summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Support/APFloat.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Support/APFloat.cpp')
-rw-r--r--contrib/llvm/lib/Support/APFloat.cpp3642
1 files changed, 3642 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Support/APFloat.cpp b/contrib/llvm/lib/Support/APFloat.cpp
new file mode 100644
index 0000000..ed261a4
--- /dev/null
+++ b/contrib/llvm/lib/Support/APFloat.cpp
@@ -0,0 +1,3642 @@
+//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a class to represent arbitrary precision floating
+// point values and provide a variety of arithmetic operations on them.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <limits.h>
+#include <cstring>
+
+using namespace llvm;
+
+#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
+
+/* Assumed in hexadecimal significand parsing, and conversion to
+ hexadecimal strings. */
+#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
+COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
+
+namespace llvm {
+
+ /* Represents floating point arithmetic semantics. */
+ struct fltSemantics {
+ /* The largest E such that 2^E is representable; this matches the
+ definition of IEEE 754. */
+ exponent_t maxExponent;
+
+ /* The smallest E such that 2^E is a normalized number; this
+ matches the definition of IEEE 754. */
+ exponent_t minExponent;
+
+ /* Number of bits in the significand. This includes the integer
+ bit. */
+ unsigned int precision;
+
+ /* True if arithmetic is supported. */
+ unsigned int arithmeticOK;
+ };
+
+ const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
+ const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
+ const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
+ const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
+ const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
+ const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
+
+ // The PowerPC format consists of two doubles. It does not map cleanly
+ // onto the usual format above. For now only storage of constants of
+ // this type is supported, no arithmetic.
+ const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
+
+ /* A tight upper bound on number of parts required to hold the value
+ pow(5, power) is
+
+ power * 815 / (351 * integerPartWidth) + 1
+
+ However, whilst the result may require only this many parts,
+ because we are multiplying two values to get it, the
+ multiplication may require an extra part with the excess part
+ being zero (consider the trivial case of 1 * 1, tcFullMultiply
+ requires two parts to hold the single-part result). So we add an
+ extra one to guarantee enough space whilst multiplying. */
+ const unsigned int maxExponent = 16383;
+ const unsigned int maxPrecision = 113;
+ const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
+ const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
+ / (351 * integerPartWidth));
+}
+
+/* A bunch of private, handy routines. */
+
+static inline unsigned int
+partCountForBits(unsigned int bits)
+{
+ return ((bits) + integerPartWidth - 1) / integerPartWidth;
+}
+
+/* Returns 0U-9U. Return values >= 10U are not digits. */
+static inline unsigned int
+decDigitValue(unsigned int c)
+{
+ return c - '0';
+}
+
+static unsigned int
+hexDigitValue(unsigned int c)
+{
+ unsigned int r;
+
+ r = c - '0';
+ if (r <= 9)
+ return r;
+
+ r = c - 'A';
+ if (r <= 5)
+ return r + 10;
+
+ r = c - 'a';
+ if (r <= 5)
+ return r + 10;
+
+ return -1U;
+}
+
+static inline void
+assertArithmeticOK(const llvm::fltSemantics &semantics) {
+ assert(semantics.arithmeticOK &&
+ "Compile-time arithmetic does not support these semantics");
+}
+
+/* Return the value of a decimal exponent of the form
+ [+-]ddddddd.
+
+ If the exponent overflows, returns a large exponent with the
+ appropriate sign. */
+static int
+readExponent(StringRef::iterator begin, StringRef::iterator end)
+{
+ bool isNegative;
+ unsigned int absExponent;
+ const unsigned int overlargeExponent = 24000; /* FIXME. */
+ StringRef::iterator p = begin;
+
+ assert(p != end && "Exponent has no digits");
+
+ isNegative = (*p == '-');
+ if (*p == '-' || *p == '+') {
+ p++;
+ assert(p != end && "Exponent has no digits");
+ }
+
+ absExponent = decDigitValue(*p++);
+ assert(absExponent < 10U && "Invalid character in exponent");
+
+ for (; p != end; ++p) {
+ unsigned int value;
+
+ value = decDigitValue(*p);
+ assert(value < 10U && "Invalid character in exponent");
+
+ value += absExponent * 10;
+ if (absExponent >= overlargeExponent) {
+ absExponent = overlargeExponent;
+ p = end; /* outwit assert below */
+ break;
+ }
+ absExponent = value;
+ }
+
+ assert(p == end && "Invalid exponent in exponent");
+
+ if (isNegative)
+ return -(int) absExponent;
+ else
+ return (int) absExponent;
+}
+
+/* This is ugly and needs cleaning up, but I don't immediately see
+ how whilst remaining safe. */
+static int
+totalExponent(StringRef::iterator p, StringRef::iterator end,
+ int exponentAdjustment)
+{
+ int unsignedExponent;
+ bool negative, overflow;
+ int exponent = 0;
+
+ assert(p != end && "Exponent has no digits");
+
+ negative = *p == '-';
+ if (*p == '-' || *p == '+') {
+ p++;
+ assert(p != end && "Exponent has no digits");
+ }
+
+ unsignedExponent = 0;
+ overflow = false;
+ for (; p != end; ++p) {
+ unsigned int value;
+
+ value = decDigitValue(*p);
+ assert(value < 10U && "Invalid character in exponent");
+
+ unsignedExponent = unsignedExponent * 10 + value;
+ if (unsignedExponent > 32767)
+ overflow = true;
+ }
+
+ if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
+ overflow = true;
+
+ if (!overflow) {
+ exponent = unsignedExponent;
+ if (negative)
+ exponent = -exponent;
+ exponent += exponentAdjustment;
+ if (exponent > 32767 || exponent < -32768)
+ overflow = true;
+ }
+
+ if (overflow)
+ exponent = negative ? -32768: 32767;
+
+ return exponent;
+}
+
+static StringRef::iterator
+skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
+ StringRef::iterator *dot)
+{
+ StringRef::iterator p = begin;
+ *dot = end;
+ while (*p == '0' && p != end)
+ p++;
+
+ if (*p == '.') {
+ *dot = p++;
+
+ assert(end - begin != 1 && "Significand has no digits");
+
+ while (*p == '0' && p != end)
+ p++;
+ }
+
+ return p;
+}
+
+/* Given a normal decimal floating point number of the form
+
+ dddd.dddd[eE][+-]ddd
+
+ where the decimal point and exponent are optional, fill out the
+ structure D. Exponent is appropriate if the significand is
+ treated as an integer, and normalizedExponent if the significand
+ is taken to have the decimal point after a single leading
+ non-zero digit.
+
+ If the value is zero, V->firstSigDigit points to a non-digit, and
+ the return exponent is zero.
+*/
+struct decimalInfo {
+ const char *firstSigDigit;
+ const char *lastSigDigit;
+ int exponent;
+ int normalizedExponent;
+};
+
+static void
+interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
+ decimalInfo *D)
+{
+ StringRef::iterator dot = end;
+ StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
+
+ D->firstSigDigit = p;
+ D->exponent = 0;
+ D->normalizedExponent = 0;
+
+ for (; p != end; ++p) {
+ if (*p == '.') {
+ assert(dot == end && "String contains multiple dots");
+ dot = p++;
+ if (p == end)
+ break;
+ }
+ if (decDigitValue(*p) >= 10U)
+ break;
+ }
+
+ if (p != end) {
+ assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
+ assert(p != begin && "Significand has no digits");
+ assert((dot == end || p - begin != 1) && "Significand has no digits");
+
+ /* p points to the first non-digit in the string */
+ D->exponent = readExponent(p + 1, end);
+
+ /* Implied decimal point? */
+ if (dot == end)
+ dot = p;
+ }
+
+ /* If number is all zeroes accept any exponent. */
+ if (p != D->firstSigDigit) {
+ /* Drop insignificant trailing zeroes. */
+ if (p != begin) {
+ do
+ do
+ p--;
+ while (p != begin && *p == '0');
+ while (p != begin && *p == '.');
+ }
+
+ /* Adjust the exponents for any decimal point. */
+ D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
+ D->normalizedExponent = (D->exponent +
+ static_cast<exponent_t>((p - D->firstSigDigit)
+ - (dot > D->firstSigDigit && dot < p)));
+ }
+
+ D->lastSigDigit = p;
+}
+
+/* Return the trailing fraction of a hexadecimal number.
+ DIGITVALUE is the first hex digit of the fraction, P points to
+ the next digit. */
+static lostFraction
+trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
+ unsigned int digitValue)
+{
+ unsigned int hexDigit;
+
+ /* If the first trailing digit isn't 0 or 8 we can work out the
+ fraction immediately. */
+ if (digitValue > 8)
+ return lfMoreThanHalf;
+ else if (digitValue < 8 && digitValue > 0)
+ return lfLessThanHalf;
+
+ /* Otherwise we need to find the first non-zero digit. */
+ while (*p == '0')
+ p++;
+
+ assert(p != end && "Invalid trailing hexadecimal fraction!");
+
+ hexDigit = hexDigitValue(*p);
+
+ /* If we ran off the end it is exactly zero or one-half, otherwise
+ a little more. */
+ if (hexDigit == -1U)
+ return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
+ else
+ return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
+}
+
+/* Return the fraction lost were a bignum truncated losing the least
+ significant BITS bits. */
+static lostFraction
+lostFractionThroughTruncation(const integerPart *parts,
+ unsigned int partCount,
+ unsigned int bits)
+{
+ unsigned int lsb;
+
+ lsb = APInt::tcLSB(parts, partCount);
+
+ /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
+ if (bits <= lsb)
+ return lfExactlyZero;
+ if (bits == lsb + 1)
+ return lfExactlyHalf;
+ if (bits <= partCount * integerPartWidth &&
+ APInt::tcExtractBit(parts, bits - 1))
+ return lfMoreThanHalf;
+
+ return lfLessThanHalf;
+}
+
+/* Shift DST right BITS bits noting lost fraction. */
+static lostFraction
+shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
+{
+ lostFraction lost_fraction;
+
+ lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
+
+ APInt::tcShiftRight(dst, parts, bits);
+
+ return lost_fraction;
+}
+
+/* Combine the effect of two lost fractions. */
+static lostFraction
+combineLostFractions(lostFraction moreSignificant,
+ lostFraction lessSignificant)
+{
+ if (lessSignificant != lfExactlyZero) {
+ if (moreSignificant == lfExactlyZero)
+ moreSignificant = lfLessThanHalf;
+ else if (moreSignificant == lfExactlyHalf)
+ moreSignificant = lfMoreThanHalf;
+ }
+
+ return moreSignificant;
+}
+
+/* The error from the true value, in half-ulps, on multiplying two
+ floating point numbers, which differ from the value they
+ approximate by at most HUE1 and HUE2 half-ulps, is strictly less
+ than the returned value.
+
+ See "How to Read Floating Point Numbers Accurately" by William D
+ Clinger. */
+static unsigned int
+HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
+{
+ assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
+
+ if (HUerr1 + HUerr2 == 0)
+ return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
+ else
+ return inexactMultiply + 2 * (HUerr1 + HUerr2);
+}
+
+/* The number of ulps from the boundary (zero, or half if ISNEAREST)
+ when the least significant BITS are truncated. BITS cannot be
+ zero. */
+static integerPart
+ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
+{
+ unsigned int count, partBits;
+ integerPart part, boundary;
+
+ assert(bits != 0);
+
+ bits--;
+ count = bits / integerPartWidth;
+ partBits = bits % integerPartWidth + 1;
+
+ part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
+
+ if (isNearest)
+ boundary = (integerPart) 1 << (partBits - 1);
+ else
+ boundary = 0;
+
+ if (count == 0) {
+ if (part - boundary <= boundary - part)
+ return part - boundary;
+ else
+ return boundary - part;
+ }
+
+ if (part == boundary) {
+ while (--count)
+ if (parts[count])
+ return ~(integerPart) 0; /* A lot. */
+
+ return parts[0];
+ } else if (part == boundary - 1) {
+ while (--count)
+ if (~parts[count])
+ return ~(integerPart) 0; /* A lot. */
+
+ return -parts[0];
+ }
+
+ return ~(integerPart) 0; /* A lot. */
+}
+
+/* Place pow(5, power) in DST, and return the number of parts used.
+ DST must be at least one part larger than size of the answer. */
+static unsigned int
+powerOf5(integerPart *dst, unsigned int power)
+{
+ static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
+ 15625, 78125 };
+ integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
+ pow5s[0] = 78125 * 5;
+
+ unsigned int partsCount[16] = { 1 };
+ integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
+ unsigned int result;
+ assert(power <= maxExponent);
+
+ p1 = dst;
+ p2 = scratch;
+
+ *p1 = firstEightPowers[power & 7];
+ power >>= 3;
+
+ result = 1;
+ pow5 = pow5s;
+
+ for (unsigned int n = 0; power; power >>= 1, n++) {
+ unsigned int pc;
+
+ pc = partsCount[n];
+
+ /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
+ if (pc == 0) {
+ pc = partsCount[n - 1];
+ APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
+ pc *= 2;
+ if (pow5[pc - 1] == 0)
+ pc--;
+ partsCount[n] = pc;
+ }
+
+ if (power & 1) {
+ integerPart *tmp;
+
+ APInt::tcFullMultiply(p2, p1, pow5, result, pc);
+ result += pc;
+ if (p2[result - 1] == 0)
+ result--;
+
+ /* Now result is in p1 with partsCount parts and p2 is scratch
+ space. */
+ tmp = p1, p1 = p2, p2 = tmp;
+ }
+
+ pow5 += pc;
+ }
+
+ if (p1 != dst)
+ APInt::tcAssign(dst, p1, result);
+
+ return result;
+}
+
+/* Zero at the end to avoid modular arithmetic when adding one; used
+ when rounding up during hexadecimal output. */
+static const char hexDigitsLower[] = "0123456789abcdef0";
+static const char hexDigitsUpper[] = "0123456789ABCDEF0";
+static const char infinityL[] = "infinity";
+static const char infinityU[] = "INFINITY";
+static const char NaNL[] = "nan";
+static const char NaNU[] = "NAN";
+
+/* Write out an integerPart in hexadecimal, starting with the most
+ significant nibble. Write out exactly COUNT hexdigits, return
+ COUNT. */
+static unsigned int
+partAsHex (char *dst, integerPart part, unsigned int count,
+ const char *hexDigitChars)
+{
+ unsigned int result = count;
+
+ assert(count != 0 && count <= integerPartWidth / 4);
+
+ part >>= (integerPartWidth - 4 * count);
+ while (count--) {
+ dst[count] = hexDigitChars[part & 0xf];
+ part >>= 4;
+ }
+
+ return result;
+}
+
+/* Write out an unsigned decimal integer. */
+static char *
+writeUnsignedDecimal (char *dst, unsigned int n)
+{
+ char buff[40], *p;
+
+ p = buff;
+ do
+ *p++ = '0' + n % 10;
+ while (n /= 10);
+
+ do
+ *dst++ = *--p;
+ while (p != buff);
+
+ return dst;
+}
+
+/* Write out a signed decimal integer. */
+static char *
+writeSignedDecimal (char *dst, int value)
+{
+ if (value < 0) {
+ *dst++ = '-';
+ dst = writeUnsignedDecimal(dst, -(unsigned) value);
+ } else
+ dst = writeUnsignedDecimal(dst, value);
+
+ return dst;
+}
+
+/* Constructors. */
+void
+APFloat::initialize(const fltSemantics *ourSemantics)
+{
+ unsigned int count;
+
+ semantics = ourSemantics;
+ count = partCount();
+ if (count > 1)
+ significand.parts = new integerPart[count];
+}
+
+void
+APFloat::freeSignificand()
+{
+ if (partCount() > 1)
+ delete [] significand.parts;
+}
+
+void
+APFloat::assign(const APFloat &rhs)
+{
+ assert(semantics == rhs.semantics);
+
+ sign = rhs.sign;
+ category = rhs.category;
+ exponent = rhs.exponent;
+ sign2 = rhs.sign2;
+ exponent2 = rhs.exponent2;
+ if (category == fcNormal || category == fcNaN)
+ copySignificand(rhs);
+}
+
+void
+APFloat::copySignificand(const APFloat &rhs)
+{
+ assert(category == fcNormal || category == fcNaN);
+ assert(rhs.partCount() >= partCount());
+
+ APInt::tcAssign(significandParts(), rhs.significandParts(),
+ partCount());
+}
+
+/* Make this number a NaN, with an arbitrary but deterministic value
+ for the significand. If double or longer, this is a signalling NaN,
+ which may not be ideal. If float, this is QNaN(0). */
+void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
+{
+ category = fcNaN;
+ sign = Negative;
+
+ integerPart *significand = significandParts();
+ unsigned numParts = partCount();
+
+ // Set the significand bits to the fill.
+ if (!fill || fill->getNumWords() < numParts)
+ APInt::tcSet(significand, 0, numParts);
+ if (fill) {
+ APInt::tcAssign(significand, fill->getRawData(),
+ std::min(fill->getNumWords(), numParts));
+
+ // Zero out the excess bits of the significand.
+ unsigned bitsToPreserve = semantics->precision - 1;
+ unsigned part = bitsToPreserve / 64;
+ bitsToPreserve %= 64;
+ significand[part] &= ((1ULL << bitsToPreserve) - 1);
+ for (part++; part != numParts; ++part)
+ significand[part] = 0;
+ }
+
+ unsigned QNaNBit = semantics->precision - 2;
+
+ if (SNaN) {
+ // We always have to clear the QNaN bit to make it an SNaN.
+ APInt::tcClearBit(significand, QNaNBit);
+
+ // If there are no bits set in the payload, we have to set
+ // *something* to make it a NaN instead of an infinity;
+ // conventionally, this is the next bit down from the QNaN bit.
+ if (APInt::tcIsZero(significand, numParts))
+ APInt::tcSetBit(significand, QNaNBit - 1);
+ } else {
+ // We always have to set the QNaN bit to make it a QNaN.
+ APInt::tcSetBit(significand, QNaNBit);
+ }
+
+ // For x87 extended precision, we want to make a NaN, not a
+ // pseudo-NaN. Maybe we should expose the ability to make
+ // pseudo-NaNs?
+ if (semantics == &APFloat::x87DoubleExtended)
+ APInt::tcSetBit(significand, QNaNBit + 1);
+}
+
+APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
+ const APInt *fill) {
+ APFloat value(Sem, uninitialized);
+ value.makeNaN(SNaN, Negative, fill);
+ return value;
+}
+
+APFloat &
+APFloat::operator=(const APFloat &rhs)
+{
+ if (this != &rhs) {
+ if (semantics != rhs.semantics) {
+ freeSignificand();
+ initialize(rhs.semantics);
+ }
+ assign(rhs);
+ }
+
+ return *this;
+}
+
+bool
+APFloat::bitwiseIsEqual(const APFloat &rhs) const {
+ if (this == &rhs)
+ return true;
+ if (semantics != rhs.semantics ||
+ category != rhs.category ||
+ sign != rhs.sign)
+ return false;
+ if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+ sign2 != rhs.sign2)
+ return false;
+ if (category==fcZero || category==fcInfinity)
+ return true;
+ else if (category==fcNormal && exponent!=rhs.exponent)
+ return false;
+ else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+ exponent2!=rhs.exponent2)
+ return false;
+ else {
+ int i= partCount();
+ const integerPart* p=significandParts();
+ const integerPart* q=rhs.significandParts();
+ for (; i>0; i--, p++, q++) {
+ if (*p != *q)
+ return false;
+ }
+ return true;
+ }
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
+ : exponent2(0), sign2(0) {
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ sign = 0;
+ zeroSignificand();
+ exponent = ourSemantics.precision - 1;
+ significandParts()[0] = value;
+ normalize(rmNearestTiesToEven, lfExactlyZero);
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics) : exponent2(0), sign2(0) {
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ category = fcZero;
+ sign = false;
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
+ : exponent2(0), sign2(0) {
+ assertArithmeticOK(ourSemantics);
+ // Allocates storage if necessary but does not initialize it.
+ initialize(&ourSemantics);
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics,
+ fltCategory ourCategory, bool negative)
+ : exponent2(0), sign2(0) {
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ category = ourCategory;
+ sign = negative;
+ if (category == fcNormal)
+ category = fcZero;
+ else if (ourCategory == fcNaN)
+ makeNaN();
+}
+
+APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text)
+ : exponent2(0), sign2(0) {
+ assertArithmeticOK(ourSemantics);
+ initialize(&ourSemantics);
+ convertFromString(text, rmNearestTiesToEven);
+}
+
+APFloat::APFloat(const APFloat &rhs) : exponent2(0), sign2(0) {
+ initialize(rhs.semantics);
+ assign(rhs);
+}
+
+APFloat::~APFloat()
+{
+ freeSignificand();
+}
+
+// Profile - This method 'profiles' an APFloat for use with FoldingSet.
+void APFloat::Profile(FoldingSetNodeID& ID) const {
+ ID.Add(bitcastToAPInt());
+}
+
+unsigned int
+APFloat::partCount() const
+{
+ return partCountForBits(semantics->precision + 1);
+}
+
+unsigned int
+APFloat::semanticsPrecision(const fltSemantics &semantics)
+{
+ return semantics.precision;
+}
+
+const integerPart *
+APFloat::significandParts() const
+{
+ return const_cast<APFloat *>(this)->significandParts();
+}
+
+integerPart *
+APFloat::significandParts()
+{
+ assert(category == fcNormal || category == fcNaN);
+
+ if (partCount() > 1)
+ return significand.parts;
+ else
+ return &significand.part;
+}
+
+void
+APFloat::zeroSignificand()
+{
+ category = fcNormal;
+ APInt::tcSet(significandParts(), 0, partCount());
+}
+
+/* Increment an fcNormal floating point number's significand. */
+void
+APFloat::incrementSignificand()
+{
+ integerPart carry;
+
+ carry = APInt::tcIncrement(significandParts(), partCount());
+
+ /* Our callers should never cause us to overflow. */
+ assert(carry == 0);
+ (void)carry;
+}
+
+/* Add the significand of the RHS. Returns the carry flag. */
+integerPart
+APFloat::addSignificand(const APFloat &rhs)
+{
+ integerPart *parts;
+
+ parts = significandParts();
+
+ assert(semantics == rhs.semantics);
+ assert(exponent == rhs.exponent);
+
+ return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
+}
+
+/* Subtract the significand of the RHS with a borrow flag. Returns
+ the borrow flag. */
+integerPart
+APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
+{
+ integerPart *parts;
+
+ parts = significandParts();
+
+ assert(semantics == rhs.semantics);
+ assert(exponent == rhs.exponent);
+
+ return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
+ partCount());
+}
+
+/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
+ on to the full-precision result of the multiplication. Returns the
+ lost fraction. */
+lostFraction
+APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
+{
+ unsigned int omsb; // One, not zero, based MSB.
+ unsigned int partsCount, newPartsCount, precision;
+ integerPart *lhsSignificand;
+ integerPart scratch[4];
+ integerPart *fullSignificand;
+ lostFraction lost_fraction;
+ bool ignored;
+
+ assert(semantics == rhs.semantics);
+
+ precision = semantics->precision;
+ newPartsCount = partCountForBits(precision * 2);
+
+ if (newPartsCount > 4)
+ fullSignificand = new integerPart[newPartsCount];
+ else
+ fullSignificand = scratch;
+
+ lhsSignificand = significandParts();
+ partsCount = partCount();
+
+ APInt::tcFullMultiply(fullSignificand, lhsSignificand,
+ rhs.significandParts(), partsCount, partsCount);
+
+ lost_fraction = lfExactlyZero;
+ omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
+ exponent += rhs.exponent;
+
+ if (addend) {
+ Significand savedSignificand = significand;
+ const fltSemantics *savedSemantics = semantics;
+ fltSemantics extendedSemantics;
+ opStatus status;
+ unsigned int extendedPrecision;
+
+ /* Normalize our MSB. */
+ extendedPrecision = precision + precision - 1;
+ if (omsb != extendedPrecision) {
+ APInt::tcShiftLeft(fullSignificand, newPartsCount,
+ extendedPrecision - omsb);
+ exponent -= extendedPrecision - omsb;
+ }
+
+ /* Create new semantics. */
+ extendedSemantics = *semantics;
+ extendedSemantics.precision = extendedPrecision;
+
+ if (newPartsCount == 1)
+ significand.part = fullSignificand[0];
+ else
+ significand.parts = fullSignificand;
+ semantics = &extendedSemantics;
+
+ APFloat extendedAddend(*addend);
+ status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
+ assert(status == opOK);
+ (void)status;
+ lost_fraction = addOrSubtractSignificand(extendedAddend, false);
+
+ /* Restore our state. */
+ if (newPartsCount == 1)
+ fullSignificand[0] = significand.part;
+ significand = savedSignificand;
+ semantics = savedSemantics;
+
+ omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
+ }
+
+ exponent -= (precision - 1);
+
+ if (omsb > precision) {
+ unsigned int bits, significantParts;
+ lostFraction lf;
+
+ bits = omsb - precision;
+ significantParts = partCountForBits(omsb);
+ lf = shiftRight(fullSignificand, significantParts, bits);
+ lost_fraction = combineLostFractions(lf, lost_fraction);
+ exponent += bits;
+ }
+
+ APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
+
+ if (newPartsCount > 4)
+ delete [] fullSignificand;
+
+ return lost_fraction;
+}
+
+/* Multiply the significands of LHS and RHS to DST. */
+lostFraction
+APFloat::divideSignificand(const APFloat &rhs)
+{
+ unsigned int bit, i, partsCount;
+ const integerPart *rhsSignificand;
+ integerPart *lhsSignificand, *dividend, *divisor;
+ integerPart scratch[4];
+ lostFraction lost_fraction;
+
+ assert(semantics == rhs.semantics);
+
+ lhsSignificand = significandParts();
+ rhsSignificand = rhs.significandParts();
+ partsCount = partCount();
+
+ if (partsCount > 2)
+ dividend = new integerPart[partsCount * 2];
+ else
+ dividend = scratch;
+
+ divisor = dividend + partsCount;
+
+ /* Copy the dividend and divisor as they will be modified in-place. */
+ for (i = 0; i < partsCount; i++) {
+ dividend[i] = lhsSignificand[i];
+ divisor[i] = rhsSignificand[i];
+ lhsSignificand[i] = 0;
+ }
+
+ exponent -= rhs.exponent;
+
+ unsigned int precision = semantics->precision;
+
+ /* Normalize the divisor. */
+ bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
+ if (bit) {
+ exponent += bit;
+ APInt::tcShiftLeft(divisor, partsCount, bit);
+ }
+
+ /* Normalize the dividend. */
+ bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
+ if (bit) {
+ exponent -= bit;
+ APInt::tcShiftLeft(dividend, partsCount, bit);
+ }
+
+ /* Ensure the dividend >= divisor initially for the loop below.
+ Incidentally, this means that the division loop below is
+ guaranteed to set the integer bit to one. */
+ if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
+ exponent--;
+ APInt::tcShiftLeft(dividend, partsCount, 1);
+ assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
+ }
+
+ /* Long division. */
+ for (bit = precision; bit; bit -= 1) {
+ if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
+ APInt::tcSubtract(dividend, divisor, 0, partsCount);
+ APInt::tcSetBit(lhsSignificand, bit - 1);
+ }
+
+ APInt::tcShiftLeft(dividend, partsCount, 1);
+ }
+
+ /* Figure out the lost fraction. */
+ int cmp = APInt::tcCompare(dividend, divisor, partsCount);
+
+ if (cmp > 0)
+ lost_fraction = lfMoreThanHalf;
+ else if (cmp == 0)
+ lost_fraction = lfExactlyHalf;
+ else if (APInt::tcIsZero(dividend, partsCount))
+ lost_fraction = lfExactlyZero;
+ else
+ lost_fraction = lfLessThanHalf;
+
+ if (partsCount > 2)
+ delete [] dividend;
+
+ return lost_fraction;
+}
+
+unsigned int
+APFloat::significandMSB() const
+{
+ return APInt::tcMSB(significandParts(), partCount());
+}
+
+unsigned int
+APFloat::significandLSB() const
+{
+ return APInt::tcLSB(significandParts(), partCount());
+}
+
+/* Note that a zero result is NOT normalized to fcZero. */
+lostFraction
+APFloat::shiftSignificandRight(unsigned int bits)
+{
+ /* Our exponent should not overflow. */
+ assert((exponent_t) (exponent + bits) >= exponent);
+
+ exponent += bits;
+
+ return shiftRight(significandParts(), partCount(), bits);
+}
+
+/* Shift the significand left BITS bits, subtract BITS from its exponent. */
+void
+APFloat::shiftSignificandLeft(unsigned int bits)
+{
+ assert(bits < semantics->precision);
+
+ if (bits) {
+ unsigned int partsCount = partCount();
+
+ APInt::tcShiftLeft(significandParts(), partsCount, bits);
+ exponent -= bits;
+
+ assert(!APInt::tcIsZero(significandParts(), partsCount));
+ }
+}
+
+APFloat::cmpResult
+APFloat::compareAbsoluteValue(const APFloat &rhs) const
+{
+ int compare;
+
+ assert(semantics == rhs.semantics);
+ assert(category == fcNormal);
+ assert(rhs.category == fcNormal);
+
+ compare = exponent - rhs.exponent;
+
+ /* If exponents are equal, do an unsigned bignum comparison of the
+ significands. */
+ if (compare == 0)
+ compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
+ partCount());
+
+ if (compare > 0)
+ return cmpGreaterThan;
+ else if (compare < 0)
+ return cmpLessThan;
+ else
+ return cmpEqual;
+}
+
+/* Handle overflow. Sign is preserved. We either become infinity or
+ the largest finite number. */
+APFloat::opStatus
+APFloat::handleOverflow(roundingMode rounding_mode)
+{
+ /* Infinity? */
+ if (rounding_mode == rmNearestTiesToEven ||
+ rounding_mode == rmNearestTiesToAway ||
+ (rounding_mode == rmTowardPositive && !sign) ||
+ (rounding_mode == rmTowardNegative && sign)) {
+ category = fcInfinity;
+ return (opStatus) (opOverflow | opInexact);
+ }
+
+ /* Otherwise we become the largest finite number. */
+ category = fcNormal;
+ exponent = semantics->maxExponent;
+ APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
+ semantics->precision);
+
+ return opInexact;
+}
+
+/* Returns TRUE if, when truncating the current number, with BIT the
+ new LSB, with the given lost fraction and rounding mode, the result
+ would need to be rounded away from zero (i.e., by increasing the
+ signficand). This routine must work for fcZero of both signs, and
+ fcNormal numbers. */
+bool
+APFloat::roundAwayFromZero(roundingMode rounding_mode,
+ lostFraction lost_fraction,
+ unsigned int bit) const
+{
+ /* NaNs and infinities should not have lost fractions. */
+ assert(category == fcNormal || category == fcZero);
+
+ /* Current callers never pass this so we don't handle it. */
+ assert(lost_fraction != lfExactlyZero);
+
+ switch (rounding_mode) {
+ case rmNearestTiesToAway:
+ return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
+
+ case rmNearestTiesToEven:
+ if (lost_fraction == lfMoreThanHalf)
+ return true;
+
+ /* Our zeroes don't have a significand to test. */
+ if (lost_fraction == lfExactlyHalf && category != fcZero)
+ return APInt::tcExtractBit(significandParts(), bit);
+
+ return false;
+
+ case rmTowardZero:
+ return false;
+
+ case rmTowardPositive:
+ return sign == false;
+
+ case rmTowardNegative:
+ return sign == true;
+ }
+ llvm_unreachable("Invalid rounding mode found");
+}
+
+APFloat::opStatus
+APFloat::normalize(roundingMode rounding_mode,
+ lostFraction lost_fraction)
+{
+ unsigned int omsb; /* One, not zero, based MSB. */
+ int exponentChange;
+
+ if (category != fcNormal)
+ return opOK;
+
+ /* Before rounding normalize the exponent of fcNormal numbers. */
+ omsb = significandMSB() + 1;
+
+ if (omsb) {
+ /* OMSB is numbered from 1. We want to place it in the integer
+ bit numbered PRECISION if possible, with a compensating change in
+ the exponent. */
+ exponentChange = omsb - semantics->precision;
+
+ /* If the resulting exponent is too high, overflow according to
+ the rounding mode. */
+ if (exponent + exponentChange > semantics->maxExponent)
+ return handleOverflow(rounding_mode);
+
+ /* Subnormal numbers have exponent minExponent, and their MSB
+ is forced based on that. */
+ if (exponent + exponentChange < semantics->minExponent)
+ exponentChange = semantics->minExponent - exponent;
+
+ /* Shifting left is easy as we don't lose precision. */
+ if (exponentChange < 0) {
+ assert(lost_fraction == lfExactlyZero);
+
+ shiftSignificandLeft(-exponentChange);
+
+ return opOK;
+ }
+
+ if (exponentChange > 0) {
+ lostFraction lf;
+
+ /* Shift right and capture any new lost fraction. */
+ lf = shiftSignificandRight(exponentChange);
+
+ lost_fraction = combineLostFractions(lf, lost_fraction);
+
+ /* Keep OMSB up-to-date. */
+ if (omsb > (unsigned) exponentChange)
+ omsb -= exponentChange;
+ else
+ omsb = 0;
+ }
+ }
+
+ /* Now round the number according to rounding_mode given the lost
+ fraction. */
+
+ /* As specified in IEEE 754, since we do not trap we do not report
+ underflow for exact results. */
+ if (lost_fraction == lfExactlyZero) {
+ /* Canonicalize zeroes. */
+ if (omsb == 0)
+ category = fcZero;
+
+ return opOK;
+ }
+
+ /* Increment the significand if we're rounding away from zero. */
+ if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
+ if (omsb == 0)
+ exponent = semantics->minExponent;
+
+ incrementSignificand();
+ omsb = significandMSB() + 1;
+
+ /* Did the significand increment overflow? */
+ if (omsb == (unsigned) semantics->precision + 1) {
+ /* Renormalize by incrementing the exponent and shifting our
+ significand right one. However if we already have the
+ maximum exponent we overflow to infinity. */
+ if (exponent == semantics->maxExponent) {
+ category = fcInfinity;
+
+ return (opStatus) (opOverflow | opInexact);
+ }
+
+ shiftSignificandRight(1);
+
+ return opInexact;
+ }
+ }
+
+ /* The normal case - we were and are not denormal, and any
+ significand increment above didn't overflow. */
+ if (omsb == semantics->precision)
+ return opInexact;
+
+ /* We have a non-zero denormal. */
+ assert(omsb < semantics->precision);
+
+ /* Canonicalize zeroes. */
+ if (omsb == 0)
+ category = fcZero;
+
+ /* The fcZero case is a denormal that underflowed to zero. */
+ return (opStatus) (opUnderflow | opInexact);
+}
+
+APFloat::opStatus
+APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ llvm_unreachable(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcNormal, fcZero):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcZero):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcInfinity):
+ case convolve(fcZero, fcInfinity):
+ category = fcInfinity;
+ sign = rhs.sign ^ subtract;
+ return opOK;
+
+ case convolve(fcZero, fcNormal):
+ assign(rhs);
+ sign = rhs.sign ^ subtract;
+ return opOK;
+
+ case convolve(fcZero, fcZero):
+ /* Sign depends on rounding mode; handled by caller. */
+ return opOK;
+
+ case convolve(fcInfinity, fcInfinity):
+ /* Differently signed infinities can only be validly
+ subtracted. */
+ if (((sign ^ rhs.sign)!=0) != subtract) {
+ makeNaN();
+ return opInvalidOp;
+ }
+
+ return opOK;
+
+ case convolve(fcNormal, fcNormal):
+ return opDivByZero;
+ }
+}
+
+/* Add or subtract two normal numbers. */
+lostFraction
+APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
+{
+ integerPart carry;
+ lostFraction lost_fraction;
+ int bits;
+
+ /* Determine if the operation on the absolute values is effectively
+ an addition or subtraction. */
+ subtract ^= (sign ^ rhs.sign) ? true : false;
+
+ /* Are we bigger exponent-wise than the RHS? */
+ bits = exponent - rhs.exponent;
+
+ /* Subtraction is more subtle than one might naively expect. */
+ if (subtract) {
+ APFloat temp_rhs(rhs);
+ bool reverse;
+
+ if (bits == 0) {
+ reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
+ lost_fraction = lfExactlyZero;
+ } else if (bits > 0) {
+ lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
+ shiftSignificandLeft(1);
+ reverse = false;
+ } else {
+ lost_fraction = shiftSignificandRight(-bits - 1);
+ temp_rhs.shiftSignificandLeft(1);
+ reverse = true;
+ }
+
+ if (reverse) {
+ carry = temp_rhs.subtractSignificand
+ (*this, lost_fraction != lfExactlyZero);
+ copySignificand(temp_rhs);
+ sign = !sign;
+ } else {
+ carry = subtractSignificand
+ (temp_rhs, lost_fraction != lfExactlyZero);
+ }
+
+ /* Invert the lost fraction - it was on the RHS and
+ subtracted. */
+ if (lost_fraction == lfLessThanHalf)
+ lost_fraction = lfMoreThanHalf;
+ else if (lost_fraction == lfMoreThanHalf)
+ lost_fraction = lfLessThanHalf;
+
+ /* The code above is intended to ensure that no borrow is
+ necessary. */
+ assert(!carry);
+ (void)carry;
+ } else {
+ if (bits > 0) {
+ APFloat temp_rhs(rhs);
+
+ lost_fraction = temp_rhs.shiftSignificandRight(bits);
+ carry = addSignificand(temp_rhs);
+ } else {
+ lost_fraction = shiftSignificandRight(-bits);
+ carry = addSignificand(rhs);
+ }
+
+ /* We have a guard bit; generating a carry cannot happen. */
+ assert(!carry);
+ (void)carry;
+ }
+
+ return lost_fraction;
+}
+
+APFloat::opStatus
+APFloat::multiplySpecials(const APFloat &rhs)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ llvm_unreachable(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcInfinity):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcInfinity):
+ category = fcInfinity;
+ return opOK;
+
+ case convolve(fcZero, fcNormal):
+ case convolve(fcNormal, fcZero):
+ case convolve(fcZero, fcZero):
+ category = fcZero;
+ return opOK;
+
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcInfinity, fcZero):
+ makeNaN();
+ return opInvalidOp;
+
+ case convolve(fcNormal, fcNormal):
+ return opOK;
+ }
+}
+
+APFloat::opStatus
+APFloat::divideSpecials(const APFloat &rhs)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ llvm_unreachable(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcInfinity, fcZero):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcZero, fcNormal):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcInfinity):
+ category = fcZero;
+ return opOK;
+
+ case convolve(fcNormal, fcZero):
+ category = fcInfinity;
+ return opDivByZero;
+
+ case convolve(fcInfinity, fcInfinity):
+ case convolve(fcZero, fcZero):
+ makeNaN();
+ return opInvalidOp;
+
+ case convolve(fcNormal, fcNormal):
+ return opOK;
+ }
+}
+
+APFloat::opStatus
+APFloat::modSpecials(const APFloat &rhs)
+{
+ switch (convolve(category, rhs.category)) {
+ default:
+ llvm_unreachable(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcZero, fcNormal):
+ case convolve(fcNormal, fcInfinity):
+ return opOK;
+
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ category = fcNaN;
+ copySignificand(rhs);
+ return opOK;
+
+ case convolve(fcNormal, fcZero):
+ case convolve(fcInfinity, fcZero):
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcInfinity):
+ case convolve(fcZero, fcZero):
+ makeNaN();
+ return opInvalidOp;
+
+ case convolve(fcNormal, fcNormal):
+ return opOK;
+ }
+}
+
+/* Change sign. */
+void
+APFloat::changeSign()
+{
+ /* Look mummy, this one's easy. */
+ sign = !sign;
+}
+
+void
+APFloat::clearSign()
+{
+ /* So is this one. */
+ sign = 0;
+}
+
+void
+APFloat::copySign(const APFloat &rhs)
+{
+ /* And this one. */
+ sign = rhs.sign;
+}
+
+/* Normalized addition or subtraction. */
+APFloat::opStatus
+APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
+ bool subtract)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+
+ fs = addOrSubtractSpecials(rhs, subtract);
+
+ /* This return code means it was not a simple case. */
+ if (fs == opDivByZero) {
+ lostFraction lost_fraction;
+
+ lost_fraction = addOrSubtractSignificand(rhs, subtract);
+ fs = normalize(rounding_mode, lost_fraction);
+
+ /* Can only be zero if we lost no fraction. */
+ assert(category != fcZero || lost_fraction == lfExactlyZero);
+ }
+
+ /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+ positive zero unless rounding to minus infinity, except that
+ adding two like-signed zeroes gives that zero. */
+ if (category == fcZero) {
+ if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
+ sign = (rounding_mode == rmTowardNegative);
+ }
+
+ return fs;
+}
+
+/* Normalized addition. */
+APFloat::opStatus
+APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
+{
+ return addOrSubtract(rhs, rounding_mode, false);
+}
+
+/* Normalized subtraction. */
+APFloat::opStatus
+APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
+{
+ return addOrSubtract(rhs, rounding_mode, true);
+}
+
+/* Normalized multiply. */
+APFloat::opStatus
+APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+ sign ^= rhs.sign;
+ fs = multiplySpecials(rhs);
+
+ if (category == fcNormal) {
+ lostFraction lost_fraction = multiplySignificand(rhs, 0);
+ fs = normalize(rounding_mode, lost_fraction);
+ if (lost_fraction != lfExactlyZero)
+ fs = (opStatus) (fs | opInexact);
+ }
+
+ return fs;
+}
+
+/* Normalized divide. */
+APFloat::opStatus
+APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+ sign ^= rhs.sign;
+ fs = divideSpecials(rhs);
+
+ if (category == fcNormal) {
+ lostFraction lost_fraction = divideSignificand(rhs);
+ fs = normalize(rounding_mode, lost_fraction);
+ if (lost_fraction != lfExactlyZero)
+ fs = (opStatus) (fs | opInexact);
+ }
+
+ return fs;
+}
+
+/* Normalized remainder. This is not currently correct in all cases. */
+APFloat::opStatus
+APFloat::remainder(const APFloat &rhs)
+{
+ opStatus fs;
+ APFloat V = *this;
+ unsigned int origSign = sign;
+
+ assertArithmeticOK(*semantics);
+ fs = V.divide(rhs, rmNearestTiesToEven);
+ if (fs == opDivByZero)
+ return fs;
+
+ int parts = partCount();
+ integerPart *x = new integerPart[parts];
+ bool ignored;
+ fs = V.convertToInteger(x, parts * integerPartWidth, true,
+ rmNearestTiesToEven, &ignored);
+ if (fs==opInvalidOp)
+ return fs;
+
+ fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
+ rmNearestTiesToEven);
+ assert(fs==opOK); // should always work
+
+ fs = V.multiply(rhs, rmNearestTiesToEven);
+ assert(fs==opOK || fs==opInexact); // should not overflow or underflow
+
+ fs = subtract(V, rmNearestTiesToEven);
+ assert(fs==opOK || fs==opInexact); // likewise
+
+ if (isZero())
+ sign = origSign; // IEEE754 requires this
+ delete[] x;
+ return fs;
+}
+
+/* Normalized llvm frem (C fmod).
+ This is not currently correct in all cases. */
+APFloat::opStatus
+APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
+{
+ opStatus fs;
+ assertArithmeticOK(*semantics);
+ fs = modSpecials(rhs);
+
+ if (category == fcNormal && rhs.category == fcNormal) {
+ APFloat V = *this;
+ unsigned int origSign = sign;
+
+ fs = V.divide(rhs, rmNearestTiesToEven);
+ if (fs == opDivByZero)
+ return fs;
+
+ int parts = partCount();
+ integerPart *x = new integerPart[parts];
+ bool ignored;
+ fs = V.convertToInteger(x, parts * integerPartWidth, true,
+ rmTowardZero, &ignored);
+ if (fs==opInvalidOp)
+ return fs;
+
+ fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
+ rmNearestTiesToEven);
+ assert(fs==opOK); // should always work
+
+ fs = V.multiply(rhs, rounding_mode);
+ assert(fs==opOK || fs==opInexact); // should not overflow or underflow
+
+ fs = subtract(V, rounding_mode);
+ assert(fs==opOK || fs==opInexact); // likewise
+
+ if (isZero())
+ sign = origSign; // IEEE754 requires this
+ delete[] x;
+ }
+ return fs;
+}
+
+/* Normalized fused-multiply-add. */
+APFloat::opStatus
+APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
+ const APFloat &addend,
+ roundingMode rounding_mode)
+{
+ opStatus fs;
+
+ assertArithmeticOK(*semantics);
+
+ /* Post-multiplication sign, before addition. */
+ sign ^= multiplicand.sign;
+
+ /* If and only if all arguments are normal do we need to do an
+ extended-precision calculation. */
+ if (category == fcNormal &&
+ multiplicand.category == fcNormal &&
+ addend.category == fcNormal) {
+ lostFraction lost_fraction;
+
+ lost_fraction = multiplySignificand(multiplicand, &addend);
+ fs = normalize(rounding_mode, lost_fraction);
+ if (lost_fraction != lfExactlyZero)
+ fs = (opStatus) (fs | opInexact);
+
+ /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
+ positive zero unless rounding to minus infinity, except that
+ adding two like-signed zeroes gives that zero. */
+ if (category == fcZero && sign != addend.sign)
+ sign = (rounding_mode == rmTowardNegative);
+ } else {
+ fs = multiplySpecials(multiplicand);
+
+ /* FS can only be opOK or opInvalidOp. There is no more work
+ to do in the latter case. The IEEE-754R standard says it is
+ implementation-defined in this case whether, if ADDEND is a
+ quiet NaN, we raise invalid op; this implementation does so.
+
+ If we need to do the addition we can do so with normal
+ precision. */
+ if (fs == opOK)
+ fs = addOrSubtract(addend, rounding_mode, false);
+ }
+
+ return fs;
+}
+
+/* Rounding-mode corrrect round to integral value. */
+APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
+ opStatus fs;
+ assertArithmeticOK(*semantics);
+
+ // If the exponent is large enough, we know that this value is already
+ // integral, and the arithmetic below would potentially cause it to saturate
+ // to +/-Inf. Bail out early instead.
+ if (exponent+1 >= (int)semanticsPrecision(*semantics))
+ return opOK;
+
+ // The algorithm here is quite simple: we add 2^(p-1), where p is the
+ // precision of our format, and then subtract it back off again. The choice
+ // of rounding modes for the addition/subtraction determines the rounding mode
+ // for our integral rounding as well.
+ // NOTE: When the input value is negative, we do subtraction followed by
+ // addition instead.
+ APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
+ IntegerConstant <<= semanticsPrecision(*semantics)-1;
+ APFloat MagicConstant(*semantics);
+ fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
+ rmNearestTiesToEven);
+ MagicConstant.copySign(*this);
+
+ if (fs != opOK)
+ return fs;
+
+ // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
+ bool inputSign = isNegative();
+
+ fs = add(MagicConstant, rounding_mode);
+ if (fs != opOK && fs != opInexact)
+ return fs;
+
+ fs = subtract(MagicConstant, rounding_mode);
+
+ // Restore the input sign.
+ if (inputSign != isNegative())
+ changeSign();
+
+ return fs;
+}
+
+
+/* Comparison requires normalized numbers. */
+APFloat::cmpResult
+APFloat::compare(const APFloat &rhs) const
+{
+ cmpResult result;
+
+ assertArithmeticOK(*semantics);
+ assert(semantics == rhs.semantics);
+
+ switch (convolve(category, rhs.category)) {
+ default:
+ llvm_unreachable(0);
+
+ case convolve(fcNaN, fcZero):
+ case convolve(fcNaN, fcNormal):
+ case convolve(fcNaN, fcInfinity):
+ case convolve(fcNaN, fcNaN):
+ case convolve(fcZero, fcNaN):
+ case convolve(fcNormal, fcNaN):
+ case convolve(fcInfinity, fcNaN):
+ return cmpUnordered;
+
+ case convolve(fcInfinity, fcNormal):
+ case convolve(fcInfinity, fcZero):
+ case convolve(fcNormal, fcZero):
+ if (sign)
+ return cmpLessThan;
+ else
+ return cmpGreaterThan;
+
+ case convolve(fcNormal, fcInfinity):
+ case convolve(fcZero, fcInfinity):
+ case convolve(fcZero, fcNormal):
+ if (rhs.sign)
+ return cmpGreaterThan;
+ else
+ return cmpLessThan;
+
+ case convolve(fcInfinity, fcInfinity):
+ if (sign == rhs.sign)
+ return cmpEqual;
+ else if (sign)
+ return cmpLessThan;
+ else
+ return cmpGreaterThan;
+
+ case convolve(fcZero, fcZero):
+ return cmpEqual;
+
+ case convolve(fcNormal, fcNormal):
+ break;
+ }
+
+ /* Two normal numbers. Do they have the same sign? */
+ if (sign != rhs.sign) {
+ if (sign)
+ result = cmpLessThan;
+ else
+ result = cmpGreaterThan;
+ } else {
+ /* Compare absolute values; invert result if negative. */
+ result = compareAbsoluteValue(rhs);
+
+ if (sign) {
+ if (result == cmpLessThan)
+ result = cmpGreaterThan;
+ else if (result == cmpGreaterThan)
+ result = cmpLessThan;
+ }
+ }
+
+ return result;
+}
+
+/// APFloat::convert - convert a value of one floating point type to another.
+/// The return value corresponds to the IEEE754 exceptions. *losesInfo
+/// records whether the transformation lost information, i.e. whether
+/// converting the result back to the original type will produce the
+/// original value (this is almost the same as return value==fsOK, but there
+/// are edge cases where this is not so).
+
+APFloat::opStatus
+APFloat::convert(const fltSemantics &toSemantics,
+ roundingMode rounding_mode, bool *losesInfo)
+{
+ lostFraction lostFraction;
+ unsigned int newPartCount, oldPartCount;
+ opStatus fs;
+ int shift;
+ const fltSemantics &fromSemantics = *semantics;
+
+ assertArithmeticOK(fromSemantics);
+ assertArithmeticOK(toSemantics);
+ lostFraction = lfExactlyZero;
+ newPartCount = partCountForBits(toSemantics.precision + 1);
+ oldPartCount = partCount();
+ shift = toSemantics.precision - fromSemantics.precision;
+
+ bool X86SpecialNan = false;
+ if (&fromSemantics == &APFloat::x87DoubleExtended &&
+ &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
+ (!(*significandParts() & 0x8000000000000000ULL) ||
+ !(*significandParts() & 0x4000000000000000ULL))) {
+ // x86 has some unusual NaNs which cannot be represented in any other
+ // format; note them here.
+ X86SpecialNan = true;
+ }
+
+ // If this is a truncation, perform the shift before we narrow the storage.
+ if (shift < 0 && (category==fcNormal || category==fcNaN))
+ lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
+
+ // Fix the storage so it can hold to new value.
+ if (newPartCount > oldPartCount) {
+ // The new type requires more storage; make it available.
+ integerPart *newParts;
+ newParts = new integerPart[newPartCount];
+ APInt::tcSet(newParts, 0, newPartCount);
+ if (category==fcNormal || category==fcNaN)
+ APInt::tcAssign(newParts, significandParts(), oldPartCount);
+ freeSignificand();
+ significand.parts = newParts;
+ } else if (newPartCount == 1 && oldPartCount != 1) {
+ // Switch to built-in storage for a single part.
+ integerPart newPart = 0;
+ if (category==fcNormal || category==fcNaN)
+ newPart = significandParts()[0];
+ freeSignificand();
+ significand.part = newPart;
+ }
+
+ // Now that we have the right storage, switch the semantics.
+ semantics = &toSemantics;
+
+ // If this is an extension, perform the shift now that the storage is
+ // available.
+ if (shift > 0 && (category==fcNormal || category==fcNaN))
+ APInt::tcShiftLeft(significandParts(), newPartCount, shift);
+
+ if (category == fcNormal) {
+ fs = normalize(rounding_mode, lostFraction);
+ *losesInfo = (fs != opOK);
+ } else if (category == fcNaN) {
+ *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
+ // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
+ // does not give you back the same bits. This is dubious, and we
+ // don't currently do it. You're really supposed to get
+ // an invalid operation signal at runtime, but nobody does that.
+ fs = opOK;
+ } else {
+ *losesInfo = false;
+ fs = opOK;
+ }
+
+ return fs;
+}
+
+/* Convert a floating point number to an integer according to the
+ rounding mode. If the rounded integer value is out of range this
+ returns an invalid operation exception and the contents of the
+ destination parts are unspecified. If the rounded value is in
+ range but the floating point number is not the exact integer, the C
+ standard doesn't require an inexact exception to be raised. IEEE
+ 854 does require it so we do that.
+
+ Note that for conversions to integer type the C standard requires
+ round-to-zero to always be used. */
+APFloat::opStatus
+APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
+ bool isSigned,
+ roundingMode rounding_mode,
+ bool *isExact) const
+{
+ lostFraction lost_fraction;
+ const integerPart *src;
+ unsigned int dstPartsCount, truncatedBits;
+
+ assertArithmeticOK(*semantics);
+
+ *isExact = false;
+
+ /* Handle the three special cases first. */
+ if (category == fcInfinity || category == fcNaN)
+ return opInvalidOp;
+
+ dstPartsCount = partCountForBits(width);
+
+ if (category == fcZero) {
+ APInt::tcSet(parts, 0, dstPartsCount);
+ // Negative zero can't be represented as an int.
+ *isExact = !sign;
+ return opOK;
+ }
+
+ src = significandParts();
+
+ /* Step 1: place our absolute value, with any fraction truncated, in
+ the destination. */
+ if (exponent < 0) {
+ /* Our absolute value is less than one; truncate everything. */
+ APInt::tcSet(parts, 0, dstPartsCount);
+ /* For exponent -1 the integer bit represents .5, look at that.
+ For smaller exponents leftmost truncated bit is 0. */
+ truncatedBits = semantics->precision -1U - exponent;
+ } else {
+ /* We want the most significant (exponent + 1) bits; the rest are
+ truncated. */
+ unsigned int bits = exponent + 1U;
+
+ /* Hopelessly large in magnitude? */
+ if (bits > width)
+ return opInvalidOp;
+
+ if (bits < semantics->precision) {
+ /* We truncate (semantics->precision - bits) bits. */
+ truncatedBits = semantics->precision - bits;
+ APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
+ } else {
+ /* We want at least as many bits as are available. */
+ APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
+ APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
+ truncatedBits = 0;
+ }
+ }
+
+ /* Step 2: work out any lost fraction, and increment the absolute
+ value if we would round away from zero. */
+ if (truncatedBits) {
+ lost_fraction = lostFractionThroughTruncation(src, partCount(),
+ truncatedBits);
+ if (lost_fraction != lfExactlyZero &&
+ roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
+ if (APInt::tcIncrement(parts, dstPartsCount))
+ return opInvalidOp; /* Overflow. */
+ }
+ } else {
+ lost_fraction = lfExactlyZero;
+ }
+
+ /* Step 3: check if we fit in the destination. */
+ unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
+
+ if (sign) {
+ if (!isSigned) {
+ /* Negative numbers cannot be represented as unsigned. */
+ if (omsb != 0)
+ return opInvalidOp;
+ } else {
+ /* It takes omsb bits to represent the unsigned integer value.
+ We lose a bit for the sign, but care is needed as the
+ maximally negative integer is a special case. */
+ if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
+ return opInvalidOp;
+
+ /* This case can happen because of rounding. */
+ if (omsb > width)
+ return opInvalidOp;
+ }
+
+ APInt::tcNegate (parts, dstPartsCount);
+ } else {
+ if (omsb >= width + !isSigned)
+ return opInvalidOp;
+ }
+
+ if (lost_fraction == lfExactlyZero) {
+ *isExact = true;
+ return opOK;
+ } else
+ return opInexact;
+}
+
+/* Same as convertToSignExtendedInteger, except we provide
+ deterministic values in case of an invalid operation exception,
+ namely zero for NaNs and the minimal or maximal value respectively
+ for underflow or overflow.
+ The *isExact output tells whether the result is exact, in the sense
+ that converting it back to the original floating point type produces
+ the original value. This is almost equivalent to result==opOK,
+ except for negative zeroes.
+*/
+APFloat::opStatus
+APFloat::convertToInteger(integerPart *parts, unsigned int width,
+ bool isSigned,
+ roundingMode rounding_mode, bool *isExact) const
+{
+ opStatus fs;
+
+ fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
+ isExact);
+
+ if (fs == opInvalidOp) {
+ unsigned int bits, dstPartsCount;
+
+ dstPartsCount = partCountForBits(width);
+
+ if (category == fcNaN)
+ bits = 0;
+ else if (sign)
+ bits = isSigned;
+ else
+ bits = width - isSigned;
+
+ APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
+ if (sign && isSigned)
+ APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
+ }
+
+ return fs;
+}
+
+/* Same as convertToInteger(integerPart*, ...), except the result is returned in
+ an APSInt, whose initial bit-width and signed-ness are used to determine the
+ precision of the conversion.
+ */
+APFloat::opStatus
+APFloat::convertToInteger(APSInt &result,
+ roundingMode rounding_mode, bool *isExact) const
+{
+ unsigned bitWidth = result.getBitWidth();
+ SmallVector<uint64_t, 4> parts(result.getNumWords());
+ opStatus status = convertToInteger(
+ parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
+ // Keeps the original signed-ness.
+ result = APInt(bitWidth, parts);
+ return status;
+}
+
+/* Convert an unsigned integer SRC to a floating point number,
+ rounding according to ROUNDING_MODE. The sign of the floating
+ point number is not modified. */
+APFloat::opStatus
+APFloat::convertFromUnsignedParts(const integerPart *src,
+ unsigned int srcCount,
+ roundingMode rounding_mode)
+{
+ unsigned int omsb, precision, dstCount;
+ integerPart *dst;
+ lostFraction lost_fraction;
+
+ assertArithmeticOK(*semantics);
+ category = fcNormal;
+ omsb = APInt::tcMSB(src, srcCount) + 1;
+ dst = significandParts();
+ dstCount = partCount();
+ precision = semantics->precision;
+
+ /* We want the most significant PRECISION bits of SRC. There may not
+ be that many; extract what we can. */
+ if (precision <= omsb) {
+ exponent = omsb - 1;
+ lost_fraction = lostFractionThroughTruncation(src, srcCount,
+ omsb - precision);
+ APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
+ } else {
+ exponent = precision - 1;
+ lost_fraction = lfExactlyZero;
+ APInt::tcExtract(dst, dstCount, src, omsb, 0);
+ }
+
+ return normalize(rounding_mode, lost_fraction);
+}
+
+APFloat::opStatus
+APFloat::convertFromAPInt(const APInt &Val,
+ bool isSigned,
+ roundingMode rounding_mode)
+{
+ unsigned int partCount = Val.getNumWords();
+ APInt api = Val;
+
+ sign = false;
+ if (isSigned && api.isNegative()) {
+ sign = true;
+ api = -api;
+ }
+
+ return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
+}
+
+/* Convert a two's complement integer SRC to a floating point number,
+ rounding according to ROUNDING_MODE. ISSIGNED is true if the
+ integer is signed, in which case it must be sign-extended. */
+APFloat::opStatus
+APFloat::convertFromSignExtendedInteger(const integerPart *src,
+ unsigned int srcCount,
+ bool isSigned,
+ roundingMode rounding_mode)
+{
+ opStatus status;
+
+ assertArithmeticOK(*semantics);
+ if (isSigned &&
+ APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
+ integerPart *copy;
+
+ /* If we're signed and negative negate a copy. */
+ sign = true;
+ copy = new integerPart[srcCount];
+ APInt::tcAssign(copy, src, srcCount);
+ APInt::tcNegate(copy, srcCount);
+ status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
+ delete [] copy;
+ } else {
+ sign = false;
+ status = convertFromUnsignedParts(src, srcCount, rounding_mode);
+ }
+
+ return status;
+}
+
+/* FIXME: should this just take a const APInt reference? */
+APFloat::opStatus
+APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
+ unsigned int width, bool isSigned,
+ roundingMode rounding_mode)
+{
+ unsigned int partCount = partCountForBits(width);
+ APInt api = APInt(width, makeArrayRef(parts, partCount));
+
+ sign = false;
+ if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
+ sign = true;
+ api = -api;
+ }
+
+ return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
+}
+
+APFloat::opStatus
+APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
+{
+ lostFraction lost_fraction = lfExactlyZero;
+ integerPart *significand;
+ unsigned int bitPos, partsCount;
+ StringRef::iterator dot, firstSignificantDigit;
+
+ zeroSignificand();
+ exponent = 0;
+ category = fcNormal;
+
+ significand = significandParts();
+ partsCount = partCount();
+ bitPos = partsCount * integerPartWidth;
+
+ /* Skip leading zeroes and any (hexa)decimal point. */
+ StringRef::iterator begin = s.begin();
+ StringRef::iterator end = s.end();
+ StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
+ firstSignificantDigit = p;
+
+ for (; p != end;) {
+ integerPart hex_value;
+
+ if (*p == '.') {
+ assert(dot == end && "String contains multiple dots");
+ dot = p++;
+ if (p == end) {
+ break;
+ }
+ }
+
+ hex_value = hexDigitValue(*p);
+ if (hex_value == -1U) {
+ break;
+ }
+
+ p++;
+
+ if (p == end) {
+ break;
+ } else {
+ /* Store the number whilst 4-bit nibbles remain. */
+ if (bitPos) {
+ bitPos -= 4;
+ hex_value <<= bitPos % integerPartWidth;
+ significand[bitPos / integerPartWidth] |= hex_value;
+ } else {
+ lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
+ while (p != end && hexDigitValue(*p) != -1U)
+ p++;
+ break;
+ }
+ }
+ }
+
+ /* Hex floats require an exponent but not a hexadecimal point. */
+ assert(p != end && "Hex strings require an exponent");
+ assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
+ assert(p != begin && "Significand has no digits");
+ assert((dot == end || p - begin != 1) && "Significand has no digits");
+
+ /* Ignore the exponent if we are zero. */
+ if (p != firstSignificantDigit) {
+ int expAdjustment;
+
+ /* Implicit hexadecimal point? */
+ if (dot == end)
+ dot = p;
+
+ /* Calculate the exponent adjustment implicit in the number of
+ significant digits. */
+ expAdjustment = static_cast<int>(dot - firstSignificantDigit);
+ if (expAdjustment < 0)
+ expAdjustment++;
+ expAdjustment = expAdjustment * 4 - 1;
+
+ /* Adjust for writing the significand starting at the most
+ significant nibble. */
+ expAdjustment += semantics->precision;
+ expAdjustment -= partsCount * integerPartWidth;
+
+ /* Adjust for the given exponent. */
+ exponent = totalExponent(p + 1, end, expAdjustment);
+ }
+
+ return normalize(rounding_mode, lost_fraction);
+}
+
+APFloat::opStatus
+APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
+ unsigned sigPartCount, int exp,
+ roundingMode rounding_mode)
+{
+ unsigned int parts, pow5PartCount;
+ fltSemantics calcSemantics = { 32767, -32767, 0, true };
+ integerPart pow5Parts[maxPowerOfFiveParts];
+ bool isNearest;
+
+ isNearest = (rounding_mode == rmNearestTiesToEven ||
+ rounding_mode == rmNearestTiesToAway);
+
+ parts = partCountForBits(semantics->precision + 11);
+
+ /* Calculate pow(5, abs(exp)). */
+ pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
+
+ for (;; parts *= 2) {
+ opStatus sigStatus, powStatus;
+ unsigned int excessPrecision, truncatedBits;
+
+ calcSemantics.precision = parts * integerPartWidth - 1;
+ excessPrecision = calcSemantics.precision - semantics->precision;
+ truncatedBits = excessPrecision;
+
+ APFloat decSig(calcSemantics, fcZero, sign);
+ APFloat pow5(calcSemantics, fcZero, false);
+
+ sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
+ rmNearestTiesToEven);
+ powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
+ rmNearestTiesToEven);
+ /* Add exp, as 10^n = 5^n * 2^n. */
+ decSig.exponent += exp;
+
+ lostFraction calcLostFraction;
+ integerPart HUerr, HUdistance;
+ unsigned int powHUerr;
+
+ if (exp >= 0) {
+ /* multiplySignificand leaves the precision-th bit set to 1. */
+ calcLostFraction = decSig.multiplySignificand(pow5, NULL);
+ powHUerr = powStatus != opOK;
+ } else {
+ calcLostFraction = decSig.divideSignificand(pow5);
+ /* Denormal numbers have less precision. */
+ if (decSig.exponent < semantics->minExponent) {
+ excessPrecision += (semantics->minExponent - decSig.exponent);
+ truncatedBits = excessPrecision;
+ if (excessPrecision > calcSemantics.precision)
+ excessPrecision = calcSemantics.precision;
+ }
+ /* Extra half-ulp lost in reciprocal of exponent. */
+ powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
+ }
+
+ /* Both multiplySignificand and divideSignificand return the
+ result with the integer bit set. */
+ assert(APInt::tcExtractBit
+ (decSig.significandParts(), calcSemantics.precision - 1) == 1);
+
+ HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
+ powHUerr);
+ HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
+ excessPrecision, isNearest);
+
+ /* Are we guaranteed to round correctly if we truncate? */
+ if (HUdistance >= HUerr) {
+ APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
+ calcSemantics.precision - excessPrecision,
+ excessPrecision);
+ /* Take the exponent of decSig. If we tcExtract-ed less bits
+ above we must adjust our exponent to compensate for the
+ implicit right shift. */
+ exponent = (decSig.exponent + semantics->precision
+ - (calcSemantics.precision - excessPrecision));
+ calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
+ decSig.partCount(),
+ truncatedBits);
+ return normalize(rounding_mode, calcLostFraction);
+ }
+ }
+}
+
+APFloat::opStatus
+APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
+{
+ decimalInfo D;
+ opStatus fs;
+
+ /* Scan the text. */
+ StringRef::iterator p = str.begin();
+ interpretDecimal(p, str.end(), &D);
+
+ /* Handle the quick cases. First the case of no significant digits,
+ i.e. zero, and then exponents that are obviously too large or too
+ small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
+ definitely overflows if
+
+ (exp - 1) * L >= maxExponent
+
+ and definitely underflows to zero where
+
+ (exp + 1) * L <= minExponent - precision
+
+ With integer arithmetic the tightest bounds for L are
+
+ 93/28 < L < 196/59 [ numerator <= 256 ]
+ 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
+ */
+
+ if (decDigitValue(*D.firstSigDigit) >= 10U) {
+ category = fcZero;
+ fs = opOK;
+
+ /* Check whether the normalized exponent is high enough to overflow
+ max during the log-rebasing in the max-exponent check below. */
+ } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
+ fs = handleOverflow(rounding_mode);
+
+ /* If it wasn't, then it also wasn't high enough to overflow max
+ during the log-rebasing in the min-exponent check. Check that it
+ won't overflow min in either check, then perform the min-exponent
+ check. */
+ } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
+ (D.normalizedExponent + 1) * 28738 <=
+ 8651 * (semantics->minExponent - (int) semantics->precision)) {
+ /* Underflow to zero and round. */
+ zeroSignificand();
+ fs = normalize(rounding_mode, lfLessThanHalf);
+
+ /* We can finally safely perform the max-exponent check. */
+ } else if ((D.normalizedExponent - 1) * 42039
+ >= 12655 * semantics->maxExponent) {
+ /* Overflow and round. */
+ fs = handleOverflow(rounding_mode);
+ } else {
+ integerPart *decSignificand;
+ unsigned int partCount;
+
+ /* A tight upper bound on number of bits required to hold an
+ N-digit decimal integer is N * 196 / 59. Allocate enough space
+ to hold the full significand, and an extra part required by
+ tcMultiplyPart. */
+ partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
+ partCount = partCountForBits(1 + 196 * partCount / 59);
+ decSignificand = new integerPart[partCount + 1];
+ partCount = 0;
+
+ /* Convert to binary efficiently - we do almost all multiplication
+ in an integerPart. When this would overflow do we do a single
+ bignum multiplication, and then revert again to multiplication
+ in an integerPart. */
+ do {
+ integerPart decValue, val, multiplier;
+
+ val = 0;
+ multiplier = 1;
+
+ do {
+ if (*p == '.') {
+ p++;
+ if (p == str.end()) {
+ break;
+ }
+ }
+ decValue = decDigitValue(*p++);
+ assert(decValue < 10U && "Invalid character in significand");
+ multiplier *= 10;
+ val = val * 10 + decValue;
+ /* The maximum number that can be multiplied by ten with any
+ digit added without overflowing an integerPart. */
+ } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
+
+ /* Multiply out the current part. */
+ APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
+ partCount, partCount + 1, false);
+
+ /* If we used another part (likely but not guaranteed), increase
+ the count. */
+ if (decSignificand[partCount])
+ partCount++;
+ } while (p <= D.lastSigDigit);
+
+ category = fcNormal;
+ fs = roundSignificandWithExponent(decSignificand, partCount,
+ D.exponent, rounding_mode);
+
+ delete [] decSignificand;
+ }
+
+ return fs;
+}
+
+APFloat::opStatus
+APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
+{
+ assertArithmeticOK(*semantics);
+ assert(!str.empty() && "Invalid string length");
+
+ /* Handle a leading minus sign. */
+ StringRef::iterator p = str.begin();
+ size_t slen = str.size();
+ sign = *p == '-' ? 1 : 0;
+ if (*p == '-' || *p == '+') {
+ p++;
+ slen--;
+ assert(slen && "String has no digits");
+ }
+
+ if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
+ assert(slen - 2 && "Invalid string");
+ return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
+ rounding_mode);
+ }
+
+ return convertFromDecimalString(StringRef(p, slen), rounding_mode);
+}
+
+/* Write out a hexadecimal representation of the floating point value
+ to DST, which must be of sufficient size, in the C99 form
+ [-]0xh.hhhhp[+-]d. Return the number of characters written,
+ excluding the terminating NUL.
+
+ If UPPERCASE, the output is in upper case, otherwise in lower case.
+
+ HEXDIGITS digits appear altogether, rounding the value if
+ necessary. If HEXDIGITS is 0, the minimal precision to display the
+ number precisely is used instead. If nothing would appear after
+ the decimal point it is suppressed.
+
+ The decimal exponent is always printed and has at least one digit.
+ Zero values display an exponent of zero. Infinities and NaNs
+ appear as "infinity" or "nan" respectively.
+
+ The above rules are as specified by C99. There is ambiguity about
+ what the leading hexadecimal digit should be. This implementation
+ uses whatever is necessary so that the exponent is displayed as
+ stored. This implies the exponent will fall within the IEEE format
+ range, and the leading hexadecimal digit will be 0 (for denormals),
+ 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
+ any other digits zero).
+*/
+unsigned int
+APFloat::convertToHexString(char *dst, unsigned int hexDigits,
+ bool upperCase, roundingMode rounding_mode) const
+{
+ char *p;
+
+ assertArithmeticOK(*semantics);
+
+ p = dst;
+ if (sign)
+ *dst++ = '-';
+
+ switch (category) {
+ case fcInfinity:
+ memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
+ dst += sizeof infinityL - 1;
+ break;
+
+ case fcNaN:
+ memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
+ dst += sizeof NaNU - 1;
+ break;
+
+ case fcZero:
+ *dst++ = '0';
+ *dst++ = upperCase ? 'X': 'x';
+ *dst++ = '0';
+ if (hexDigits > 1) {
+ *dst++ = '.';
+ memset (dst, '0', hexDigits - 1);
+ dst += hexDigits - 1;
+ }
+ *dst++ = upperCase ? 'P': 'p';
+ *dst++ = '0';
+ break;
+
+ case fcNormal:
+ dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
+ break;
+ }
+
+ *dst = 0;
+
+ return static_cast<unsigned int>(dst - p);
+}
+
+/* Does the hard work of outputting the correctly rounded hexadecimal
+ form of a normal floating point number with the specified number of
+ hexadecimal digits. If HEXDIGITS is zero the minimum number of
+ digits necessary to print the value precisely is output. */
+char *
+APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
+ bool upperCase,
+ roundingMode rounding_mode) const
+{
+ unsigned int count, valueBits, shift, partsCount, outputDigits;
+ const char *hexDigitChars;
+ const integerPart *significand;
+ char *p;
+ bool roundUp;
+
+ *dst++ = '0';
+ *dst++ = upperCase ? 'X': 'x';
+
+ roundUp = false;
+ hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
+
+ significand = significandParts();
+ partsCount = partCount();
+
+ /* +3 because the first digit only uses the single integer bit, so
+ we have 3 virtual zero most-significant-bits. */
+ valueBits = semantics->precision + 3;
+ shift = integerPartWidth - valueBits % integerPartWidth;
+
+ /* The natural number of digits required ignoring trailing
+ insignificant zeroes. */
+ outputDigits = (valueBits - significandLSB () + 3) / 4;
+
+ /* hexDigits of zero means use the required number for the
+ precision. Otherwise, see if we are truncating. If we are,
+ find out if we need to round away from zero. */
+ if (hexDigits) {
+ if (hexDigits < outputDigits) {
+ /* We are dropping non-zero bits, so need to check how to round.
+ "bits" is the number of dropped bits. */
+ unsigned int bits;
+ lostFraction fraction;
+
+ bits = valueBits - hexDigits * 4;
+ fraction = lostFractionThroughTruncation (significand, partsCount, bits);
+ roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
+ }
+ outputDigits = hexDigits;
+ }
+
+ /* Write the digits consecutively, and start writing in the location
+ of the hexadecimal point. We move the most significant digit
+ left and add the hexadecimal point later. */
+ p = ++dst;
+
+ count = (valueBits + integerPartWidth - 1) / integerPartWidth;
+
+ while (outputDigits && count) {
+ integerPart part;
+
+ /* Put the most significant integerPartWidth bits in "part". */
+ if (--count == partsCount)
+ part = 0; /* An imaginary higher zero part. */
+ else
+ part = significand[count] << shift;
+
+ if (count && shift)
+ part |= significand[count - 1] >> (integerPartWidth - shift);
+
+ /* Convert as much of "part" to hexdigits as we can. */
+ unsigned int curDigits = integerPartWidth / 4;
+
+ if (curDigits > outputDigits)
+ curDigits = outputDigits;
+ dst += partAsHex (dst, part, curDigits, hexDigitChars);
+ outputDigits -= curDigits;
+ }
+
+ if (roundUp) {
+ char *q = dst;
+
+ /* Note that hexDigitChars has a trailing '0'. */
+ do {
+ q--;
+ *q = hexDigitChars[hexDigitValue (*q) + 1];
+ } while (*q == '0');
+ assert(q >= p);
+ } else {
+ /* Add trailing zeroes. */
+ memset (dst, '0', outputDigits);
+ dst += outputDigits;
+ }
+
+ /* Move the most significant digit to before the point, and if there
+ is something after the decimal point add it. This must come
+ after rounding above. */
+ p[-1] = p[0];
+ if (dst -1 == p)
+ dst--;
+ else
+ p[0] = '.';
+
+ /* Finally output the exponent. */
+ *dst++ = upperCase ? 'P': 'p';
+
+ return writeSignedDecimal (dst, exponent);
+}
+
+hash_code llvm::hash_value(const APFloat &Arg) {
+ if (Arg.category != APFloat::fcNormal)
+ return hash_combine((uint8_t)Arg.category,
+ // NaN has no sign, fix it at zero.
+ Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
+ Arg.semantics->precision);
+
+ // Normal floats need their exponent and significand hashed.
+ return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
+ Arg.semantics->precision, Arg.exponent,
+ hash_combine_range(
+ Arg.significandParts(),
+ Arg.significandParts() + Arg.partCount()));
+}
+
+// Conversion from APFloat to/from host float/double. It may eventually be
+// possible to eliminate these and have everybody deal with APFloats, but that
+// will take a while. This approach will not easily extend to long double.
+// Current implementation requires integerPartWidth==64, which is correct at
+// the moment but could be made more general.
+
+// Denormals have exponent minExponent in APFloat, but minExponent-1 in
+// the actual IEEE respresentations. We compensate for that here.
+
+APInt
+APFloat::convertF80LongDoubleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
+ assert(partCount()==2);
+
+ uint64_t myexponent, mysignificand;
+
+ if (category==fcNormal) {
+ myexponent = exponent+16383; //bias
+ mysignificand = significandParts()[0];
+ if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7fff;
+ mysignificand = 0x8000000000000000ULL;
+ } else {
+ assert(category == fcNaN && "Unknown category");
+ myexponent = 0x7fff;
+ mysignificand = significandParts()[0];
+ }
+
+ uint64_t words[2];
+ words[0] = mysignificand;
+ words[1] = ((uint64_t)(sign & 1) << 15) |
+ (myexponent & 0x7fffLL);
+ return APInt(80, words);
+}
+
+APInt
+APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
+ assert(partCount()==2);
+
+ uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
+
+ if (category==fcNormal) {
+ myexponent = exponent + 1023; //bias
+ myexponent2 = exponent2 + 1023;
+ mysignificand = significandParts()[0];
+ mysignificand2 = significandParts()[1];
+ if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+ myexponent = 0; // denormal
+ if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
+ myexponent2 = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ myexponent2 = 0;
+ mysignificand2 = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7ff;
+ myexponent2 = 0;
+ mysignificand = 0;
+ mysignificand2 = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category");
+ myexponent = 0x7ff;
+ mysignificand = significandParts()[0];
+ myexponent2 = exponent2;
+ mysignificand2 = significandParts()[1];
+ }
+
+ uint64_t words[2];
+ words[0] = ((uint64_t)(sign & 1) << 63) |
+ ((myexponent & 0x7ff) << 52) |
+ (mysignificand & 0xfffffffffffffLL);
+ words[1] = ((uint64_t)(sign2 & 1) << 63) |
+ ((myexponent2 & 0x7ff) << 52) |
+ (mysignificand2 & 0xfffffffffffffLL);
+ return APInt(128, words);
+}
+
+APInt
+APFloat::convertQuadrupleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
+ assert(partCount()==2);
+
+ uint64_t myexponent, mysignificand, mysignificand2;
+
+ if (category==fcNormal) {
+ myexponent = exponent+16383; //bias
+ mysignificand = significandParts()[0];
+ mysignificand2 = significandParts()[1];
+ if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = mysignificand2 = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7fff;
+ mysignificand = mysignificand2 = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category!");
+ myexponent = 0x7fff;
+ mysignificand = significandParts()[0];
+ mysignificand2 = significandParts()[1];
+ }
+
+ uint64_t words[2];
+ words[0] = mysignificand;
+ words[1] = ((uint64_t)(sign & 1) << 63) |
+ ((myexponent & 0x7fff) << 48) |
+ (mysignificand2 & 0xffffffffffffLL);
+
+ return APInt(128, words);
+}
+
+APInt
+APFloat::convertDoubleAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
+ assert(partCount()==1);
+
+ uint64_t myexponent, mysignificand;
+
+ if (category==fcNormal) {
+ myexponent = exponent+1023; //bias
+ mysignificand = *significandParts();
+ if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x7ff;
+ mysignificand = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category!");
+ myexponent = 0x7ff;
+ mysignificand = *significandParts();
+ }
+
+ return APInt(64, ((((uint64_t)(sign & 1) << 63) |
+ ((myexponent & 0x7ff) << 52) |
+ (mysignificand & 0xfffffffffffffLL))));
+}
+
+APInt
+APFloat::convertFloatAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
+ assert(partCount()==1);
+
+ uint32_t myexponent, mysignificand;
+
+ if (category==fcNormal) {
+ myexponent = exponent+127; //bias
+ mysignificand = (uint32_t)*significandParts();
+ if (myexponent == 1 && !(mysignificand & 0x800000))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0xff;
+ mysignificand = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category!");
+ myexponent = 0xff;
+ mysignificand = (uint32_t)*significandParts();
+ }
+
+ return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
+ (mysignificand & 0x7fffff)));
+}
+
+APInt
+APFloat::convertHalfAPFloatToAPInt() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
+ assert(partCount()==1);
+
+ uint32_t myexponent, mysignificand;
+
+ if (category==fcNormal) {
+ myexponent = exponent+15; //bias
+ mysignificand = (uint32_t)*significandParts();
+ if (myexponent == 1 && !(mysignificand & 0x400))
+ myexponent = 0; // denormal
+ } else if (category==fcZero) {
+ myexponent = 0;
+ mysignificand = 0;
+ } else if (category==fcInfinity) {
+ myexponent = 0x1f;
+ mysignificand = 0;
+ } else {
+ assert(category == fcNaN && "Unknown category!");
+ myexponent = 0x1f;
+ mysignificand = (uint32_t)*significandParts();
+ }
+
+ return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
+ (mysignificand & 0x3ff)));
+}
+
+// This function creates an APInt that is just a bit map of the floating
+// point constant as it would appear in memory. It is not a conversion,
+// and treating the result as a normal integer is unlikely to be useful.
+
+APInt
+APFloat::bitcastToAPInt() const
+{
+ if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
+ return convertHalfAPFloatToAPInt();
+
+ if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
+ return convertFloatAPFloatToAPInt();
+
+ if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
+ return convertDoubleAPFloatToAPInt();
+
+ if (semantics == (const llvm::fltSemantics*)&IEEEquad)
+ return convertQuadrupleAPFloatToAPInt();
+
+ if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
+ return convertPPCDoubleDoubleAPFloatToAPInt();
+
+ assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
+ "unknown format!");
+ return convertF80LongDoubleAPFloatToAPInt();
+}
+
+float
+APFloat::convertToFloat() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
+ "Float semantics are not IEEEsingle");
+ APInt api = bitcastToAPInt();
+ return api.bitsToFloat();
+}
+
+double
+APFloat::convertToDouble() const
+{
+ assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
+ "Float semantics are not IEEEdouble");
+ APInt api = bitcastToAPInt();
+ return api.bitsToDouble();
+}
+
+/// Integer bit is explicit in this format. Intel hardware (387 and later)
+/// does not support these bit patterns:
+/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
+/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
+/// exponent = 0, integer bit 1 ("pseudodenormal")
+/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
+/// At the moment, the first two are treated as NaNs, the second two as Normal.
+void
+APFloat::initFromF80LongDoubleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==80);
+ uint64_t i1 = api.getRawData()[0];
+ uint64_t i2 = api.getRawData()[1];
+ uint64_t myexponent = (i2 & 0x7fff);
+ uint64_t mysignificand = i1;
+
+ initialize(&APFloat::x87DoubleExtended);
+ assert(partCount()==2);
+
+ sign = static_cast<unsigned int>(i2>>15);
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
+ // exponent meaningless
+ category = fcNaN;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = 0;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 16383;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = 0;
+ if (myexponent==0) // denormal
+ exponent = -16382;
+ }
+}
+
+void
+APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==128);
+ uint64_t i1 = api.getRawData()[0];
+ uint64_t i2 = api.getRawData()[1];
+ uint64_t myexponent = (i1 >> 52) & 0x7ff;
+ uint64_t mysignificand = i1 & 0xfffffffffffffLL;
+ uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
+ uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
+
+ initialize(&APFloat::PPCDoubleDouble);
+ assert(partCount()==2);
+
+ sign = static_cast<unsigned int>(i1>>63);
+ sign2 = static_cast<unsigned int>(i2>>63);
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ // exponent2 and significand2 are required to be 0; we don't check
+ category = fcZero;
+ } else if (myexponent==0x7ff && mysignificand==0) {
+ // exponent, significand meaningless
+ // exponent2 and significand2 are required to be 0; we don't check
+ category = fcInfinity;
+ } else if (myexponent==0x7ff && mysignificand!=0) {
+ // exponent meaningless. So is the whole second word, but keep it
+ // for determinism.
+ category = fcNaN;
+ exponent2 = myexponent2;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ } else {
+ category = fcNormal;
+ // Note there is no category2; the second word is treated as if it is
+ // fcNormal, although it might be something else considered by itself.
+ exponent = myexponent - 1023;
+ exponent2 = myexponent2 - 1023;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ if (myexponent==0) // denormal
+ exponent = -1022;
+ else
+ significandParts()[0] |= 0x10000000000000LL; // integer bit
+ if (myexponent2==0)
+ exponent2 = -1022;
+ else
+ significandParts()[1] |= 0x10000000000000LL; // integer bit
+ }
+}
+
+void
+APFloat::initFromQuadrupleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==128);
+ uint64_t i1 = api.getRawData()[0];
+ uint64_t i2 = api.getRawData()[1];
+ uint64_t myexponent = (i2 >> 48) & 0x7fff;
+ uint64_t mysignificand = i1;
+ uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
+
+ initialize(&APFloat::IEEEquad);
+ assert(partCount()==2);
+
+ sign = static_cast<unsigned int>(i2>>63);
+ if (myexponent==0 &&
+ (mysignificand==0 && mysignificand2==0)) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0x7fff &&
+ (mysignificand==0 && mysignificand2==0)) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0x7fff &&
+ (mysignificand!=0 || mysignificand2 !=0)) {
+ // exponent meaningless
+ category = fcNaN;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 16383;
+ significandParts()[0] = mysignificand;
+ significandParts()[1] = mysignificand2;
+ if (myexponent==0) // denormal
+ exponent = -16382;
+ else
+ significandParts()[1] |= 0x1000000000000LL; // integer bit
+ }
+}
+
+void
+APFloat::initFromDoubleAPInt(const APInt &api)
+{
+ assert(api.getBitWidth()==64);
+ uint64_t i = *api.getRawData();
+ uint64_t myexponent = (i >> 52) & 0x7ff;
+ uint64_t mysignificand = i & 0xfffffffffffffLL;
+
+ initialize(&APFloat::IEEEdouble);
+ assert(partCount()==1);
+
+ sign = static_cast<unsigned int>(i>>63);
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0x7ff && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0x7ff && mysignificand!=0) {
+ // exponent meaningless
+ category = fcNaN;
+ *significandParts() = mysignificand;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 1023;
+ *significandParts() = mysignificand;
+ if (myexponent==0) // denormal
+ exponent = -1022;
+ else
+ *significandParts() |= 0x10000000000000LL; // integer bit
+ }
+}
+
+void
+APFloat::initFromFloatAPInt(const APInt & api)
+{
+ assert(api.getBitWidth()==32);
+ uint32_t i = (uint32_t)*api.getRawData();
+ uint32_t myexponent = (i >> 23) & 0xff;
+ uint32_t mysignificand = i & 0x7fffff;
+
+ initialize(&APFloat::IEEEsingle);
+ assert(partCount()==1);
+
+ sign = i >> 31;
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0xff && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0xff && mysignificand!=0) {
+ // sign, exponent, significand meaningless
+ category = fcNaN;
+ *significandParts() = mysignificand;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 127; //bias
+ *significandParts() = mysignificand;
+ if (myexponent==0) // denormal
+ exponent = -126;
+ else
+ *significandParts() |= 0x800000; // integer bit
+ }
+}
+
+void
+APFloat::initFromHalfAPInt(const APInt & api)
+{
+ assert(api.getBitWidth()==16);
+ uint32_t i = (uint32_t)*api.getRawData();
+ uint32_t myexponent = (i >> 10) & 0x1f;
+ uint32_t mysignificand = i & 0x3ff;
+
+ initialize(&APFloat::IEEEhalf);
+ assert(partCount()==1);
+
+ sign = i >> 15;
+ if (myexponent==0 && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcZero;
+ } else if (myexponent==0x1f && mysignificand==0) {
+ // exponent, significand meaningless
+ category = fcInfinity;
+ } else if (myexponent==0x1f && mysignificand!=0) {
+ // sign, exponent, significand meaningless
+ category = fcNaN;
+ *significandParts() = mysignificand;
+ } else {
+ category = fcNormal;
+ exponent = myexponent - 15; //bias
+ *significandParts() = mysignificand;
+ if (myexponent==0) // denormal
+ exponent = -14;
+ else
+ *significandParts() |= 0x400; // integer bit
+ }
+}
+
+/// Treat api as containing the bits of a floating point number. Currently
+/// we infer the floating point type from the size of the APInt. The
+/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
+/// when the size is anything else).
+void
+APFloat::initFromAPInt(const APInt& api, bool isIEEE)
+{
+ if (api.getBitWidth() == 16)
+ return initFromHalfAPInt(api);
+ else if (api.getBitWidth() == 32)
+ return initFromFloatAPInt(api);
+ else if (api.getBitWidth()==64)
+ return initFromDoubleAPInt(api);
+ else if (api.getBitWidth()==80)
+ return initFromF80LongDoubleAPInt(api);
+ else if (api.getBitWidth()==128)
+ return (isIEEE ?
+ initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
+ else
+ llvm_unreachable(0);
+}
+
+APFloat
+APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
+{
+ return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE);
+}
+
+APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
+ APFloat Val(Sem, fcNormal, Negative);
+
+ // We want (in interchange format):
+ // sign = {Negative}
+ // exponent = 1..10
+ // significand = 1..1
+
+ Val.exponent = Sem.maxExponent; // unbiased
+
+ // 1-initialize all bits....
+ Val.zeroSignificand();
+ integerPart *significand = Val.significandParts();
+ unsigned N = partCountForBits(Sem.precision);
+ for (unsigned i = 0; i != N; ++i)
+ significand[i] = ~((integerPart) 0);
+
+ // ...and then clear the top bits for internal consistency.
+ if (Sem.precision % integerPartWidth != 0)
+ significand[N-1] &=
+ (((integerPart) 1) << (Sem.precision % integerPartWidth)) - 1;
+
+ return Val;
+}
+
+APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
+ APFloat Val(Sem, fcNormal, Negative);
+
+ // We want (in interchange format):
+ // sign = {Negative}
+ // exponent = 0..0
+ // significand = 0..01
+
+ Val.exponent = Sem.minExponent; // unbiased
+ Val.zeroSignificand();
+ Val.significandParts()[0] = 1;
+ return Val;
+}
+
+APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
+ APFloat Val(Sem, fcNormal, Negative);
+
+ // We want (in interchange format):
+ // sign = {Negative}
+ // exponent = 0..0
+ // significand = 10..0
+
+ Val.exponent = Sem.minExponent;
+ Val.zeroSignificand();
+ Val.significandParts()[partCountForBits(Sem.precision)-1] |=
+ (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
+
+ return Val;
+}
+
+APFloat::APFloat(const APInt& api, bool isIEEE) : exponent2(0), sign2(0) {
+ initFromAPInt(api, isIEEE);
+}
+
+APFloat::APFloat(float f) : exponent2(0), sign2(0) {
+ initFromAPInt(APInt::floatToBits(f));
+}
+
+APFloat::APFloat(double d) : exponent2(0), sign2(0) {
+ initFromAPInt(APInt::doubleToBits(d));
+}
+
+namespace {
+ void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
+ Buffer.append(Str.begin(), Str.end());
+ }
+
+ /// Removes data from the given significand until it is no more
+ /// precise than is required for the desired precision.
+ void AdjustToPrecision(APInt &significand,
+ int &exp, unsigned FormatPrecision) {
+ unsigned bits = significand.getActiveBits();
+
+ // 196/59 is a very slight overestimate of lg_2(10).
+ unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
+
+ if (bits <= bitsRequired) return;
+
+ unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
+ if (!tensRemovable) return;
+
+ exp += tensRemovable;
+
+ APInt divisor(significand.getBitWidth(), 1);
+ APInt powten(significand.getBitWidth(), 10);
+ while (true) {
+ if (tensRemovable & 1)
+ divisor *= powten;
+ tensRemovable >>= 1;
+ if (!tensRemovable) break;
+ powten *= powten;
+ }
+
+ significand = significand.udiv(divisor);
+
+ // Truncate the significand down to its active bit count, but
+ // don't try to drop below 32.
+ unsigned newPrecision = std::max(32U, significand.getActiveBits());
+ significand = significand.trunc(newPrecision);
+ }
+
+
+ void AdjustToPrecision(SmallVectorImpl<char> &buffer,
+ int &exp, unsigned FormatPrecision) {
+ unsigned N = buffer.size();
+ if (N <= FormatPrecision) return;
+
+ // The most significant figures are the last ones in the buffer.
+ unsigned FirstSignificant = N - FormatPrecision;
+
+ // Round.
+ // FIXME: this probably shouldn't use 'round half up'.
+
+ // Rounding down is just a truncation, except we also want to drop
+ // trailing zeros from the new result.
+ if (buffer[FirstSignificant - 1] < '5') {
+ while (FirstSignificant < N && buffer[FirstSignificant] == '0')
+ FirstSignificant++;
+
+ exp += FirstSignificant;
+ buffer.erase(&buffer[0], &buffer[FirstSignificant]);
+ return;
+ }
+
+ // Rounding up requires a decimal add-with-carry. If we continue
+ // the carry, the newly-introduced zeros will just be truncated.
+ for (unsigned I = FirstSignificant; I != N; ++I) {
+ if (buffer[I] == '9') {
+ FirstSignificant++;
+ } else {
+ buffer[I]++;
+ break;
+ }
+ }
+
+ // If we carried through, we have exactly one digit of precision.
+ if (FirstSignificant == N) {
+ exp += FirstSignificant;
+ buffer.clear();
+ buffer.push_back('1');
+ return;
+ }
+
+ exp += FirstSignificant;
+ buffer.erase(&buffer[0], &buffer[FirstSignificant]);
+ }
+}
+
+void APFloat::toString(SmallVectorImpl<char> &Str,
+ unsigned FormatPrecision,
+ unsigned FormatMaxPadding) const {
+ switch (category) {
+ case fcInfinity:
+ if (isNegative())
+ return append(Str, "-Inf");
+ else
+ return append(Str, "+Inf");
+
+ case fcNaN: return append(Str, "NaN");
+
+ case fcZero:
+ if (isNegative())
+ Str.push_back('-');
+
+ if (!FormatMaxPadding)
+ append(Str, "0.0E+0");
+ else
+ Str.push_back('0');
+ return;
+
+ case fcNormal:
+ break;
+ }
+
+ if (isNegative())
+ Str.push_back('-');
+
+ // Decompose the number into an APInt and an exponent.
+ int exp = exponent - ((int) semantics->precision - 1);
+ APInt significand(semantics->precision,
+ makeArrayRef(significandParts(),
+ partCountForBits(semantics->precision)));
+
+ // Set FormatPrecision if zero. We want to do this before we
+ // truncate trailing zeros, as those are part of the precision.
+ if (!FormatPrecision) {
+ // It's an interesting question whether to use the nominal
+ // precision or the active precision here for denormals.
+
+ // FormatPrecision = ceil(significandBits / lg_2(10))
+ FormatPrecision = (semantics->precision * 59 + 195) / 196;
+ }
+
+ // Ignore trailing binary zeros.
+ int trailingZeros = significand.countTrailingZeros();
+ exp += trailingZeros;
+ significand = significand.lshr(trailingZeros);
+
+ // Change the exponent from 2^e to 10^e.
+ if (exp == 0) {
+ // Nothing to do.
+ } else if (exp > 0) {
+ // Just shift left.
+ significand = significand.zext(semantics->precision + exp);
+ significand <<= exp;
+ exp = 0;
+ } else { /* exp < 0 */
+ int texp = -exp;
+
+ // We transform this using the identity:
+ // (N)(2^-e) == (N)(5^e)(10^-e)
+ // This means we have to multiply N (the significand) by 5^e.
+ // To avoid overflow, we have to operate on numbers large
+ // enough to store N * 5^e:
+ // log2(N * 5^e) == log2(N) + e * log2(5)
+ // <= semantics->precision + e * 137 / 59
+ // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
+
+ unsigned precision = semantics->precision + (137 * texp + 136) / 59;
+
+ // Multiply significand by 5^e.
+ // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
+ significand = significand.zext(precision);
+ APInt five_to_the_i(precision, 5);
+ while (true) {
+ if (texp & 1) significand *= five_to_the_i;
+
+ texp >>= 1;
+ if (!texp) break;
+ five_to_the_i *= five_to_the_i;
+ }
+ }
+
+ AdjustToPrecision(significand, exp, FormatPrecision);
+
+ llvm::SmallVector<char, 256> buffer;
+
+ // Fill the buffer.
+ unsigned precision = significand.getBitWidth();
+ APInt ten(precision, 10);
+ APInt digit(precision, 0);
+
+ bool inTrail = true;
+ while (significand != 0) {
+ // digit <- significand % 10
+ // significand <- significand / 10
+ APInt::udivrem(significand, ten, significand, digit);
+
+ unsigned d = digit.getZExtValue();
+
+ // Drop trailing zeros.
+ if (inTrail && !d) exp++;
+ else {
+ buffer.push_back((char) ('0' + d));
+ inTrail = false;
+ }
+ }
+
+ assert(!buffer.empty() && "no characters in buffer!");
+
+ // Drop down to FormatPrecision.
+ // TODO: don't do more precise calculations above than are required.
+ AdjustToPrecision(buffer, exp, FormatPrecision);
+
+ unsigned NDigits = buffer.size();
+
+ // Check whether we should use scientific notation.
+ bool FormatScientific;
+ if (!FormatMaxPadding)
+ FormatScientific = true;
+ else {
+ if (exp >= 0) {
+ // 765e3 --> 765000
+ // ^^^
+ // But we shouldn't make the number look more precise than it is.
+ FormatScientific = ((unsigned) exp > FormatMaxPadding ||
+ NDigits + (unsigned) exp > FormatPrecision);
+ } else {
+ // Power of the most significant digit.
+ int MSD = exp + (int) (NDigits - 1);
+ if (MSD >= 0) {
+ // 765e-2 == 7.65
+ FormatScientific = false;
+ } else {
+ // 765e-5 == 0.00765
+ // ^ ^^
+ FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
+ }
+ }
+ }
+
+ // Scientific formatting is pretty straightforward.
+ if (FormatScientific) {
+ exp += (NDigits - 1);
+
+ Str.push_back(buffer[NDigits-1]);
+ Str.push_back('.');
+ if (NDigits == 1)
+ Str.push_back('0');
+ else
+ for (unsigned I = 1; I != NDigits; ++I)
+ Str.push_back(buffer[NDigits-1-I]);
+ Str.push_back('E');
+
+ Str.push_back(exp >= 0 ? '+' : '-');
+ if (exp < 0) exp = -exp;
+ SmallVector<char, 6> expbuf;
+ do {
+ expbuf.push_back((char) ('0' + (exp % 10)));
+ exp /= 10;
+ } while (exp);
+ for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
+ Str.push_back(expbuf[E-1-I]);
+ return;
+ }
+
+ // Non-scientific, positive exponents.
+ if (exp >= 0) {
+ for (unsigned I = 0; I != NDigits; ++I)
+ Str.push_back(buffer[NDigits-1-I]);
+ for (unsigned I = 0; I != (unsigned) exp; ++I)
+ Str.push_back('0');
+ return;
+ }
+
+ // Non-scientific, negative exponents.
+
+ // The number of digits to the left of the decimal point.
+ int NWholeDigits = exp + (int) NDigits;
+
+ unsigned I = 0;
+ if (NWholeDigits > 0) {
+ for (; I != (unsigned) NWholeDigits; ++I)
+ Str.push_back(buffer[NDigits-I-1]);
+ Str.push_back('.');
+ } else {
+ unsigned NZeros = 1 + (unsigned) -NWholeDigits;
+
+ Str.push_back('0');
+ Str.push_back('.');
+ for (unsigned Z = 1; Z != NZeros; ++Z)
+ Str.push_back('0');
+ }
+
+ for (; I != NDigits; ++I)
+ Str.push_back(buffer[NDigits-I-1]);
+}
+
+bool APFloat::getExactInverse(APFloat *inv) const {
+ // We can only guarantee the existence of an exact inverse for IEEE floats.
+ if (semantics != &IEEEhalf && semantics != &IEEEsingle &&
+ semantics != &IEEEdouble && semantics != &IEEEquad)
+ return false;
+
+ // Special floats and denormals have no exact inverse.
+ if (category != fcNormal)
+ return false;
+
+ // Check that the number is a power of two by making sure that only the
+ // integer bit is set in the significand.
+ if (significandLSB() != semantics->precision - 1)
+ return false;
+
+ // Get the inverse.
+ APFloat reciprocal(*semantics, 1ULL);
+ if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
+ return false;
+
+ // Avoid multiplication with a denormal, it is not safe on all platforms and
+ // may be slower than a normal division.
+ if (reciprocal.significandMSB() + 1 < reciprocal.semantics->precision)
+ return false;
+
+ assert(reciprocal.category == fcNormal &&
+ reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
+
+ if (inv)
+ *inv = reciprocal;
+
+ return true;
+}
OpenPOWER on IntegriCloud