCall) { + // Check if it's really possible to do a tail call. + IsTailCall = isEligibleForTailCallOptimization( + Callee, CallConv, IsVarArg, IsStructRet, + MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); + if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) + report_fatal_error("failed to perform tail call elimination on a call " + "site marked musttail"); + + // A sibling call is one where we're under the usual C ABI and not planning + // to change that but can still do a tail call: + if (!TailCallOpt && IsTailCall) + IsSibCall = true; + + if (IsTailCall) + ++NumTailCalls; + } + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + if (IsVarArg) { + // Handle fixed and variable vector arguments differently. + // Variable vector arguments always go into memory. + unsigned NumArgs = Outs.size(); + + for (unsigned i = 0; i != NumArgs; ++i) { + MVT ArgVT = Outs[i].VT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, + /*IsVarArg=*/ !Outs[i].IsFixed); + bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); + assert(!Res && "Call operand has unhandled type"); + (void)Res; + } + } else { + // At this point, Outs[].VT may already be promoted to i32. To correctly + // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and + // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. + // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here + // we use a special version of AnalyzeCallOperands to pass in ValVT and + // LocVT. + unsigned NumArgs = Outs.size(); + for (unsigned i = 0; i != NumArgs; ++i) { + MVT ValVT = Outs[i].VT; + // Get type of the original argument. + EVT ActualVT = getValueType(DAG.getDataLayout(), + CLI.getArgs()[Outs[i].OrigArgIndex].Ty, + /*AllowUnknown*/ true); + MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. + if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) + ValVT = MVT::i8; + else if (ActualMVT == MVT::i16) + ValVT = MVT::i16; + + CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); + bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); + assert(!Res && "Call operand has unhandled type"); + (void)Res; + } + } + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + + if (IsSibCall) { + // Since we're not changing the ABI to make this a tail call, the memory + // operands are already available in the caller's incoming argument space. + NumBytes = 0; + } + + // FPDiff is the byte offset of the call's argument area from the callee's. + // Stores to callee stack arguments will be placed in FixedStackSlots offset + // by this amount for a tail call. In a sibling call it must be 0 because the + // caller will deallocate the entire stack and the callee still expects its + // arguments to begin at SP+0. Completely unused for non-tail calls. + int FPDiff = 0; + + if (IsTailCall && !IsSibCall) { + unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); + + // Since callee will pop argument stack as a tail call, we must keep the + // popped size 16-byte aligned. + NumBytes = RoundUpToAlignment(NumBytes, 16); + + // FPDiff will be negative if this tail call requires more space than we + // would automatically have in our incoming argument space. Positive if we + // can actually shrink the stack. + FPDiff = NumReusableBytes - NumBytes; + + // The stack pointer must be 16-byte aligned at all times it's used for a + // memory operation, which in practice means at *all* times and in + // particular across call boundaries. Therefore our own arguments started at + // a 16-byte aligned SP and the delta applied for the tail call should + // satisfy the same constraint. + assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); + } + + // Adjust the stack pointer for the new arguments... + // These operations are automatically eliminated by the prolog/epilog pass + if (!IsSibCall) + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL, + true), + DL); + + SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, + getPointerTy(DAG.getDataLayout())); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; + ++i, ++realArgIdx) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[realArgIdx]; + ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + if (Outs[realArgIdx].ArgVT == MVT::i1) { + // AAPCS requires i1 to be zero-extended to 8-bits by the caller. + Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); + } + Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); + break; + case CCValAssign::FPExt: + Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); + break; + } + + if (VA.isRegLoc()) { + if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) { + assert(VA.getLocVT() == MVT::i64 && + "unexpected calling convention register assignment"); + assert(!Ins.empty() && Ins[0].VT == MVT::i64 && + "unexpected use of 'returned'"); + IsThisReturn = true; + } + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + } else { + assert(VA.isMemLoc()); + + SDValue DstAddr; + MachinePointerInfo DstInfo; + + // FIXME: This works on big-endian for composite byvals, which are the + // common case. It should also work for fundamental types too. + uint32_t BEAlign = 0; + unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 + : VA.getValVT().getSizeInBits(); + OpSize = (OpSize + 7) / 8; + if (!Subtarget->isLittleEndian() && !Flags.isByVal() && + !Flags.isInConsecutiveRegs()) { + if (OpSize < 8) + BEAlign = 8 - OpSize; + } + unsigned LocMemOffset = VA.getLocMemOffset(); + int32_t Offset = LocMemOffset + BEAlign; + SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); + PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); + + if (IsTailCall) { + Offset = Offset + FPDiff; + int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); + + DstAddr = DAG.getFrameIndex(FI, PtrVT); + DstInfo = + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); + + // Make sure any stack arguments overlapping with where we're storing + // are loaded before this eventual operation. Otherwise they'll be + // clobbered. + Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); + } else { + SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); + + DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); + DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(), + LocMemOffset); + } + + if (Outs[i].Flags.isByVal()) { + SDValue SizeNode = + DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); + SDValue Cpy = DAG.getMemcpy( + Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), + /*isVol = */ false, /*AlwaysInline = */ false, + /*isTailCall = */ false, + DstInfo, MachinePointerInfo()); + + MemOpChains.push_back(Cpy); + } else { + // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already + // promoted to a legal register type i32, we should truncate Arg back to + // i1/i8/i16. + if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || + VA.getValVT() == MVT::i16) + Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); + + SDValue Store = + DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0); + MemOpChains.push_back(Store); + } + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into the appropriate regs. + SDValue InFlag; + for (auto &RegToPass : RegsToPass) { + Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, + RegToPass.second, InFlag); + InFlag = Chain.getValue(1); + } + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every + // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol + // node so that legalize doesn't hack it. + if (getTargetMachine().getCodeModel() == CodeModel::Large && + Subtarget->isTargetMachO()) { + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + const GlobalValue *GV = G->getGlobal(); + bool InternalLinkage = GV->hasInternalLinkage(); + if (InternalLinkage) + Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); + else { + Callee = + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT); + Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); + } + } else if (ExternalSymbolSDNode *S = + dyn_cast<ExternalSymbolSDNode>(Callee)) { + const char *Sym = S->getSymbol(); + Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); + Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); + } + } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + const GlobalValue *GV = G->getGlobal(); + Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + const char *Sym = S->getSymbol(); + Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); + } + + // We don't usually want to end the call-sequence here because we would tidy + // the frame up *after* the call, however in the ABI-changing tail-call case + // we've carefully laid out the parameters so that when sp is reset they'll be + // in the correct location. + if (IsTailCall && !IsSibCall) { + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), + DAG.getIntPtrConstant(0, DL, true), InFlag, DL); + InFlag = Chain.getValue(1); + } + + std::vector<SDValue> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + if (IsTailCall) { + // Each tail call may have to adjust the stack by a different amount, so + // this information must travel along with the operation for eventual + // consumption by emitEpilogue. + Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); + } + + // Add argument registers to the end of the list so that they are known live + // into the call. + for (auto &RegToPass : RegsToPass) + Ops.push_back(DAG.getRegister(RegToPass.first, + RegToPass.second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const uint32_t *Mask; + const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); + if (IsThisReturn) { + // For 'this' returns, use the X0-preserving mask if applicable + Mask = TRI->getThisReturnPreservedMask(MF, CallConv); + if (!Mask) { + IsThisReturn = false; + Mask = TRI->getCallPreservedMask(MF, CallConv); + } + } else + Mask = TRI->getCallPreservedMask(MF, CallConv); + + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + // If we're doing a tall call, use a TC_RETURN here rather than an + // actual call instruction. + if (IsTailCall) { + MF.getFrameInfo()->setHasTailCall(); + return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); + } + + // Returns a chain and a flag for retval copy to use. + Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); + InFlag = Chain.getValue(1); + + uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) + ? RoundUpToAlignment(NumBytes, 16) + : 0; + + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), + DAG.getIntPtrConstant(CalleePopBytes, DL, true), + InFlag, DL); + if (!Ins.empty()) + InFlag = Chain.getValue(1); + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, + InVals, IsThisReturn, + IsThisReturn ? OutVals[0] : SDValue()); +} + +bool AArch64TargetLowering::CanLowerReturn( + CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { + CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS + ? RetCC_AArch64_WebKit_JS + : RetCC_AArch64_AAPCS; + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC); +} + +SDValue +AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc DL, SelectionDAG &DAG) const { + CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS + ? RetCC_AArch64_WebKit_JS + : RetCC_AArch64_AAPCS; + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC); + + // Copy the result values into the output registers. + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); + ++i, ++realRVLocIdx) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + SDValue Arg = OutVals[realRVLocIdx]; + + switch (VA.getLocInfo()) { + default: + llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + if (Outs[i].ArgVT == MVT::i1) { + // AAPCS requires i1 to be zero-extended to i8 by the producer of the + // value. This is strictly redundant on Darwin (which uses "zeroext + // i1"), but will be optimised out before ISel. + Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); + Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); + } + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); + break; + } + + Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); + const MCPhysReg *I = + TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); + if (I) { + for (; *I; ++I) { + if (AArch64::GPR64RegClass.contains(*I)) + RetOps.push_back(DAG.getRegister(*I, MVT::i64)); + else if (AArch64::FPR64RegClass.contains(*I)) + RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); + else + llvm_unreachable("Unexpected register class in CSRsViaCopy!"); + } + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); +} + +//===----------------------------------------------------------------------===// +// Other Lowering Code +//===----------------------------------------------------------------------===// + +SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDLoc DL(Op); + const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = GN->getGlobal(); + unsigned char OpFlags = + Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); + + assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && + "unexpected offset in global node"); + + // This also catched the large code model case for Darwin. + if ((OpFlags & AArch64II::MO_GOT) != 0) { + SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); + // FIXME: Once remat is capable of dealing with instructions with register + // operands, expand this into two nodes instead of using a wrapper node. + return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); + } + + if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) { + assert(getTargetMachine().getCodeModel() == CodeModel::Small && + "use of MO_CONSTPOOL only supported on small model"); + SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE); + SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); + unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC; + SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags); + SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); + SDValue GlobalAddr = DAG.getLoad( + PtrVT, DL, DAG.getEntryNode(), PoolAddr, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + /*isVolatile=*/false, + /*isNonTemporal=*/true, + /*isInvariant=*/true, 8); + if (GN->getOffset() != 0) + return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr, + DAG.getConstant(GN->getOffset(), DL, PtrVT)); + return GlobalAddr; + } + + if (getTargetMachine().getCodeModel() == CodeModel::Large) { + const unsigned char MO_NC = AArch64II::MO_NC; + return DAG.getNode( + AArch64ISD::WrapperLarge, DL, PtrVT, + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3), + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC), + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC), + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); + } else { + // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and + // the only correct model on Darwin. + SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + OpFlags | AArch64II::MO_PAGE); + unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC; + SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags); + + SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); + return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); + } +} + +/// \brief Convert a TLS address reference into the correct sequence of loads +/// and calls to compute the variable's address (for Darwin, currently) and +/// return an SDValue containing the final node. + +/// Darwin only has one TLS scheme which must be capable of dealing with the +/// fully general situation, in the worst case. This means: +/// + "extern __thread" declaration. +/// + Defined in a possibly unknown dynamic library. +/// +/// The general system is that each __thread variable has a [3 x i64] descriptor +/// which contains information used by the runtime to calculate the address. The +/// only part of this the compiler needs to know about is the first xword, which +/// contains a function pointer that must be called with the address of the +/// entire descriptor in "x0". +/// +/// Since this descriptor may be in a different unit, in general even the +/// descriptor must be accessed via an indirect load. The "ideal" code sequence +/// is: +/// adrp x0, _var@TLVPPAGE +/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor +/// ldr x1, [x0] ; x1 contains 1st entry of descriptor, +/// ; the function pointer +/// blr x1 ; Uses descriptor address in x0 +/// ; Address of _var is now in x0. +/// +/// If the address of _var's descriptor *is* known to the linker, then it can +/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for +/// a slight efficiency gain. +SDValue +AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, + SelectionDAG &DAG) const { + assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin"); + + SDLoc DL(Op); + MVT PtrVT = getPointerTy(DAG.getDataLayout()); + const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + + SDValue TLVPAddr = + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); + SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); + + // The first entry in the descriptor is a function pointer that we must call + // to obtain the address of the variable. + SDValue Chain = DAG.getEntryNode(); + SDValue FuncTLVGet = + DAG.getLoad(MVT::i64, DL, Chain, DescAddr, + MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, + true, true, 8); + Chain = FuncTLVGet.getValue(1); + + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setAdjustsStack(true); + + // TLS calls preserve all registers except those that absolutely must be + // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be + // silly). + const uint32_t *Mask = + Subtarget->getRegisterInfo()->getTLSCallPreservedMask(); + + // Finally, we can make the call. This is just a degenerate version of a + // normal AArch64 call node: x0 takes the address of the descriptor, and + // returns the address of the variable in this thread. + Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); + Chain = + DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), + Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), + DAG.getRegisterMask(Mask), Chain.getValue(1)); + return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); +} + +/// When accessing thread-local variables under either the general-dynamic or +/// local-dynamic system, we make a "TLS-descriptor" call. The variable will +/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry +/// is a function pointer to carry out the resolution. +/// +/// The sequence is: +/// adrp x0, :tlsdesc:var +/// ldr x1, [x0, #:tlsdesc_lo12:var] +/// add x0, x0, #:tlsdesc_lo12:var +/// .tlsdesccall var +/// blr x1 +/// (TPIDR_EL0 offset now in x0) +/// +/// The above sequence must be produced unscheduled, to enable the linker to +/// optimize/relax this sequence. +/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the +/// above sequence, and expanded really late in the compilation flow, to ensure +/// the sequence is produced as per above. +SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL, + SelectionDAG &DAG) const { + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + SDValue Chain = DAG.getEntryNode(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + SmallVector<SDValue, 2> Ops; + Ops.push_back(Chain); + Ops.push_back(SymAddr); + + Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops); + SDValue Glue = Chain.getValue(1); + + return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); +} + +SDValue +AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, + SelectionDAG &DAG) const { + assert(Subtarget->isTargetELF() && "This function expects an ELF target"); + assert(getTargetMachine().getCodeModel() == CodeModel::Small && + "ELF TLS only supported in small memory model"); + // Different choices can be made for the maximum size of the TLS area for a + // module. For the small address model, the default TLS size is 16MiB and the + // maximum TLS size is 4GiB. + // FIXME: add -mtls-size command line option and make it control the 16MiB + // vs. 4GiB code sequence generation. + const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + + TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); + + if (DAG.getTarget().Options.EmulatedTLS) + return LowerToTLSEmulatedModel(GA, DAG); + + if (!EnableAArch64ELFLocalDynamicTLSGeneration) { + if (Model == TLSModel::LocalDynamic) + Model = TLSModel::GeneralDynamic; + } + + SDValue TPOff; + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDLoc DL(Op); + const GlobalValue *GV = GA->getGlobal(); + + SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); + + if (Model == TLSModel::LocalExec) { + SDValue HiVar = DAG.getTargetGlobalAddress( + GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); + SDValue LoVar = DAG.getTargetGlobalAddress( + GV, DL, PtrVT, 0, + AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); + + SDValue TPWithOff_lo = + SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, + HiVar, + DAG.getTargetConstant(0, DL, MVT::i32)), + 0); + SDValue TPWithOff = + SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo, + LoVar, + DAG.getTargetConstant(0, DL, MVT::i32)), + 0); + return TPWithOff; + } else if (Model == TLSModel::InitialExec) { + TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); + TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); + } else if (Model == TLSModel::LocalDynamic) { + // Local-dynamic accesses proceed in two phases. A general-dynamic TLS + // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate + // the beginning of the module's TLS region, followed by a DTPREL offset + // calculation. + + // These accesses will need deduplicating if there's more than one. + AArch64FunctionInfo *MFI = + DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); + MFI->incNumLocalDynamicTLSAccesses(); + + // The call needs a relocation too for linker relaxation. It doesn't make + // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of + // the address. + SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, + AArch64II::MO_TLS); + + // Now we can calculate the offset from TPIDR_EL0 to this module's + // thread-local area. + TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); + + // Now use :dtprel_whatever: operations to calculate this variable's offset + // in its thread-storage area. + SDValue HiVar = DAG.getTargetGlobalAddress( + GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); + SDValue LoVar = DAG.getTargetGlobalAddress( + GV, DL, MVT::i64, 0, + AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); + + TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, + DAG.getTargetConstant(0, DL, MVT::i32)), + 0); + TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, + DAG.getTargetConstant(0, DL, MVT::i32)), + 0); + } else if (Model == TLSModel::GeneralDynamic) { + // The call needs a relocation too for linker relaxation. It doesn't make + // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of + // the address. + SDValue SymAddr = + DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); + + // Finally we can make a call to calculate the offset from tpidr_el0. + TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); + } else + llvm_unreachable("Unsupported ELF TLS access model"); + + return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); +} + +SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, + SelectionDAG &DAG) const { + if (Subtarget->isTargetDarwin()) + return LowerDarwinGlobalTLSAddress(Op, DAG); + else if (Subtarget->isTargetELF()) + return LowerELFGlobalTLSAddress(Op, DAG); + + llvm_unreachable("Unexpected platform trying to use TLS"); +} +SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); + SDValue LHS = Op.getOperand(2); + SDValue RHS = Op.getOperand(3); + SDValue Dest = Op.getOperand(4); + SDLoc dl(Op); + + // Handle f128 first, since lowering it will result in comparing the return + // value of a libcall against zero, which is just what the rest of LowerBR_CC + // is expecting to deal with. + if (LHS.getValueType() == MVT::f128) { + softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); + + // If softenSetCCOperands returned a scalar, we need to compare the result + // against zero to select between true and false values. + if (!RHS.getNode()) { + RHS = DAG.getConstant(0, dl, LHS.getValueType()); + CC = ISD::SETNE; + } + } + + // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch + // instruction. + unsigned Opc = LHS.getOpcode(); + if (LHS.getResNo() == 1 && isOneConstant(RHS) && + (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || + Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { + assert((CC == ISD::SETEQ || CC == ISD::SETNE) && + "Unexpected condition code."); + // Only lower legal XALUO ops. + if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) + return SDValue(); + + // The actual operation with overflow check. + AArch64CC::CondCode OFCC; + SDValue Value, Overflow; + std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); + + if (CC == ISD::SETNE) + OFCC = getInvertedCondCode(OFCC); + SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); + + return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, + Overflow); + } + + if (LHS.getValueType().isInteger()) { + assert((LHS.getValueType() == RHS.getValueType()) && + (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); + + // If the RHS of the comparison is zero, we can potentially fold this + // to a specialized branch. + const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); + if (RHSC && RHSC->getZExtValue() == 0) { + if (CC == ISD::SETEQ) { + // See if we can use a TBZ to fold in an AND as well. + // TBZ has a smaller branch displacement than CBZ. If the offset is + // out of bounds, a late MI-layer pass rewrites branches. + // 403.gcc is an example that hits this case. + if (LHS.getOpcode() == ISD::AND && + isa<ConstantSDNode>(LHS.getOperand(1)) && + isPowerOf2_64(LHS.getConstantOperandVal(1))) { + SDValue Test = LHS.getOperand(0); + uint64_t Mask = LHS.getConstantOperandVal(1); + return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, + DAG.getConstant(Log2_64(Mask), dl, MVT::i64), + Dest); + } + + return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); + } else if (CC == ISD::SETNE) { + // See if we can use a TBZ to fold in an AND as well. + // TBZ has a smaller branch displacement than CBZ. If the offset is + // out of bounds, a late MI-layer pass rewrites branches. + // 403.gcc is an example that hits this case. + if (LHS.getOpcode() == ISD::AND && + isa<ConstantSDNode>(LHS.getOperand(1)) && + isPowerOf2_64(LHS.getConstantOperandVal(1))) { + SDValue Test = LHS.getOperand(0); + uint64_t Mask = LHS.getConstantOperandVal(1); + return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, + DAG.getConstant(Log2_64(Mask), dl, MVT::i64), + Dest); + } + + return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); + } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { + // Don't combine AND since emitComparison converts the AND to an ANDS + // (a.k.a. TST) and the test in the test bit and branch instruction + // becomes redundant. This would also increase register pressure. + uint64_t Mask = LHS.getValueType().getSizeInBits() - 1; + return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, + DAG.getConstant(Mask, dl, MVT::i64), Dest); + } + } + if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && + LHS.getOpcode() != ISD::AND) { + // Don't combine AND since emitComparison converts the AND to an ANDS + // (a.k.a. TST) and the test in the test bit and branch instruction + // becomes redundant. This would also increase register pressure. + uint64_t Mask = LHS.getValueType().getSizeInBits() - 1; + return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, + DAG.getConstant(Mask, dl, MVT::i64), Dest); + } + + SDValue CCVal; + SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); + return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, + Cmp); + } + + assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); + + // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally + // clean. Some of them require two branches to implement. + SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); + AArch64CC::CondCode CC1, CC2; + changeFPCCToAArch64CC(CC, CC1, CC2); + SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); + SDValue BR1 = + DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); + if (CC2 != AArch64CC::AL) { + SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); + return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, + Cmp); + } + + return BR1; +} + +SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); + + SDValue In1 = Op.getOperand(0); + SDValue In2 = Op.getOperand(1); + EVT SrcVT = In2.getValueType(); + + if (SrcVT.bitsLT(VT)) + In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); + else if (SrcVT.bitsGT(VT)) + In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL)); + + EVT VecVT; + EVT EltVT; + uint64_t EltMask; + SDValue VecVal1, VecVal2; + if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { + EltVT = MVT::i32; + VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32); + EltMask = 0x80000000ULL; + + if (!VT.isVector()) { + VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, + DAG.getUNDEF(VecVT), In1); + VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, + DAG.getUNDEF(VecVT), In2); + } else { + VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); + VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); + } + } else if (VT == MVT::f64 || VT == MVT::v2f64) { + EltVT = MVT::i64; + VecVT = MVT::v2i64; + + // We want to materialize a mask with the high bit set, but the AdvSIMD + // immediate moves cannot materialize that in a single instruction for + // 64-bit elements. Instead, materialize zero and then negate it. + EltMask = 0; + + if (!VT.isVector()) { + VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, + DAG.getUNDEF(VecVT), In1); + VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, + DAG.getUNDEF(VecVT), In2); + } else { + VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); + VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); + } + } else { + llvm_unreachable("Invalid type for copysign!"); + } + + SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT); + + // If we couldn't materialize the mask above, then the mask vector will be + // the zero vector, and we need to negate it here. + if (VT == MVT::f64 || VT == MVT::v2f64) { + BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); + BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); + BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); + } + + SDValue Sel = + DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); + + if (VT == MVT::f32) + return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); + else if (VT == MVT::f64) + return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); + else + return DAG.getNode(ISD::BITCAST, DL, VT, Sel); +} + +SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { + if (DAG.getMachineFunction().getFunction()->hasFnAttribute( + Attribute::NoImplicitFloat)) + return SDValue(); + + if (!Subtarget->hasNEON()) + return SDValue(); + + // While there is no integer popcount instruction, it can + // be more efficiently lowered to the following sequence that uses + // AdvSIMD registers/instructions as long as the copies to/from + // the AdvSIMD registers are cheap. + // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd + // CNT V0.8B, V0.8B // 8xbyte pop-counts + // ADDV B0, V0.8B // sum 8xbyte pop-counts + // UMOV X0, V0.B[0] // copy byte result back to integer reg + SDValue Val = Op.getOperand(0); + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + if (VT == MVT::i32) + Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); + Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); + + SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); + SDValue UaddLV = DAG.getNode( + ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, + DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); + + if (VT == MVT::i64) + UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); + return UaddLV; +} + +SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + + if (Op.getValueType().isVector()) + return LowerVSETCC(Op, DAG); + + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDLoc dl(Op); + + // We chose ZeroOrOneBooleanContents, so use zero and one. + EVT VT = Op.getValueType(); + SDValue TVal = DAG.getConstant(1, dl, VT); + SDValue FVal = DAG.getConstant(0, dl, VT); + + // Handle f128 first, since one possible outcome is a normal integer + // comparison which gets picked up by the next if statement. + if (LHS.getValueType() == MVT::f128) { + softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); + + // If softenSetCCOperands returned a scalar, use it. + if (!RHS.getNode()) { + assert(LHS.getValueType() == Op.getValueType() && + "Unexpected setcc expansion!"); + return LHS; + } + } + + if (LHS.getValueType().isInteger()) { + SDValue CCVal; + SDValue Cmp = + getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl); + + // Note that we inverted the condition above, so we reverse the order of + // the true and false operands here. This will allow the setcc to be + // matched to a single CSINC instruction. + return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); + } + + // Now we know we're dealing with FP values. + assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); + + // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead + // and do the comparison. + SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); + + AArch64CC::CondCode CC1, CC2; + changeFPCCToAArch64CC(CC, CC1, CC2); + if (CC2 == AArch64CC::AL) { + changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2); + SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); + + // Note that we inverted the condition above, so we reverse the order of + // the true and false operands here. This will allow the setcc to be + // matched to a single CSINC instruction. + return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); + } else { + // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't + // totally clean. Some of them require two CSELs to implement. As is in + // this case, we emit the first CSEL and then emit a second using the output + // of the first as the RHS. We're effectively OR'ing the two CC's together. + + // FIXME: It would be nice if we could match the two CSELs to two CSINCs. + SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); + SDValue CS1 = + DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); + + SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); + return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); + } +} + +SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, + SDValue RHS, SDValue TVal, + SDValue FVal, SDLoc dl, + SelectionDAG &DAG) const { + // Handle f128 first, because it will result in a comparison of some RTLIB + // call result against zero. + if (LHS.getValueType() == MVT::f128) { + softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); + + // If softenSetCCOperands returned a scalar, we need to compare the result + // against zero to select between true and false values. + if (!RHS.getNode()) { + RHS = DAG.getConstant(0, dl, LHS.getValueType()); + CC = ISD::SETNE; + } + } + + // Also handle f16, for which we need to do a f32 comparison. + if (LHS.getValueType() == MVT::f16) { + LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); + RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); + } + + // Next, handle integers. + if (LHS.getValueType().isInteger()) { + assert((LHS.getValueType() == RHS.getValueType()) && + (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); + + unsigned Opcode = AArch64ISD::CSEL; + + // If both the TVal and the FVal are constants, see if we can swap them in + // order to for a CSINV or CSINC out of them. + ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); + ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); + + if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { + std::swap(TVal, FVal); + std::swap(CTVal, CFVal); + CC = ISD::getSetCCInverse(CC, true); + } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { + std::swap(TVal, FVal); + std::swap(CTVal, CFVal); + CC = ISD::getSetCCInverse(CC, true); + } else if (TVal.getOpcode() == ISD::XOR) { + // If TVal is a NOT we want to swap TVal and FVal so that we can match + // with a CSINV rather than a CSEL. + if (isAllOnesConstant(TVal.getOperand(1))) { + std::swap(TVal, FVal); + std::swap(CTVal, CFVal); + CC = ISD::getSetCCInverse(CC, true); + } + } else if (TVal.getOpcode() == ISD::SUB) { + // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so + // that we can match with a CSNEG rather than a CSEL. + if (isNullConstant(TVal.getOperand(0))) { + std::swap(TVal, FVal); + std::swap(CTVal, CFVal); + CC = ISD::getSetCCInverse(CC, true); + } + } else if (CTVal && CFVal) { + const int64_t TrueVal = CTVal->getSExtValue(); + const int64_t FalseVal = CFVal->getSExtValue(); + bool Swap = false; + + // If both TVal and FVal are constants, see if FVal is the + // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC + // instead of a CSEL in that case. + if (TrueVal == ~FalseVal) { + Opcode = AArch64ISD::CSINV; + } else if (TrueVal == -FalseVal) { + Opcode = AArch64ISD::CSNEG; + } else if (TVal.getValueType() == MVT::i32) { + // If our operands are only 32-bit wide, make sure we use 32-bit + // arithmetic for the check whether we can use CSINC. This ensures that + // the addition in the check will wrap around properly in case there is + // an overflow (which would not be the case if we do the check with + // 64-bit arithmetic). + const uint32_t TrueVal32 = CTVal->getZExtValue(); + const uint32_t FalseVal32 = CFVal->getZExtValue(); + + if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { + Opcode = AArch64ISD::CSINC; + + if (TrueVal32 > FalseVal32) { + Swap = true; + } + } + // 64-bit check whether we can use CSINC. + } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { + Opcode = AArch64ISD::CSINC; + + if (TrueVal > FalseVal) { + Swap = true; + } + } + + // Swap TVal and FVal if necessary. + if (Swap) { + std::swap(TVal, FVal); + std::swap(CTVal, CFVal); + CC = ISD::getSetCCInverse(CC, true); + } + + if (Opcode != AArch64ISD::CSEL) { + // Drop FVal since we can get its value by simply inverting/negating + // TVal. + FVal = TVal; + } + } + + SDValue CCVal; + SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); + + EVT VT = TVal.getValueType(); + return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); + } + + // Now we know we're dealing with FP values. + assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); + assert(LHS.getValueType() == RHS.getValueType()); + EVT VT = TVal.getValueType(); + SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); + + // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally + // clean. Some of them require two CSELs to implement. + AArch64CC::CondCode CC1, CC2; + changeFPCCToAArch64CC(CC, CC1, CC2); + SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); + SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); + + // If we need a second CSEL, emit it, using the output of the first as the + // RHS. We're effectively OR'ing the two CC's together. + if (CC2 != AArch64CC::AL) { + SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); + return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); + } + + // Otherwise, return the output of the first CSEL. + return CS1; +} + +SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, + SelectionDAG &DAG) const { + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue TVal = Op.getOperand(2); + SDValue FVal = Op.getOperand(3); + SDLoc DL(Op); + return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); +} + +SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, + SelectionDAG &DAG) const { + SDValue CCVal = Op->getOperand(0); + SDValue TVal = Op->getOperand(1); + SDValue FVal = Op->getOperand(2); + SDLoc DL(Op); + + unsigned Opc = CCVal.getOpcode(); + // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select + // instruction. + if (CCVal.getResNo() == 1 && + (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || + Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { + // Only lower legal XALUO ops. + if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) + return SDValue(); + + AArch64CC::CondCode OFCC; + SDValue Value, Overflow; + std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); + SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); + + return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, + CCVal, Overflow); + } + + // Lower it the same way as we would lower a SELECT_CC node. + ISD::CondCode CC; + SDValue LHS, RHS; + if (CCVal.getOpcode() == ISD::SETCC) { + LHS = CCVal.getOperand(0); + RHS = CCVal.getOperand(1); + CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get(); + } else { + LHS = CCVal; + RHS = DAG.getConstant(0, DL, CCVal.getValueType()); + CC = ISD::SETNE; + } + return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); +} + +SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, + SelectionDAG &DAG) const { + // Jump table entries as PC relative offsets. No additional tweaking + // is necessary here. Just get the address of the jump table. + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDLoc DL(Op); + + if (getTargetMachine().getCodeModel() == CodeModel::Large && + !Subtarget->isTargetMachO()) { + const unsigned char MO_NC = AArch64II::MO_NC; + return DAG.getNode( + AArch64ISD::WrapperLarge, DL, PtrVT, + DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3), + DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC), + DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC), + DAG.getTargetJumpTable(JT->getIndex(), PtrVT, + AArch64II::MO_G0 | MO_NC)); + } + + SDValue Hi = + DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE); + SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, + AArch64II::MO_PAGEOFF | AArch64II::MO_NC); + SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); + return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); +} + +SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, + SelectionDAG &DAG) const { + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDLoc DL(Op); + + if (getTargetMachine().getCodeModel() == CodeModel::Large) { + // Use the GOT for the large code model on iOS. + if (Subtarget->isTargetMachO()) { + SDValue GotAddr = DAG.getTargetConstantPool( + CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), + AArch64II::MO_GOT); + return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); + } + + const unsigned char MO_NC = AArch64II::MO_NC; + return DAG.getNode( + AArch64ISD::WrapperLarge, DL, PtrVT, + DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), + CP->getOffset(), AArch64II::MO_G3), + DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), + CP->getOffset(), AArch64II::MO_G2 | MO_NC), + DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), + CP->getOffset(), AArch64II::MO_G1 | MO_NC), + DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), + CP->getOffset(), AArch64II::MO_G0 | MO_NC)); + } else { + // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on + // ELF, the only valid one on Darwin. + SDValue Hi = + DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), + CP->getOffset(), AArch64II::MO_PAGE); + SDValue Lo = DAG.getTargetConstantPool( + CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), + AArch64II::MO_PAGEOFF | AArch64II::MO_NC); + + SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); + return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); + } +} + +SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDLoc DL(Op); + if (getTargetMachine().getCodeModel() == CodeModel::Large && + !Subtarget->isTargetMachO()) { + const unsigned char MO_NC = AArch64II::MO_NC; + return DAG.getNode( + AArch64ISD::WrapperLarge, DL, PtrVT, + DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3), + DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC), + DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC), + DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); + } else { + SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE); + SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF | + AArch64II::MO_NC); + SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); + return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); + } +} + +SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, + SelectionDAG &DAG) const { + AArch64FunctionInfo *FuncInfo = + DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); + + SDLoc DL(Op); + SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), + getPointerTy(DAG.getDataLayout())); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), + MachinePointerInfo(SV), false, false, 0); +} + +SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, + SelectionDAG &DAG) const { + // The layout of the va_list struct is specified in the AArch64 Procedure Call + // Standard, section B.3. + MachineFunction &MF = DAG.getMachineFunction(); + AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDLoc DL(Op); + + SDValue Chain = Op.getOperand(0); + SDValue VAList = Op.getOperand(1); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + SmallVector<SDValue, 4> MemOps; + + // void *__stack at offset 0 + SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); + MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, + MachinePointerInfo(SV), false, false, 8)); + + // void *__gr_top at offset 8 + int GPRSize = FuncInfo->getVarArgsGPRSize(); + if (GPRSize > 0) { + SDValue GRTop, GRTopAddr; + + GRTopAddr = + DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT)); + + GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); + GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, + DAG.getConstant(GPRSize, DL, PtrVT)); + + MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, + MachinePointerInfo(SV, 8), false, false, 8)); + } + + // void *__vr_top at offset 16 + int FPRSize = FuncInfo->getVarArgsFPRSize(); + if (FPRSize > 0) { + SDValue VRTop, VRTopAddr; + VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, + DAG.getConstant(16, DL, PtrVT)); + + VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); + VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, + DAG.getConstant(FPRSize, DL, PtrVT)); + + MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, + MachinePointerInfo(SV, 16), false, false, 8)); + } + + // int __gr_offs at offset 24 + SDValue GROffsAddr = + DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT)); + MemOps.push_back(DAG.getStore(Chain, DL, + DAG.getConstant(-GPRSize, DL, MVT::i32), + GROffsAddr, MachinePointerInfo(SV, 24), false, + false, 4)); + + // int __vr_offs at offset 28 + SDValue VROffsAddr = + DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT)); + MemOps.push_back(DAG.getStore(Chain, DL, + DAG.getConstant(-FPRSize, DL, MVT::i32), + VROffsAddr, MachinePointerInfo(SV, 28), false, + false, 4)); + + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); +} + +SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, + SelectionDAG &DAG) const { + return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG) + : LowerAAPCS_VASTART(Op, DAG); +} + +SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, + SelectionDAG &DAG) const { + // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single + // pointer. + SDLoc DL(Op); + unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32; + const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + + return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), + Op.getOperand(2), + DAG.getConstant(VaListSize, DL, MVT::i32), + 8, false, false, false, MachinePointerInfo(DestSV), + MachinePointerInfo(SrcSV)); +} + +SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { + assert(Subtarget->isTargetDarwin() && + "automatic va_arg instruction only works on Darwin"); + + const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + EVT VT = Op.getValueType(); + SDLoc DL(Op); + SDValue Chain = Op.getOperand(0); + SDValue Addr = Op.getOperand(1); + unsigned Align = Op.getConstantOperandVal(3); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V), + false, false, false, 0); + Chain = VAList.getValue(1); + + if (Align > 8) { + assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); + VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, + DAG.getConstant(Align - 1, DL, PtrVT)); + VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, + DAG.getConstant(-(int64_t)Align, DL, PtrVT)); + } + + Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); + uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); + + // Scalar integer and FP values smaller than 64 bits are implicitly extended + // up to 64 bits. At the very least, we have to increase the striding of the + // vaargs list to match this, and for FP values we need to introduce + // FP_ROUND nodes as well. + if (VT.isInteger() && !VT.isVector()) + ArgSize = 8; + bool NeedFPTrunc = false; + if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { + ArgSize = 8; + NeedFPTrunc = true; + } + + // Increment the pointer, VAList, to the next vaarg + SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, + DAG.getConstant(ArgSize, DL, PtrVT)); + // Store the incremented VAList to the legalized pointer + SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V), + false, false, 0); + + // Load the actual argument out of the pointer VAList + if (NeedFPTrunc) { + // Load the value as an f64. + SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList, + MachinePointerInfo(), false, false, false, 0); + // Round the value down to an f32. + SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), + DAG.getIntPtrConstant(1, DL)); + SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; + // Merge the rounded value with the chain output of the load. + return DAG.getMergeValues(Ops, DL); + } + + return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false, + false, false, 0); +} + +SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + SDValue FrameAddr = + DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); + while (Depth--) + FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, + MachinePointerInfo(), false, false, false, 0); + return FrameAddr; +} + +// FIXME? Maybe this could be a TableGen attribute on some registers and +// this table could be generated automatically from RegInfo. +unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("sp", AArch64::SP) + .Default(0); + if (Reg) + return Reg; + report_fatal_error(Twine("Invalid register name \"" + + StringRef(RegName) + "\".")); +} + +SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MFI->setReturnAddressIsTaken(true); + + EVT VT = Op.getValueType(); + SDLoc DL(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + if (Depth) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); + return DAG.getLoad(VT, DL, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), + MachinePointerInfo(), false, false, false, 0); + } + + // Return LR, which contains the return address. Mark it an implicit live-in. + unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); + return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); +} + +/// LowerShiftRightParts - Lower SRA_PARTS, which returns two +/// i64 values and take a 2 x i64 value to shift plus a shift amount. +SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getNumOperands() == 3 && "Not a double-shift!"); + EVT VT = Op.getValueType(); + unsigned VTBits = VT.getSizeInBits(); + SDLoc dl(Op); + SDValue ShOpLo = Op.getOperand(0); + SDValue ShOpHi = Op.getOperand(1); + SDValue ShAmt = Op.getOperand(2); + unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; + + assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); + + SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, + DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); + SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); + + // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which + // is "undef". We wanted 0, so CSEL it directly. + SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), + ISD::SETEQ, dl, DAG); + SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); + HiBitsForLo = + DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), + HiBitsForLo, CCVal, Cmp); + + SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, + DAG.getConstant(VTBits, dl, MVT::i64)); + + SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); + SDValue LoForNormalShift = + DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo); + + Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, + dl, DAG); + CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); + SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); + SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, + LoForNormalShift, CCVal, Cmp); + + // AArch64 shifts larger than the register width are wrapped rather than + // clamped, so we can't just emit "hi >> x". + SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); + SDValue HiForBigShift = + Opc == ISD::SRA + ? DAG.getNode(Opc, dl, VT, ShOpHi, + DAG.getConstant(VTBits - 1, dl, MVT::i64)) + : DAG.getConstant(0, dl, VT); + SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, + HiForNormalShift, CCVal, Cmp); + + SDValue Ops[2] = { Lo, Hi }; + return DAG.getMergeValues(Ops, dl); +} + + +/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two +/// i64 values and take a 2 x i64 value to shift plus a shift amount. +SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getNumOperands() == 3 && "Not a double-shift!"); + EVT VT = Op.getValueType(); + unsigned VTBits = VT.getSizeInBits(); + SDLoc dl(Op); + SDValue ShOpLo = Op.getOperand(0); + SDValue ShOpHi = Op.getOperand(1); + SDValue ShAmt = Op.getOperand(2); + + assert(Op.getOpcode() == ISD::SHL_PARTS); + SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, + DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); + SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); + + // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which + // is "undef". We wanted 0, so CSEL it directly. + SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), + ISD::SETEQ, dl, DAG); + SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); + LoBitsForHi = + DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), + LoBitsForHi, CCVal, Cmp); + + SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, + DAG.getConstant(VTBits, dl, MVT::i64)); + SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); + SDValue HiForNormalShift = + DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); + + SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); + + Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, + dl, DAG); + CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); + SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, + HiForNormalShift, CCVal, Cmp); + + // AArch64 shifts of larger than register sizes are wrapped rather than + // clamped, so we can't just emit "lo << a" if a is too big. + SDValue LoForBigShift = DAG.getConstant(0, dl, VT); + SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); + SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, + LoForNormalShift, CCVal, Cmp); + + SDValue Ops[2] = { Lo, Hi }; + return DAG.getMergeValues(Ops, dl); +} + +bool AArch64TargetLowering::isOffsetFoldingLegal( + const GlobalAddressSDNode *GA) const { + // The AArch64 target doesn't support folding offsets into global addresses. + return false; +} + +bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases. + // FIXME: We should be able to handle f128 as well with a clever lowering. + if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32)) + return true; + + if (VT == MVT::f64) + return AArch64_AM::getFP64Imm(Imm) != -1; + else if (VT == MVT::f32) + return AArch64_AM::getFP32Imm(Imm) != -1; + return false; +} + +//===----------------------------------------------------------------------===// +// AArch64 Optimization Hooks +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// AArch64 Inline Assembly Support +//===----------------------------------------------------------------------===// + +// Table of Constraints +// TODO: This is the current set of constraints supported by ARM for the +// compiler, not all of them may make sense, e.g. S may be difficult to support. +// +// r - A general register +// w - An FP/SIMD register of some size in the range v0-v31 +// x - An FP/SIMD register of some size in the range v0-v15 +// I - Constant that can be used with an ADD instruction +// J - Constant that can be used with a SUB instruction +// K - Constant that can be used with a 32-bit logical instruction +// L - Constant that can be used with a 64-bit logical instruction +// M - Constant that can be used as a 32-bit MOV immediate +// N - Constant that can be used as a 64-bit MOV immediate +// Q - A memory reference with base register and no offset +// S - A symbolic address +// Y - Floating point constant zero +// Z - Integer constant zero +// +// Note that general register operands will be output using their 64-bit x +// register name, whatever the size of the variable, unless the asm operand +// is prefixed by the %w modifier. Floating-point and SIMD register operands +// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or +// %q modifier. + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +AArch64TargetLowering::ConstraintType +AArch64TargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default: + break; + case 'z': + return C_Other; + case 'x': + case 'w': + return C_RegisterClass; + // An address with a single base register. Due to the way we + // currently handle addresses it is the same as 'r'. + case 'Q': + return C_Memory; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight +AArch64TargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + break; + case 'x': + case 'w': + if (type->isFloatingPointTy() || type->isVectorTy()) + weight = CW_Register; + break; + case 'z': + weight = CW_Constant; + break; + } + return weight; +} + +std::pair<unsigned, const TargetRegisterClass *> +AArch64TargetLowering::getRegForInlineAsmConstraint( + const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'r': + if (VT.getSizeInBits() == 64) + return std::make_pair(0U, &AArch64::GPR64commonRegClass); + return std::make_pair(0U, &AArch64::GPR32commonRegClass); + case 'w': + if (VT == MVT::f32) + return std::make_pair(0U, &AArch64::FPR32RegClass); + if (VT.getSizeInBits() == 64) + return std::make_pair(0U, &AArch64::FPR64RegClass); + if (VT.getSizeInBits() == 128) + return std::make_pair(0U, &AArch64::FPR128RegClass); + break; + // The instructions that this constraint is designed for can + // only take 128-bit registers so just use that regclass. + case 'x': + if (VT.getSizeInBits() == 128) + return std::make_pair(0U, &AArch64::FPR128_loRegClass); + break; + } + } + if (StringRef("{cc}").equals_lower(Constraint)) + return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); + + // Use the default implementation in TargetLowering to convert the register + // constraint into a member of a register class. + std::pair<unsigned, const TargetRegisterClass *> Res; + Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); + + // Not found as a standard register? + if (!Res.second) { + unsigned Size = Constraint.size(); + if ((Size == 4 || Size == 5) && Constraint[0] == '{' && + tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { + int RegNo; + bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); + if (!Failed && RegNo >= 0 && RegNo <= 31) { + // v0 - v31 are aliases of q0 - q31. + // By default we'll emit v0-v31 for this unless there's a modifier where + // we'll emit the correct register as well. + Res.first = AArch64::FPR128RegClass.getRegister(RegNo); + Res.second = &AArch64::FPR128RegClass; + } + } + } + + return Res; +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void AArch64TargetLowering::LowerAsmOperandForConstraint( + SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + SDValue Result; + + // Currently only support length 1 constraints. + if (Constraint.length() != 1) + return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: + break; + + // This set of constraints deal with valid constants for various instructions. + // Validate and return a target constant for them if we can. + case 'z': { + // 'z' maps to xzr or wzr so it needs an input of 0. + if (!isNullConstant(Op)) + return; + + if (Op.getValueType() == MVT::i64) + Result = DAG.getRegister(AArch64::XZR, MVT::i64); + else + Result = DAG.getRegister(AArch64::WZR, MVT::i32); + break; + } + + case 'I': + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); + if (!C) + return; + + // Grab the value and do some validation. + uint64_t CVal = C->getZExtValue(); + switch (ConstraintLetter) { + // The I constraint applies only to simple ADD or SUB immediate operands: + // i.e. 0 to 4095 with optional shift by 12 + // The J constraint applies only to ADD or SUB immediates that would be + // valid when negated, i.e. if [an add pattern] were to be output as a SUB + // instruction [or vice versa], in other words -1 to -4095 with optional + // left shift by 12. + case 'I': + if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) + break; + return; + case 'J': { + uint64_t NVal = -C->getSExtValue(); + if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { + CVal = C->getSExtValue(); + break; + } + return; + } + // The K and L constraints apply *only* to logical immediates, including + // what used to be the MOVI alias for ORR (though the MOVI alias has now + // been removed and MOV should be used). So these constraints have to + // distinguish between bit patterns that are valid 32-bit or 64-bit + // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but + // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice + // versa. + case 'K': + if (AArch64_AM::isLogicalImmediate(CVal, 32)) + break; + return; + case 'L': + if (AArch64_AM::isLogicalImmediate(CVal, 64)) + break; + return; + // The M and N constraints are a superset of K and L respectively, for use + // with the MOV (immediate) alias. As well as the logical immediates they + // also match 32 or 64-bit immediates that can be loaded either using a + // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca + // (M) or 64-bit 0x1234000000000000 (N) etc. + // As a note some of this code is liberally stolen from the asm parser. + case 'M': { + if (!isUInt<32>(CVal)) + return; + if (AArch64_AM::isLogicalImmediate(CVal, 32)) + break; + if ((CVal & 0xFFFF) == CVal) + break; + if ((CVal & 0xFFFF0000ULL) == CVal) + break; + uint64_t NCVal = ~(uint32_t)CVal; + if ((NCVal & 0xFFFFULL) == NCVal) + break; + if ((NCVal & 0xFFFF0000ULL) == NCVal) + break; + return; + } + case 'N': { + if (AArch64_AM::isLogicalImmediate(CVal, 64)) + break; + if ((CVal & 0xFFFFULL) == CVal) + break; + if ((CVal & 0xFFFF0000ULL) == CVal) + break; + if ((CVal & 0xFFFF00000000ULL) == CVal) + break; + if ((CVal & 0xFFFF000000000000ULL) == CVal) + break; + uint64_t NCVal = ~CVal; + if ((NCVal & 0xFFFFULL) == NCVal) + break; + if ((NCVal & 0xFFFF0000ULL) == NCVal) + break; + if ((NCVal & 0xFFFF00000000ULL) == NCVal) + break; + if ((NCVal & 0xFFFF000000000000ULL) == NCVal) + break; + return; + } + default: + return; + } + + // All assembler immediates are 64-bit integers. + Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); + break; + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + + return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +//===----------------------------------------------------------------------===// +// AArch64 Advanced SIMD Support +//===----------------------------------------------------------------------===// + +/// WidenVector - Given a value in the V64 register class, produce the +/// equivalent value in the V128 register class. +static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { + EVT VT = V64Reg.getValueType(); + unsigned NarrowSize = VT.getVectorNumElements(); + MVT EltTy = VT.getVectorElementType().getSimpleVT(); + MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); + SDLoc DL(V64Reg); + + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), + V64Reg, DAG.getConstant(0, DL, MVT::i32)); +} + +/// getExtFactor - Determine the adjustment factor for the position when +/// generating an "extract from vector registers" instruction. +static unsigned getExtFactor(SDValue &V) { + EVT EltType = V.getValueType().getVectorElementType(); + return EltType.getSizeInBits() / 8; +} + +/// NarrowVector - Given a value in the V128 register class, produce the +/// equivalent value in the V64 register class. +static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { + EVT VT = V128Reg.getValueType(); + unsigned WideSize = VT.getVectorNumElements(); + MVT EltTy = VT.getVectorElementType().getSimpleVT(); + MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); + SDLoc DL(V128Reg); + + return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); +} + +// Gather data to see if the operation can be modelled as a +// shuffle in combination with VEXTs. +SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); + SDLoc dl(Op); + EVT VT = Op.getValueType(); + unsigned NumElts = VT.getVectorNumElements(); + + struct ShuffleSourceInfo { + SDValue Vec; + unsigned MinElt; + unsigned MaxElt; + + // We may insert some combination of BITCASTs and VEXT nodes to force Vec to + // be compatible with the shuffle we intend to construct. As a result + // ShuffleVec will be some sliding window into the original Vec. + SDValue ShuffleVec; + + // Code should guarantee that element i in Vec starts at element "WindowBase + // + i * WindowScale in ShuffleVec". + int WindowBase; + int WindowScale; + + bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } + ShuffleSourceInfo(SDValue Vec) + : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0), + WindowScale(1) {} + }; + + // First gather all vectors used as an immediate source for this BUILD_VECTOR + // node. + SmallVector<ShuffleSourceInfo, 2> Sources; + for (unsigned i = 0; i < NumElts; ++i) { + SDValue V = Op.getOperand(i); + if (V.getOpcode() == ISD::UNDEF) + continue; + else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { + // A shuffle can only come from building a vector from various + // elements of other vectors. + return SDValue(); + } + + // Add this element source to the list if it's not already there. + SDValue SourceVec = V.getOperand(0); + auto Source = std::find(Sources.begin(), Sources.end(), SourceVec); + if (Source == Sources.end()) + Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); + + // Update the minimum and maximum lane number seen. + unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); + Source->MinElt = std::min(Source->MinElt, EltNo); + Source->MaxElt = std::max(Source->MaxElt, EltNo); + } + + // Currently only do something sane when at most two source vectors + // are involved. + if (Sources.size() > 2) + return SDValue(); + + // Find out the smallest element size among result and two sources, and use + // it as element size to build the shuffle_vector. + EVT SmallestEltTy = VT.getVectorElementType(); + for (auto &Source : Sources) { + EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); + if (SrcEltTy.bitsLT(SmallestEltTy)) { + SmallestEltTy = SrcEltTy; + } + } + unsigned ResMultiplier = + VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits(); + NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); + EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); + + // If the source vector is too wide or too narrow, we may nevertheless be able + // to construct a compatible shuffle either by concatenating it with UNDEF or + // extracting a suitable range of elements. + for (auto &Src : Sources) { + EVT SrcVT = Src.ShuffleVec.getValueType(); + + if (SrcVT.getSizeInBits() == VT.getSizeInBits()) + continue; + + // This stage of the search produces a source with the same element type as + // the original, but with a total width matching the BUILD_VECTOR output. + EVT EltVT = SrcVT.getVectorElementType(); + unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); + EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); + + if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { + assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits()); + // We can pad out the smaller vector for free, so if it's part of a + // shuffle... + Src.ShuffleVec = + DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, + DAG.getUNDEF(Src.ShuffleVec.getValueType())); + continue; + } + + assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits()); + + if (Src.MaxElt - Src.MinElt >= NumSrcElts) { + // Span too large for a VEXT to cope + return SDValue(); + } + + if (Src.MinElt >= NumSrcElts) { + // The extraction can just take the second half + Src.ShuffleVec = + DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, + DAG.getConstant(NumSrcElts, dl, MVT::i64)); + Src.WindowBase = -NumSrcElts; + } else if (Src.MaxElt < NumSrcElts) { + // The extraction can just take the first half + Src.ShuffleVec = + DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, + DAG.getConstant(0, dl, MVT::i64)); + } else { + // An actual VEXT is needed + SDValue VEXTSrc1 = + DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, + DAG.getConstant(0, dl, MVT::i64)); + SDValue VEXTSrc2 = + DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, + DAG.getConstant(NumSrcElts, dl, MVT::i64)); + unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); + + Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, + VEXTSrc2, + DAG.getConstant(Imm, dl, MVT::i32)); + Src.WindowBase = -Src.MinElt; + } + } + + // Another possible incompatibility occurs from the vector element types. We + // can fix this by bitcasting the source vectors to the same type we intend + // for the shuffle. + for (auto &Src : Sources) { + EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); + if (SrcEltTy == SmallestEltTy) + continue; + assert(ShuffleVT.getVectorElementType() == SmallestEltTy); + Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); + Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); + Src.WindowBase *= Src.WindowScale; + } + + // Final sanity check before we try to actually produce a shuffle. + DEBUG( + for (auto Src : Sources) + assert(Src.ShuffleVec.getValueType() == ShuffleVT); + ); + + // The stars all align, our next step is to produce the mask for the shuffle. + SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); + int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits(); + for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { + SDValue Entry = Op.getOperand(i); + if (Entry.getOpcode() == ISD::UNDEF) + continue; + + auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0)); + int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); + + // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit + // trunc. So only std::min(SrcBits, DestBits) actually get defined in this + // segment. + EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); + int BitsDefined = std::min(OrigEltTy.getSizeInBits(), + VT.getVectorElementType().getSizeInBits()); + int LanesDefined = BitsDefined / BitsPerShuffleLane; + + // This source is expected to fill ResMultiplier lanes of the final shuffle, + // starting at the appropriate offset. + int *LaneMask = &Mask[i * ResMultiplier]; + + int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; + ExtractBase += NumElts * (Src - Sources.begin()); + for (int j = 0; j < LanesDefined; ++j) + LaneMask[j] = ExtractBase + j; + } + + // Final check before we try to produce nonsense... + if (!isShuffleMaskLegal(Mask, ShuffleVT)) + return SDValue(); + + SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; + for (unsigned i = 0; i < Sources.size(); ++i) + ShuffleOps[i] = Sources[i].ShuffleVec; + + SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], + ShuffleOps[1], &Mask[0]); + return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); +} + +// check if an EXT instruction can handle the shuffle mask when the +// vector sources of the shuffle are the same. +static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { + unsigned NumElts = VT.getVectorNumElements(); + + // Assume that the first shuffle index is not UNDEF. Fail if it is. + if (M[0] < 0) + return false; + + Imm = M[0]; + + // If this is a VEXT shuffle, the immediate value is the index of the first + // element. The other shuffle indices must be the successive elements after + // the first one. + unsigned ExpectedElt = Imm; + for (unsigned i = 1; i < NumElts; ++i) { + // Increment the expected index. If it wraps around, just follow it + // back to index zero and keep going. + ++ExpectedElt; + if (ExpectedElt == NumElts) + ExpectedElt = 0; + + if (M[i] < 0) + continue; // ignore UNDEF indices + if (ExpectedElt != static_cast<unsigned>(M[i])) + return false; + } + + return true; +} + +// check if an EXT instruction can handle the shuffle mask when the +// vector sources of the shuffle are different. +static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, + unsigned &Imm) { + // Look for the first non-undef element. + const int *FirstRealElt = std::find_if(M.begin(), M.end(), + [](int Elt) {return Elt >= 0;}); + + // Benefit form APInt to handle overflow when calculating expected element. + unsigned NumElts = VT.getVectorNumElements(); + unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); + APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); + // The following shuffle indices must be the successive elements after the + // first real element. + const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), + [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); + if (FirstWrongElt != M.end()) + return false; + + // The index of an EXT is the first element if it is not UNDEF. + // Watch out for the beginning UNDEFs. The EXT index should be the expected + // value of the first element. E.g. + // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. + // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. + // ExpectedElt is the last mask index plus 1. + Imm = ExpectedElt.getZExtValue(); + + // There are two difference cases requiring to reverse input vectors. + // For example, for vector <4 x i32> we have the following cases, + // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) + // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) + // For both cases, we finally use mask <5, 6, 7, 0>, which requires + // to reverse two input vectors. + if (Imm < NumElts) + ReverseEXT = true; + else + Imm -= NumElts; + + return true; +} + +/// isREVMask - Check if a vector shuffle corresponds to a REV +/// instruction with the specified blocksize. (The order of the elements +/// within each block of the vector is reversed.) +static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { + assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && + "Only possible block sizes for REV are: 16, 32, 64"); + + unsigned EltSz = VT.getVectorElementType().getSizeInBits(); + if (EltSz == 64) + return false; + + unsigned NumElts = VT.getVectorNumElements(); + unsigned BlockElts = M[0] + 1; + // If the first shuffle index is UNDEF, be optimistic. + if (M[0] < 0) + BlockElts = BlockSize / EltSz; + + if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) + return false; + + for (unsigned i = 0; i < NumElts; ++i) { + if (M[i] < 0) + continue; // ignore UNDEF indices + if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) + return false; + } + + return true; +} + +static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { + unsigned NumElts = VT.getVectorNumElements(); + WhichResult = (M[0] == 0 ? 0 : 1); + unsigned Idx = WhichResult * NumElts / 2; + for (unsigned i = 0; i != NumElts; i += 2) { + if ((M[i] >= 0 && (unsigned)M[i] != Idx) || + (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) + return false; + Idx += 1; + } + + return true; +} + +static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { + unsigned NumElts = VT.getVectorNumElements(); + WhichResult = (M[0] == 0 ? 0 : 1); + for (unsigned i = 0; i != NumElts; ++i) { + if (M[i] < 0) + continue; // ignore UNDEF indices + if ((unsigned)M[i] != 2 * i + WhichResult) + return false; + } + + return true; +} + +static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { + unsigned NumElts = VT.getVectorNumElements(); + WhichResult = (M[0] == 0 ? 0 : 1); + for (unsigned i = 0; i < NumElts; i += 2) { + if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || + (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) + return false; + } + return true; +} + +/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of +/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". +/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. +static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { + unsigned NumElts = VT.getVectorNumElements(); + WhichResult = (M[0] == 0 ? 0 : 1); + unsigned Idx = WhichResult * NumElts / 2; + for (unsigned i = 0; i != NumElts; i += 2) { + if ((M[i] >= 0 && (unsigned)M[i] != Idx) || + (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) + return false; + Idx += 1; + } + + return true; +} + +/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of +/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". +/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, +static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { + unsigned Half = VT.getVectorNumElements() / 2; + WhichResult = (M[0] == 0 ? 0 : 1); + for (unsigned j = 0; j != 2; ++j) { + unsigned Idx = WhichResult; + for (unsigned i = 0; i != Half; ++i) { + int MIdx = M[i + j * Half]; + if (MIdx >= 0 && (unsigned)MIdx != Idx) + return false; + Idx += 2; + } + } + + return true; +} + +/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of +/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". +/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. +static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { + unsigned NumElts = VT.getVectorNumElements(); + WhichResult = (M[0] == 0 ? 0 : 1); + for (unsigned i = 0; i < NumElts; i += 2) { + if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || + (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) + return false; + } + return true; +} + +static bool isINSMask(ArrayRef<int> M, int NumInputElements, + bool &DstIsLeft, int &Anomaly) { + if (M.size() != static_cast<size_t>(NumInputElements)) + return false; + + int NumLHSMatch = 0, NumRHSMatch = 0; + int LastLHSMismatch = -1, LastRHSMismatch = -1; + + for (int i = 0; i < NumInputElements; ++i) { + if (M[i] == -1) { + ++NumLHSMatch; + ++NumRHSMatch; + continue; + } + + if (M[i] == i) + ++NumLHSMatch; + else + LastLHSMismatch = i; + + if (M[i] == i + NumInputElements) + ++NumRHSMatch; + else + LastRHSMismatch = i; + } + + if (NumLHSMatch == NumInputElements - 1) { + DstIsLeft = true; + Anomaly = LastLHSMismatch; + return true; + } else if (NumRHSMatch == NumInputElements - 1) { + DstIsLeft = false; + Anomaly = LastRHSMismatch; + return true; + } + + return false; +} + +static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { + if (VT.getSizeInBits() != 128) + return false; + + unsigned NumElts = VT.getVectorNumElements(); + + for (int I = 0, E = NumElts / 2; I != E; I++) { + if (Mask[I] != I) + return false; + } + + int Offset = NumElts / 2; + for (int I = NumElts / 2, E = NumElts; I != E; I++) { + if (Mask[I] != I + SplitLHS * Offset) + return false; + } + + return true; +} + +static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue V0 = Op.getOperand(0); + SDValue V1 = Op.getOperand(1); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); + + if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || + VT.getVectorElementType() != V1.getValueType().getVectorElementType()) + return SDValue(); + + bool SplitV0 = V0.getValueType().getSizeInBits() == 128; + + if (!isConcatMask(Mask, VT, SplitV0)) + return SDValue(); + + EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), + VT.getVectorNumElements() / 2); + if (SplitV0) { + V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, + DAG.getConstant(0, DL, MVT::i64)); + } + if (V1.getValueType().getSizeInBits() == 128) { + V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, + DAG.getConstant(0, DL, MVT::i64)); + } + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); +} + +/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit +/// the specified operations to build the shuffle. +static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, + SDValue RHS, SelectionDAG &DAG, + SDLoc dl) { + unsigned OpNum = (PFEntry >> 26) & 0x0F; + unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); + unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); + + enum { + OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> + OP_VREV, + OP_VDUP0, + OP_VDUP1, + OP_VDUP2, + OP_VDUP3, + OP_VEXT1, + OP_VEXT2, + OP_VEXT3, + OP_VUZPL, // VUZP, left result + OP_VUZPR, // VUZP, right result + OP_VZIPL, // VZIP, left result + OP_VZIPR, // VZIP, right result + OP_VTRNL, // VTRN, left result + OP_VTRNR // VTRN, right result + }; + + if (OpNum == OP_COPY) { + if (LHSID == (1 * 9 + 2) * 9 + 3) + return LHS; + assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); + return RHS; + } + + SDValue OpLHS, OpRHS; + OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); + OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); + EVT VT = OpLHS.getValueType(); + + switch (OpNum) { + default: + llvm_unreachable("Unknown shuffle opcode!"); + case OP_VREV: + // VREV divides the vector in half and swaps within the half. + if (VT.getVectorElementType() == MVT::i32 || + VT.getVectorElementType() == MVT::f32) + return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); + // vrev <4 x i16> -> REV32 + if (VT.getVectorElementType() == MVT::i16 || + VT.getVectorElementType() == MVT::f16) + return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); + // vrev <4 x i8> -> REV16 + assert(VT.getVectorElementType() == MVT::i8); + return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); + case OP_VDUP0: + case OP_VDUP1: + case OP_VDUP2: + case OP_VDUP3: { + EVT EltTy = VT.getVectorElementType(); + unsigned Opcode; + if (EltTy == MVT::i8) + Opcode = AArch64ISD::DUPLANE8; + else if (EltTy == MVT::i16 || EltTy == MVT::f16) + Opcode = AArch64ISD::DUPLANE16; + else if (EltTy == MVT::i32 || EltTy == MVT::f32) + Opcode = AArch64ISD::DUPLANE32; + else if (EltTy == MVT::i64 || EltTy == MVT::f64) + Opcode = AArch64ISD::DUPLANE64; + else + llvm_unreachable("Invalid vector element type?"); + + if (VT.getSizeInBits() == 64) + OpLHS = WidenVector(OpLHS, DAG); + SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); + return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); + } + case OP_VEXT1: + case OP_VEXT2: + case OP_VEXT3: { + unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); + return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, + DAG.getConstant(Imm, dl, MVT::i32)); + } + case OP_VUZPL: + return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, + OpRHS); + case OP_VUZPR: + return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, + OpRHS); + case OP_VZIPL: + return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, + OpRHS); + case OP_VZIPR: + return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, + OpRHS); + case OP_VTRNL: + return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, + OpRHS); + case OP_VTRNR: + return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, + OpRHS); + } +} + +static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, + SelectionDAG &DAG) { + // Check to see if we can use the TBL instruction. + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + SDLoc DL(Op); + + EVT EltVT = Op.getValueType().getVectorElementType(); + unsigned BytesPerElt = EltVT.getSizeInBits() / 8; + + SmallVector<SDValue, 8> TBLMask; + for (int Val : ShuffleMask) { + for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { + unsigned Offset = Byte + Val * BytesPerElt; + TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); + } + } + + MVT IndexVT = MVT::v8i8; + unsigned IndexLen = 8; + if (Op.getValueType().getSizeInBits() == 128) { + IndexVT = MVT::v16i8; + IndexLen = 16; + } + + SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); + SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); + + SDValue Shuffle; + if (V2.getNode()->getOpcode() == ISD::UNDEF) { + if (IndexLen == 8) + V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); + Shuffle = DAG.getNode( + ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, + DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, + DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, + makeArrayRef(TBLMask.data(), IndexLen))); + } else { + if (IndexLen == 8) { + V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); + Shuffle = DAG.getNode( + ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, + DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, + DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, + makeArrayRef(TBLMask.data(), IndexLen))); + } else { + // FIXME: We cannot, for the moment, emit a TBL2 instruction because we + // cannot currently represent the register constraints on the input + // table registers. + // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, + // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, + // &TBLMask[0], IndexLen)); + Shuffle = DAG.getNode( + ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, + DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), + V1Cst, V2Cst, + DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, + makeArrayRef(TBLMask.data(), IndexLen))); + } + } + return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); +} + +static unsigned getDUPLANEOp(EVT EltType) { + if (EltType == MVT::i8) + return AArch64ISD::DUPLANE8; + if (EltType == MVT::i16 || EltType == MVT::f16) + return AArch64ISD::DUPLANE16; + if (EltType == MVT::i32 || EltType == MVT::f32) + return AArch64ISD::DUPLANE32; + if (EltType == MVT::i64 || EltType == MVT::f64) + return AArch64ISD::DUPLANE64; + + llvm_unreachable("Invalid vector element type?"); +} + +SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + EVT VT = Op.getValueType(); + + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); + + // Convert shuffles that are directly supported on NEON to target-specific + // DAG nodes, instead of keeping them as shuffles and matching them again + // during code selection. This is more efficient and avoids the possibility + // of inconsistencies between legalization and selection. + ArrayRef<int> ShuffleMask = SVN->getMask(); + + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + + if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], + V1.getValueType().getSimpleVT())) { + int Lane = SVN->getSplatIndex(); + // If this is undef splat, generate it via "just" vdup, if possible. + if (Lane == -1) + Lane = 0; + + if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) + return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), + V1.getOperand(0)); + // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- + // constant. If so, we can just reference the lane's definition directly. + if (V1.getOpcode() == ISD::BUILD_VECTOR && + !isa<ConstantSDNode>(V1.getOperand(Lane))) + return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); + + // Otherwise, duplicate from the lane of the input vector. + unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); + + // SelectionDAGBuilder may have "helpfully" already extracted or conatenated + // to make a vector of the same size as this SHUFFLE. We can ignore the + // extract entirely, and canonicalise the concat using WidenVector. + if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { + Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); + V1 = V1.getOperand(0); + } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { + unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; + Lane -= Idx * VT.getVectorNumElements() / 2; + V1 = WidenVector(V1.getOperand(Idx), DAG); + } else if (VT.getSizeInBits() == 64) + V1 = WidenVector(V1, DAG); + + return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64)); + } + + if (isREVMask(ShuffleMask, VT, 64)) + return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); + if (isREVMask(ShuffleMask, VT, 32)) + return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); + if (isREVMask(ShuffleMask, VT, 16)) + return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); + + bool ReverseEXT = false; + unsigned Imm; + if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { + if (ReverseEXT) + std::swap(V1, V2); + Imm *= getExtFactor(V1); + return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, + DAG.getConstant(Imm, dl, MVT::i32)); + } else if (V2->getOpcode() == ISD::UNDEF && + isSingletonEXTMask(ShuffleMask, VT, Imm)) { + Imm *= getExtFactor(V1); + return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, + DAG.getConstant(Imm, dl, MVT::i32)); + } + + unsigned WhichResult; + if (isZIPMask(ShuffleMask, VT, WhichResult)) { + unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; + return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); + } + if (isUZPMask(ShuffleMask, VT, WhichResult)) { + unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; + return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); + } + if (isTRNMask(ShuffleMask, VT, WhichResult)) { + unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; + return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); + } + + if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { + unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; + return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); + } + if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { + unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; + return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); + } + if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { + unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; + return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); + } + + SDValue Concat = tryFormConcatFromShuffle(Op, DAG); + if (Concat.getNode()) + return Concat; + + bool DstIsLeft; + int Anomaly; + int NumInputElements = V1.getValueType().getVectorNumElements(); + if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { + SDValue DstVec = DstIsLeft ? V1 : V2; + SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); + + SDValue SrcVec = V1; + int SrcLane = ShuffleMask[Anomaly]; + if (SrcLane >= NumInputElements) { + SrcVec = V2; + SrcLane -= VT.getVectorNumElements(); + } + SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); + + EVT ScalarVT = VT.getVectorElementType(); + + if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger()) + ScalarVT = MVT::i32; + + return DAG.getNode( + ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), + DstLaneV); + } + + // If the shuffle is not directly supported and it has 4 elements, use + // the PerfectShuffle-generated table to synthesize it from other shuffles. + unsigned NumElts = VT.getVectorNumElements(); + if (NumElts == 4) { + unsigned PFIndexes[4]; + for (unsigned i = 0; i != 4; ++i) { + if (ShuffleMask[i] < 0) + PFIndexes[i] = 8; + else + PFIndexes[i] = ShuffleMask[i]; + } + + // Compute the index in the perfect shuffle table. + unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + + PFIndexes[2] * 9 + PFIndexes[3]; + unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; + unsigned Cost = (PFEntry >> 30); + + if (Cost <= 4) + return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); + } + + return GenerateTBL(Op, ShuffleMask, DAG); +} + +static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, + APInt &UndefBits) { + EVT VT = BVN->getValueType(0); + APInt SplatBits, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { + unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; + + for (unsigned i = 0; i < NumSplats; ++i) { + CnstBits <<= SplatBitSize; + UndefBits <<= SplatBitSize; + CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); + UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); + } + + return true; + } + + return false; +} + +SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op, + SelectionDAG &DAG) const { + BuildVectorSDNode *BVN = + dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); + SDValue LHS = Op.getOperand(0); + SDLoc dl(Op); + EVT VT = Op.getValueType(); + + if (!BVN) + return Op; + + APInt CnstBits(VT.getSizeInBits(), 0); + APInt UndefBits(VT.getSizeInBits(), 0); + if (resolveBuildVector(BVN, CnstBits, UndefBits)) { + // We only have BIC vector immediate instruction, which is and-not. + CnstBits = ~CnstBits; + + // We make use of a little bit of goto ickiness in order to avoid having to + // duplicate the immediate matching logic for the undef toggled case. + bool SecondTry = false; + AttemptModImm: + + if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { + CnstBits = CnstBits.zextOrTrunc(64); + uint64_t CnstVal = CnstBits.getZExtValue(); + + if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(16, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(24, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + } + + if (SecondTry) + goto FailedModImm; + SecondTry = true; + CnstBits = ~UndefBits; + goto AttemptModImm; + } + +// We can always fall back to a non-immediate AND. +FailedModImm: + return Op; +} + +// Specialized code to quickly find if PotentialBVec is a BuildVector that +// consists of only the same constant int value, returned in reference arg +// ConstVal +static bool isAllConstantBuildVector(const SDValue &PotentialBVec, + uint64_t &ConstVal) { + BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); + if (!Bvec) + return false; + ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); + if (!FirstElt) + return false; + EVT VT = Bvec->getValueType(0); + unsigned NumElts = VT.getVectorNumElements(); + for (unsigned i = 1; i < NumElts; ++i) + if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) + return false; + ConstVal = FirstElt->getZExtValue(); + return true; +} + +static unsigned getIntrinsicID(const SDNode *N) { + unsigned Opcode = N->getOpcode(); + switch (Opcode) { + default: + return Intrinsic::not_intrinsic; + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); + if (IID < Intrinsic::num_intrinsics) + return IID; + return Intrinsic::not_intrinsic; + } + } +} + +// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), +// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a +// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. +// Also, logical shift right -> sri, with the same structure. +static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + + if (!VT.isVector()) + return SDValue(); + + SDLoc DL(N); + + // Is the first op an AND? + const SDValue And = N->getOperand(0); + if (And.getOpcode() != ISD::AND) + return SDValue(); + + // Is the second op an shl or lshr? + SDValue Shift = N->getOperand(1); + // This will have been turned into: AArch64ISD::VSHL vector, #shift + // or AArch64ISD::VLSHR vector, #shift + unsigned ShiftOpc = Shift.getOpcode(); + if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) + return SDValue(); + bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; + + // Is the shift amount constant? + ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); + if (!C2node) + return SDValue(); + + // Is the and mask vector all constant? + uint64_t C1; + if (!isAllConstantBuildVector(And.getOperand(1), C1)) + return SDValue(); + + // Is C1 == ~C2, taking into account how much one can shift elements of a + // particular size? + uint64_t C2 = C2node->getZExtValue(); + unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits(); + if (C2 > ElemSizeInBits) + return SDValue(); + unsigned ElemMask = (1 << ElemSizeInBits) - 1; + if ((C1 & ElemMask) != (~C2 & ElemMask)) + return SDValue(); + + SDValue X = And.getOperand(0); + SDValue Y = Shift.getOperand(0); + + unsigned Intrin = + IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; + SDValue ResultSLI = + DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrin, DL, MVT::i32), X, Y, + Shift.getOperand(1)); + + DEBUG(dbgs() << "aarch64-lower: transformed: \n"); + DEBUG(N->dump(&DAG)); + DEBUG(dbgs() << "into: \n"); + DEBUG(ResultSLI->dump(&DAG)); + + ++NumShiftInserts; + return ResultSLI; +} + +SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, + SelectionDAG &DAG) const { + // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) + if (EnableAArch64SlrGeneration) { + SDValue Res = tryLowerToSLI(Op.getNode(), DAG); + if (Res.getNode()) + return Res; + } + + BuildVectorSDNode *BVN = + dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); + SDValue LHS = Op.getOperand(1); + SDLoc dl(Op); + EVT VT = Op.getValueType(); + + // OR commutes, so try swapping the operands. + if (!BVN) { + LHS = Op.getOperand(0); + BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); + } + if (!BVN) + return Op; + + APInt CnstBits(VT.getSizeInBits(), 0); + APInt UndefBits(VT.getSizeInBits(), 0); + if (resolveBuildVector(BVN, CnstBits, UndefBits)) { + // We make use of a little bit of goto ickiness in order to avoid having to + // duplicate the immediate matching logic for the undef toggled case. + bool SecondTry = false; + AttemptModImm: + + if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { + CnstBits = CnstBits.zextOrTrunc(64); + uint64_t CnstVal = CnstBits.getZExtValue(); + + if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(16, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(24, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + } + + if (SecondTry) + goto FailedModImm; + SecondTry = true; + CnstBits = UndefBits; + goto AttemptModImm; + } + +// We can always fall back to a non-immediate OR. +FailedModImm: + return Op; +} + +// Normalize the operands of BUILD_VECTOR. The value of constant operands will +// be truncated to fit element width. +static SDValue NormalizeBuildVector(SDValue Op, + SelectionDAG &DAG) { + assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); + SDLoc dl(Op); + EVT VT = Op.getValueType(); + EVT EltTy= VT.getVectorElementType(); + + if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) + return Op; + + SmallVector<SDValue, 16> Ops; + for (SDValue Lane : Op->ops()) { + if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) { + APInt LowBits(EltTy.getSizeInBits(), + CstLane->getZExtValue()); + Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); + } + Ops.push_back(Lane); + } + return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); +} + +SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + EVT VT = Op.getValueType(); + Op = NormalizeBuildVector(Op, DAG); + BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); + + APInt CnstBits(VT.getSizeInBits(), 0); + APInt UndefBits(VT.getSizeInBits(), 0); + if (resolveBuildVector(BVN, CnstBits, UndefBits)) { + // We make use of a little bit of goto ickiness in order to avoid having to + // duplicate the immediate matching logic for the undef toggled case. + bool SecondTry = false; + AttemptModImm: + + if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { + CnstBits = CnstBits.zextOrTrunc(64); + uint64_t CnstVal = CnstBits.getZExtValue(); + + // Certain magic vector constants (used to express things like NOT + // and NEG) are passed through unmodified. This allows codegen patterns + // for these operations to match. Special-purpose patterns will lower + // these immediates to MOVIs if it proves necessary. + if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL)) + return Op; + + // The many faces of MOVI... + if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal); + if (VT.getSizeInBits() == 128) { + SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64, + DAG.getConstant(CnstVal, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + // Support the V64 version via subregister insertion. + SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64, + DAG.getConstant(CnstVal, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(16, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(24, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(264, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(272, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; + SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + // The few faces of FMOV... + if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32; + SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) && + VT.getSizeInBits() == 128) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal); + SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64, + DAG.getConstant(CnstVal, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + // The many faces of MVNI... + CnstVal = ~CnstVal; + if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(16, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(24, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(0, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; + SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(8, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(264, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + + if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { + CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); + MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; + SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, + DAG.getConstant(CnstVal, dl, MVT::i32), + DAG.getConstant(272, dl, MVT::i32)); + return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); + } + } + + if (SecondTry) + goto FailedModImm; + SecondTry = true; + CnstBits = UndefBits; + goto AttemptModImm; + } +FailedModImm: + + // Scan through the operands to find some interesting properties we can + // exploit: + // 1) If only one value is used, we can use a DUP, or + // 2) if only the low element is not undef, we can just insert that, or + // 3) if only one constant value is used (w/ some non-constant lanes), + // we can splat the constant value into the whole vector then fill + // in the non-constant lanes. + // 4) FIXME: If different constant values are used, but we can intelligently + // select the values we'll be overwriting for the non-constant + // lanes such that we can directly materialize the vector + // some other way (MOVI, e.g.), we can be sneaky. + unsigned NumElts = VT.getVectorNumElements(); + bool isOnlyLowElement = true; + bool usesOnlyOneValue = true; + bool usesOnlyOneConstantValue = true; + bool isConstant = true; + unsigned NumConstantLanes = 0; + SDValue Value; + SDValue ConstantValue; + for (unsigned i = 0; i < NumElts; ++i) { + SDValue V = Op.getOperand(i); + if (V.getOpcode() == ISD::UNDEF) + continue; + if (i > 0) + isOnlyLowElement = false; + if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) + isConstant = false; + + if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { + ++NumConstantLanes; + if (!ConstantValue.getNode()) + ConstantValue = V; + else if (ConstantValue != V) + usesOnlyOneConstantValue = false; + } + + if (!Value.getNode()) + Value = V; + else if (V != Value) + usesOnlyOneValue = false; + } + + if (!Value.getNode()) + return DAG.getUNDEF(VT); + + if (isOnlyLowElement) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); + + // Use DUP for non-constant splats. For f32 constant splats, reduce to + // i32 and try again. + if (usesOnlyOneValue) { + if (!isConstant) { + if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + Value.getValueType() != VT) + return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); + + // This is actually a DUPLANExx operation, which keeps everything vectory. + + // DUPLANE works on 128-bit vectors, widen it if necessary. + SDValue Lane = Value.getOperand(1); + Value = Value.getOperand(0); + if (Value.getValueType().getSizeInBits() == 64) + Value = WidenVector(Value, DAG); + + unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); + return DAG.getNode(Opcode, dl, VT, Value, Lane); + } + + if (VT.getVectorElementType().isFloatingPoint()) { + SmallVector<SDValue, 8> Ops; + EVT EltTy = VT.getVectorElementType(); + assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) && + "Unsupported floating-point vector type"); + MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); + for (unsigned i = 0; i < NumElts; ++i) + Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); + EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); + SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); + Val = LowerBUILD_VECTOR(Val, DAG); + if (Val.getNode()) + return DAG.getNode(ISD::BITCAST, dl, VT, Val); + } + } + + // If there was only one constant value used and for more than one lane, + // start by splatting that value, then replace the non-constant lanes. This + // is better than the default, which will perform a separate initialization + // for each lane. + if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { + SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); + // Now insert the non-constant lanes. + for (unsigned i = 0; i < NumElts; ++i) { + SDValue V = Op.getOperand(i); + SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); + if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) { + // Note that type legalization likely mucked about with the VT of the + // source operand, so we may have to convert it here before inserting. + Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); + } + } + return Val; + } + + // If all elements are constants and the case above didn't get hit, fall back + // to the default expansion, which will generate a load from the constant + // pool. + if (isConstant) + return SDValue(); + + // Empirical tests suggest this is rarely worth it for vectors of length <= 2. + if (NumElts >= 4) { + if (SDValue shuffle = ReconstructShuffle(Op, DAG)) + return shuffle; + } + + // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we + // know the default expansion would otherwise fall back on something even + // worse. For a vector with one or two non-undef values, that's + // scalar_to_vector for the elements followed by a shuffle (provided the + // shuffle is valid for the target) and materialization element by element + // on the stack followed by a load for everything else. + if (!isConstant && !usesOnlyOneValue) { + SDValue Vec = DAG.getUNDEF(VT); + SDValue Op0 = Op.getOperand(0); + unsigned ElemSize = VT.getVectorElementType().getSizeInBits(); + unsigned i = 0; + // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to + // a) Avoid a RMW dependency on the full vector register, and + // b) Allow the register coalescer to fold away the copy if the + // value is already in an S or D register. + // Do not do this for UNDEF/LOAD nodes because we have better patterns + // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR. + if (Op0.getOpcode() != ISD::UNDEF && Op0.getOpcode() != ISD::LOAD && + (ElemSize == 32 || ElemSize == 64)) { + unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub; + MachineSDNode *N = + DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0, + DAG.getTargetConstant(SubIdx, dl, MVT::i32)); + Vec = SDValue(N, 0); + ++i; + } + for (; i < NumElts; ++i) { + SDValue V = Op.getOperand(i); + if (V.getOpcode() == ISD::UNDEF) + continue; + SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); + Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); + } + return Vec; + } + + // Just use the default expansion. We failed to find a better alternative. + return SDValue(); +} + +SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); + + // Check for non-constant or out of range lane. + EVT VT = Op.getOperand(0).getValueType(); + ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) + return SDValue(); + + + // Insertion/extraction are legal for V128 types. + if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || + VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || + VT == MVT::v8f16) + return Op; + + if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && + VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) + return SDValue(); + + // For V64 types, we perform insertion by expanding the value + // to a V128 type and perform the insertion on that. + SDLoc DL(Op); + SDValue WideVec = WidenVector(Op.getOperand(0), DAG); + EVT WideTy = WideVec.getValueType(); + + SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, + Op.getOperand(1), Op.getOperand(2)); + // Re-narrow the resultant vector. + return NarrowVector(Node, DAG); +} + +SDValue +AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); + + // Check for non-constant or out of range lane. + EVT VT = Op.getOperand(0).getValueType(); + ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) + return SDValue(); + + + // Insertion/extraction are legal for V128 types. + if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || + VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || + VT == MVT::v8f16) + return Op; + + if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && + VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) + return SDValue(); + + // For V64 types, we perform extraction by expanding the value + // to a V128 type and perform the extraction on that. + SDLoc DL(Op); + SDValue WideVec = WidenVector(Op.getOperand(0), DAG); + EVT WideTy = WideVec.getValueType(); + + EVT ExtrTy = WideTy.getVectorElementType(); + if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) + ExtrTy = MVT::i32; + + // For extractions, we just return the result directly. + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, + Op.getOperand(1)); +} + +SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getOperand(0).getValueType(); + SDLoc dl(Op); + // Just in case... + if (!VT.isVector()) + return SDValue(); + + ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (!Cst) + return SDValue(); + unsigned Val = Cst->getZExtValue(); + + unsigned Size = Op.getValueType().getSizeInBits(); + + // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. + if (Val == 0) + return Op; + + // If this is extracting the upper 64-bits of a 128-bit vector, we match + // that directly. + if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64) + return Op; + + return SDValue(); +} + +bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, + EVT VT) const { + if (VT.getVectorNumElements() == 4 && + (VT.is128BitVector() || VT.is64BitVector())) { + unsigned PFIndexes[4]; + for (unsigned i = 0; i != 4; ++i) { + if (M[i] < 0) + PFIndexes[i] = 8; + else + PFIndexes[i] = M[i]; + } + + // Compute the index in the perfect shuffle table. + unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + + PFIndexes[2] * 9 + PFIndexes[3]; + unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; + unsigned Cost = (PFEntry >> 30); + + if (Cost <= 4) + return true; + } + + bool DummyBool; + int DummyInt; + unsigned DummyUnsigned; + + return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || + isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || + isEXTMask(M, VT, DummyBool, DummyUnsigned) || + // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. + isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || + isZIPMask(M, VT, DummyUnsigned) || + isTRN_v_undef_Mask(M, VT, DummyUnsigned) || + isUZP_v_undef_Mask(M, VT, DummyUnsigned) || + isZIP_v_undef_Mask(M, VT, DummyUnsigned) || + isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || + isConcatMask(M, VT, VT.getSizeInBits() == 128)); +} + +/// getVShiftImm - Check if this is a valid build_vector for the immediate +/// operand of a vector shift operation, where all the elements of the +/// build_vector must have the same constant integer value. +static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { + // Ignore bit_converts. + while (Op.getOpcode() == ISD::BITCAST) + Op = Op.getOperand(0); + BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); + APInt SplatBits, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, + HasAnyUndefs, ElementBits) || + SplatBitSize > ElementBits) + return false; + Cnt = SplatBits.getSExtValue(); + return true; +} + +/// isVShiftLImm - Check if this is a valid build_vector for the immediate +/// operand of a vector shift left operation. That value must be in the range: +/// 0 <= Value < ElementBits for a left shift; or +/// 0 <= Value <= ElementBits for a long left shift. +static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { + assert(VT.isVector() && "vector shift count is not a vector type"); + int64_t ElementBits = VT.getVectorElementType().getSizeInBits(); + if (!getVShiftImm(Op, ElementBits, Cnt)) + return false; + return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); +} + +/// isVShiftRImm - Check if this is a valid build_vector for the immediate +/// operand of a vector shift right operation. The value must be in the range: +/// 1 <= Value <= ElementBits for a right shift; or +static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { + assert(VT.isVector() && "vector shift count is not a vector type"); + int64_t ElementBits = VT.getVectorElementType().getSizeInBits(); + if (!getVShiftImm(Op, ElementBits, Cnt)) + return false; + return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); +} + +SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); + int64_t Cnt; + + if (!Op.getOperand(1).getValueType().isVector()) + return Op; + unsigned EltSize = VT.getVectorElementType().getSizeInBits(); + + switch (Op.getOpcode()) { + default: + llvm_unreachable("unexpected shift opcode"); + + case ISD::SHL: + if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) + return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), + DAG.getConstant(Cnt, DL, MVT::i32)); + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, + MVT::i32), + Op.getOperand(0), Op.getOperand(1)); + case ISD::SRA: + case ISD::SRL: + // Right shift immediate + if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { + unsigned Opc = + (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; + return DAG.getNode(Opc, DL, VT, Op.getOperand(0), + DAG.getConstant(Cnt, DL, MVT::i32)); + } + + // Right shift register. Note, there is not a shift right register + // instruction, but the shift left register instruction takes a signed + // value, where negative numbers specify a right shift. + unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl + : Intrinsic::aarch64_neon_ushl; + // negate the shift amount + SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); + SDValue NegShiftLeft = + DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), + NegShift); + return NegShiftLeft; + } + + return SDValue(); +} + +static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, + AArch64CC::CondCode CC, bool NoNans, EVT VT, + SDLoc dl, SelectionDAG &DAG) { + EVT SrcVT = LHS.getValueType(); + assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && + "function only supposed to emit natural comparisons"); + + BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); + APInt CnstBits(VT.getSizeInBits(), 0); + APInt UndefBits(VT.getSizeInBits(), 0); + bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); + bool IsZero = IsCnst && (CnstBits == 0); + + if (SrcVT.getVectorElementType().isFloatingPoint()) { + switch (CC) { + default: + return SDValue(); + case AArch64CC::NE: { + SDValue Fcmeq; + if (IsZero) + Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); + else + Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); + return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); + } + case AArch64CC::EQ: + if (IsZero) + return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); + case AArch64CC::GE: + if (IsZero) + return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); + case AArch64CC::GT: + if (IsZero) + return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); + case AArch64CC::LS: + if (IsZero) + return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); + case AArch64CC::LT: + if (!NoNans) + return SDValue(); + // If we ignore NaNs then we can use to the MI implementation. + // Fallthrough. + case AArch64CC::MI: + if (IsZero) + return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); + } + } + + switch (CC) { + default: + return SDValue(); + case AArch64CC::NE: { + SDValue Cmeq; + if (IsZero) + Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); + else + Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); + return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); + } + case AArch64CC::EQ: + if (IsZero) + return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); + case AArch64CC::GE: + if (IsZero) + return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); + case AArch64CC::GT: + if (IsZero) + return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); + case AArch64CC::LE: + if (IsZero) + return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); + case AArch64CC::LS: + return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); + case AArch64CC::LO: + return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); + case AArch64CC::LT: + if (IsZero) + return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); + return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); + case AArch64CC::HI: + return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); + case AArch64CC::HS: + return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); + } +} + +SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, + SelectionDAG &DAG) const { + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); + SDLoc dl(Op); + + if (LHS.getValueType().getVectorElementType().isInteger()) { + assert(LHS.getValueType() == RHS.getValueType()); + AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); + SDValue Cmp = + EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); + return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); + } + + assert(LHS.getValueType().getVectorElementType() == MVT::f32 || + LHS.getValueType().getVectorElementType() == MVT::f64); + + // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally + // clean. Some of them require two branches to implement. + AArch64CC::CondCode CC1, CC2; + bool ShouldInvert; + changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); + + bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; + SDValue Cmp = + EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); + if (!Cmp.getNode()) + return SDValue(); + + if (CC2 != AArch64CC::AL) { + SDValue Cmp2 = + EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); + if (!Cmp2.getNode()) + return SDValue(); + + Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); + } + + Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); + + if (ShouldInvert) + return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); + + return Cmp; +} + +/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as +/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment +/// specified in the intrinsic calls. +bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, + const CallInst &I, + unsigned Intrinsic) const { + auto &DL = I.getModule()->getDataLayout(); + switch (Intrinsic) { + case Intrinsic::aarch64_neon_ld2: + case Intrinsic::aarch64_neon_ld3: + case Intrinsic::aarch64_neon_ld4: + case Intrinsic::aarch64_neon_ld1x2: + case Intrinsic::aarch64_neon_ld1x3: + case Intrinsic::aarch64_neon_ld1x4: + case Intrinsic::aarch64_neon_ld2lane: + case Intrinsic::aarch64_neon_ld3lane: + case Intrinsic::aarch64_neon_ld4lane: + case Intrinsic::aarch64_neon_ld2r: + case Intrinsic::aarch64_neon_ld3r: + case Intrinsic::aarch64_neon_ld4r: { + Info.opc = ISD::INTRINSIC_W_CHAIN; + // Conservatively set memVT to the entire set of vectors loaded. + uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; + Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); + Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); + Info.offset = 0; + Info.align = 0; + Info.vol = false; // volatile loads with NEON intrinsics not supported + Info.readMem = true; + Info.writeMem = false; + return true; + } + case Intrinsic::aarch64_neon_st2: + case Intrinsic::aarch64_neon_st3: + case Intrinsic::aarch64_neon_st4: + case Intrinsic::aarch64_neon_st1x2: + case Intrinsic::aarch64_neon_st1x3: + case Intrinsic::aarch64_neon_st1x4: + case Intrinsic::aarch64_neon_st2lane: + case Intrinsic::aarch64_neon_st3lane: + case Intrinsic::aarch64_neon_st4lane: { + Info.opc = ISD::INTRINSIC_VOID; + // Conservatively set memVT to the entire set of vectors stored. + unsigned NumElts = 0; + for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { + Type *ArgTy = I.getArgOperand(ArgI)->getType(); + if (!ArgTy->isVectorTy()) + break; + NumElts += DL.getTypeSizeInBits(ArgTy) / 64; + } + Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); + Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); + Info.offset = 0; + Info.align = 0; + Info.vol = false; // volatile stores with NEON intrinsics not supported + Info.readMem = false; + Info.writeMem = true; + return true; + } + case Intrinsic::aarch64_ldaxr: + case Intrinsic::aarch64_ldxr: { + PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::getVT(PtrTy->getElementType()); + Info.ptrVal = I.getArgOperand(0); + Info.offset = 0; + Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); + Info.vol = true; + Info.readMem = true; + Info.writeMem = false; + return true; + } + case Intrinsic::aarch64_stlxr: + case Intrinsic::aarch64_stxr: { + PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::getVT(PtrTy->getElementType()); + Info.ptrVal = I.getArgOperand(1); + Info.offset = 0; + Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); + Info.vol = true; + Info.readMem = false; + Info.writeMem = true; + return true; + } + case Intrinsic::aarch64_ldaxp: + case Intrinsic::aarch64_ldxp: { + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::i128; + Info.ptrVal = I.getArgOperand(0); + Info.offset = 0; + Info.align = 16; + Info.vol = true; + Info.readMem = true; + Info.writeMem = false; + return true; + } + case Intrinsic::aarch64_stlxp: + case Intrinsic::aarch64_stxp: { + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::i128; + Info.ptrVal = I.getArgOperand(2); + Info.offset = 0; + Info.align = 16; + Info.vol = true; + Info.readMem = false; + Info.writeMem = true; + return true; + } + default: + break; + } + + return false; +} + +// Truncations from 64-bit GPR to 32-bit GPR is free. +bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); + unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); + return NumBits1 > NumBits2; +} +bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { + if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) + return false; + unsigned NumBits1 = VT1.getSizeInBits(); + unsigned NumBits2 = VT2.getSizeInBits(); + return NumBits1 > NumBits2; +} + +/// Check if it is profitable to hoist instruction in then/else to if. +/// Not profitable if I and it's user can form a FMA instruction +/// because we prefer FMSUB/FMADD. +bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { + if (I->getOpcode() != Instruction::FMul) + return true; + + if (I->getNumUses() != 1) + return true; + + Instruction *User = I->user_back(); + + if (User && + !(User->getOpcode() == Instruction::FSub || + User->getOpcode() == Instruction::FAdd)) + return true; + + const TargetOptions &Options = getTargetMachine().Options; + const DataLayout &DL = I->getModule()->getDataLayout(); + EVT VT = getValueType(DL, User->getOperand(0)->getType()); + + if (isFMAFasterThanFMulAndFAdd(VT) && + isOperationLegalOrCustom(ISD::FMA, VT) && + (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)) + return false; + + return true; +} + +// All 32-bit GPR operations implicitly zero the high-half of the corresponding +// 64-bit GPR. +bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); + unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); + return NumBits1 == 32 && NumBits2 == 64; +} +bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { + if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) + return false; + unsigned NumBits1 = VT1.getSizeInBits(); + unsigned NumBits2 = VT2.getSizeInBits(); + return NumBits1 == 32 && NumBits2 == 64; +} + +bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { + EVT VT1 = Val.getValueType(); + if (isZExtFree(VT1, VT2)) { + return true; + } + + if (Val.getOpcode() != ISD::LOAD) + return false; + + // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. + return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && + VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && + VT1.getSizeInBits() <= 32); +} + +bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { + if (isa<FPExtInst>(Ext)) + return false; + + // Vector types are next free. + if (Ext->getType()->isVectorTy()) + return false; + + for (const Use &U : Ext->uses()) { + // The extension is free if we can fold it with a left shift in an + // addressing mode or an arithmetic operation: add, sub, and cmp. + + // Is there a shift? + const Instruction *Instr = cast<Instruction>(U.getUser()); + + // Is this a constant shift? + switch (Instr->getOpcode()) { + case Instruction::Shl: + if (!isa<ConstantInt>(Instr->getOperand(1))) + return false; + break; + case Instruction::GetElementPtr: { + gep_type_iterator GTI = gep_type_begin(Instr); + auto &DL = Ext->getModule()->getDataLayout(); + std::advance(GTI, U.getOperandNo()); + Type *IdxTy = *GTI; + // This extension will end up with a shift because of the scaling factor. + // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. + // Get the shift amount based on the scaling factor: + // log2(sizeof(IdxTy)) - log2(8). + uint64_t ShiftAmt = + countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3; + // Is the constant foldable in the shift of the addressing mode? + // I.e., shift amount is between 1 and 4 inclusive. + if (ShiftAmt == 0 || ShiftAmt > 4) + return false; + break; + } + case Instruction::Trunc: + // Check if this is a noop. + // trunc(sext ty1 to ty2) to ty1. + if (Instr->getType() == Ext->getOperand(0)->getType()) + continue; + // FALL THROUGH. + default: + return false; + } + + // At this point we can use the bfm family, so this extension is free + // for that use. + } + return true; +} + +bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType, + unsigned &RequiredAligment) const { + if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy()) + return false; + // Cyclone supports unaligned accesses. + RequiredAligment = 0; + unsigned NumBits = LoadedType->getPrimitiveSizeInBits(); + return NumBits == 32 || NumBits == 64; +} + +bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, + unsigned &RequiredAligment) const { + if (!LoadedType.isSimple() || + (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) + return false; + // Cyclone supports unaligned accesses. + RequiredAligment = 0; + unsigned NumBits = LoadedType.getSizeInBits(); + return NumBits == 32 || NumBits == 64; +} + +/// \brief Lower an interleaved load into a ldN intrinsic. +/// +/// E.g. Lower an interleaved load (Factor = 2): +/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr +/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements +/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements +/// +/// Into: +/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) +/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 +/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 +bool AArch64TargetLowering::lowerInterleavedLoad( + LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, + ArrayRef<unsigned> Indices, unsigned Factor) const { + assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && + "Invalid interleave factor"); + assert(!Shuffles.empty() && "Empty shufflevector input"); + assert(Shuffles.size() == Indices.size() && + "Unmatched number of shufflevectors and indices"); + + const DataLayout &DL = LI->getModule()->getDataLayout(); + + VectorType *VecTy = Shuffles[0]->getType(); + unsigned VecSize = DL.getTypeSizeInBits(VecTy); + + // Skip if we do not have NEON and skip illegal vector types. + if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128)) + return false; + + // A pointer vector can not be the return type of the ldN intrinsics. Need to + // load integer vectors first and then convert to pointer vectors. + Type *EltTy = VecTy->getVectorElementType(); + if (EltTy->isPointerTy()) + VecTy = + VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); + + Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace()); + Type *Tys[2] = {VecTy, PtrTy}; + static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2, + Intrinsic::aarch64_neon_ld3, + Intrinsic::aarch64_neon_ld4}; + Function *LdNFunc = + Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); + + IRBuilder<> Builder(LI); + Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy); + + CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN"); + + // Replace uses of each shufflevector with the corresponding vector loaded + // by ldN. + for (unsigned i = 0; i < Shuffles.size(); i++) { + ShuffleVectorInst *SVI = Shuffles[i]; + unsigned Index = Indices[i]; + + Value *SubVec = Builder.CreateExtractValue(LdN, Index); + + // Convert the integer vector to pointer vector if the element is pointer. + if (EltTy->isPointerTy()) + SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType()); + + SVI->replaceAllUsesWith(SubVec); + } + + return true; +} + +/// \brief Get a mask consisting of sequential integers starting from \p Start. +/// +/// I.e. <Start, Start + 1, ..., Start + NumElts - 1> +static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start, + unsigned NumElts) { + SmallVector<Constant *, 16> Mask; + for (unsigned i = 0; i < NumElts; i++) + Mask.push_back(Builder.getInt32(Start + i)); + + return ConstantVector::get(Mask); +} + +/// \brief Lower an interleaved store into a stN intrinsic. +/// +/// E.g. Lower an interleaved store (Factor = 3): +/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, +/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> +/// store <12 x i32> %i.vec, <12 x i32>* %ptr +/// +/// Into: +/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> +/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> +/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> +/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) +/// +/// Note that the new shufflevectors will be removed and we'll only generate one +/// st3 instruction in CodeGen. +bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, + ShuffleVectorInst *SVI, + unsigned Factor) const { + assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && + "Invalid interleave factor"); + + VectorType *VecTy = SVI->getType(); + assert(VecTy->getVectorNumElements() % Factor == 0 && + "Invalid interleaved store"); + + unsigned NumSubElts = VecTy->getVectorNumElements() / Factor; + Type *EltTy = VecTy->getVectorElementType(); + VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts); + + const DataLayout &DL = SI->getModule()->getDataLayout(); + unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); + + // Skip if we do not have NEON and skip illegal vector types. + if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128)) + return false; + + Value *Op0 = SVI->getOperand(0); + Value *Op1 = SVI->getOperand(1); + IRBuilder<> Builder(SI); + + // StN intrinsics don't support pointer vectors as arguments. Convert pointer + // vectors to integer vectors. + if (EltTy->isPointerTy()) { + Type *IntTy = DL.getIntPtrType(EltTy); + unsigned NumOpElts = + dyn_cast<VectorType>(Op0->getType())->getVectorNumElements(); + + // Convert to the corresponding integer vector. + Type *IntVecTy = VectorType::get(IntTy, NumOpElts); + Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); + Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); + + SubVecTy = VectorType::get(IntTy, NumSubElts); + } + + Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace()); + Type *Tys[2] = {SubVecTy, PtrTy}; + static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2, + Intrinsic::aarch64_neon_st3, + Intrinsic::aarch64_neon_st4}; + Function *StNFunc = + Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); + + SmallVector<Value *, 5> Ops; + + // Split the shufflevector operands into sub vectors for the new stN call. + for (unsigned i = 0; i < Factor; i++) + Ops.push_back(Builder.CreateShuffleVector( + Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts))); + + Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy)); + Builder.CreateCall(StNFunc, Ops); + return true; +} + +static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, + unsigned AlignCheck) { + return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && + (DstAlign == 0 || DstAlign % AlignCheck == 0)); +} + +EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, + unsigned SrcAlign, bool IsMemset, + bool ZeroMemset, + bool MemcpyStrSrc, + MachineFunction &MF) const { + // Don't use AdvSIMD to implement 16-byte memset. It would have taken one + // instruction to materialize the v2i64 zero and one store (with restrictive + // addressing mode). Just do two i64 store of zero-registers. + bool Fast; + const Function *F = MF.getFunction(); + if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 && + !F->hasFnAttribute(Attribute::NoImplicitFloat) && + (memOpAlign(SrcAlign, DstAlign, 16) || + (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast))) + return MVT::f128; + + if (Size >= 8 && + (memOpAlign(SrcAlign, DstAlign, 8) || + (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast))) + return MVT::i64; + + if (Size >= 4 && + (memOpAlign(SrcAlign, DstAlign, 4) || + (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast))) + return MVT::i32; + + return MVT::Other; +} + +// 12-bit optionally shifted immediates are legal for adds. +bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { + if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)) + return true; + return false; +} + +// Integer comparisons are implemented with ADDS/SUBS, so the range of valid +// immediates is the same as for an add or a sub. +bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { + if (Immed < 0) + Immed *= -1; + return isLegalAddImmediate(Immed); +} + +/// isLegalAddressingMode - Return true if the addressing mode represented +/// by AM is legal for this target, for a load/store of the specified type. +bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // AArch64 has five basic addressing modes: + // reg + // reg + 9-bit signed offset + // reg + SIZE_IN_BYTES * 12-bit unsigned offset + // reg1 + reg2 + // reg + SIZE_IN_BYTES * reg + + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + // No reg+reg+imm addressing. + if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) + return false; + + // check reg + imm case: + // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 + uint64_t NumBytes = 0; + if (Ty->isSized()) { + uint64_t NumBits = DL.getTypeSizeInBits(Ty); + NumBytes = NumBits / 8; + if (!isPowerOf2_64(NumBits)) + NumBytes = 0; + } + + if (!AM.Scale) { + int64_t Offset = AM.BaseOffs; + + // 9-bit signed offset + if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1) + return true; + + // 12-bit unsigned offset + unsigned shift = Log2_64(NumBytes); + if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && + // Must be a multiple of NumBytes (NumBytes is a power of 2) + (Offset >> shift) << shift == Offset) + return true; + return false; + } + + // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 + + if (!AM.Scale || AM.Scale == 1 || + (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes)) + return true; + return false; +} + +int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // Scaling factors are not free at all. + // Operands | Rt Latency + // ------------------------------------------- + // Rt, [Xn, Xm] | 4 + // ------------------------------------------- + // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 + // Rt, [Xn, Wm, <extend> #imm] | + if (isLegalAddressingMode(DL, AM, Ty, AS)) + // Scale represents reg2 * scale, thus account for 1 if + // it is not equal to 0 or 1. + return AM.Scale != 0 && AM.Scale != 1; + return -1; +} + +bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + VT = VT.getScalarType(); + + if (!VT.isSimple()) + return false; + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: + case MVT::f64: + return true; + default: + break; + } + + return false; +} + +const MCPhysReg * +AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { + // LR is a callee-save register, but we must treat it as clobbered by any call + // site. Hence we include LR in the scratch registers, which are in turn added + // as implicit-defs for stackmaps and patchpoints. + static const MCPhysReg ScratchRegs[] = { + AArch64::X16, AArch64::X17, AArch64::LR, 0 + }; + return ScratchRegs; +} + +bool +AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const { + EVT VT = N->getValueType(0); + // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine + // it with shift to let it be lowered to UBFX. + if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && + isa<ConstantSDNode>(N->getOperand(1))) { + uint64_t TruncMask = N->getConstantOperandVal(1); + if (isMask_64(TruncMask) && + N->getOperand(0).getOpcode() == ISD::SRL && + isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) + return false; + } + return true; +} + +bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, + Type *Ty) const { + assert(Ty->isIntegerTy()); + + unsigned BitSize = Ty->getPrimitiveSizeInBits(); + if (BitSize == 0) + return false; + + int64_t Val = Imm.getSExtValue(); + if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) + return true; + + if ((int64_t)Val < 0) + Val = ~Val; + if (BitSize == 32) + Val &= (1LL << 32) - 1; + + unsigned LZ = countLeadingZeros((uint64_t)Val); + unsigned Shift = (63 - LZ) / 16; + // MOVZ is free so return true for one or fewer MOVK. + return Shift < 3; +} + +// Generate SUBS and CSEL for integer abs. +static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDLoc DL(N); + + // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) + // and change it to SUB and CSEL. + if (VT.isInteger() && N->getOpcode() == ISD::XOR && + N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && + N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) + if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) + if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { + SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), + N0.getOperand(0)); + // Generate SUBS & CSEL. + SDValue Cmp = + DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), + N0.getOperand(0), DAG.getConstant(0, DL, VT)); + return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, + DAG.getConstant(AArch64CC::PL, DL, MVT::i32), + SDValue(Cmp.getNode(), 1)); + } + return SDValue(); +} + +// performXorCombine - Attempts to handle integer ABS. +static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const AArch64Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + return performIntegerAbsCombine(N, DAG); +} + +SDValue +AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, + SelectionDAG &DAG, + std::vector<SDNode *> *Created) const { + // fold (sdiv X, pow2) + EVT VT = N->getValueType(0); + if ((VT != MVT::i32 && VT != MVT::i64) || + !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) + return SDValue(); + + SDLoc DL(N); + SDValue N0 = N->getOperand(0); + unsigned Lg2 = Divisor.countTrailingZeros(); + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); + + // Add (N0 < 0) ? Pow2 - 1 : 0; + SDValue CCVal; + SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); + SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); + + if (Created) { + Created->push_back(Cmp.getNode()); + Created->push_back(Add.getNode()); + Created->push_back(CSel.getNode()); + } + + // Divide by pow2. + SDValue SRA = + DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); + + // If we're dividing by a positive value, we're done. Otherwise, we must + // negate the result. + if (Divisor.isNonNegative()) + return SRA; + + if (Created) + Created->push_back(SRA.getNode()); + return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); +} + +static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const AArch64Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + // Multiplication of a power of two plus/minus one can be done more + // cheaply as as shift+add/sub. For now, this is true unilaterally. If + // future CPUs have a cheaper MADD instruction, this may need to be + // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and + // 64-bit is 5 cycles, so this is always a win. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { + APInt Value = C->getAPIntValue(); + EVT VT = N->getValueType(0); + SDLoc DL(N); + if (Value.isNonNegative()) { + // (mul x, 2^N + 1) => (add (shl x, N), x) + APInt VM1 = Value - 1; + if (VM1.isPowerOf2()) { + SDValue ShiftedVal = + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(VM1.logBase2(), DL, MVT::i64)); + return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, + N->getOperand(0)); + } + // (mul x, 2^N - 1) => (sub (shl x, N), x) + APInt VP1 = Value + 1; + if (VP1.isPowerOf2()) { + SDValue ShiftedVal = + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(VP1.logBase2(), DL, MVT::i64)); + return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal, + N->getOperand(0)); + } + } else { + // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) + APInt VNP1 = -Value + 1; + if (VNP1.isPowerOf2()) { + SDValue ShiftedVal = + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(VNP1.logBase2(), DL, MVT::i64)); + return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), + ShiftedVal); + } + // (mul x, -(2^N + 1)) => - (add (shl x, N), x) + APInt VNM1 = -Value - 1; + if (VNM1.isPowerOf2()) { + SDValue ShiftedVal = + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(VNM1.logBase2(), DL, MVT::i64)); + SDValue Add = + DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0)); + return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add); + } + } + } + return SDValue(); +} + +static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, + SelectionDAG &DAG) { + // Take advantage of vector comparisons producing 0 or -1 in each lane to + // optimize away operation when it's from a constant. + // + // The general transformation is: + // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> + // AND(VECTOR_CMP(x,y), constant2) + // constant2 = UNARYOP(constant) + + // Early exit if this isn't a vector operation, the operand of the + // unary operation isn't a bitwise AND, or if the sizes of the operations + // aren't the same. + EVT VT = N->getValueType(0); + if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || + N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || + VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) + return SDValue(); + + // Now check that the other operand of the AND is a constant. We could + // make the transformation for non-constant splats as well, but it's unclear + // that would be a benefit as it would not eliminate any operations, just + // perform one more step in scalar code before moving to the vector unit. + if (BuildVectorSDNode *BV = + dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { + // Bail out if the vector isn't a constant. + if (!BV->isConstant()) + return SDValue(); + + // Everything checks out. Build up the new and improved node. + SDLoc DL(N); + EVT IntVT = BV->getValueType(0); + // Create a new constant of the appropriate type for the transformed + // DAG. + SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); + // The AND node needs bitcasts to/from an integer vector type around it. + SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); + SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, + N->getOperand(0)->getOperand(0), MaskConst); + SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); + return Res; + } + + return SDValue(); +} + +static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, + const AArch64Subtarget *Subtarget) { + // First try to optimize away the conversion when it's conditionally from + // a constant. Vectors only. + if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) + return Res; + + EVT VT = N->getValueType(0); + if (VT != MVT::f32 && VT != MVT::f64) + return SDValue(); + + // Only optimize when the source and destination types have the same width. + if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits()) + return SDValue(); + + // If the result of an integer load is only used by an integer-to-float + // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. + // This eliminates an "integer-to-vector-move" UOP and improves throughput. + SDValue N0 = N->getOperand(0); + if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && + // Do not change the width of a volatile load. + !cast<LoadSDNode>(N0)->isVolatile()) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), + LN0->getPointerInfo(), LN0->isVolatile(), + LN0->isNonTemporal(), LN0->isInvariant(), + LN0->getAlignment()); + + // Make sure successors of the original load stay after it by updating them + // to use the new Chain. + DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); + + unsigned Opcode = + (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; + return DAG.getNode(Opcode, SDLoc(N), VT, Load); + } + + return SDValue(); +} + +/// Fold a floating-point multiply by power of two into floating-point to +/// fixed-point conversion. +static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, + const AArch64Subtarget *Subtarget) { + if (!Subtarget->hasNEON()) + return SDValue(); + + SDValue Op = N->getOperand(0); + if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL) + return SDValue(); + + SDValue ConstVec = Op->getOperand(1); + if (!isa<BuildVectorSDNode>(ConstVec)) + return SDValue(); + + MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); + uint32_t FloatBits = FloatTy.getSizeInBits(); + if (FloatBits != 32 && FloatBits != 64) + return SDValue(); + + MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); + uint32_t IntBits = IntTy.getSizeInBits(); + if (IntBits != 16 && IntBits != 32 && IntBits != 64) + return SDValue(); + + // Avoid conversions where iN is larger than the float (e.g., float -> i64). + if (IntBits > FloatBits) + return SDValue(); + + BitVector UndefElements; + BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); + int32_t Bits = IntBits == 64 ? 64 : 32; + int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); + if (C == -1 || C == 0 || C > Bits) + return SDValue(); + + MVT ResTy; + unsigned NumLanes = Op.getValueType().getVectorNumElements(); + switch (NumLanes) { + default: + return SDValue(); + case 2: + ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; + break; + case 4: + ResTy = MVT::v4i32; + break; + } + + SDLoc DL(N); + bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; + unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs + : Intrinsic::aarch64_neon_vcvtfp2fxu; + SDValue FixConv = + DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, + DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), + Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); + // We can handle smaller integers by generating an extra trunc. + if (IntBits < FloatBits) + FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); + + return FixConv; +} + +/// Fold a floating-point divide by power of two into fixed-point to +/// floating-point conversion. +static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, + const AArch64Subtarget *Subtarget) { + if (!Subtarget->hasNEON()) + return SDValue(); + + SDValue Op = N->getOperand(0); + unsigned Opc = Op->getOpcode(); + if (!Op.getValueType().isVector() || + (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) + return SDValue(); + + SDValue ConstVec = N->getOperand(1); + if (!isa<BuildVectorSDNode>(ConstVec)) + return SDValue(); + + MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); + int32_t IntBits = IntTy.getSizeInBits(); + if (IntBits != 16 && IntBits != 32 && IntBits != 64) + return SDValue(); + + MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); + int32_t FloatBits = FloatTy.getSizeInBits(); + if (FloatBits != 32 && FloatBits != 64) + return SDValue(); + + // Avoid conversions where iN is larger than the float (e.g., i64 -> float). + if (IntBits > FloatBits) + return SDValue(); + + BitVector UndefElements; + BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); + int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); + if (C == -1 || C == 0 || C > FloatBits) + return SDValue(); + + MVT ResTy; + unsigned NumLanes = Op.getValueType().getVectorNumElements(); + switch (NumLanes) { + default: + return SDValue(); + case 2: + ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; + break; + case 4: + ResTy = MVT::v4i32; + break; + } + + SDLoc DL(N); + SDValue ConvInput = Op.getOperand(0); + bool IsSigned = Opc == ISD::SINT_TO_FP; + if (IntBits < FloatBits) + ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, + ResTy, ConvInput); + + unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp + : Intrinsic::aarch64_neon_vcvtfxu2fp; + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), + DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, + DAG.getConstant(C, DL, MVT::i32)); +} + +/// An EXTR instruction is made up of two shifts, ORed together. This helper +/// searches for and classifies those shifts. +static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, + bool &FromHi) { + if (N.getOpcode() == ISD::SHL) + FromHi = false; + else if (N.getOpcode() == ISD::SRL) + FromHi = true; + else + return false; + + if (!isa<ConstantSDNode>(N.getOperand(1))) + return false; + + ShiftAmount = N->getConstantOperandVal(1); + Src = N->getOperand(0); + return true; +} + +/// EXTR instruction extracts a contiguous chunk of bits from two existing +/// registers viewed as a high/low pair. This function looks for the pattern: +/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an +/// EXTR. Can't quite be done in TableGen because the two immediates aren't +/// independent. +static SDValue tryCombineToEXTR(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI) { + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + EVT VT = N->getValueType(0); + + assert(N->getOpcode() == ISD::OR && "Unexpected root"); + + if (VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + SDValue LHS; + uint32_t ShiftLHS = 0; + bool LHSFromHi = 0; + if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) + return SDValue(); + + SDValue RHS; + uint32_t ShiftRHS = 0; + bool RHSFromHi = 0; + if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) + return SDValue(); + + // If they're both trying to come from the high part of the register, they're + // not really an EXTR. + if (LHSFromHi == RHSFromHi) + return SDValue(); + + if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) + return SDValue(); + + if (LHSFromHi) { + std::swap(LHS, RHS); + std::swap(ShiftLHS, ShiftRHS); + } + + return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, + DAG.getConstant(ShiftRHS, DL, MVT::i64)); +} + +static SDValue tryCombineToBSL(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI) { + EVT VT = N->getValueType(0); + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + if (!VT.isVector()) + return SDValue(); + + SDValue N0 = N->getOperand(0); + if (N0.getOpcode() != ISD::AND) + return SDValue(); + + SDValue N1 = N->getOperand(1); + if (N1.getOpcode() != ISD::AND) + return SDValue(); + + // We only have to look for constant vectors here since the general, variable + // case can be handled in TableGen. + unsigned Bits = VT.getVectorElementType().getSizeInBits(); + uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); + for (int i = 1; i >= 0; --i) + for (int j = 1; j >= 0; --j) { + BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); + BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); + if (!BVN0 || !BVN1) + continue; + + bool FoundMatch = true; + for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { + ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); + ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); + if (!CN0 || !CN1 || + CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { + FoundMatch = false; + break; + } + } + + if (FoundMatch) + return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), + N0->getOperand(1 - i), N1->getOperand(1 - j)); + } + + return SDValue(); +} + +static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, + const AArch64Subtarget *Subtarget) { + // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) + if (!EnableAArch64ExtrGeneration) + return SDValue(); + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + SDValue Res = tryCombineToEXTR(N, DCI); + if (Res.getNode()) + return Res; + + Res = tryCombineToBSL(N, DCI); + if (Res.getNode()) + return Res; + + return SDValue(); +} + +static SDValue performBitcastCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + // Wait 'til after everything is legalized to try this. That way we have + // legal vector types and such. + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + // Remove extraneous bitcasts around an extract_subvector. + // For example, + // (v4i16 (bitconvert + // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1))))) + // becomes + // (extract_subvector ((v8i16 ...), (i64 4))) + + // Only interested in 64-bit vectors as the ultimate result. + EVT VT = N->getValueType(0); + if (!VT.isVector()) + return SDValue(); + if (VT.getSimpleVT().getSizeInBits() != 64) + return SDValue(); + // Is the operand an extract_subvector starting at the beginning or halfway + // point of the vector? A low half may also come through as an + // EXTRACT_SUBREG, so look for that, too. + SDValue Op0 = N->getOperand(0); + if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR && + !(Op0->isMachineOpcode() && + Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG)) + return SDValue(); + uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue(); + if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) { + if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0) + return SDValue(); + } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) { + if (idx != AArch64::dsub) + return SDValue(); + // The dsub reference is equivalent to a lane zero subvector reference. + idx = 0; + } + // Look through the bitcast of the input to the extract. + if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST) + return SDValue(); + SDValue Source = Op0->getOperand(0)->getOperand(0); + // If the source type has twice the number of elements as our destination + // type, we know this is an extract of the high or low half of the vector. + EVT SVT = Source->getValueType(0); + if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2) + return SDValue(); + + DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n"); + + // Create the simplified form to just extract the low or high half of the + // vector directly rather than bothering with the bitcasts. + SDLoc dl(N); + unsigned NumElements = VT.getVectorNumElements(); + if (idx) { + SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx); + } else { + SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32); + return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT, + Source, SubReg), + 0); + } +} + +static SDValue performConcatVectorsCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + SDLoc dl(N); + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); + + // Optimize concat_vectors of truncated vectors, where the intermediate + // type is illegal, to avoid said illegality, e.g., + // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), + // (v2i16 (truncate (v2i64))))) + // -> + // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), + // (v4i32 (bitcast (v2i64))), + // <0, 2, 4, 6>))) + // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed + // on both input and result type, so we might generate worse code. + // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. + if (N->getNumOperands() == 2 && + N0->getOpcode() == ISD::TRUNCATE && + N1->getOpcode() == ISD::TRUNCATE) { + SDValue N00 = N0->getOperand(0); + SDValue N10 = N1->getOperand(0); + EVT N00VT = N00.getValueType(); + + if (N00VT == N10.getValueType() && + (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && + N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { + MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); + SmallVector<int, 8> Mask(MidVT.getVectorNumElements()); + for (size_t i = 0; i < Mask.size(); ++i) + Mask[i] = i * 2; + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getVectorShuffle( + MidVT, dl, + DAG.getNode(ISD::BITCAST, dl, MidVT, N00), + DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); + } + } + + // Wait 'til after everything is legalized to try this. That way we have + // legal vector types and such. + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector + // splat. The indexed instructions are going to be expecting a DUPLANE64, so + // canonicalise to that. + if (N0 == N1 && VT.getVectorNumElements() == 2) { + assert(VT.getVectorElementType().getSizeInBits() == 64); + return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), + DAG.getConstant(0, dl, MVT::i64)); + } + + // Canonicalise concat_vectors so that the right-hand vector has as few + // bit-casts as possible before its real operation. The primary matching + // destination for these operations will be the narrowing "2" instructions, + // which depend on the operation being performed on this right-hand vector. + // For example, + // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) + // becomes + // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) + + if (N1->getOpcode() != ISD::BITCAST) + return SDValue(); + SDValue RHS = N1->getOperand(0); + MVT RHSTy = RHS.getValueType().getSimpleVT(); + // If the RHS is not a vector, this is not the pattern we're looking for. + if (!RHSTy.isVector()) + return SDValue(); + + DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); + + MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), + RHSTy.getVectorNumElements() * 2); + return DAG.getNode(ISD::BITCAST, dl, VT, + DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, + DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), + RHS)); +} + +static SDValue tryCombineFixedPointConvert(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + // Wait 'til after everything is legalized to try this. That way we have + // legal vector types and such. + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + // Transform a scalar conversion of a value from a lane extract into a + // lane extract of a vector conversion. E.g., from foo1 to foo2: + // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } + // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } + // + // The second form interacts better with instruction selection and the + // register allocator to avoid cross-class register copies that aren't + // coalescable due to a lane reference. + + // Check the operand and see if it originates from a lane extract. + SDValue Op1 = N->getOperand(1); + if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { + // Yep, no additional predication needed. Perform the transform. + SDValue IID = N->getOperand(0); + SDValue Shift = N->getOperand(2); + SDValue Vec = Op1.getOperand(0); + SDValue Lane = Op1.getOperand(1); + EVT ResTy = N->getValueType(0); + EVT VecResTy; + SDLoc DL(N); + + // The vector width should be 128 bits by the time we get here, even + // if it started as 64 bits (the extract_vector handling will have + // done so). + assert(Vec.getValueType().getSizeInBits() == 128 && + "unexpected vector size on extract_vector_elt!"); + if (Vec.getValueType() == MVT::v4i32) + VecResTy = MVT::v4f32; + else if (Vec.getValueType() == MVT::v2i64) + VecResTy = MVT::v2f64; + else + llvm_unreachable("unexpected vector type!"); + + SDValue Convert = + DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); + } + return SDValue(); +} + +// AArch64 high-vector "long" operations are formed by performing the non-high +// version on an extract_subvector of each operand which gets the high half: +// +// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) +// +// However, there are cases which don't have an extract_high explicitly, but +// have another operation that can be made compatible with one for free. For +// example: +// +// (dupv64 scalar) --> (extract_high (dup128 scalar)) +// +// This routine does the actual conversion of such DUPs, once outer routines +// have determined that everything else is in order. +// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold +// similarly here. +static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { + switch (N.getOpcode()) { + case AArch64ISD::DUP: + case AArch64ISD::DUPLANE8: + case AArch64ISD::DUPLANE16: + case AArch64ISD::DUPLANE32: + case AArch64ISD::DUPLANE64: + case AArch64ISD::MOVI: + case AArch64ISD::MOVIshift: + case AArch64ISD::MOVIedit: + case AArch64ISD::MOVImsl: + case AArch64ISD::MVNIshift: + case AArch64ISD::MVNImsl: + break; + default: + // FMOV could be supported, but isn't very useful, as it would only occur + // if you passed a bitcast' floating point immediate to an eligible long + // integer op (addl, smull, ...). + return SDValue(); + } + + MVT NarrowTy = N.getSimpleValueType(); + if (!NarrowTy.is64BitVector()) + return SDValue(); + + MVT ElementTy = NarrowTy.getVectorElementType(); + unsigned NumElems = NarrowTy.getVectorNumElements(); + MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); + + SDLoc dl(N); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, + DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()), + DAG.getConstant(NumElems, dl, MVT::i64)); +} + +static bool isEssentiallyExtractSubvector(SDValue N) { + if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR) + return true; + + return N.getOpcode() == ISD::BITCAST && + N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR; +} + +/// \brief Helper structure to keep track of ISD::SET_CC operands. +struct GenericSetCCInfo { + const SDValue *Opnd0; + const SDValue *Opnd1; + ISD::CondCode CC; +}; + +/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code. +struct AArch64SetCCInfo { + const SDValue *Cmp; + AArch64CC::CondCode CC; +}; + +/// \brief Helper structure to keep track of SetCC information. +union SetCCInfo { + GenericSetCCInfo Generic; + AArch64SetCCInfo AArch64; +}; + +/// \brief Helper structure to be able to read SetCC information. If set to +/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a +/// GenericSetCCInfo. +struct SetCCInfoAndKind { + SetCCInfo Info; + bool IsAArch64; +}; + +/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or +/// an +/// AArch64 lowered one. +/// \p SetCCInfo is filled accordingly. +/// \post SetCCInfo is meanginfull only when this function returns true. +/// \return True when Op is a kind of SET_CC operation. +static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { + // If this is a setcc, this is straight forward. + if (Op.getOpcode() == ISD::SETCC) { + SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); + SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); + SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SetCCInfo.IsAArch64 = false; + return true; + } + // Otherwise, check if this is a matching csel instruction. + // In other words: + // - csel 1, 0, cc + // - csel 0, 1, !cc + if (Op.getOpcode() != AArch64ISD::CSEL) + return false; + // Set the information about the operands. + // TODO: we want the operands of the Cmp not the csel + SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); + SetCCInfo.IsAArch64 = true; + SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( + cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); + + // Check that the operands matches the constraints: + // (1) Both operands must be constants. + // (2) One must be 1 and the other must be 0. + ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); + ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + + // Check (1). + if (!TValue || !FValue) + return false; + + // Check (2). + if (!TValue->isOne()) { + // Update the comparison when we are interested in !cc. + std::swap(TValue, FValue); + SetCCInfo.Info.AArch64.CC = + AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); + } + return TValue->isOne() && FValue->isNullValue(); +} + +// Returns true if Op is setcc or zext of setcc. +static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { + if (isSetCC(Op, Info)) + return true; + return ((Op.getOpcode() == ISD::ZERO_EXTEND) && + isSetCC(Op->getOperand(0), Info)); +} + +// The folding we want to perform is: +// (add x, [zext] (setcc cc ...) ) +// --> +// (csel x, (add x, 1), !cc ...) +// +// The latter will get matched to a CSINC instruction. +static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { + assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); + SDValue LHS = Op->getOperand(0); + SDValue RHS = Op->getOperand(1); + SetCCInfoAndKind InfoAndKind; + + // If neither operand is a SET_CC, give up. + if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { + std::swap(LHS, RHS); + if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) + return SDValue(); + } + + // FIXME: This could be generatized to work for FP comparisons. + EVT CmpVT = InfoAndKind.IsAArch64 + ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() + : InfoAndKind.Info.Generic.Opnd0->getValueType(); + if (CmpVT != MVT::i32 && CmpVT != MVT::i64) + return SDValue(); + + SDValue CCVal; + SDValue Cmp; + SDLoc dl(Op); + if (InfoAndKind.IsAArch64) { + CCVal = DAG.getConstant( + AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, + MVT::i32); + Cmp = *InfoAndKind.Info.AArch64.Cmp; + } else + Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0, + *InfoAndKind.Info.Generic.Opnd1, + ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true), + CCVal, DAG, dl); + + EVT VT = Op->getValueType(0); + LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); + return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); +} + +// The basic add/sub long vector instructions have variants with "2" on the end +// which act on the high-half of their inputs. They are normally matched by +// patterns like: +// +// (add (zeroext (extract_high LHS)), +// (zeroext (extract_high RHS))) +// -> uaddl2 vD, vN, vM +// +// However, if one of the extracts is something like a duplicate, this +// instruction can still be used profitably. This function puts the DAG into a +// more appropriate form for those patterns to trigger. +static SDValue performAddSubLongCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + MVT VT = N->getSimpleValueType(0); + if (!VT.is128BitVector()) { + if (N->getOpcode() == ISD::ADD) + return performSetccAddFolding(N, DAG); + return SDValue(); + } + + // Make sure both branches are extended in the same way. + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + if ((LHS.getOpcode() != ISD::ZERO_EXTEND && + LHS.getOpcode() != ISD::SIGN_EXTEND) || + LHS.getOpcode() != RHS.getOpcode()) + return SDValue(); + + unsigned ExtType = LHS.getOpcode(); + + // It's not worth doing if at least one of the inputs isn't already an + // extract, but we don't know which it'll be so we have to try both. + if (isEssentiallyExtractSubvector(LHS.getOperand(0))) { + RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); + if (!RHS.getNode()) + return SDValue(); + + RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); + } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) { + LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); + if (!LHS.getNode()) + return SDValue(); + + LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); + } + + return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); +} + +// Massage DAGs which we can use the high-half "long" operations on into +// something isel will recognize better. E.g. +// +// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> +// (aarch64_neon_umull (extract_high (v2i64 vec))) +// (extract_high (v2i64 (dup128 scalar))))) +// +static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + assert(LHS.getValueType().is64BitVector() && + RHS.getValueType().is64BitVector() && + "unexpected shape for long operation"); + + // Either node could be a DUP, but it's not worth doing both of them (you'd + // just as well use the non-high version) so look for a corresponding extract + // operation on the other "wing". + if (isEssentiallyExtractSubvector(LHS)) { + RHS = tryExtendDUPToExtractHigh(RHS, DAG); + if (!RHS.getNode()) + return SDValue(); + } else if (isEssentiallyExtractSubvector(RHS)) { + LHS = tryExtendDUPToExtractHigh(LHS, DAG); + if (!LHS.getNode()) + return SDValue(); + } + + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), + N->getOperand(0), LHS, RHS); +} + +static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { + MVT ElemTy = N->getSimpleValueType(0).getScalarType(); + unsigned ElemBits = ElemTy.getSizeInBits(); + + int64_t ShiftAmount; + if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { + APInt SplatValue, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, + HasAnyUndefs, ElemBits) || + SplatBitSize != ElemBits) + return SDValue(); + + ShiftAmount = SplatValue.getSExtValue(); + } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { + ShiftAmount = CVN->getSExtValue(); + } else + return SDValue(); + + unsigned Opcode; + bool IsRightShift; + switch (IID) { + default: + llvm_unreachable("Unknown shift intrinsic"); + case Intrinsic::aarch64_neon_sqshl: + Opcode = AArch64ISD::SQSHL_I; + IsRightShift = false; + break; + case Intrinsic::aarch64_neon_uqshl: + Opcode = AArch64ISD::UQSHL_I; + IsRightShift = false; + break; + case Intrinsic::aarch64_neon_srshl: + Opcode = AArch64ISD::SRSHR_I; + IsRightShift = true; + break; + case Intrinsic::aarch64_neon_urshl: + Opcode = AArch64ISD::URSHR_I; + IsRightShift = true; + break; + case Intrinsic::aarch64_neon_sqshlu: + Opcode = AArch64ISD::SQSHLU_I; + IsRightShift = false; + break; + } + + if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { + SDLoc dl(N); + return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), + DAG.getConstant(-ShiftAmount, dl, MVT::i32)); + } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { + SDLoc dl(N); + return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), + DAG.getConstant(ShiftAmount, dl, MVT::i32)); + } + + return SDValue(); +} + +// The CRC32[BH] instructions ignore the high bits of their data operand. Since +// the intrinsics must be legal and take an i32, this means there's almost +// certainly going to be a zext in the DAG which we can eliminate. +static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { + SDValue AndN = N->getOperand(2); + if (AndN.getOpcode() != ISD::AND) + return SDValue(); + + ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); + if (!CMask || CMask->getZExtValue() != Mask) + return SDValue(); + + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, + N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); +} + +static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, + SelectionDAG &DAG) { + SDLoc dl(N); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), + DAG.getNode(Opc, dl, + N->getOperand(1).getSimpleValueType(), + N->getOperand(1)), + DAG.getConstant(0, dl, MVT::i64)); +} + +static SDValue performIntrinsicCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + const AArch64Subtarget *Subtarget) { + SelectionDAG &DAG = DCI.DAG; + unsigned IID = getIntrinsicID(N); + switch (IID) { + default: + break; + case Intrinsic::aarch64_neon_vcvtfxs2fp: + case Intrinsic::aarch64_neon_vcvtfxu2fp: + return tryCombineFixedPointConvert(N, DCI, DAG); + case Intrinsic::aarch64_neon_saddv: + return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); + case Intrinsic::aarch64_neon_uaddv: + return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); + case Intrinsic::aarch64_neon_sminv: + return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); + case Intrinsic::aarch64_neon_uminv: + return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); + case Intrinsic::aarch64_neon_smaxv: + return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); + case Intrinsic::aarch64_neon_umaxv: + return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); + case Intrinsic::aarch64_neon_fmax: + return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0), + N->getOperand(1), N->getOperand(2)); + case Intrinsic::aarch64_neon_fmin: + return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0), + N->getOperand(1), N->getOperand(2)); + case Intrinsic::aarch64_neon_fmaxnm: + return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), + N->getOperand(1), N->getOperand(2)); + case Intrinsic::aarch64_neon_fminnm: + return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), + N->getOperand(1), N->getOperand(2)); + case Intrinsic::aarch64_neon_smull: + case Intrinsic::aarch64_neon_umull: + case Intrinsic::aarch64_neon_pmull: + case Intrinsic::aarch64_neon_sqdmull: + return tryCombineLongOpWithDup(IID, N, DCI, DAG); + case Intrinsic::aarch64_neon_sqshl: + case Intrinsic::aarch64_neon_uqshl: + case Intrinsic::aarch64_neon_sqshlu: + case Intrinsic::aarch64_neon_srshl: + case Intrinsic::aarch64_neon_urshl: + return tryCombineShiftImm(IID, N, DAG); + case Intrinsic::aarch64_crc32b: + case Intrinsic::aarch64_crc32cb: + return tryCombineCRC32(0xff, N, DAG); + case Intrinsic::aarch64_crc32h: + case Intrinsic::aarch64_crc32ch: + return tryCombineCRC32(0xffff, N, DAG); + } + return SDValue(); +} + +static SDValue performExtendCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then + // we can convert that DUP into another extract_high (of a bigger DUP), which + // helps the backend to decide that an sabdl2 would be useful, saving a real + // extract_high operation. + if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && + N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { + SDNode *ABDNode = N->getOperand(0).getNode(); + unsigned IID = getIntrinsicID(ABDNode); + if (IID == Intrinsic::aarch64_neon_sabd || + IID == Intrinsic::aarch64_neon_uabd) { + SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); + if (!NewABD.getNode()) + return SDValue(); + + return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), + NewABD); + } + } + + // This is effectively a custom type legalization for AArch64. + // + // Type legalization will split an extend of a small, legal, type to a larger + // illegal type by first splitting the destination type, often creating + // illegal source types, which then get legalized in isel-confusing ways, + // leading to really terrible codegen. E.g., + // %result = v8i32 sext v8i8 %value + // becomes + // %losrc = extract_subreg %value, ... + // %hisrc = extract_subreg %value, ... + // %lo = v4i32 sext v4i8 %losrc + // %hi = v4i32 sext v4i8 %hisrc + // Things go rapidly downhill from there. + // + // For AArch64, the [sz]ext vector instructions can only go up one element + // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 + // take two instructions. + // + // This implies that the most efficient way to do the extend from v8i8 + // to two v4i32 values is to first extend the v8i8 to v8i16, then do + // the normal splitting to happen for the v8i16->v8i32. + + // This is pre-legalization to catch some cases where the default + // type legalization will create ill-tempered code. + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); + + // We're only interested in cleaning things up for non-legal vector types + // here. If both the source and destination are legal, things will just + // work naturally without any fiddling. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT ResVT = N->getValueType(0); + if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) + return SDValue(); + // If the vector type isn't a simple VT, it's beyond the scope of what + // we're worried about here. Let legalization do its thing and hope for + // the best. + SDValue Src = N->getOperand(0); + EVT SrcVT = Src->getValueType(0); + if (!ResVT.isSimple() || !SrcVT.isSimple()) + return SDValue(); + + // If the source VT is a 64-bit vector, we can play games and get the + // better results we want. + if (SrcVT.getSizeInBits() != 64) + return SDValue(); + + unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits(); + unsigned ElementCount = SrcVT.getVectorNumElements(); + SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); + SDLoc DL(N); + Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); + + // Now split the rest of the operation into two halves, each with a 64 + // bit source. + EVT LoVT, HiVT; + SDValue Lo, Hi; + unsigned NumElements = ResVT.getVectorNumElements(); + assert(!(NumElements & 1) && "Splitting vector, but not in half!"); + LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), + ResVT.getVectorElementType(), NumElements / 2); + + EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), + LoVT.getVectorNumElements()); + Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, + DAG.getConstant(0, DL, MVT::i64)); + Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, + DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64)); + Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); + Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); + + // Now combine the parts back together so we still have a single result + // like the combiner expects. + return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); +} + +/// Replace a splat of a scalar to a vector store by scalar stores of the scalar +/// value. The load store optimizer pass will merge them to store pair stores. +/// This has better performance than a splat of the scalar followed by a split +/// vector store. Even if the stores are not merged it is four stores vs a dup, +/// followed by an ext.b and two stores. +static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) { + SDValue StVal = St->getValue(); + EVT VT = StVal.getValueType(); + + // Don't replace floating point stores, they possibly won't be transformed to + // stp because of the store pair suppress pass. + if (VT.isFloatingPoint()) + return SDValue(); + + // Check for insert vector elements. + if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) + return SDValue(); + + // We can express a splat as store pair(s) for 2 or 4 elements. + unsigned NumVecElts = VT.getVectorNumElements(); + if (NumVecElts != 4 && NumVecElts != 2) + return SDValue(); + SDValue SplatVal = StVal.getOperand(1); + unsigned RemainInsertElts = NumVecElts - 1; + + // Check that this is a splat. + while (--RemainInsertElts) { + SDValue NextInsertElt = StVal.getOperand(0); + if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT) + return SDValue(); + if (NextInsertElt.getOperand(1) != SplatVal) + return SDValue(); + StVal = NextInsertElt; + } + unsigned OrigAlignment = St->getAlignment(); + unsigned EltOffset = NumVecElts == 4 ? 4 : 8; + unsigned Alignment = std::min(OrigAlignment, EltOffset); + + // Create scalar stores. This is at least as good as the code sequence for a + // split unaligned store which is a dup.s, ext.b, and two stores. + // Most of the time the three stores should be replaced by store pair + // instructions (stp). + SDLoc DL(St); + SDValue BasePtr = St->getBasePtr(); + SDValue NewST1 = + DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(), + St->isVolatile(), St->isNonTemporal(), St->getAlignment()); + + unsigned Offset = EltOffset; + while (--NumVecElts) { + SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, + DAG.getConstant(Offset, DL, MVT::i64)); + NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), Alignment); + Offset += EltOffset; + } + return NewST1; +} + +static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG, + const AArch64Subtarget *Subtarget) { + if (!DCI.isBeforeLegalize()) + return SDValue(); + + StoreSDNode *S = cast<StoreSDNode>(N); + if (S->isVolatile()) + return SDValue(); + + // FIXME: The logic for deciding if an unaligned store should be split should + // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be + // a call to that function here. + + // Cyclone has bad performance on unaligned 16B stores when crossing line and + // page boundaries. We want to split such stores. + if (!Subtarget->isCyclone()) + return SDValue(); + + // Don't split at -Oz. + if (DAG.getMachineFunction().getFunction()->optForMinSize()) + return SDValue(); + + SDValue StVal = S->getValue(); + EVT VT = StVal.getValueType(); + + // Don't split v2i64 vectors. Memcpy lowering produces those and splitting + // those up regresses performance on micro-benchmarks and olden/bh. + if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64) + return SDValue(); + + // Split unaligned 16B stores. They are terrible for performance. + // Don't split stores with alignment of 1 or 2. Code that uses clang vector + // extensions can use this to mark that it does not want splitting to happen + // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of + // eliminating alignment hazards is only 1 in 8 for alignment of 2. + if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || + S->getAlignment() <= 2) + return SDValue(); + + // If we get a splat of a scalar convert this vector store to a store of + // scalars. They will be merged into store pairs thereby removing two + // instructions. + if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S)) + return ReplacedSplat; + + SDLoc DL(S); + unsigned NumElts = VT.getVectorNumElements() / 2; + // Split VT into two. + EVT HalfVT = + EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts); + SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, + DAG.getConstant(0, DL, MVT::i64)); + SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, + DAG.getConstant(NumElts, DL, MVT::i64)); + SDValue BasePtr = S->getBasePtr(); + SDValue NewST1 = + DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), + S->isVolatile(), S->isNonTemporal(), S->getAlignment()); + SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, + DAG.getConstant(8, DL, MVT::i64)); + return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, + S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(), + S->getAlignment()); +} + +/// Target-specific DAG combine function for post-increment LD1 (lane) and +/// post-increment LD1R. +static SDValue performPostLD1Combine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + bool IsLaneOp) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + + unsigned LoadIdx = IsLaneOp ? 1 : 0; + SDNode *LD = N->getOperand(LoadIdx).getNode(); + // If it is not LOAD, can not do such combine. + if (LD->getOpcode() != ISD::LOAD) + return SDValue(); + + LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); + EVT MemVT = LoadSDN->getMemoryVT(); + // Check if memory operand is the same type as the vector element. + if (MemVT != VT.getVectorElementType()) + return SDValue(); + + // Check if there are other uses. If so, do not combine as it will introduce + // an extra load. + for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; + ++UI) { + if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. + continue; + if (*UI != N) + return SDValue(); + } + + SDValue Addr = LD->getOperand(1); + SDValue Vector = N->getOperand(0); + // Search for a use of the address operand that is an increment. + for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = + Addr.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + if (User->getOpcode() != ISD::ADD + || UI.getUse().getResNo() != Addr.getResNo()) + continue; + + // Check that the add is independent of the load. Otherwise, folding it + // would create a cycle. + if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User)) + continue; + // Also check that add is not used in the vector operand. This would also + // create a cycle. + if (User->isPredecessorOf(Vector.getNode())) + continue; + + // If the increment is a constant, it must match the memory ref size. + SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); + if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { + uint32_t IncVal = CInc->getZExtValue(); + unsigned NumBytes = VT.getScalarSizeInBits() / 8; + if (IncVal != NumBytes) + continue; + Inc = DAG.getRegister(AArch64::XZR, MVT::i64); + } + + // Finally, check that the vector doesn't depend on the load. + // Again, this would create a cycle. + // The load depending on the vector is fine, as that's the case for the + // LD1*post we'll eventually generate anyway. + if (LoadSDN->isPredecessorOf(Vector.getNode())) + continue; + + SmallVector<SDValue, 8> Ops; + Ops.push_back(LD->getOperand(0)); // Chain + if (IsLaneOp) { + Ops.push_back(Vector); // The vector to be inserted + Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector + } + Ops.push_back(Addr); + Ops.push_back(Inc); + + EVT Tys[3] = { VT, MVT::i64, MVT::Other }; + SDVTList SDTys = DAG.getVTList(Tys); + unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; + SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, + MemVT, + LoadSDN->getMemOperand()); + + // Update the uses. + SmallVector<SDValue, 2> NewResults; + NewResults.push_back(SDValue(LD, 0)); // The result of load + NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain + DCI.CombineTo(LD, NewResults); + DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result + DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register + + break; + } + return SDValue(); +} + +/// Simplify \Addr given that the top byte of it is ignored by HW during +/// address translation. +static bool performTBISimplification(SDValue Addr, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + APInt DemandedMask = APInt::getLowBitsSet(64, 56); + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), + DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) { + DCI.CommitTargetLoweringOpt(TLO); + return true; + } + return false; +} + +static SDValue performSTORECombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG, + const AArch64Subtarget *Subtarget) { + SDValue Split = split16BStores(N, DCI, DAG, Subtarget); + if (Split.getNode()) + return Split; + + if (Subtarget->supportsAddressTopByteIgnored() && + performTBISimplification(N->getOperand(2), DCI, DAG)) + return SDValue(N, 0); + + return SDValue(); +} + + /// This function handles the log2-shuffle pattern produced by the +/// LoopVectorizer for the across vector reduction. It consists of +/// log2(NumVectorElements) steps and, in each step, 2^(s) elements +/// are reduced, where s is an induction variable from 0 to +/// log2(NumVectorElements). +static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV, + unsigned Op, + SelectionDAG &DAG) { + EVT VTy = OpV->getOperand(0).getValueType(); + if (!VTy.isVector()) + return SDValue(); + + int NumVecElts = VTy.getVectorNumElements(); + if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) { + if (NumVecElts != 4) + return SDValue(); + } else { + if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16) + return SDValue(); + } + + int NumExpectedSteps = APInt(8, NumVecElts).logBase2(); + SDValue PreOp = OpV; + // Iterate over each step of the across vector reduction. + for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) { + SDValue CurOp = PreOp.getOperand(0); + SDValue Shuffle = PreOp.getOperand(1); + if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) { + // Try to swap the 1st and 2nd operand as add and min/max instructions + // are commutative. + CurOp = PreOp.getOperand(1); + Shuffle = PreOp.getOperand(0); + if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) + return SDValue(); + } + + // Check if the input vector is fed by the operator we want to handle, + // except the last step; the very first input vector is not necessarily + // the same operator we are handling. + if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1))) + return SDValue(); + + // Check if it forms one step of the across vector reduction. + // E.g., + // %cur = add %1, %0 + // %shuffle = vector_shuffle %cur, <2, 3, u, u> + // %pre = add %cur, %shuffle + if (Shuffle.getOperand(0) != CurOp) + return SDValue(); + + int NumMaskElts = 1 << CurStep; + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask(); + // Check mask values in each step. + // We expect the shuffle mask in each step follows a specific pattern + // denoted here by the <M, U> form, where M is a sequence of integers + // starting from NumMaskElts, increasing by 1, and the number integers + // in M should be NumMaskElts. U is a sequence of UNDEFs and the number + // of undef in U should be NumVecElts - NumMaskElts. + // E.g., for <8 x i16>, mask values in each step should be : + // step 0 : <1,u,u,u,u,u,u,u> + // step 1 : <2,3,u,u,u,u,u,u> + // step 2 : <4,5,6,7,u,u,u,u> + for (int i = 0; i < NumVecElts; ++i) + if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) || + (i >= NumMaskElts && !(Mask[i] < 0))) + return SDValue(); + + PreOp = CurOp; + } + unsigned Opcode; + bool IsIntrinsic = false; + + switch (Op) { + default: + llvm_unreachable("Unexpected operator for across vector reduction"); + case ISD::ADD: + Opcode = AArch64ISD::UADDV; + break; + case ISD::SMAX: + Opcode = AArch64ISD::SMAXV; + break; + case ISD::UMAX: + Opcode = AArch64ISD::UMAXV; + break; + case ISD::SMIN: + Opcode = AArch64ISD::SMINV; + break; + case ISD::UMIN: + Opcode = AArch64ISD::UMINV; + break; + case ISD::FMAXNUM: + Opcode = Intrinsic::aarch64_neon_fmaxnmv; + IsIntrinsic = true; + break; + case ISD::FMINNUM: + Opcode = Intrinsic::aarch64_neon_fminnmv; + IsIntrinsic = true; + break; + } + SDLoc DL(N); + + return IsIntrinsic + ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0), + DAG.getConstant(Opcode, DL, MVT::i32), PreOp) + : DAG.getNode( + ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), + DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp), + DAG.getConstant(0, DL, MVT::i64)); +} + +/// Target-specific DAG combine for the across vector min/max reductions. +/// This function specifically handles the final clean-up step of the vector +/// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle +/// pattern, which narrows down and finds the final min/max value from all +/// elements of the vector. +/// For example, for a <16 x i8> vector : +/// svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> +/// %smax0 = smax %arr, svn0 +/// %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u> +/// %smax1 = smax %smax0, %svn1 +/// %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u> +/// %smax2 = smax %smax1, svn2 +/// %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u> +/// %sc = setcc %smax2, %svn3, gt +/// %n0 = extract_vector_elt %sc, #0 +/// %n1 = extract_vector_elt %smax2, #0 +/// %n2 = extract_vector_elt $smax2, #1 +/// %result = select %n0, %n1, n2 +/// becomes : +/// %1 = smaxv %0 +/// %result = extract_vector_elt %1, 0 +static SDValue +performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG, + const AArch64Subtarget *Subtarget) { + if (!Subtarget->hasNEON()) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue IfTrue = N->getOperand(1); + SDValue IfFalse = N->getOperand(2); + + // Check if the SELECT merges up the final result of the min/max + // from a vector. + if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + // Expect N0 is fed by SETCC. + SDValue SetCC = N0.getOperand(0); + EVT SetCCVT = SetCC.getValueType(); + if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() || + SetCCVT.getVectorElementType() != MVT::i1) + return SDValue(); + + SDValue VectorOp = SetCC.getOperand(0); + unsigned Op = VectorOp->getOpcode(); + // Check if the input vector is fed by the operator we want to handle. + if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN && + Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM) + return SDValue(); + + EVT VTy = VectorOp.getValueType(); + if (!VTy.isVector()) + return SDValue(); + + if (VTy.getSizeInBits() < 64) + return SDValue(); + + EVT EltTy = VTy.getVectorElementType(); + if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) { + if (EltTy != MVT::f32) + return SDValue(); + } else { + if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8) + return SDValue(); + } + + // Check if extracting from the same vector. + // For example, + // %sc = setcc %vector, %svn1, gt + // %n0 = extract_vector_elt %sc, #0 + // %n1 = extract_vector_elt %vector, #0 + // %n2 = extract_vector_elt $vector, #1 + if (!(VectorOp == IfTrue->getOperand(0) && + VectorOp == IfFalse->getOperand(0))) + return SDValue(); + + // Check if the condition code is matched with the operator type. + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); + if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) || + (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) || + (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) || + (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) || + (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE && + CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT && + CC != ISD::SETGE) || + (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE && + CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT && + CC != ISD::SETLE)) + return SDValue(); + + // Expect to check only lane 0 from the vector SETCC. + if (!isNullConstant(N0.getOperand(1))) + return SDValue(); + + // Expect to extract the true value from lane 0. + if (!isNullConstant(IfTrue.getOperand(1))) + return SDValue(); + + // Expect to extract the false value from lane 1. + if (!isOneConstant(IfFalse.getOperand(1))) + return SDValue(); + + return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG); +} + +/// Target-specific DAG combine for the across vector add reduction. +/// This function specifically handles the final clean-up step of the vector +/// add reduction produced by the LoopVectorizer. It is the log2-shuffle +/// pattern, which adds all elements of a vector together. +/// For example, for a <4 x i32> vector : +/// %1 = vector_shuffle %0, <2,3,u,u> +/// %2 = add %0, %1 +/// %3 = vector_shuffle %2, <1,u,u,u> +/// %4 = add %2, %3 +/// %result = extract_vector_elt %4, 0 +/// becomes : +/// %0 = uaddv %0 +/// %result = extract_vector_elt %0, 0 +static SDValue +performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG, + const AArch64Subtarget *Subtarget) { + if (!Subtarget->hasNEON()) + return SDValue(); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Check if the input vector is fed by the ADD. + if (N0->getOpcode() != ISD::ADD) + return SDValue(); + + // The vector extract idx must constant zero because we only expect the final + // result of the reduction is placed in lane 0. + if (!isNullConstant(N1)) + return SDValue(); + + EVT VTy = N0.getValueType(); + if (!VTy.isVector()) + return SDValue(); + + EVT EltTy = VTy.getVectorElementType(); + if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8) + return SDValue(); + + if (VTy.getSizeInBits() < 64) + return SDValue(); + + return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG); +} + +/// Target-specific DAG combine function for NEON load/store intrinsics +/// to merge base address updates. +static SDValue performNEONPostLDSTCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) + return SDValue(); + + unsigned AddrOpIdx = N->getNumOperands() - 1; + SDValue Addr = N->getOperand(AddrOpIdx); + + // Search for a use of the address operand that is an increment. + for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), + UE = Addr.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + if (User->getOpcode() != ISD::ADD || + UI.getUse().getResNo() != Addr.getResNo()) + continue; + + // Check that the add is independent of the load/store. Otherwise, folding + // it would create a cycle. + if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) + continue; + + // Find the new opcode for the updating load/store. + bool IsStore = false; + bool IsLaneOp = false; + bool IsDupOp = false; + unsigned NewOpc = 0; + unsigned NumVecs = 0; + unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); + switch (IntNo) { + default: llvm_unreachable("unexpected intrinsic for Neon base update"); + case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; + NumVecs = 2; break; + case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; + NumVecs = 3; break; + case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; + NumVecs = 4; break; + case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; + NumVecs = 2; IsStore = true; break; + case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; + NumVecs = 3; IsStore = true; break; + case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; + NumVecs = 4; IsStore = true; break; + case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; + NumVecs = 2; break; + case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; + NumVecs = 3; break; + case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; + NumVecs = 4; break; + case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; + NumVecs = 2; IsStore = true; break; + case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; + NumVecs = 3; IsStore = true; break; + case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; + NumVecs = 4; IsStore = true; break; + case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; + NumVecs = 2; IsDupOp = true; break; + case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; + NumVecs = 3; IsDupOp = true; break; + case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; + NumVecs = 4; IsDupOp = true; break; + case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; + NumVecs = 2; IsLaneOp = true; break; + case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; + NumVecs = 3; IsLaneOp = true; break; + case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; + NumVecs = 4; IsLaneOp = true; break; + case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; + NumVecs = 2; IsStore = true; IsLaneOp = true; break; + case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; + NumVecs = 3; IsStore = true; IsLaneOp = true; break; + case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; + NumVecs = 4; IsStore = true; IsLaneOp = true; break; + } + + EVT VecTy; + if (IsStore) + VecTy = N->getOperand(2).getValueType(); + else + VecTy = N->getValueType(0); + + // If the increment is a constant, it must match the memory ref size. + SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); + if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { + uint32_t IncVal = CInc->getZExtValue(); + unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; + if (IsLaneOp || IsDupOp) + NumBytes /= VecTy.getVectorNumElements(); + if (IncVal != NumBytes) + continue; + Inc = DAG.getRegister(AArch64::XZR, MVT::i64); + } + SmallVector<SDValue, 8> Ops; + Ops.push_back(N->getOperand(0)); // Incoming chain + // Load lane and store have vector list as input. + if (IsLaneOp || IsStore) + for (unsigned i = 2; i < AddrOpIdx; ++i) + Ops.push_back(N->getOperand(i)); + Ops.push_back(Addr); // Base register + Ops.push_back(Inc); + + // Return Types. + EVT Tys[6]; + unsigned NumResultVecs = (IsStore ? 0 : NumVecs); + unsigned n; + for (n = 0; n < NumResultVecs; ++n) + Tys[n] = VecTy; + Tys[n++] = MVT::i64; // Type of write back register + Tys[n] = MVT::Other; // Type of the chain + SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); + + MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); + SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, + MemInt->getMemoryVT(), + MemInt->getMemOperand()); + + // Update the uses. + std::vector<SDValue> NewResults; + for (unsigned i = 0; i < NumResultVecs; ++i) { + NewResults.push_back(SDValue(UpdN.getNode(), i)); + } + NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); + DCI.CombineTo(N, NewResults); + DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); + + break; + } + return SDValue(); +} + +// Checks to see if the value is the prescribed width and returns information +// about its extension mode. +static +bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { + ExtType = ISD::NON_EXTLOAD; + switch(V.getNode()->getOpcode()) { + default: + return false; + case ISD::LOAD: { + LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); + if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) + || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { + ExtType = LoadNode->getExtensionType(); + return true; + } + return false; + } + case ISD::AssertSext: { + VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); + if ((TypeNode->getVT() == MVT::i8 && width == 8) + || (TypeNode->getVT() == MVT::i16 && width == 16)) { + ExtType = ISD::SEXTLOAD; + return true; + } + return false; + } + case ISD::AssertZext: { + VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); + if ((TypeNode->getVT() == MVT::i8 && width == 8) + || (TypeNode->getVT() == MVT::i16 && width == 16)) { + ExtType = ISD::ZEXTLOAD; + return true; + } + return false; + } + case ISD::Constant: + case ISD::TargetConstant: { + if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < + 1LL << (width - 1)) + return true; + return false; + } + } + + return true; +} + +// This function does a whole lot of voodoo to determine if the tests are +// equivalent without and with a mask. Essentially what happens is that given a +// DAG resembling: +// +// +-------------+ +-------------+ +-------------+ +-------------+ +// | Input | | AddConstant | | CompConstant| | CC | +// +-------------+ +-------------+ +-------------+ +-------------+ +// | | | | +// V V | +----------+ +// +-------------+ +----+ | | +// | ADD | |0xff| | | +// +-------------+ +----+ | | +// | | | | +// V V | | +// +-------------+ | | +// | AND | | | +// +-------------+ | | +// | | | +// +-----+ | | +// | | | +// V V V +// +-------------+ +// | CMP | +// +-------------+ +// +// The AND node may be safely removed for some combinations of inputs. In +// particular we need to take into account the extension type of the Input, +// the exact values of AddConstant, CompConstant, and CC, along with the nominal +// width of the input (this can work for any width inputs, the above graph is +// specific to 8 bits. +// +// The specific equations were worked out by generating output tables for each +// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The +// problem was simplified by working with 4 bit inputs, which means we only +// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero +// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 +// patterns present in both extensions (0,7). For every distinct set of +// AddConstant and CompConstants bit patterns we can consider the masked and +// unmasked versions to be equivalent if the result of this function is true for +// all 16 distinct bit patterns of for the current extension type of Input (w0). +// +// sub w8, w0, w1 +// and w10, w8, #0x0f +// cmp w8, w2 +// cset w9, AArch64CC +// cmp w10, w2 +// cset w11, AArch64CC +// cmp w9, w11 +// cset w0, eq +// ret +// +// Since the above function shows when the outputs are equivalent it defines +// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and +// would be expensive to run during compiles. The equations below were written +// in a test harness that confirmed they gave equivalent outputs to the above +// for all inputs function, so they can be used determine if the removal is +// legal instead. +// +// isEquivalentMaskless() is the code for testing if the AND can be removed +// factored out of the DAG recognition as the DAG can take several forms. + +static +bool isEquivalentMaskless(unsigned CC, unsigned width, + ISD::LoadExtType ExtType, signed AddConstant, + signed CompConstant) { + // By being careful about our equations and only writing the in term + // symbolic values and well known constants (0, 1, -1, MaxUInt) we can + // make them generally applicable to all bit widths. + signed MaxUInt = (1 << width); + + // For the purposes of these comparisons sign extending the type is + // equivalent to zero extending the add and displacing it by half the integer + // width. Provided we are careful and make sure our equations are valid over + // the whole range we can just adjust the input and avoid writing equations + // for sign extended inputs. + if (ExtType == ISD::SEXTLOAD) + AddConstant -= (1 << (width-1)); + + switch(CC) { + case AArch64CC::LE: + case AArch64CC::GT: { + if ((AddConstant == 0) || + (CompConstant == MaxUInt - 1 && AddConstant < 0) || + (AddConstant >= 0 && CompConstant < 0) || + (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) + return true; + } break; + case AArch64CC::LT: + case AArch64CC::GE: { + if ((AddConstant == 0) || + (AddConstant >= 0 && CompConstant <= 0) || + (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) + return true; + } break; + case AArch64CC::HI: + case AArch64CC::LS: { + if ((AddConstant >= 0 && CompConstant < 0) || + (AddConstant <= 0 && CompConstant >= -1 && + CompConstant < AddConstant + MaxUInt)) + return true; + } break; + case AArch64CC::PL: + case AArch64CC::MI: { + if ((AddConstant == 0) || + (AddConstant > 0 && CompConstant <= 0) || + (AddConstant < 0 && CompConstant <= AddConstant)) + return true; + } break; + case AArch64CC::LO: + case AArch64CC::HS: { + if ((AddConstant >= 0 && CompConstant <= 0) || + (AddConstant <= 0 && CompConstant >= 0 && + CompConstant <= AddConstant + MaxUInt)) + return true; + } break; + case AArch64CC::EQ: + case AArch64CC::NE: { + if ((AddConstant > 0 && CompConstant < 0) || + (AddConstant < 0 && CompConstant >= 0 && + CompConstant < AddConstant + MaxUInt) || + (AddConstant >= 0 && CompConstant >= 0 && + CompConstant >= AddConstant) || + (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) + + return true; + } break; + case AArch64CC::VS: + case AArch64CC::VC: + case AArch64CC::AL: + case AArch64CC::NV: + return true; + case AArch64CC::Invalid: + break; + } + + return false; +} + +static +SDValue performCONDCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG, unsigned CCIndex, + unsigned CmpIndex) { + unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); + SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); + unsigned CondOpcode = SubsNode->getOpcode(); + + if (CondOpcode != AArch64ISD::SUBS) + return SDValue(); + + // There is a SUBS feeding this condition. Is it fed by a mask we can + // use? + + SDNode *AndNode = SubsNode->getOperand(0).getNode(); + unsigned MaskBits = 0; + + if (AndNode->getOpcode() != ISD::AND) + return SDValue(); + + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { + uint32_t CNV = CN->getZExtValue(); + if (CNV == 255) + MaskBits = 8; + else if (CNV == 65535) + MaskBits = 16; + } + + if (!MaskBits) + return SDValue(); + + SDValue AddValue = AndNode->getOperand(0); + + if (AddValue.getOpcode() != ISD::ADD) + return SDValue(); + + // The basic dag structure is correct, grab the inputs and validate them. + + SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); + SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); + SDValue SubsInputValue = SubsNode->getOperand(1); + + // The mask is present and the provenance of all the values is a smaller type, + // lets see if the mask is superfluous. + + if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || + !isa<ConstantSDNode>(SubsInputValue.getNode())) + return SDValue(); + + ISD::LoadExtType ExtType; + + if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || + !checkValueWidth(AddInputValue2, MaskBits, ExtType) || + !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) + return SDValue(); + + if(!isEquivalentMaskless(CC, MaskBits, ExtType, + cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), + cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) + return SDValue(); + + // The AND is not necessary, remove it. + + SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), + SubsNode->getValueType(1)); + SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; + + SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); + DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); + + return SDValue(N, 0); +} + +// Optimize compare with zero and branch. +static SDValue performBRCONDCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI, + SelectionDAG &DAG) { + SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3); + if (NV.getNode()) + N = NV.getNode(); + SDValue Chain = N->getOperand(0); + SDValue Dest = N->getOperand(1); + SDValue CCVal = N->getOperand(2); + SDValue Cmp = N->getOperand(3); + + assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); + unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); + if (CC != AArch64CC::EQ && CC != AArch64CC::NE) + return SDValue(); + + unsigned CmpOpc = Cmp.getOpcode(); + if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) + return SDValue(); + + // Only attempt folding if there is only one use of the flag and no use of the + // value. + if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) + return SDValue(); + + SDValue LHS = Cmp.getOperand(0); + SDValue RHS = Cmp.getOperand(1); + + assert(LHS.getValueType() == RHS.getValueType() && + "Expected the value type to be the same for both operands!"); + if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) + return SDValue(); + + if (isNullConstant(LHS)) + std::swap(LHS, RHS); + + if (!isNullConstant(RHS)) + return SDValue(); + + if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || + LHS.getOpcode() == ISD::SRL) + return SDValue(); + + // Fold the compare into the branch instruction. + SDValue BR; + if (CC == AArch64CC::EQ) + BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); + else + BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); + + // Do not add new nodes to DAG combiner worklist. + DCI.CombineTo(N, BR, false); + + return SDValue(); +} + +// vselect (v1i1 setcc) -> +// vselect (v1iXX setcc) (XX is the size of the compared operand type) +// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as +// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine +// such VSELECT. +static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + EVT CCVT = N0.getValueType(); + + if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || + CCVT.getVectorElementType() != MVT::i1) + return SDValue(); + + EVT ResVT = N->getValueType(0); + EVT CmpVT = N0.getOperand(0).getValueType(); + // Only combine when the result type is of the same size as the compared + // operands. + if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) + return SDValue(); + + SDValue IfTrue = N->getOperand(1); + SDValue IfFalse = N->getOperand(2); + SDValue SetCC = + DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), + N0.getOperand(0), N0.getOperand(1), + cast<CondCodeSDNode>(N0.getOperand(2))->get()); + return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, + IfTrue, IfFalse); +} + +/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with +/// the compare-mask instructions rather than going via NZCV, even if LHS and +/// RHS are really scalar. This replaces any scalar setcc in the above pattern +/// with a vector one followed by a DUP shuffle on the result. +static SDValue performSelectCombine(SDNode *N, + TargetLowering::DAGCombinerInfo &DCI) { + SelectionDAG &DAG = DCI.DAG; + SDValue N0 = N->getOperand(0); + EVT ResVT = N->getValueType(0); + + if (N0.getOpcode() != ISD::SETCC) + return SDValue(); + + // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered + // scalar SetCCResultType. We also don't expect vectors, because we assume + // that selects fed by vector SETCCs are canonicalized to VSELECT. + assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && + "Scalar-SETCC feeding SELECT has unexpected result type!"); + + // If NumMaskElts == 0, the comparison is larger than select result. The + // largest real NEON comparison is 64-bits per lane, which means the result is + // at most 32-bits and an illegal vector. Just bail out for now. + EVT SrcVT = N0.getOperand(0).getValueType(); + + // Don't try to do this optimization when the setcc itself has i1 operands. + // There are no legal vectors of i1, so this would be pointless. + if (SrcVT == MVT::i1) + return SDValue(); + + int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); + if (!ResVT.isVector() || NumMaskElts == 0) + return SDValue(); + + SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); + EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); + + // Also bail out if the vector CCVT isn't the same size as ResVT. + // This can happen if the SETCC operand size doesn't divide the ResVT size + // (e.g., f64 vs v3f32). + if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) + return SDValue(); + + // Make sure we didn't create illegal types, if we're not supposed to. + assert(DCI.isBeforeLegalize() || + DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); + + // First perform a vector comparison, where lane 0 is the one we're interested + // in. + SDLoc DL(N0); + SDValue LHS = + DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); + SDValue RHS = + DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); + SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); + + // Now duplicate the comparison mask we want across all other lanes. + SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); + SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data()); + Mask = DAG.getNode(ISD::BITCAST, DL, + ResVT.changeVectorElementTypeToInteger(), Mask); + + return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); +} + +/// Get rid of unnecessary NVCASTs (that don't change the type). +static SDValue performNVCASTCombine(SDNode *N) { + if (N->getValueType(0) == N->getOperand(0).getValueType()) + return N->getOperand(0); + + return SDValue(); +} + +SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + switch (N->getOpcode()) { + default: + break; + case ISD::ADD: + case ISD::SUB: + return performAddSubLongCombine(N, DCI, DAG); + case ISD::XOR: + return performXorCombine(N, DAG, DCI, Subtarget); + case ISD::MUL: + return performMulCombine(N, DAG, DCI, Subtarget); + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + return performIntToFpCombine(N, DAG, Subtarget); + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + return performFpToIntCombine(N, DAG, Subtarget); + case ISD::FDIV: + return performFDivCombine(N, DAG, Subtarget); + case ISD::OR: + return performORCombine(N, DCI, Subtarget); + case ISD::INTRINSIC_WO_CHAIN: + return performIntrinsicCombine(N, DCI, Subtarget); + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::SIGN_EXTEND: + return performExtendCombine(N, DCI, DAG); + case ISD::BITCAST: + return performBitcastCombine(N, DCI, DAG); + case ISD::CONCAT_VECTORS: + return performConcatVectorsCombine(N, DCI, DAG); + case ISD::SELECT: { + SDValue RV = performSelectCombine(N, DCI); + if (!RV.getNode()) + RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget); + return RV; + } + case ISD::VSELECT: + return performVSelectCombine(N, DCI.DAG); + case ISD::LOAD: + if (performTBISimplification(N->getOperand(1), DCI, DAG)) + return SDValue(N, 0); + break; + case ISD::STORE: + return performSTORECombine(N, DCI, DAG, Subtarget); + case AArch64ISD::BRCOND: + return performBRCONDCombine(N, DCI, DAG); + case AArch64ISD::CSEL: + return performCONDCombine(N, DCI, DAG, 2, 3); + case AArch64ISD::DUP: + return performPostLD1Combine(N, DCI, false); + case AArch64ISD::NVCAST: + return performNVCASTCombine(N); + case ISD::INSERT_VECTOR_ELT: + return performPostLD1Combine(N, DCI, true); + case ISD::EXTRACT_VECTOR_ELT: + return performAcrossLaneAddReductionCombine(N, DAG, Subtarget); + case ISD::INTRINSIC_VOID: + case ISD::INTRINSIC_W_CHAIN: + switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { + case Intrinsic::aarch64_neon_ld2: + case Intrinsic::aarch64_neon_ld3: + case Intrinsic::aarch64_neon_ld4: + case Intrinsic::aarch64_neon_ld1x2: + case Intrinsic::aarch64_neon_ld1x3: + case Intrinsic::aarch64_neon_ld1x4: + case Intrinsic::aarch64_neon_ld2lane: + case Intrinsic::aarch64_neon_ld3lane: + case Intrinsic::aarch64_neon_ld4lane: + case Intrinsic::aarch64_neon_ld2r: + case Intrinsic::aarch64_neon_ld3r: + case Intrinsic::aarch64_neon_ld4r: + case Intrinsic::aarch64_neon_st2: + case Intrinsic::aarch64_neon_st3: + case Intrinsic::aarch64_neon_st4: + case Intrinsic::aarch64_neon_st1x2: + case Intrinsic::aarch64_neon_st1x3: + case Intrinsic::aarch64_neon_st1x4: + case Intrinsic::aarch64_neon_st2lane: + case Intrinsic::aarch64_neon_st3lane: + case Intrinsic::aarch64_neon_st4lane: + return performNEONPostLDSTCombine(N, DCI, DAG); + default: + break; + } + } + return SDValue(); +} + +// Check if the return value is used as only a return value, as otherwise +// we can't perform a tail-call. In particular, we need to check for +// target ISD nodes that are returns and any other "odd" constructs +// that the generic analysis code won't necessarily catch. +bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, + SDValue &Chain) const { + if (N->getNumValues() != 1) + return false; + if (!N->hasNUsesOfValue(1, 0)) + return false; + + SDValue TCChain = Chain; + SDNode *Copy = *N->use_begin(); + if (Copy->getOpcode() == ISD::CopyToReg) { + // If the copy has a glue operand, we conservatively assume it isn't safe to + // perform a tail call. + if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == + MVT::Glue) + return false; + TCChain = Copy->getOperand(0); + } else if (Copy->getOpcode() != ISD::FP_EXTEND) + return false; + + bool HasRet = false; + for (SDNode *Node : Copy->uses()) { + if (Node->getOpcode() != AArch64ISD::RET_FLAG) + return false; + HasRet = true; + } + + if (!HasRet) + return false; + + Chain = TCChain; + return true; +} + +// Return whether the an instruction can potentially be optimized to a tail +// call. This will cause the optimizers to attempt to move, or duplicate, +// return instructions to help enable tail call optimizations for this +// instruction. +bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { + if (!CI->isTailCall()) + return false; + + return true; +} + +bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, + SDValue &Offset, + ISD::MemIndexedMode &AM, + bool &IsInc, + SelectionDAG &DAG) const { + if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) + return false; + + Base = Op->getOperand(0); + // All of the indexed addressing mode instructions take a signed + // 9 bit immediate offset. + if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { + int64_t RHSC = (int64_t)RHS->getZExtValue(); + if (RHSC >= 256 || RHSC <= -256) + return false; + IsInc = (Op->getOpcode() == ISD::ADD); + Offset = Op->getOperand(1); + return true; + } + return false; +} + +bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, + SDValue &Offset, + ISD::MemIndexedMode &AM, + SelectionDAG &DAG) const { + EVT VT; + SDValue Ptr; + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { + VT = LD->getMemoryVT(); + Ptr = LD->getBasePtr(); + } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { + VT = ST->getMemoryVT(); + Ptr = ST->getBasePtr(); + } else + return false; + + bool IsInc; + if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) + return false; + AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; + return true; +} + +bool AArch64TargetLowering::getPostIndexedAddressParts( + SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, + ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { + EVT VT; + SDValue Ptr; + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { + VT = LD->getMemoryVT(); + Ptr = LD->getBasePtr(); + } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { + VT = ST->getMemoryVT(); + Ptr = ST->getBasePtr(); + } else + return false; + + bool IsInc; + if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) + return false; + // Post-indexing updates the base, so it's not a valid transform + // if that's not the same as the load's pointer. + if (Ptr != Base) + return false; + AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; + return true; +} + +static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) { + SDLoc DL(N); + SDValue Op = N->getOperand(0); + + if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16) + return; + + Op = SDValue( + DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, + DAG.getUNDEF(MVT::i32), Op, + DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), + 0); + Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); + Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); +} + +static void ReplaceReductionResults(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG, unsigned InterOp, + unsigned AcrossOp) { + EVT LoVT, HiVT; + SDValue Lo, Hi; + SDLoc dl(N); + std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); + std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); + SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); + SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); + Results.push_back(SplitVal); +} + +void AArch64TargetLowering::ReplaceNodeResults( + SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { + switch (N->getOpcode()) { + default: + llvm_unreachable("Don't know how to custom expand this"); + case ISD::BITCAST: + ReplaceBITCASTResults(N, Results, DAG); + return; + case AArch64ISD::SADDV: + ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); + return; + case AArch64ISD::UADDV: + ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); + return; + case AArch64ISD::SMINV: + ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); + return; + case AArch64ISD::UMINV: + ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); + return; + case AArch64ISD::SMAXV: + ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); + return; + case AArch64ISD::UMAXV: + ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); + return; + case ISD::FP_TO_UINT: + case ISD::FP_TO_SINT: + assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); + // Let normal code take care of it by not adding anything to Results. + return; + } +} + +bool AArch64TargetLowering::useLoadStackGuardNode() const { + return true; +} + +unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { + // Combine multiple FDIVs with the same divisor into multiple FMULs by the + // reciprocal if there are three or more FDIVs. + return 3; +} + +TargetLoweringBase::LegalizeTypeAction +AArch64TargetLowering::getPreferredVectorAction(EVT VT) const { + MVT SVT = VT.getSimpleVT(); + // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, + // v4i16, v2i32 instead of to promote. + if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32 + || SVT == MVT::v1f32) + return TypeWidenVector; + + return TargetLoweringBase::getPreferredVectorAction(VT); +} + +// Loads and stores less than 128-bits are already atomic; ones above that +// are doomed anyway, so defer to the default libcall and blame the OS when +// things go wrong. +bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { + unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); + return Size == 128; +} + +// Loads and stores less than 128-bits are already atomic; ones above that +// are doomed anyway, so defer to the default libcall and blame the OS when +// things go wrong. +TargetLowering::AtomicExpansionKind +AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { + unsigned Size = LI->getType()->getPrimitiveSizeInBits(); + return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; +} + +// For the real atomic operations, we have ldxr/stxr up to 128 bits, +TargetLowering::AtomicExpansionKind +AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { + unsigned Size = AI->getType()->getPrimitiveSizeInBits(); + return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; +} + +bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( + AtomicCmpXchgInst *AI) const { + return true; +} + +Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, + AtomicOrdering Ord) const { + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); + bool IsAcquire = isAtLeastAcquire(Ord); + + // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd + // intrinsic must return {i64, i64} and we have to recombine them into a + // single i128 here. + if (ValTy->getPrimitiveSizeInBits() == 128) { + Intrinsic::ID Int = + IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; + Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int); + + Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); + Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); + + Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); + Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); + Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); + Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); + return Builder.CreateOr( + Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); + } + + Type *Tys[] = { Addr->getType() }; + Intrinsic::ID Int = + IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; + Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys); + + return Builder.CreateTruncOrBitCast( + Builder.CreateCall(Ldxr, Addr), + cast<PointerType>(Addr->getType())->getElementType()); +} + +void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( + IRBuilder<> &Builder) const { + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + Builder.CreateCall( + llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); +} + +Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, + Value *Val, Value *Addr, + AtomicOrdering Ord) const { + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + bool IsRelease = isAtLeastRelease(Ord); + + // Since the intrinsics must have legal type, the i128 intrinsics take two + // parameters: "i64, i64". We must marshal Val into the appropriate form + // before the call. + if (Val->getType()->getPrimitiveSizeInBits() == 128) { + Intrinsic::ID Int = + IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; + Function *Stxr = Intrinsic::getDeclaration(M, Int); + Type *Int64Ty = Type::getInt64Ty(M->getContext()); + + Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); + Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); + Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); + return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); + } + + Intrinsic::ID Int = + IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; + Type *Tys[] = { Addr->getType() }; + Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); + + return Builder.CreateCall(Stxr, + {Builder.CreateZExtOrBitCast( + Val, Stxr->getFunctionType()->getParamType(0)), + Addr}); +} + +bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( + Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { + return Ty->isArrayTy(); +} + +bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, + EVT) const { + return false; +} + +Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { + if (!Subtarget->isTargetAndroid()) + return TargetLowering::getSafeStackPointerLocation(IRB); + + // Android provides a fixed TLS slot for the SafeStack pointer. See the + // definition of TLS_SLOT_SAFESTACK in + // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h + const unsigned TlsOffset = 0x48; + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + Function *ThreadPointerFunc = + Intrinsic::getDeclaration(M, Intrinsic::aarch64_thread_pointer); + return IRB.CreatePointerCast( + IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset), + Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0)); +} + +void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { + // Update IsSplitCSR in AArch64unctionInfo. + AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>(); + AFI->setIsSplitCSR(true); +} + +void AArch64TargetLowering::insertCopiesSplitCSR( + MachineBasicBlock *Entry, + const SmallVectorImpl<MachineBasicBlock *> &Exits) const { + const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); + const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); + if (!IStart) + return; + + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); + for (const MCPhysReg *I = IStart; *I; ++I) { + const TargetRegisterClass *RC = nullptr; + if (AArch64::GPR64RegClass.contains(*I)) + RC = &AArch64::GPR64RegClass; + else if (AArch64::FPR64RegClass.contains(*I)) + RC = &AArch64::FPR64RegClass; + else + llvm_unreachable("Unexpected register class in CSRsViaCopy!"); + + unsigned NewVR = MRI->createVirtualRegister(RC); + // Create copy from CSR to a virtual register. + // FIXME: this currently does not emit CFI pseudo-instructions, it works + // fine for CXX_FAST_TLS since the C++-style TLS access functions should be + // nounwind. If we want to generalize this later, we may need to emit + // CFI pseudo-instructions. + assert(Entry->getParent()->getFunction()->hasFnAttribute( + Attribute::NoUnwind) && + "Function should be nounwind in insertCopiesSplitCSR!"); + Entry->addLiveIn(*I); + BuildMI(*Entry, Entry->begin(), DebugLoc(), TII->get(TargetOpcode::COPY), + NewVR) + .addReg(*I); + + for (auto *Exit : Exits) + BuildMI(*Exit, Exit->begin(), DebugLoc(), TII->get(TargetOpcode::COPY), + *I) + .addReg(NewVR); + } +} |