summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp')
-rw-r--r--contrib/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp709
1 files changed, 709 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp b/contrib/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
new file mode 100644
index 0000000..1a4b4f5
--- /dev/null
+++ b/contrib/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
@@ -0,0 +1,709 @@
+//=-- CoverageMappingReader.cpp - Code coverage mapping reader ----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for reading coverage mapping data for
+// instrumentation based coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Object/MachOUniversal.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace coverage;
+using namespace object;
+
+#define DEBUG_TYPE "coverage-mapping"
+
+void CoverageMappingIterator::increment() {
+ // Check if all the records were read or if an error occurred while reading
+ // the next record.
+ if (auto E = Reader->readNextRecord(Record)) {
+ handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
+ if (CME.get() == coveragemap_error::eof)
+ *this = CoverageMappingIterator();
+ else
+ llvm_unreachable("Unexpected error in coverage mapping iterator");
+ });
+ }
+}
+
+Error RawCoverageReader::readULEB128(uint64_t &Result) {
+ if (Data.size() < 1)
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ unsigned N = 0;
+ Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ return Error::success();
+}
+
+Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ if (Result >= MaxPlus1)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return Error::success();
+}
+
+Error RawCoverageReader::readSize(uint64_t &Result) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ // Sanity check the number.
+ if (Result > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return Error::success();
+}
+
+Error RawCoverageReader::readString(StringRef &Result) {
+ uint64_t Length;
+ if (auto Err = readSize(Length))
+ return Err;
+ Result = Data.substr(0, Length);
+ Data = Data.substr(Length);
+ return Error::success();
+}
+
+Error RawCoverageFilenamesReader::read() {
+ uint64_t NumFilenames;
+ if (auto Err = readSize(NumFilenames))
+ return Err;
+ for (size_t I = 0; I < NumFilenames; ++I) {
+ StringRef Filename;
+ if (auto Err = readString(Filename))
+ return Err;
+ Filenames.push_back(Filename);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
+ auto Tag = Value & Counter::EncodingTagMask;
+ switch (Tag) {
+ case Counter::Zero:
+ C = Counter::getZero();
+ return Error::success();
+ case Counter::CounterValueReference:
+ C = Counter::getCounter(Value >> Counter::EncodingTagBits);
+ return Error::success();
+ default:
+ break;
+ }
+ Tag -= Counter::Expression;
+ switch (Tag) {
+ case CounterExpression::Subtract:
+ case CounterExpression::Add: {
+ auto ID = Value >> Counter::EncodingTagBits;
+ if (ID >= Expressions.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
+ C = Counter::getExpression(ID);
+ break;
+ }
+ default:
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::readCounter(Counter &C) {
+ uint64_t EncodedCounter;
+ if (auto Err =
+ readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = decodeCounter(EncodedCounter, C))
+ return Err;
+ return Error::success();
+}
+
+static const unsigned EncodingExpansionRegionBit = 1
+ << Counter::EncodingTagBits;
+
+/// \brief Read the sub-array of regions for the given inferred file id.
+/// \param NumFileIDs the number of file ids that are defined for this
+/// function.
+Error RawCoverageMappingReader::readMappingRegionsSubArray(
+ std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
+ size_t NumFileIDs) {
+ uint64_t NumRegions;
+ if (auto Err = readSize(NumRegions))
+ return Err;
+ unsigned LineStart = 0;
+ for (size_t I = 0; I < NumRegions; ++I) {
+ Counter C;
+ CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
+
+ // Read the combined counter + region kind.
+ uint64_t EncodedCounterAndRegion;
+ if (auto Err = readIntMax(EncodedCounterAndRegion,
+ std::numeric_limits<unsigned>::max()))
+ return Err;
+ unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
+ uint64_t ExpandedFileID = 0;
+ if (Tag != Counter::Zero) {
+ if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
+ return Err;
+ } else {
+ // Is it an expansion region?
+ if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
+ Kind = CounterMappingRegion::ExpansionRegion;
+ ExpandedFileID = EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits;
+ if (ExpandedFileID >= NumFileIDs)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ } else {
+ switch (EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits) {
+ case CounterMappingRegion::CodeRegion:
+ // Don't do anything when we have a code region with a zero counter.
+ break;
+ case CounterMappingRegion::SkippedRegion:
+ Kind = CounterMappingRegion::SkippedRegion;
+ break;
+ default:
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ }
+ }
+ }
+
+ // Read the source range.
+ uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
+ if (auto Err =
+ readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readULEB128(ColumnStart))
+ return Err;
+ if (ColumnStart > std::numeric_limits<unsigned>::max())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
+ return Err;
+ LineStart += LineStartDelta;
+ // Adjust the column locations for the empty regions that are supposed to
+ // cover whole lines. Those regions should be encoded with the
+ // column range (1 -> std::numeric_limits<unsigned>::max()), but because
+ // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
+ // we set the column range to (0 -> 0) to ensure that the column start and
+ // column end take up one byte each.
+ // The std::numeric_limits<unsigned>::max() is used to represent a column
+ // position at the end of the line without knowing the length of that line.
+ if (ColumnStart == 0 && ColumnEnd == 0) {
+ ColumnStart = 1;
+ ColumnEnd = std::numeric_limits<unsigned>::max();
+ }
+
+ DEBUG({
+ dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
+ << ColumnStart << " -> " << (LineStart + NumLines) << ":"
+ << ColumnEnd << ", ";
+ if (Kind == CounterMappingRegion::ExpansionRegion)
+ dbgs() << "Expands to file " << ExpandedFileID;
+ else
+ CounterMappingContext(Expressions).dump(C, dbgs());
+ dbgs() << "\n";
+ });
+
+ MappingRegions.push_back(CounterMappingRegion(
+ C, InferredFileID, ExpandedFileID, LineStart, ColumnStart,
+ LineStart + NumLines, ColumnEnd, Kind));
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::read() {
+
+ // Read the virtual file mapping.
+ llvm::SmallVector<unsigned, 8> VirtualFileMapping;
+ uint64_t NumFileMappings;
+ if (auto Err = readSize(NumFileMappings))
+ return Err;
+ for (size_t I = 0; I < NumFileMappings; ++I) {
+ uint64_t FilenameIndex;
+ if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
+ return Err;
+ VirtualFileMapping.push_back(FilenameIndex);
+ }
+
+ // Construct the files using unique filenames and virtual file mapping.
+ for (auto I : VirtualFileMapping) {
+ Filenames.push_back(TranslationUnitFilenames[I]);
+ }
+
+ // Read the expressions.
+ uint64_t NumExpressions;
+ if (auto Err = readSize(NumExpressions))
+ return Err;
+ // Create an array of dummy expressions that get the proper counters
+ // when the expressions are read, and the proper kinds when the counters
+ // are decoded.
+ Expressions.resize(
+ NumExpressions,
+ CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
+ for (size_t I = 0; I < NumExpressions; ++I) {
+ if (auto Err = readCounter(Expressions[I].LHS))
+ return Err;
+ if (auto Err = readCounter(Expressions[I].RHS))
+ return Err;
+ }
+
+ // Read the mapping regions sub-arrays.
+ for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
+ InferredFileID < S; ++InferredFileID) {
+ if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
+ VirtualFileMapping.size()))
+ return Err;
+ }
+
+ // Set the counters for the expansion regions.
+ // i.e. Counter of expansion region = counter of the first region
+ // from the expanded file.
+ // Perform multiple passes to correctly propagate the counters through
+ // all the nested expansion regions.
+ SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
+ FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
+ for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
+ for (auto &R : MappingRegions) {
+ if (R.Kind != CounterMappingRegion::ExpansionRegion)
+ continue;
+ assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
+ FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
+ }
+ for (auto &R : MappingRegions) {
+ if (FileIDExpansionRegionMapping[R.FileID]) {
+ FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
+ FileIDExpansionRegionMapping[R.FileID] = nullptr;
+ }
+ }
+ }
+
+ return Error::success();
+}
+
+Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
+ // A dummy coverage mapping data consists of just one region with zero count.
+ uint64_t NumFileMappings;
+ if (Error Err = readSize(NumFileMappings))
+ return std::move(Err);
+ if (NumFileMappings != 1)
+ return false;
+ // We don't expect any specific value for the filename index, just skip it.
+ uint64_t FilenameIndex;
+ if (Error Err =
+ readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
+ return std::move(Err);
+ uint64_t NumExpressions;
+ if (Error Err = readSize(NumExpressions))
+ return std::move(Err);
+ if (NumExpressions != 0)
+ return false;
+ uint64_t NumRegions;
+ if (Error Err = readSize(NumRegions))
+ return std::move(Err);
+ if (NumRegions != 1)
+ return false;
+ uint64_t EncodedCounterAndRegion;
+ if (Error Err = readIntMax(EncodedCounterAndRegion,
+ std::numeric_limits<unsigned>::max()))
+ return std::move(Err);
+ unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
+ return Tag == Counter::Zero;
+}
+
+Error InstrProfSymtab::create(SectionRef &Section) {
+ if (auto EC = Section.getContents(Data))
+ return errorCodeToError(EC);
+ Address = Section.getAddress();
+ return Error::success();
+}
+
+StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
+ if (Pointer < Address)
+ return StringRef();
+ auto Offset = Pointer - Address;
+ if (Offset + Size > Data.size())
+ return StringRef();
+ return Data.substr(Pointer - Address, Size);
+}
+
+// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
+static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
+ // The hash value of dummy mapping records is always zero.
+ if (Hash)
+ return false;
+ return RawCoverageMappingDummyChecker(Mapping).isDummy();
+}
+
+namespace {
+struct CovMapFuncRecordReader {
+ // The interface to read coverage mapping function records for a module.
+ //
+ // \p Buf points to the buffer containing the \c CovHeader of the coverage
+ // mapping data associated with the module.
+ //
+ // Returns a pointer to the next \c CovHeader if it exists, or a pointer
+ // greater than \p End if not.
+ virtual Expected<const char *> readFunctionRecords(const char *Buf,
+ const char *End) = 0;
+ virtual ~CovMapFuncRecordReader() {}
+ template <class IntPtrT, support::endianness Endian>
+ static Expected<std::unique_ptr<CovMapFuncRecordReader>>
+ get(coverage::CovMapVersion Version, InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F);
+};
+
+// A class for reading coverage mapping function records for a module.
+template <coverage::CovMapVersion Version, class IntPtrT,
+ support::endianness Endian>
+class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
+ typedef typename coverage::CovMapTraits<
+ Version, IntPtrT>::CovMapFuncRecordType FuncRecordType;
+ typedef typename coverage::CovMapTraits<Version, IntPtrT>::NameRefType
+ NameRefType;
+
+ // Maps function's name references to the indexes of their records
+ // in \c Records.
+ llvm::DenseMap<NameRefType, size_t> FunctionRecords;
+ InstrProfSymtab &ProfileNames;
+ std::vector<StringRef> &Filenames;
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;
+
+ // Add the record to the collection if we don't already have a record that
+ // points to the same function name. This is useful to ignore the redundant
+ // records for the functions with ODR linkage.
+ // In addition, prefer records with real coverage mapping data to dummy
+ // records, which were emitted for inline functions which were seen but
+ // not used in the corresponding translation unit.
+ Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
+ StringRef Mapping, size_t FilenamesBegin) {
+ uint64_t FuncHash = CFR->template getFuncHash<Endian>();
+ NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
+ auto InsertResult =
+ FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
+ if (InsertResult.second) {
+ StringRef FuncName;
+ if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
+ return Err;
+ Records.emplace_back(Version, FuncName, FuncHash, Mapping, FilenamesBegin,
+ Filenames.size() - FilenamesBegin);
+ return Error::success();
+ }
+ // Update the existing record if it's a dummy and the new record is real.
+ size_t OldRecordIndex = InsertResult.first->second;
+ BinaryCoverageReader::ProfileMappingRecord &OldRecord =
+ Records[OldRecordIndex];
+ Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
+ OldRecord.FunctionHash, OldRecord.CoverageMapping);
+ if (Error Err = OldIsDummyExpected.takeError())
+ return Err;
+ if (!*OldIsDummyExpected)
+ return Error::success();
+ Expected<bool> NewIsDummyExpected =
+ isCoverageMappingDummy(FuncHash, Mapping);
+ if (Error Err = NewIsDummyExpected.takeError())
+ return Err;
+ if (*NewIsDummyExpected)
+ return Error::success();
+ OldRecord.FunctionHash = FuncHash;
+ OldRecord.CoverageMapping = Mapping;
+ OldRecord.FilenamesBegin = FilenamesBegin;
+ OldRecord.FilenamesSize = Filenames.size() - FilenamesBegin;
+ return Error::success();
+ }
+
+public:
+ VersionedCovMapFuncRecordReader(
+ InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F)
+ : ProfileNames(P), Filenames(F), Records(R) {}
+ ~VersionedCovMapFuncRecordReader() override {}
+
+ Expected<const char *> readFunctionRecords(const char *Buf,
+ const char *End) override {
+ using namespace support;
+ if (Buf + sizeof(CovMapHeader) > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ auto CovHeader = reinterpret_cast<const coverage::CovMapHeader *>(Buf);
+ uint32_t NRecords = CovHeader->getNRecords<Endian>();
+ uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
+ uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
+ assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
+ Buf = reinterpret_cast<const char *>(CovHeader + 1);
+
+ // Skip past the function records, saving the start and end for later.
+ const char *FunBuf = Buf;
+ Buf += NRecords * sizeof(FuncRecordType);
+ const char *FunEnd = Buf;
+
+ // Get the filenames.
+ if (Buf + FilenamesSize > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ size_t FilenamesBegin = Filenames.size();
+ RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames);
+ if (auto Err = Reader.read())
+ return std::move(Err);
+ Buf += FilenamesSize;
+
+ // We'll read the coverage mapping records in the loop below.
+ const char *CovBuf = Buf;
+ Buf += CoverageSize;
+ const char *CovEnd = Buf;
+
+ if (Buf > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ // Each coverage map has an alignment of 8, so we need to adjust alignment
+ // before reading the next map.
+ Buf += alignmentAdjustment(Buf, 8);
+
+ auto CFR = reinterpret_cast<const FuncRecordType *>(FunBuf);
+ while ((const char *)CFR < FunEnd) {
+ // Read the function information
+ uint32_t DataSize = CFR->template getDataSize<Endian>();
+
+ // Now use that to read the coverage data.
+ if (CovBuf + DataSize > CovEnd)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ auto Mapping = StringRef(CovBuf, DataSize);
+ CovBuf += DataSize;
+
+ if (Error Err =
+ insertFunctionRecordIfNeeded(CFR, Mapping, FilenamesBegin))
+ return std::move(Err);
+ CFR++;
+ }
+ return Buf;
+ }
+};
+} // end anonymous namespace
+
+template <class IntPtrT, support::endianness Endian>
+Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
+ coverage::CovMapVersion Version, InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F) {
+ using namespace coverage;
+ switch (Version) {
+ case CovMapVersion::Version1:
+ return llvm::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F);
+ case CovMapVersion::Version2:
+ // Decompress the name data.
+ if (Error E = P.create(P.getNameData()))
+ return std::move(E);
+ return llvm::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F);
+ }
+ llvm_unreachable("Unsupported version");
+}
+
+template <typename T, support::endianness Endian>
+static Error readCoverageMappingData(
+ InstrProfSymtab &ProfileNames, StringRef Data,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
+ std::vector<StringRef> &Filenames) {
+ using namespace coverage;
+ // Read the records in the coverage data section.
+ auto CovHeader =
+ reinterpret_cast<const coverage::CovMapHeader *>(Data.data());
+ CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
+ if (Version > coverage::CovMapVersion::CurrentVersion)
+ return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
+ Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
+ CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
+ Filenames);
+ if (Error E = ReaderExpected.takeError())
+ return E;
+ auto Reader = std::move(ReaderExpected.get());
+ for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) {
+ auto NextHeaderOrErr = Reader->readFunctionRecords(Buf, End);
+ if (auto E = NextHeaderOrErr.takeError())
+ return E;
+ Buf = NextHeaderOrErr.get();
+ }
+ return Error::success();
+}
+static const char *TestingFormatMagic = "llvmcovmtestdata";
+
+static Error loadTestingFormat(StringRef Data, InstrProfSymtab &ProfileNames,
+ StringRef &CoverageMapping,
+ uint8_t &BytesInAddress,
+ support::endianness &Endian) {
+ BytesInAddress = 8;
+ Endian = support::endianness::little;
+
+ Data = Data.substr(StringRef(TestingFormatMagic).size());
+ if (Data.size() < 1)
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ unsigned N = 0;
+ auto ProfileNamesSize =
+ decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ if (Data.size() < 1)
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ N = 0;
+ uint64_t Address =
+ decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ if (Data.size() < ProfileNamesSize)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
+ return E;
+ CoverageMapping = Data.substr(ProfileNamesSize);
+ // Skip the padding bytes because coverage map data has an alignment of 8.
+ if (CoverageMapping.size() < 1)
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ size_t Pad = alignmentAdjustment(CoverageMapping.data(), 8);
+ if (CoverageMapping.size() < Pad)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ CoverageMapping = CoverageMapping.substr(Pad);
+ return Error::success();
+}
+
+static Expected<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) {
+ StringRef FoundName;
+ for (const auto &Section : OF.sections()) {
+ if (auto EC = Section.getName(FoundName))
+ return errorCodeToError(EC);
+ if (FoundName == Name)
+ return Section;
+ }
+ return make_error<CoverageMapError>(coveragemap_error::no_data_found);
+}
+
+static Error loadBinaryFormat(MemoryBufferRef ObjectBuffer,
+ InstrProfSymtab &ProfileNames,
+ StringRef &CoverageMapping,
+ uint8_t &BytesInAddress,
+ support::endianness &Endian, StringRef Arch) {
+ auto BinOrErr = object::createBinary(ObjectBuffer);
+ if (!BinOrErr)
+ return BinOrErr.takeError();
+ auto Bin = std::move(BinOrErr.get());
+ std::unique_ptr<ObjectFile> OF;
+ if (auto *Universal = dyn_cast<object::MachOUniversalBinary>(Bin.get())) {
+ // If we have a universal binary, try to look up the object for the
+ // appropriate architecture.
+ auto ObjectFileOrErr = Universal->getObjectForArch(Arch);
+ if (!ObjectFileOrErr)
+ return ObjectFileOrErr.takeError();
+ OF = std::move(ObjectFileOrErr.get());
+ } else if (isa<object::ObjectFile>(Bin.get())) {
+ // For any other object file, upcast and take ownership.
+ OF.reset(cast<object::ObjectFile>(Bin.release()));
+ // If we've asked for a particular arch, make sure they match.
+ if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
+ return errorCodeToError(object_error::arch_not_found);
+ } else
+ // We can only handle object files.
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+
+ // The coverage uses native pointer sizes for the object it's written in.
+ BytesInAddress = OF->getBytesInAddress();
+ Endian = OF->isLittleEndian() ? support::endianness::little
+ : support::endianness::big;
+
+ // Look for the sections that we are interested in.
+ auto NamesSection = lookupSection(*OF, getInstrProfNameSectionName(false));
+ if (auto E = NamesSection.takeError())
+ return E;
+ auto CoverageSection =
+ lookupSection(*OF, getInstrProfCoverageSectionName(false));
+ if (auto E = CoverageSection.takeError())
+ return E;
+
+ // Get the contents of the given sections.
+ if (auto EC = CoverageSection->getContents(CoverageMapping))
+ return errorCodeToError(EC);
+ if (Error E = ProfileNames.create(*NamesSection))
+ return E;
+
+ return Error::success();
+}
+
+Expected<std::unique_ptr<BinaryCoverageReader>>
+BinaryCoverageReader::create(std::unique_ptr<MemoryBuffer> &ObjectBuffer,
+ StringRef Arch) {
+ std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader());
+
+ StringRef Coverage;
+ uint8_t BytesInAddress;
+ support::endianness Endian;
+ Error E;
+ consumeError(std::move(E));
+ if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic))
+ // This is a special format used for testing.
+ E = loadTestingFormat(ObjectBuffer->getBuffer(), Reader->ProfileNames,
+ Coverage, BytesInAddress, Endian);
+ else
+ E = loadBinaryFormat(ObjectBuffer->getMemBufferRef(), Reader->ProfileNames,
+ Coverage, BytesInAddress, Endian, Arch);
+ if (E)
+ return std::move(E);
+
+ if (BytesInAddress == 4 && Endian == support::endianness::little)
+ E = readCoverageMappingData<uint32_t, support::endianness::little>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames);
+ else if (BytesInAddress == 4 && Endian == support::endianness::big)
+ E = readCoverageMappingData<uint32_t, support::endianness::big>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames);
+ else if (BytesInAddress == 8 && Endian == support::endianness::little)
+ E = readCoverageMappingData<uint64_t, support::endianness::little>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames);
+ else if (BytesInAddress == 8 && Endian == support::endianness::big)
+ E = readCoverageMappingData<uint64_t, support::endianness::big>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames);
+ else
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ if (E)
+ return std::move(E);
+ return std::move(Reader);
+}
+
+Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
+ if (CurrentRecord >= MappingRecords.size())
+ return make_error<CoverageMapError>(coveragemap_error::eof);
+
+ FunctionsFilenames.clear();
+ Expressions.clear();
+ MappingRegions.clear();
+ auto &R = MappingRecords[CurrentRecord];
+ RawCoverageMappingReader Reader(
+ R.CoverageMapping,
+ makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
+ FunctionsFilenames, Expressions, MappingRegions);
+ if (auto Err = Reader.read())
+ return Err;
+
+ Record.FunctionName = R.FunctionName;
+ Record.FunctionHash = R.FunctionHash;
+ Record.Filenames = FunctionsFilenames;
+ Record.Expressions = Expressions;
+ Record.MappingRegions = MappingRegions;
+
+ ++CurrentRecord;
+ return Error::success();
+}
OpenPOWER on IntegriCloud