diff options
Diffstat (limited to 'contrib/llvm/lib/MC/MCAssembler.cpp')
-rw-r--r-- | contrib/llvm/lib/MC/MCAssembler.cpp | 975 |
1 files changed, 975 insertions, 0 deletions
diff --git a/contrib/llvm/lib/MC/MCAssembler.cpp b/contrib/llvm/lib/MC/MCAssembler.cpp new file mode 100644 index 0000000..66ba9b8 --- /dev/null +++ b/contrib/llvm/lib/MC/MCAssembler.cpp @@ -0,0 +1,975 @@ +//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "assembler" +#include "llvm/MC/MCAssembler.h" +#include "llvm/MC/MCAsmLayout.h" +#include "llvm/MC/MCCodeEmitter.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCFixupKindInfo.h" +#include "llvm/MC/MCObjectWriter.h" +#include "llvm/MC/MCSection.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/MC/MCValue.h" +#include "llvm/MC/MCDwarf.h" +#include "llvm/MC/MCAsmBackend.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/TargetRegistry.h" + +using namespace llvm; + +namespace { +namespace stats { +STATISTIC(EmittedFragments, "Number of emitted assembler fragments"); +STATISTIC(evaluateFixup, "Number of evaluated fixups"); +STATISTIC(FragmentLayouts, "Number of fragment layouts"); +STATISTIC(ObjectBytes, "Number of emitted object file bytes"); +STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); +STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); +} +} + +// FIXME FIXME FIXME: There are number of places in this file where we convert +// what is a 64-bit assembler value used for computation into a value in the +// object file, which may truncate it. We should detect that truncation where +// invalid and report errors back. + +/* *** */ + +MCAsmLayout::MCAsmLayout(MCAssembler &Asm) + : Assembler(Asm), LastValidFragment() + { + // Compute the section layout order. Virtual sections must go last. + for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) + if (!it->getSection().isVirtualSection()) + SectionOrder.push_back(&*it); + for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) + if (it->getSection().isVirtualSection()) + SectionOrder.push_back(&*it); +} + +bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const { + const MCSectionData &SD = *F->getParent(); + const MCFragment *LastValid = LastValidFragment.lookup(&SD); + if (!LastValid) + return false; + assert(LastValid->getParent() == F->getParent()); + return F->getLayoutOrder() <= LastValid->getLayoutOrder(); +} + +void MCAsmLayout::Invalidate(MCFragment *F) { + // If this fragment wasn't already up-to-date, we don't need to do anything. + if (!isFragmentUpToDate(F)) + return; + + // Otherwise, reset the last valid fragment to this fragment. + const MCSectionData &SD = *F->getParent(); + LastValidFragment[&SD] = F; +} + +void MCAsmLayout::EnsureValid(const MCFragment *F) const { + MCSectionData &SD = *F->getParent(); + + MCFragment *Cur = LastValidFragment[&SD]; + if (!Cur) + Cur = &*SD.begin(); + else + Cur = Cur->getNextNode(); + + // Advance the layout position until the fragment is up-to-date. + while (!isFragmentUpToDate(F)) { + const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur); + Cur = Cur->getNextNode(); + } +} + +uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const { + EnsureValid(F); + assert(F->Offset != ~UINT64_C(0) && "Address not set!"); + return F->Offset; +} + +uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const { + const MCSymbol &S = SD->getSymbol(); + + // If this is a variable, then recursively evaluate now. + if (S.isVariable()) { + MCValue Target; + if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this)) + report_fatal_error("unable to evaluate offset for variable '" + + S.getName() + "'"); + + // Verify that any used symbols are defined. + if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined()) + report_fatal_error("unable to evaluate offset to undefined symbol '" + + Target.getSymA()->getSymbol().getName() + "'"); + if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined()) + report_fatal_error("unable to evaluate offset to undefined symbol '" + + Target.getSymB()->getSymbol().getName() + "'"); + + uint64_t Offset = Target.getConstant(); + if (Target.getSymA()) + Offset += getSymbolOffset(&Assembler.getSymbolData( + Target.getSymA()->getSymbol())); + if (Target.getSymB()) + Offset -= getSymbolOffset(&Assembler.getSymbolData( + Target.getSymB()->getSymbol())); + return Offset; + } + + assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!"); + return getFragmentOffset(SD->getFragment()) + SD->getOffset(); +} + +uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const { + // The size is the last fragment's end offset. + const MCFragment &F = SD->getFragmentList().back(); + return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F); +} + +uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const { + // Virtual sections have no file size. + if (SD->getSection().isVirtualSection()) + return 0; + + // Otherwise, the file size is the same as the address space size. + return getSectionAddressSize(SD); +} + +/* *** */ + +MCFragment::MCFragment() : Kind(FragmentType(~0)) { +} + +MCFragment::~MCFragment() { +} + +MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent) + : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0)) +{ + if (Parent) + Parent->getFragmentList().push_back(this); +} + +/* *** */ + +MCSectionData::MCSectionData() : Section(0) {} + +MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) + : Section(&_Section), + Ordinal(~UINT32_C(0)), + Alignment(1), + HasInstructions(false) +{ + if (A) + A->getSectionList().push_back(this); +} + +/* *** */ + +MCSymbolData::MCSymbolData() : Symbol(0) {} + +MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, + uint64_t _Offset, MCAssembler *A) + : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset), + IsExternal(false), IsPrivateExtern(false), + CommonSize(0), SymbolSize(0), CommonAlign(0), + Flags(0), Index(0) +{ + if (A) + A->getSymbolList().push_back(this); +} + +/* *** */ + +MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_, + MCCodeEmitter &Emitter_, MCObjectWriter &Writer_, + raw_ostream &OS_) + : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_), + OS(OS_), RelaxAll(false), NoExecStack(false), SubsectionsViaSymbols(false) +{ +} + +MCAssembler::~MCAssembler() { +} + +bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { + // Non-temporary labels should always be visible to the linker. + if (!Symbol.isTemporary()) + return true; + + // Absolute temporary labels are never visible. + if (!Symbol.isInSection()) + return false; + + // Otherwise, check if the section requires symbols even for temporary labels. + return getBackend().doesSectionRequireSymbols(Symbol.getSection()); +} + +const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const { + // Linker visible symbols define atoms. + if (isSymbolLinkerVisible(SD->getSymbol())) + return SD; + + // Absolute and undefined symbols have no defining atom. + if (!SD->getFragment()) + return 0; + + // Non-linker visible symbols in sections which can't be atomized have no + // defining atom. + if (!getBackend().isSectionAtomizable( + SD->getFragment()->getParent()->getSection())) + return 0; + + // Otherwise, return the atom for the containing fragment. + return SD->getFragment()->getAtom(); +} + +bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, + const MCFixup &Fixup, const MCFragment *DF, + MCValue &Target, uint64_t &Value) const { + ++stats::evaluateFixup; + + if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout)) + getContext().FatalError(Fixup.getLoc(), "expected relocatable expression"); + + bool IsPCRel = Backend.getFixupKindInfo( + Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel; + + bool IsResolved; + if (IsPCRel) { + if (Target.getSymB()) { + IsResolved = false; + } else if (!Target.getSymA()) { + IsResolved = false; + } else { + const MCSymbolRefExpr *A = Target.getSymA(); + const MCSymbol &SA = A->getSymbol(); + if (A->getKind() != MCSymbolRefExpr::VK_None || + SA.AliasedSymbol().isUndefined()) { + IsResolved = false; + } else { + const MCSymbolData &DataA = getSymbolData(SA); + IsResolved = + getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA, + *DF, false, true); + } + } + } else { + IsResolved = Target.isAbsolute(); + } + + Value = Target.getConstant(); + + if (const MCSymbolRefExpr *A = Target.getSymA()) { + const MCSymbol &Sym = A->getSymbol().AliasedSymbol(); + if (Sym.isDefined()) + Value += Layout.getSymbolOffset(&getSymbolData(Sym)); + } + if (const MCSymbolRefExpr *B = Target.getSymB()) { + const MCSymbol &Sym = B->getSymbol().AliasedSymbol(); + if (Sym.isDefined()) + Value -= Layout.getSymbolOffset(&getSymbolData(Sym)); + } + + + bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags & + MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; + assert((ShouldAlignPC ? IsPCRel : true) && + "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); + + if (IsPCRel) { + uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); + + // A number of ARM fixups in Thumb mode require that the effective PC + // address be determined as the 32-bit aligned version of the actual offset. + if (ShouldAlignPC) Offset &= ~0x3; + Value -= Offset; + } + + // Let the backend adjust the fixup value if necessary, including whether + // we need a relocation. + Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value, + IsResolved); + + return IsResolved; +} + +uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, + const MCFragment &F) const { + switch (F.getKind()) { + case MCFragment::FT_Data: + return cast<MCDataFragment>(F).getContents().size(); + case MCFragment::FT_Fill: + return cast<MCFillFragment>(F).getSize(); + case MCFragment::FT_Inst: + return cast<MCInstFragment>(F).getInstSize(); + + case MCFragment::FT_LEB: + return cast<MCLEBFragment>(F).getContents().size(); + + case MCFragment::FT_Align: { + const MCAlignFragment &AF = cast<MCAlignFragment>(F); + unsigned Offset = Layout.getFragmentOffset(&AF); + unsigned Size = OffsetToAlignment(Offset, AF.getAlignment()); + if (Size > AF.getMaxBytesToEmit()) + return 0; + return Size; + } + + case MCFragment::FT_Org: { + MCOrgFragment &OF = cast<MCOrgFragment>(F); + int64_t TargetLocation; + if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout)) + report_fatal_error("expected assembly-time absolute expression"); + + // FIXME: We need a way to communicate this error. + uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); + int64_t Size = TargetLocation - FragmentOffset; + if (Size < 0 || Size >= 0x40000000) + report_fatal_error("invalid .org offset '" + Twine(TargetLocation) + + "' (at offset '" + Twine(FragmentOffset) + "')"); + return Size; + } + + case MCFragment::FT_Dwarf: + return cast<MCDwarfLineAddrFragment>(F).getContents().size(); + case MCFragment::FT_DwarfFrame: + return cast<MCDwarfCallFrameFragment>(F).getContents().size(); + } + + llvm_unreachable("invalid fragment kind"); +} + +void MCAsmLayout::LayoutFragment(MCFragment *F) { + MCFragment *Prev = F->getPrevNode(); + + // We should never try to recompute something which is up-to-date. + assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!"); + // We should never try to compute the fragment layout if it's predecessor + // isn't up-to-date. + assert((!Prev || isFragmentUpToDate(Prev)) && + "Attempt to compute fragment before it's predecessor!"); + + ++stats::FragmentLayouts; + + // Compute fragment offset and size. + uint64_t Offset = 0; + if (Prev) + Offset += Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); + + F->Offset = Offset; + LastValidFragment[F->getParent()] = F; +} + +/// WriteFragmentData - Write the \arg F data to the output file. +static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout, + const MCFragment &F) { + MCObjectWriter *OW = &Asm.getWriter(); + uint64_t Start = OW->getStream().tell(); + (void) Start; + + ++stats::EmittedFragments; + + // FIXME: Embed in fragments instead? + uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); + switch (F.getKind()) { + case MCFragment::FT_Align: { + MCAlignFragment &AF = cast<MCAlignFragment>(F); + uint64_t Count = FragmentSize / AF.getValueSize(); + + assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); + + // FIXME: This error shouldn't actually occur (the front end should emit + // multiple .align directives to enforce the semantics it wants), but is + // severe enough that we want to report it. How to handle this? + if (Count * AF.getValueSize() != FragmentSize) + report_fatal_error("undefined .align directive, value size '" + + Twine(AF.getValueSize()) + + "' is not a divisor of padding size '" + + Twine(FragmentSize) + "'"); + + // See if we are aligning with nops, and if so do that first to try to fill + // the Count bytes. Then if that did not fill any bytes or there are any + // bytes left to fill use the the Value and ValueSize to fill the rest. + // If we are aligning with nops, ask that target to emit the right data. + if (AF.hasEmitNops()) { + if (!Asm.getBackend().writeNopData(Count, OW)) + report_fatal_error("unable to write nop sequence of " + + Twine(Count) + " bytes"); + break; + } + + // Otherwise, write out in multiples of the value size. + for (uint64_t i = 0; i != Count; ++i) { + switch (AF.getValueSize()) { + default: llvm_unreachable("Invalid size!"); + case 1: OW->Write8 (uint8_t (AF.getValue())); break; + case 2: OW->Write16(uint16_t(AF.getValue())); break; + case 4: OW->Write32(uint32_t(AF.getValue())); break; + case 8: OW->Write64(uint64_t(AF.getValue())); break; + } + } + break; + } + + case MCFragment::FT_Data: { + MCDataFragment &DF = cast<MCDataFragment>(F); + assert(FragmentSize == DF.getContents().size() && "Invalid size!"); + OW->WriteBytes(DF.getContents().str()); + break; + } + + case MCFragment::FT_Fill: { + MCFillFragment &FF = cast<MCFillFragment>(F); + + assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!"); + + for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) { + switch (FF.getValueSize()) { + default: llvm_unreachable("Invalid size!"); + case 1: OW->Write8 (uint8_t (FF.getValue())); break; + case 2: OW->Write16(uint16_t(FF.getValue())); break; + case 4: OW->Write32(uint32_t(FF.getValue())); break; + case 8: OW->Write64(uint64_t(FF.getValue())); break; + } + } + break; + } + + case MCFragment::FT_Inst: { + MCInstFragment &IF = cast<MCInstFragment>(F); + OW->WriteBytes(StringRef(IF.getCode().begin(), IF.getCode().size())); + break; + } + + case MCFragment::FT_LEB: { + MCLEBFragment &LF = cast<MCLEBFragment>(F); + OW->WriteBytes(LF.getContents().str()); + break; + } + + case MCFragment::FT_Org: { + MCOrgFragment &OF = cast<MCOrgFragment>(F); + + for (uint64_t i = 0, e = FragmentSize; i != e; ++i) + OW->Write8(uint8_t(OF.getValue())); + + break; + } + + case MCFragment::FT_Dwarf: { + const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); + OW->WriteBytes(OF.getContents().str()); + break; + } + case MCFragment::FT_DwarfFrame: { + const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); + OW->WriteBytes(CF.getContents().str()); + break; + } + } + + assert(OW->getStream().tell() - Start == FragmentSize); +} + +void MCAssembler::writeSectionData(const MCSectionData *SD, + const MCAsmLayout &Layout) const { + // Ignore virtual sections. + if (SD->getSection().isVirtualSection()) { + assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!"); + + // Check that contents are only things legal inside a virtual section. + for (MCSectionData::const_iterator it = SD->begin(), + ie = SD->end(); it != ie; ++it) { + switch (it->getKind()) { + default: llvm_unreachable("Invalid fragment in virtual section!"); + case MCFragment::FT_Data: { + // Check that we aren't trying to write a non-zero contents (or fixups) + // into a virtual section. This is to support clients which use standard + // directives to fill the contents of virtual sections. + MCDataFragment &DF = cast<MCDataFragment>(*it); + assert(DF.fixup_begin() == DF.fixup_end() && + "Cannot have fixups in virtual section!"); + for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) + assert(DF.getContents()[i] == 0 && + "Invalid data value for virtual section!"); + break; + } + case MCFragment::FT_Align: + // Check that we aren't trying to write a non-zero value into a virtual + // section. + assert((!cast<MCAlignFragment>(it)->getValueSize() || + !cast<MCAlignFragment>(it)->getValue()) && + "Invalid align in virtual section!"); + break; + case MCFragment::FT_Fill: + assert(!cast<MCFillFragment>(it)->getValueSize() && + "Invalid fill in virtual section!"); + break; + } + } + + return; + } + + uint64_t Start = getWriter().getStream().tell(); + (void) Start; + + for (MCSectionData::const_iterator it = SD->begin(), + ie = SD->end(); it != ie; ++it) + WriteFragmentData(*this, Layout, *it); + + assert(getWriter().getStream().tell() - Start == + Layout.getSectionAddressSize(SD)); +} + + +uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout, + MCFragment &F, + const MCFixup &Fixup) { + // Evaluate the fixup. + MCValue Target; + uint64_t FixedValue; + if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) { + // The fixup was unresolved, we need a relocation. Inform the object + // writer of the relocation, and give it an opportunity to adjust the + // fixup value if need be. + getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); + } + return FixedValue; + } + +void MCAssembler::Finish() { + DEBUG_WITH_TYPE("mc-dump", { + llvm::errs() << "assembler backend - pre-layout\n--\n"; + dump(); }); + + // Create the layout object. + MCAsmLayout Layout(*this); + + // Create dummy fragments and assign section ordinals. + unsigned SectionIndex = 0; + for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { + // Create dummy fragments to eliminate any empty sections, this simplifies + // layout. + if (it->getFragmentList().empty()) + new MCDataFragment(it); + + it->setOrdinal(SectionIndex++); + } + + // Assign layout order indices to sections and fragments. + for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { + MCSectionData *SD = Layout.getSectionOrder()[i]; + SD->setLayoutOrder(i); + + unsigned FragmentIndex = 0; + for (MCSectionData::iterator it2 = SD->begin(), + ie2 = SD->end(); it2 != ie2; ++it2) + it2->setLayoutOrder(FragmentIndex++); + } + + // Layout until everything fits. + while (layoutOnce(Layout)) + continue; + + DEBUG_WITH_TYPE("mc-dump", { + llvm::errs() << "assembler backend - post-relaxation\n--\n"; + dump(); }); + + // Finalize the layout, including fragment lowering. + finishLayout(Layout); + + DEBUG_WITH_TYPE("mc-dump", { + llvm::errs() << "assembler backend - final-layout\n--\n"; + dump(); }); + + uint64_t StartOffset = OS.tell(); + + // Allow the object writer a chance to perform post-layout binding (for + // example, to set the index fields in the symbol data). + getWriter().ExecutePostLayoutBinding(*this, Layout); + + // Evaluate and apply the fixups, generating relocation entries as necessary. + for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) { + for (MCSectionData::iterator it2 = it->begin(), + ie2 = it->end(); it2 != ie2; ++it2) { + MCDataFragment *DF = dyn_cast<MCDataFragment>(it2); + if (DF) { + for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(), + ie3 = DF->fixup_end(); it3 != ie3; ++it3) { + MCFixup &Fixup = *it3; + uint64_t FixedValue = handleFixup(Layout, *DF, Fixup); + getBackend().applyFixup(Fixup, DF->getContents().data(), + DF->getContents().size(), FixedValue); + } + } + MCInstFragment *IF = dyn_cast<MCInstFragment>(it2); + if (IF) { + for (MCInstFragment::fixup_iterator it3 = IF->fixup_begin(), + ie3 = IF->fixup_end(); it3 != ie3; ++it3) { + MCFixup &Fixup = *it3; + uint64_t FixedValue = handleFixup(Layout, *IF, Fixup); + getBackend().applyFixup(Fixup, IF->getCode().data(), + IF->getCode().size(), FixedValue); + } + } + } + } + + // Write the object file. + getWriter().WriteObject(*this, Layout); + + stats::ObjectBytes += OS.tell() - StartOffset; +} + +bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, + const MCInstFragment *DF, + const MCAsmLayout &Layout) const { + if (getRelaxAll()) + return true; + + // If we cannot resolve the fixup value, it requires relaxation. + MCValue Target; + uint64_t Value; + if (!evaluateFixup(Layout, Fixup, DF, Target, Value)) + return true; + + return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout); +} + +bool MCAssembler::fragmentNeedsRelaxation(const MCInstFragment *IF, + const MCAsmLayout &Layout) const { + // If this inst doesn't ever need relaxation, ignore it. This occurs when we + // are intentionally pushing out inst fragments, or because we relaxed a + // previous instruction to one that doesn't need relaxation. + if (!getBackend().mayNeedRelaxation(IF->getInst())) + return false; + + for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(), + ie = IF->fixup_end(); it != ie; ++it) + if (fixupNeedsRelaxation(*it, IF, Layout)) + return true; + + return false; +} + +bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, + MCInstFragment &IF) { + if (!fragmentNeedsRelaxation(&IF, Layout)) + return false; + + ++stats::RelaxedInstructions; + + // FIXME-PERF: We could immediately lower out instructions if we can tell + // they are fully resolved, to avoid retesting on later passes. + + // Relax the fragment. + + MCInst Relaxed; + getBackend().relaxInstruction(IF.getInst(), Relaxed); + + // Encode the new instruction. + // + // FIXME-PERF: If it matters, we could let the target do this. It can + // probably do so more efficiently in many cases. + SmallVector<MCFixup, 4> Fixups; + SmallString<256> Code; + raw_svector_ostream VecOS(Code); + getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups); + VecOS.flush(); + + // Update the instruction fragment. + IF.setInst(Relaxed); + IF.getCode() = Code; + IF.getFixups().clear(); + // FIXME: Eliminate copy. + for (unsigned i = 0, e = Fixups.size(); i != e; ++i) + IF.getFixups().push_back(Fixups[i]); + + return true; +} + +bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { + int64_t Value = 0; + uint64_t OldSize = LF.getContents().size(); + bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout); + (void)IsAbs; + assert(IsAbs); + SmallString<8> &Data = LF.getContents(); + Data.clear(); + raw_svector_ostream OSE(Data); + if (LF.isSigned()) + MCObjectWriter::EncodeSLEB128(Value, OSE); + else + MCObjectWriter::EncodeULEB128(Value, OSE); + OSE.flush(); + return OldSize != LF.getContents().size(); +} + +bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, + MCDwarfLineAddrFragment &DF) { + int64_t AddrDelta = 0; + uint64_t OldSize = DF.getContents().size(); + bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout); + (void)IsAbs; + assert(IsAbs); + int64_t LineDelta; + LineDelta = DF.getLineDelta(); + SmallString<8> &Data = DF.getContents(); + Data.clear(); + raw_svector_ostream OSE(Data); + MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE); + OSE.flush(); + return OldSize != Data.size(); +} + +bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, + MCDwarfCallFrameFragment &DF) { + int64_t AddrDelta = 0; + uint64_t OldSize = DF.getContents().size(); + bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout); + (void)IsAbs; + assert(IsAbs); + SmallString<8> &Data = DF.getContents(); + Data.clear(); + raw_svector_ostream OSE(Data); + MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE); + OSE.flush(); + return OldSize != Data.size(); +} + +bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, + MCSectionData &SD) { + MCFragment *FirstInvalidFragment = NULL; + // Scan for fragments that need relaxation. + for (MCSectionData::iterator it2 = SD.begin(), + ie2 = SD.end(); it2 != ie2; ++it2) { + // Check if this is an fragment that needs relaxation. + bool relaxedFrag = false; + switch(it2->getKind()) { + default: + break; + case MCFragment::FT_Inst: + relaxedFrag = relaxInstruction(Layout, *cast<MCInstFragment>(it2)); + break; + case MCFragment::FT_Dwarf: + relaxedFrag = relaxDwarfLineAddr(Layout, + *cast<MCDwarfLineAddrFragment>(it2)); + break; + case MCFragment::FT_DwarfFrame: + relaxedFrag = + relaxDwarfCallFrameFragment(Layout, + *cast<MCDwarfCallFrameFragment>(it2)); + break; + case MCFragment::FT_LEB: + relaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(it2)); + break; + } + // Update the layout, and remember that we relaxed. + if (relaxedFrag && !FirstInvalidFragment) + FirstInvalidFragment = it2; + } + if (FirstInvalidFragment) { + Layout.Invalidate(FirstInvalidFragment); + return true; + } + return false; +} + +bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { + ++stats::RelaxationSteps; + + bool WasRelaxed = false; + for (iterator it = begin(), ie = end(); it != ie; ++it) { + MCSectionData &SD = *it; + while(layoutSectionOnce(Layout, SD)) + WasRelaxed = true; + } + + return WasRelaxed; +} + +void MCAssembler::finishLayout(MCAsmLayout &Layout) { + // The layout is done. Mark every fragment as valid. + for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { + Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin()); + } +} + +// Debugging methods + +namespace llvm { + +raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) { + OS << "<MCFixup" << " Offset:" << AF.getOffset() + << " Value:" << *AF.getValue() + << " Kind:" << AF.getKind() << ">"; + return OS; +} + +} + +void MCFragment::dump() { + raw_ostream &OS = llvm::errs(); + + OS << "<"; + switch (getKind()) { + case MCFragment::FT_Align: OS << "MCAlignFragment"; break; + case MCFragment::FT_Data: OS << "MCDataFragment"; break; + case MCFragment::FT_Fill: OS << "MCFillFragment"; break; + case MCFragment::FT_Inst: OS << "MCInstFragment"; break; + case MCFragment::FT_Org: OS << "MCOrgFragment"; break; + case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break; + case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break; + case MCFragment::FT_LEB: OS << "MCLEBFragment"; break; + } + + OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder + << " Offset:" << Offset << ">"; + + switch (getKind()) { + case MCFragment::FT_Align: { + const MCAlignFragment *AF = cast<MCAlignFragment>(this); + if (AF->hasEmitNops()) + OS << " (emit nops)"; + OS << "\n "; + OS << " Alignment:" << AF->getAlignment() + << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize() + << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">"; + break; + } + case MCFragment::FT_Data: { + const MCDataFragment *DF = cast<MCDataFragment>(this); + OS << "\n "; + OS << " Contents:["; + const SmallVectorImpl<char> &Contents = DF->getContents(); + for (unsigned i = 0, e = Contents.size(); i != e; ++i) { + if (i) OS << ","; + OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF); + } + OS << "] (" << Contents.size() << " bytes)"; + + if (!DF->getFixups().empty()) { + OS << ",\n "; + OS << " Fixups:["; + for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(), + ie = DF->fixup_end(); it != ie; ++it) { + if (it != DF->fixup_begin()) OS << ",\n "; + OS << *it; + } + OS << "]"; + } + break; + } + case MCFragment::FT_Fill: { + const MCFillFragment *FF = cast<MCFillFragment>(this); + OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize() + << " Size:" << FF->getSize(); + break; + } + case MCFragment::FT_Inst: { + const MCInstFragment *IF = cast<MCInstFragment>(this); + OS << "\n "; + OS << " Inst:"; + IF->getInst().dump_pretty(OS); + break; + } + case MCFragment::FT_Org: { + const MCOrgFragment *OF = cast<MCOrgFragment>(this); + OS << "\n "; + OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue(); + break; + } + case MCFragment::FT_Dwarf: { + const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this); + OS << "\n "; + OS << " AddrDelta:" << OF->getAddrDelta() + << " LineDelta:" << OF->getLineDelta(); + break; + } + case MCFragment::FT_DwarfFrame: { + const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this); + OS << "\n "; + OS << " AddrDelta:" << CF->getAddrDelta(); + break; + } + case MCFragment::FT_LEB: { + const MCLEBFragment *LF = cast<MCLEBFragment>(this); + OS << "\n "; + OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned(); + break; + } + } + OS << ">"; +} + +void MCSectionData::dump() { + raw_ostream &OS = llvm::errs(); + + OS << "<MCSectionData"; + OS << " Alignment:" << getAlignment() << " Fragments:[\n "; + for (iterator it = begin(), ie = end(); it != ie; ++it) { + if (it != begin()) OS << ",\n "; + it->dump(); + } + OS << "]>"; +} + +void MCSymbolData::dump() { + raw_ostream &OS = llvm::errs(); + + OS << "<MCSymbolData Symbol:" << getSymbol() + << " Fragment:" << getFragment() << " Offset:" << getOffset() + << " Flags:" << getFlags() << " Index:" << getIndex(); + if (isCommon()) + OS << " (common, size:" << getCommonSize() + << " align: " << getCommonAlignment() << ")"; + if (isExternal()) + OS << " (external)"; + if (isPrivateExtern()) + OS << " (private extern)"; + OS << ">"; +} + +void MCAssembler::dump() { + raw_ostream &OS = llvm::errs(); + + OS << "<MCAssembler\n"; + OS << " Sections:[\n "; + for (iterator it = begin(), ie = end(); it != ie; ++it) { + if (it != begin()) OS << ",\n "; + it->dump(); + } + OS << "],\n"; + OS << " Symbols:["; + + for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { + if (it != symbol_begin()) OS << ",\n "; + it->dump(); + } + OS << "]>\n"; +} + +// anchors for MC*Fragment vtables +void MCDataFragment::anchor() { } +void MCInstFragment::anchor() { } +void MCAlignFragment::anchor() { } +void MCFillFragment::anchor() { } +void MCOrgFragment::anchor() { } +void MCLEBFragment::anchor() { } +void MCDwarfLineAddrFragment::anchor() { } +void MCDwarfCallFrameFragment::anchor() { } |