diff options
Diffstat (limited to 'contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp | 404 |
1 files changed, 404 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp b/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp new file mode 100644 index 0000000..1644d71 --- /dev/null +++ b/contrib/llvm/lib/Target/AArch64/AArch64AdvSIMDScalarPass.cpp @@ -0,0 +1,404 @@ +//===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// When profitable, replace GPR targeting i64 instructions with their +// AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined +// as minimizing the number of cross-class register copies. +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// TODO: Graph based predicate heuristics. +// Walking the instruction list linearly will get many, perhaps most, of +// the cases, but to do a truly thorough job of this, we need a more +// wholistic approach. +// +// This optimization is very similar in spirit to the register allocator's +// spill placement, only here we're determining where to place cross-class +// register copies rather than spills. As such, a similar approach is +// called for. +// +// We want to build up a set of graphs of all instructions which are candidates +// for transformation along with instructions which generate their inputs and +// consume their outputs. For each edge in the graph, we assign a weight +// based on whether there is a copy required there (weight zero if not) and +// the block frequency of the block containing the defining or using +// instruction, whichever is less. Our optimization is then a graph problem +// to minimize the total weight of all the graphs, then transform instructions +// and add or remove copy instructions as called for to implement the +// solution. +//===----------------------------------------------------------------------===// + +#include "AArch64.h" +#include "AArch64InstrInfo.h" +#include "AArch64RegisterInfo.h" +#include "AArch64Subtarget.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +#define DEBUG_TYPE "aarch64-simd-scalar" + +// Allow forcing all i64 operations with equivalent SIMD instructions to use +// them. For stress-testing the transformation function. +static cl::opt<bool> +TransformAll("aarch64-simd-scalar-force-all", + cl::desc("Force use of AdvSIMD scalar instructions everywhere"), + cl::init(false), cl::Hidden); + +STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used"); +STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted"); +STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted"); + +namespace llvm { +void initializeAArch64AdvSIMDScalarPass(PassRegistry &); +} + +#define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization" + +namespace { +class AArch64AdvSIMDScalar : public MachineFunctionPass { + MachineRegisterInfo *MRI; + const TargetInstrInfo *TII; + +private: + // isProfitableToTransform - Predicate function to determine whether an + // instruction should be transformed to its equivalent AdvSIMD scalar + // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. + bool isProfitableToTransform(const MachineInstr *MI) const; + + // transformInstruction - Perform the transformation of an instruction + // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs + // to be the correct register class, minimizing cross-class copies. + void transformInstruction(MachineInstr *MI); + + // processMachineBasicBlock - Main optimzation loop. + bool processMachineBasicBlock(MachineBasicBlock *MBB); + +public: + static char ID; // Pass identification, replacement for typeid. + explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) { + initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &F) override; + + const char *getPassName() const override { + return AARCH64_ADVSIMD_NAME; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } +}; +char AArch64AdvSIMDScalar::ID = 0; +} // end anonymous namespace + +INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar", + AARCH64_ADVSIMD_NAME, false, false) + +static bool isGPR64(unsigned Reg, unsigned SubReg, + const MachineRegisterInfo *MRI) { + if (SubReg) + return false; + if (TargetRegisterInfo::isVirtualRegister(Reg)) + return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass); + return AArch64::GPR64RegClass.contains(Reg); +} + +static bool isFPR64(unsigned Reg, unsigned SubReg, + const MachineRegisterInfo *MRI) { + if (TargetRegisterInfo::isVirtualRegister(Reg)) + return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) && + SubReg == 0) || + (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) && + SubReg == AArch64::dsub); + // Physical register references just check the register class directly. + return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) || + (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub); +} + +// getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64 +// copy instruction. Return zero_reg if the instruction is not a copy. +static unsigned getSrcFromCopy(const MachineInstr *MI, + const MachineRegisterInfo *MRI, + unsigned &SubReg) { + SubReg = 0; + // The "FMOV Xd, Dn" instruction is the typical form. + if (MI->getOpcode() == AArch64::FMOVDXr || + MI->getOpcode() == AArch64::FMOVXDr) + return MI->getOperand(1).getReg(); + // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see + // these at this stage, but it's easy to check for. + if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) { + SubReg = AArch64::dsub; + return MI->getOperand(1).getReg(); + } + // Or just a plain COPY instruction. This can be directly to/from FPR64, + // or it can be a dsub subreg reference to an FPR128. + if (MI->getOpcode() == AArch64::COPY) { + if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), + MRI) && + isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI)) + return MI->getOperand(1).getReg(); + if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), + MRI) && + isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), + MRI)) { + SubReg = MI->getOperand(1).getSubReg(); + return MI->getOperand(1).getReg(); + } + } + + // Otherwise, this is some other kind of instruction. + return 0; +} + +// getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent +// that we're considering transforming to, return that AdvSIMD opcode. For all +// others, return the original opcode. +static unsigned getTransformOpcode(unsigned Opc) { + switch (Opc) { + default: + break; + // FIXME: Lots more possibilities. + case AArch64::ADDXrr: + return AArch64::ADDv1i64; + case AArch64::SUBXrr: + return AArch64::SUBv1i64; + case AArch64::ANDXrr: + return AArch64::ANDv8i8; + case AArch64::EORXrr: + return AArch64::EORv8i8; + case AArch64::ORRXrr: + return AArch64::ORRv8i8; + } + // No AdvSIMD equivalent, so just return the original opcode. + return Opc; +} + +static bool isTransformable(const MachineInstr *MI) { + unsigned Opc = MI->getOpcode(); + return Opc != getTransformOpcode(Opc); +} + +// isProfitableToTransform - Predicate function to determine whether an +// instruction should be transformed to its equivalent AdvSIMD scalar +// instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. +bool +AArch64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const { + // If this instruction isn't eligible to be transformed (no SIMD equivalent), + // early exit since that's the common case. + if (!isTransformable(MI)) + return false; + + // Count the number of copies we'll need to add and approximate the number + // of copies that a transform will enable us to remove. + unsigned NumNewCopies = 3; + unsigned NumRemovableCopies = 0; + + unsigned OrigSrc0 = MI->getOperand(1).getReg(); + unsigned OrigSrc1 = MI->getOperand(2).getReg(); + unsigned Src0 = 0, SubReg0; + unsigned Src1 = 0, SubReg1; + if (!MRI->def_empty(OrigSrc0)) { + MachineRegisterInfo::def_instr_iterator Def = + MRI->def_instr_begin(OrigSrc0); + assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); + Src0 = getSrcFromCopy(&*Def, MRI, SubReg0); + // If the source was from a copy, we don't need to insert a new copy. + if (Src0) + --NumNewCopies; + // If there are no other users of the original source, we can delete + // that instruction. + if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) + ++NumRemovableCopies; + } + if (!MRI->def_empty(OrigSrc1)) { + MachineRegisterInfo::def_instr_iterator Def = + MRI->def_instr_begin(OrigSrc1); + assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); + Src1 = getSrcFromCopy(&*Def, MRI, SubReg1); + if (Src1) + --NumNewCopies; + // If there are no other users of the original source, we can delete + // that instruction. + if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) + ++NumRemovableCopies; + } + + // If any of the uses of the original instructions is a cross class copy, + // that's a copy that will be removable if we transform. Likewise, if + // any of the uses is a transformable instruction, it's likely the tranforms + // will chain, enabling us to save a copy there, too. This is an aggressive + // heuristic that approximates the graph based cost analysis described above. + unsigned Dst = MI->getOperand(0).getReg(); + bool AllUsesAreCopies = true; + for (MachineRegisterInfo::use_instr_nodbg_iterator + Use = MRI->use_instr_nodbg_begin(Dst), + E = MRI->use_instr_nodbg_end(); + Use != E; ++Use) { + unsigned SubReg; + if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use)) + ++NumRemovableCopies; + // If the use is an INSERT_SUBREG, that's still something that can + // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's + // preferable to have it use the FPR64 in most cases, as if the source + // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely. + // Ditto for a lane insert. + else if (Use->getOpcode() == AArch64::INSERT_SUBREG || + Use->getOpcode() == AArch64::INSvi64gpr) + ; + else + AllUsesAreCopies = false; + } + // If all of the uses of the original destination register are copies to + // FPR64, then we won't end up having a new copy back to GPR64 either. + if (AllUsesAreCopies) + --NumNewCopies; + + // If a transform will not increase the number of cross-class copies required, + // return true. + if (NumNewCopies <= NumRemovableCopies) + return true; + + // Finally, even if we otherwise wouldn't transform, check if we're forcing + // transformation of everything. + return TransformAll; +} + +static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr *MI, + unsigned Dst, unsigned Src, bool IsKill) { + MachineInstrBuilder MIB = + BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AArch64::COPY), + Dst) + .addReg(Src, getKillRegState(IsKill)); + DEBUG(dbgs() << " adding copy: " << *MIB); + ++NumCopiesInserted; + return MIB; +} + +// transformInstruction - Perform the transformation of an instruction +// to its equivalant AdvSIMD scalar instruction. Update inputs and outputs +// to be the correct register class, minimizing cross-class copies. +void AArch64AdvSIMDScalar::transformInstruction(MachineInstr *MI) { + DEBUG(dbgs() << "Scalar transform: " << *MI); + + MachineBasicBlock *MBB = MI->getParent(); + unsigned OldOpc = MI->getOpcode(); + unsigned NewOpc = getTransformOpcode(OldOpc); + assert(OldOpc != NewOpc && "transform an instruction to itself?!"); + + // Check if we need a copy for the source registers. + unsigned OrigSrc0 = MI->getOperand(1).getReg(); + unsigned OrigSrc1 = MI->getOperand(2).getReg(); + unsigned Src0 = 0, SubReg0; + unsigned Src1 = 0, SubReg1; + if (!MRI->def_empty(OrigSrc0)) { + MachineRegisterInfo::def_instr_iterator Def = + MRI->def_instr_begin(OrigSrc0); + assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); + Src0 = getSrcFromCopy(&*Def, MRI, SubReg0); + // If there are no other users of the original source, we can delete + // that instruction. + if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) { + assert(Src0 && "Can't delete copy w/o a valid original source!"); + Def->eraseFromParent(); + ++NumCopiesDeleted; + } + } + if (!MRI->def_empty(OrigSrc1)) { + MachineRegisterInfo::def_instr_iterator Def = + MRI->def_instr_begin(OrigSrc1); + assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); + Src1 = getSrcFromCopy(&*Def, MRI, SubReg1); + // If there are no other users of the original source, we can delete + // that instruction. + if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) { + assert(Src1 && "Can't delete copy w/o a valid original source!"); + Def->eraseFromParent(); + ++NumCopiesDeleted; + } + } + // If we weren't able to reference the original source directly, create a + // copy. + if (!Src0) { + SubReg0 = 0; + Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); + insertCopy(TII, MI, Src0, OrigSrc0, true); + } + if (!Src1) { + SubReg1 = 0; + Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass); + insertCopy(TII, MI, Src1, OrigSrc1, true); + } + + // Create a vreg for the destination. + // FIXME: No need to do this if the ultimate user expects an FPR64. + // Check for that and avoid the copy if possible. + unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass); + + // For now, all of the new instructions have the same simple three-register + // form, so no need to special case based on what instruction we're + // building. + BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst) + .addReg(Src0, getKillRegState(true), SubReg0) + .addReg(Src1, getKillRegState(true), SubReg1); + + // Now copy the result back out to a GPR. + // FIXME: Try to avoid this if all uses could actually just use the FPR64 + // directly. + insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true); + + // Erase the old instruction. + MI->eraseFromParent(); + + ++NumScalarInsnsUsed; +} + +// processMachineBasicBlock - Main optimzation loop. +bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) { + bool Changed = false; + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { + MachineInstr *MI = I; + ++I; + if (isProfitableToTransform(MI)) { + transformInstruction(MI); + Changed = true; + } + } + return Changed; +} + +// runOnMachineFunction - Pass entry point from PassManager. +bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) { + bool Changed = false; + DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n"); + + MRI = &mf.getRegInfo(); + TII = mf.getSubtarget().getInstrInfo(); + + // Just check things on a one-block-at-a-time basis. + for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) + if (processMachineBasicBlock(&*I)) + Changed = true; + return Changed; +} + +// createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine +// to add the pass to the PassManager. +FunctionPass *llvm::createAArch64AdvSIMDScalar() { + return new AArch64AdvSIMDScalar(); +} |