summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Support/APInt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Support/APInt.cpp')
-rw-r--r--contrib/llvm/lib/Support/APInt.cpp109
1 files changed, 43 insertions, 66 deletions
diff --git a/contrib/llvm/lib/Support/APInt.cpp b/contrib/llvm/lib/Support/APInt.cpp
index 0ddc2ab..23f89bb 100644
--- a/contrib/llvm/lib/Support/APInt.cpp
+++ b/contrib/llvm/lib/Support/APInt.cpp
@@ -162,7 +162,7 @@ APInt& APInt::operator=(uint64_t RHS) {
return clearUnusedBits();
}
-/// Profile - This method 'profiles' an APInt for use with FoldingSet.
+/// This method 'profiles' an APInt for use with FoldingSet.
void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(BitWidth);
@@ -176,7 +176,7 @@ void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(pVal[i]);
}
-/// add_1 - This function adds a single "digit" integer, y, to the multiple
+/// This function adds a single "digit" integer, y, to the multiple
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
@@ -202,7 +202,7 @@ APInt& APInt::operator++() {
return clearUnusedBits();
}
-/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
+/// This function subtracts a single "digit" (64-bit word), y, from
/// the multi-digit integer array, x[], propagating the borrowed 1 value until
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
@@ -231,7 +231,7 @@ APInt& APInt::operator--() {
return clearUnusedBits();
}
-/// add - This function adds the integer array x to the integer array Y and
+/// This function adds the integer array x to the integer array Y and
/// places the result in dest.
/// @returns the carry out from the addition
/// @brief General addition of 64-bit integer arrays
@@ -672,12 +672,20 @@ hash_code llvm::hash_value(const APInt &Arg) {
return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
}
-/// HiBits - This function returns the high "numBits" bits of this APInt.
+bool APInt::isSplat(unsigned SplatSizeInBits) const {
+ assert(getBitWidth() % SplatSizeInBits == 0 &&
+ "SplatSizeInBits must divide width!");
+ // We can check that all parts of an integer are equal by making use of a
+ // little trick: rotate and check if it's still the same value.
+ return *this == rotl(SplatSizeInBits);
+}
+
+/// This function returns the high "numBits" bits of this APInt.
APInt APInt::getHiBits(unsigned numBits) const {
return APIntOps::lshr(*this, BitWidth - numBits);
}
-/// LoBits - This function returns the low "numBits" bits of this APInt.
+/// This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(unsigned numBits) const {
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
@@ -713,7 +721,7 @@ unsigned APInt::countLeadingZerosSlowCase() const {
unsigned APInt::countLeadingOnes() const {
if (isSingleWord())
- return CountLeadingOnes_64(VAL << (APINT_BITS_PER_WORD - BitWidth));
+ return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth));
unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
unsigned shift;
@@ -724,13 +732,13 @@ unsigned APInt::countLeadingOnes() const {
shift = APINT_BITS_PER_WORD - highWordBits;
}
int i = getNumWords() - 1;
- unsigned Count = CountLeadingOnes_64(pVal[i] << shift);
+ unsigned Count = llvm::countLeadingOnes(pVal[i] << shift);
if (Count == highWordBits) {
for (i--; i >= 0; --i) {
if (pVal[i] == -1ULL)
Count += APINT_BITS_PER_WORD;
else {
- Count += CountLeadingOnes_64(pVal[i]);
+ Count += llvm::countLeadingOnes(pVal[i]);
break;
}
}
@@ -756,14 +764,14 @@ unsigned APInt::countTrailingOnesSlowCase() const {
for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Count += APINT_BITS_PER_WORD;
if (i < getNumWords())
- Count += CountTrailingOnes_64(pVal[i]);
+ Count += llvm::countTrailingOnes(pVal[i]);
return std::min(Count, BitWidth);
}
unsigned APInt::countPopulationSlowCase() const {
unsigned Count = 0;
for (unsigned i = 0; i < getNumWords(); ++i)
- Count += CountPopulation_64(pVal[i]);
+ Count += llvm::countPopulation(pVal[i]);
return Count;
}
@@ -853,7 +861,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
return isNeg ? -Tmp : Tmp;
}
-/// RoundToDouble - This function converts this APInt to a double.
+/// This function converts this APInt to a double.
/// The layout for double is as following (IEEE Standard 754):
/// --------------------------------------
/// | Sign Exponent Fraction Bias |
@@ -1310,13 +1318,8 @@ APInt APInt::sqrt() const {
// libc sqrt function which will probably use a hardware sqrt computation.
// This should be faster than the algorithm below.
if (magnitude < 52) {
-#if HAVE_ROUND
return APInt(BitWidth,
uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
-#else
- return APInt(BitWidth,
- uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5));
-#endif
}
// Okay, all the short cuts are exhausted. We must compute it. The following
@@ -1508,21 +1511,18 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
assert(u && "Must provide dividend");
assert(v && "Must provide divisor");
assert(q && "Must provide quotient");
- assert(u != v && u != q && v != q && "Must us different memory");
+ assert(u != v && u != q && v != q && "Must use different memory");
assert(n>1 && "n must be > 1");
- // Knuth uses the value b as the base of the number system. In our case b
- // is 2^31 so we just set it to -1u.
- uint64_t b = uint64_t(1) << 32;
+ // b denotes the base of the number system. In our case b is 2^32.
+ LLVM_CONSTEXPR uint64_t b = uint64_t(1) << 32;
-#if 0
DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
DEBUG(dbgs() << "KnuthDiv: original:");
DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
DEBUG(dbgs() << " by");
DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
DEBUG(dbgs() << '\n');
-#endif
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
// u and v by d. Note that we have taken Knuth's advice here to use a power
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
@@ -1547,13 +1547,12 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
}
u[m+n] = u_carry;
-#if 0
+
DEBUG(dbgs() << "KnuthDiv: normal:");
DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
DEBUG(dbgs() << " by");
DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
DEBUG(dbgs() << '\n');
-#endif
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
int j = m;
@@ -1583,44 +1582,23 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
// consists of a simple multiplication by a one-place number, combined with
// a subtraction.
- bool isNeg = false;
- for (unsigned i = 0; i < n; ++i) {
- uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
- uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
- bool borrow = subtrahend > u_tmp;
- DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
- << ", subtrahend == " << subtrahend
- << ", borrow = " << borrow << '\n');
-
- uint64_t result = u_tmp - subtrahend;
- unsigned k = j + i;
- u[k++] = (unsigned)(result & (b-1)); // subtract low word
- u[k++] = (unsigned)(result >> 32); // subtract high word
- while (borrow && k <= m+n) { // deal with borrow to the left
- borrow = u[k] == 0;
- u[k]--;
- k++;
- }
- isNeg |= borrow;
- DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
- u[j+i+1] << '\n');
- }
- DEBUG(dbgs() << "KnuthDiv: after subtraction:");
- DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
- DEBUG(dbgs() << '\n');
// The digits (u[j+n]...u[j]) should be kept positive; if the result of
// this step is actually negative, (u[j+n]...u[j]) should be left as the
// true value plus b**(n+1), namely as the b's complement of
// the true value, and a "borrow" to the left should be remembered.
- //
- if (isNeg) {
- bool carry = true; // true because b's complement is "complement + 1"
- for (unsigned i = 0; i <= m+n; ++i) {
- u[i] = ~u[i] + carry; // b's complement
- carry = carry && u[i] == 0;
- }
+ int64_t borrow = 0;
+ for (unsigned i = 0; i < n; ++i) {
+ uint64_t p = uint64_t(qp) * uint64_t(v[i]);
+ int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p;
+ u[j+i] = (unsigned)subres;
+ borrow = (p >> 32) - (subres >> 32);
+ DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]
+ << ", borrow = " << borrow << '\n');
}
- DEBUG(dbgs() << "KnuthDiv: after complement:");
+ bool isNeg = u[j+n] < borrow;
+ u[j+n] -= (unsigned)borrow;
+
+ DEBUG(dbgs() << "KnuthDiv: after subtraction:");
DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
DEBUG(dbgs() << '\n');
@@ -1644,7 +1622,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
u[j+n] += carry;
}
DEBUG(dbgs() << "KnuthDiv: after correction:");
- DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
+ DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
// D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
@@ -1677,9 +1655,7 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
}
DEBUG(dbgs() << '\n');
}
-#if 0
DEBUG(dbgs() << '\n');
-#endif
}
void APInt::divide(const APInt LHS, unsigned lhsWords,
@@ -1803,6 +1779,8 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
// The quotient is in Q. Reconstitute the quotient into Quotient's low
// order words.
+ // This case is currently dead as all users of divide() handle trivial cases
+ // earlier.
if (lhsWords == 1) {
uint64_t tmp =
uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
@@ -2281,9 +2259,8 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
std::reverse(Str.begin()+StartDig, Str.end());
}
-/// toString - This returns the APInt as a std::string. Note that this is an
-/// inefficient method. It is better to pass in a SmallVector/SmallString
-/// to the methods above.
+/// Returns the APInt as a std::string. Note that this is an inefficient method.
+/// It is better to pass in a SmallVector/SmallString to the methods above.
std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
SmallString<40> S;
toString(S, Radix, Signed, /* formatAsCLiteral = */false);
@@ -2296,13 +2273,13 @@ void APInt::dump() const {
this->toStringUnsigned(U);
this->toStringSigned(S);
dbgs() << "APInt(" << BitWidth << "b, "
- << U.str() << "u " << S.str() << "s)";
+ << U << "u " << S << "s)";
}
void APInt::print(raw_ostream &OS, bool isSigned) const {
SmallString<40> S;
this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
- OS << S.str();
+ OS << S;
}
// This implements a variety of operations on a representation of
OpenPOWER on IntegriCloud