summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Linker/LinkModules.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Linker/LinkModules.cpp')
-rw-r--r--contrib/llvm/lib/Linker/LinkModules.cpp1764
1 files changed, 1764 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Linker/LinkModules.cpp b/contrib/llvm/lib/Linker/LinkModules.cpp
new file mode 100644
index 0000000..767d465
--- /dev/null
+++ b/contrib/llvm/lib/Linker/LinkModules.cpp
@@ -0,0 +1,1764 @@
+//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LLVM module linker.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Linker/Linker.h"
+#include "llvm-c/Linker.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <cctype>
+#include <tuple>
+using namespace llvm;
+
+
+//===----------------------------------------------------------------------===//
+// TypeMap implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class TypeMapTy : public ValueMapTypeRemapper {
+ /// This is a mapping from a source type to a destination type to use.
+ DenseMap<Type*, Type*> MappedTypes;
+
+ /// When checking to see if two subgraphs are isomorphic, we speculatively
+ /// add types to MappedTypes, but keep track of them here in case we need to
+ /// roll back.
+ SmallVector<Type*, 16> SpeculativeTypes;
+
+ SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
+
+ /// This is a list of non-opaque structs in the source module that are mapped
+ /// to an opaque struct in the destination module.
+ SmallVector<StructType*, 16> SrcDefinitionsToResolve;
+
+ /// This is the set of opaque types in the destination modules who are
+ /// getting a body from the source module.
+ SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
+
+public:
+ TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
+ : DstStructTypesSet(DstStructTypesSet) {}
+
+ Linker::IdentifiedStructTypeSet &DstStructTypesSet;
+ /// Indicate that the specified type in the destination module is conceptually
+ /// equivalent to the specified type in the source module.
+ void addTypeMapping(Type *DstTy, Type *SrcTy);
+
+ /// Produce a body for an opaque type in the dest module from a type
+ /// definition in the source module.
+ void linkDefinedTypeBodies();
+
+ /// Return the mapped type to use for the specified input type from the
+ /// source module.
+ Type *get(Type *SrcTy);
+ Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
+
+ void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
+
+ FunctionType *get(FunctionType *T) {
+ return cast<FunctionType>(get((Type *)T));
+ }
+
+ /// Dump out the type map for debugging purposes.
+ void dump() const {
+ for (auto &Pair : MappedTypes) {
+ dbgs() << "TypeMap: ";
+ Pair.first->print(dbgs());
+ dbgs() << " => ";
+ Pair.second->print(dbgs());
+ dbgs() << '\n';
+ }
+ }
+
+private:
+ Type *remapType(Type *SrcTy) override { return get(SrcTy); }
+
+ bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
+};
+}
+
+void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
+ assert(SpeculativeTypes.empty());
+ assert(SpeculativeDstOpaqueTypes.empty());
+
+ // Check to see if these types are recursively isomorphic and establish a
+ // mapping between them if so.
+ if (!areTypesIsomorphic(DstTy, SrcTy)) {
+ // Oops, they aren't isomorphic. Just discard this request by rolling out
+ // any speculative mappings we've established.
+ for (Type *Ty : SpeculativeTypes)
+ MappedTypes.erase(Ty);
+
+ SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
+ SpeculativeDstOpaqueTypes.size());
+ for (StructType *Ty : SpeculativeDstOpaqueTypes)
+ DstResolvedOpaqueTypes.erase(Ty);
+ } else {
+ for (Type *Ty : SpeculativeTypes)
+ if (auto *STy = dyn_cast<StructType>(Ty))
+ if (STy->hasName())
+ STy->setName("");
+ }
+ SpeculativeTypes.clear();
+ SpeculativeDstOpaqueTypes.clear();
+}
+
+/// Recursively walk this pair of types, returning true if they are isomorphic,
+/// false if they are not.
+bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
+ // Two types with differing kinds are clearly not isomorphic.
+ if (DstTy->getTypeID() != SrcTy->getTypeID())
+ return false;
+
+ // If we have an entry in the MappedTypes table, then we have our answer.
+ Type *&Entry = MappedTypes[SrcTy];
+ if (Entry)
+ return Entry == DstTy;
+
+ // Two identical types are clearly isomorphic. Remember this
+ // non-speculatively.
+ if (DstTy == SrcTy) {
+ Entry = DstTy;
+ return true;
+ }
+
+ // Okay, we have two types with identical kinds that we haven't seen before.
+
+ // If this is an opaque struct type, special case it.
+ if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
+ // Mapping an opaque type to any struct, just keep the dest struct.
+ if (SSTy->isOpaque()) {
+ Entry = DstTy;
+ SpeculativeTypes.push_back(SrcTy);
+ return true;
+ }
+
+ // Mapping a non-opaque source type to an opaque dest. If this is the first
+ // type that we're mapping onto this destination type then we succeed. Keep
+ // the dest, but fill it in later. If this is the second (different) type
+ // that we're trying to map onto the same opaque type then we fail.
+ if (cast<StructType>(DstTy)->isOpaque()) {
+ // We can only map one source type onto the opaque destination type.
+ if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
+ return false;
+ SrcDefinitionsToResolve.push_back(SSTy);
+ SpeculativeTypes.push_back(SrcTy);
+ SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
+ Entry = DstTy;
+ return true;
+ }
+ }
+
+ // If the number of subtypes disagree between the two types, then we fail.
+ if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
+ return false;
+
+ // Fail if any of the extra properties (e.g. array size) of the type disagree.
+ if (isa<IntegerType>(DstTy))
+ return false; // bitwidth disagrees.
+ if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
+ if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
+ return false;
+
+ } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
+ if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
+ return false;
+ } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
+ StructType *SSTy = cast<StructType>(SrcTy);
+ if (DSTy->isLiteral() != SSTy->isLiteral() ||
+ DSTy->isPacked() != SSTy->isPacked())
+ return false;
+ } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
+ if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
+ return false;
+ } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
+ if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
+ return false;
+ }
+
+ // Otherwise, we speculate that these two types will line up and recursively
+ // check the subelements.
+ Entry = DstTy;
+ SpeculativeTypes.push_back(SrcTy);
+
+ for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
+ if (!areTypesIsomorphic(DstTy->getContainedType(I),
+ SrcTy->getContainedType(I)))
+ return false;
+
+ // If everything seems to have lined up, then everything is great.
+ return true;
+}
+
+void TypeMapTy::linkDefinedTypeBodies() {
+ SmallVector<Type*, 16> Elements;
+ for (StructType *SrcSTy : SrcDefinitionsToResolve) {
+ StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
+ assert(DstSTy->isOpaque());
+
+ // Map the body of the source type over to a new body for the dest type.
+ Elements.resize(SrcSTy->getNumElements());
+ for (unsigned I = 0, E = Elements.size(); I != E; ++I)
+ Elements[I] = get(SrcSTy->getElementType(I));
+
+ DstSTy->setBody(Elements, SrcSTy->isPacked());
+ }
+ SrcDefinitionsToResolve.clear();
+ DstResolvedOpaqueTypes.clear();
+}
+
+void TypeMapTy::finishType(StructType *DTy, StructType *STy,
+ ArrayRef<Type *> ETypes) {
+ DTy->setBody(ETypes, STy->isPacked());
+
+ // Steal STy's name.
+ if (STy->hasName()) {
+ SmallString<16> TmpName = STy->getName();
+ STy->setName("");
+ DTy->setName(TmpName);
+ }
+
+ DstStructTypesSet.addNonOpaque(DTy);
+}
+
+Type *TypeMapTy::get(Type *Ty) {
+ SmallPtrSet<StructType *, 8> Visited;
+ return get(Ty, Visited);
+}
+
+Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
+ // If we already have an entry for this type, return it.
+ Type **Entry = &MappedTypes[Ty];
+ if (*Entry)
+ return *Entry;
+
+ // These are types that LLVM itself will unique.
+ bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
+
+#ifndef NDEBUG
+ if (!IsUniqued) {
+ for (auto &Pair : MappedTypes) {
+ assert(!(Pair.first != Ty && Pair.second == Ty) &&
+ "mapping to a source type");
+ }
+ }
+#endif
+
+ if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
+ StructType *DTy = StructType::create(Ty->getContext());
+ return *Entry = DTy;
+ }
+
+ // If this is not a recursive type, then just map all of the elements and
+ // then rebuild the type from inside out.
+ SmallVector<Type *, 4> ElementTypes;
+
+ // If there are no element types to map, then the type is itself. This is
+ // true for the anonymous {} struct, things like 'float', integers, etc.
+ if (Ty->getNumContainedTypes() == 0 && IsUniqued)
+ return *Entry = Ty;
+
+ // Remap all of the elements, keeping track of whether any of them change.
+ bool AnyChange = false;
+ ElementTypes.resize(Ty->getNumContainedTypes());
+ for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
+ ElementTypes[I] = get(Ty->getContainedType(I), Visited);
+ AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
+ }
+
+ // If we found our type while recursively processing stuff, just use it.
+ Entry = &MappedTypes[Ty];
+ if (*Entry) {
+ if (auto *DTy = dyn_cast<StructType>(*Entry)) {
+ if (DTy->isOpaque()) {
+ auto *STy = cast<StructType>(Ty);
+ finishType(DTy, STy, ElementTypes);
+ }
+ }
+ return *Entry;
+ }
+
+ // If all of the element types mapped directly over and the type is not
+ // a nomed struct, then the type is usable as-is.
+ if (!AnyChange && IsUniqued)
+ return *Entry = Ty;
+
+ // Otherwise, rebuild a modified type.
+ switch (Ty->getTypeID()) {
+ default:
+ llvm_unreachable("unknown derived type to remap");
+ case Type::ArrayTyID:
+ return *Entry = ArrayType::get(ElementTypes[0],
+ cast<ArrayType>(Ty)->getNumElements());
+ case Type::VectorTyID:
+ return *Entry = VectorType::get(ElementTypes[0],
+ cast<VectorType>(Ty)->getNumElements());
+ case Type::PointerTyID:
+ return *Entry = PointerType::get(ElementTypes[0],
+ cast<PointerType>(Ty)->getAddressSpace());
+ case Type::FunctionTyID:
+ return *Entry = FunctionType::get(ElementTypes[0],
+ makeArrayRef(ElementTypes).slice(1),
+ cast<FunctionType>(Ty)->isVarArg());
+ case Type::StructTyID: {
+ auto *STy = cast<StructType>(Ty);
+ bool IsPacked = STy->isPacked();
+ if (IsUniqued)
+ return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
+
+ // If the type is opaque, we can just use it directly.
+ if (STy->isOpaque()) {
+ DstStructTypesSet.addOpaque(STy);
+ return *Entry = Ty;
+ }
+
+ if (StructType *OldT =
+ DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
+ STy->setName("");
+ return *Entry = OldT;
+ }
+
+ if (!AnyChange) {
+ DstStructTypesSet.addNonOpaque(STy);
+ return *Entry = Ty;
+ }
+
+ StructType *DTy = StructType::create(Ty->getContext());
+ finishType(DTy, STy, ElementTypes);
+ return *Entry = DTy;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ModuleLinker implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ModuleLinker;
+
+/// Creates prototypes for functions that are lazily linked on the fly. This
+/// speeds up linking for modules with many/ lazily linked functions of which
+/// few get used.
+class ValueMaterializerTy : public ValueMaterializer {
+ TypeMapTy &TypeMap;
+ Module *DstM;
+ std::vector<GlobalValue *> &LazilyLinkGlobalValues;
+
+public:
+ ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
+ std::vector<GlobalValue *> &LazilyLinkGlobalValues)
+ : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
+ LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
+
+ Value *materializeValueFor(Value *V) override;
+};
+
+class LinkDiagnosticInfo : public DiagnosticInfo {
+ const Twine &Msg;
+
+public:
+ LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
+ void print(DiagnosticPrinter &DP) const override;
+};
+LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
+ const Twine &Msg)
+ : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
+void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
+
+/// This is an implementation class for the LinkModules function, which is the
+/// entrypoint for this file.
+class ModuleLinker {
+ Module *DstM, *SrcM;
+
+ TypeMapTy TypeMap;
+ ValueMaterializerTy ValMaterializer;
+
+ /// Mapping of values from what they used to be in Src, to what they are now
+ /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
+ /// due to the use of Value handles which the Linker doesn't actually need,
+ /// but this allows us to reuse the ValueMapper code.
+ ValueToValueMapTy ValueMap;
+
+ struct AppendingVarInfo {
+ GlobalVariable *NewGV; // New aggregate global in dest module.
+ const Constant *DstInit; // Old initializer from dest module.
+ const Constant *SrcInit; // Old initializer from src module.
+ };
+
+ std::vector<AppendingVarInfo> AppendingVars;
+
+ // Set of items not to link in from source.
+ SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
+
+ // Vector of GlobalValues to lazily link in.
+ std::vector<GlobalValue *> LazilyLinkGlobalValues;
+
+ /// Functions that have replaced other functions.
+ SmallPtrSet<const Function *, 16> OverridingFunctions;
+
+ DiagnosticHandlerFunction DiagnosticHandler;
+
+public:
+ ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
+ DiagnosticHandlerFunction DiagnosticHandler)
+ : DstM(dstM), SrcM(srcM), TypeMap(Set),
+ ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
+ DiagnosticHandler(DiagnosticHandler) {}
+
+ bool run();
+
+private:
+ bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
+ const GlobalValue &Src);
+
+ /// Helper method for setting a message and returning an error code.
+ bool emitError(const Twine &Message) {
+ DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
+ return true;
+ }
+
+ void emitWarning(const Twine &Message) {
+ DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
+ }
+
+ bool getComdatLeader(Module *M, StringRef ComdatName,
+ const GlobalVariable *&GVar);
+ bool computeResultingSelectionKind(StringRef ComdatName,
+ Comdat::SelectionKind Src,
+ Comdat::SelectionKind Dst,
+ Comdat::SelectionKind &Result,
+ bool &LinkFromSrc);
+ std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
+ ComdatsChosen;
+ bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
+ bool &LinkFromSrc);
+
+ /// Given a global in the source module, return the global in the
+ /// destination module that is being linked to, if any.
+ GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
+ // If the source has no name it can't link. If it has local linkage,
+ // there is no name match-up going on.
+ if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
+ return nullptr;
+
+ // Otherwise see if we have a match in the destination module's symtab.
+ GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
+ if (!DGV)
+ return nullptr;
+
+ // If we found a global with the same name in the dest module, but it has
+ // internal linkage, we are really not doing any linkage here.
+ if (DGV->hasLocalLinkage())
+ return nullptr;
+
+ // Otherwise, we do in fact link to the destination global.
+ return DGV;
+ }
+
+ void computeTypeMapping();
+
+ void upgradeMismatchedGlobalArray(StringRef Name);
+ void upgradeMismatchedGlobals();
+
+ bool linkAppendingVarProto(GlobalVariable *DstGV,
+ const GlobalVariable *SrcGV);
+
+ bool linkGlobalValueProto(GlobalValue *GV);
+ bool linkModuleFlagsMetadata();
+
+ void linkAppendingVarInit(const AppendingVarInfo &AVI);
+
+ void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
+ bool linkFunctionBody(Function &Dst, Function &Src);
+ void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
+ bool linkGlobalValueBody(GlobalValue &Src);
+
+ void linkNamedMDNodes();
+ void stripReplacedSubprograms();
+};
+}
+
+/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
+/// table. This is good for all clients except for us. Go through the trouble
+/// to force this back.
+static void forceRenaming(GlobalValue *GV, StringRef Name) {
+ // If the global doesn't force its name or if it already has the right name,
+ // there is nothing for us to do.
+ if (GV->hasLocalLinkage() || GV->getName() == Name)
+ return;
+
+ Module *M = GV->getParent();
+
+ // If there is a conflict, rename the conflict.
+ if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
+ GV->takeName(ConflictGV);
+ ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
+ assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
+ } else {
+ GV->setName(Name); // Force the name back
+ }
+}
+
+/// copy additional attributes (those not needed to construct a GlobalValue)
+/// from the SrcGV to the DestGV.
+static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
+ DestGV->copyAttributesFrom(SrcGV);
+ forceRenaming(DestGV, SrcGV->getName());
+}
+
+static bool isLessConstraining(GlobalValue::VisibilityTypes a,
+ GlobalValue::VisibilityTypes b) {
+ if (a == GlobalValue::HiddenVisibility)
+ return false;
+ if (b == GlobalValue::HiddenVisibility)
+ return true;
+ if (a == GlobalValue::ProtectedVisibility)
+ return false;
+ if (b == GlobalValue::ProtectedVisibility)
+ return true;
+ return false;
+}
+
+/// Loop through the global variables in the src module and merge them into the
+/// dest module.
+static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
+ const GlobalVariable *SGVar) {
+ // No linking to be performed or linking from the source: simply create an
+ // identical version of the symbol over in the dest module... the
+ // initializer will be filled in later by LinkGlobalInits.
+ GlobalVariable *NewDGV = new GlobalVariable(
+ DstM, TypeMap.get(SGVar->getType()->getElementType()),
+ SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
+ SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
+ SGVar->getType()->getAddressSpace());
+
+ return NewDGV;
+}
+
+/// Link the function in the source module into the destination module if
+/// needed, setting up mapping information.
+static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
+ const Function *SF) {
+ // If there is no linkage to be performed or we are linking from the source,
+ // bring SF over.
+ return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
+ SF->getName(), &DstM);
+}
+
+/// Set up prototypes for any aliases that come over from the source module.
+static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
+ const GlobalAlias *SGA) {
+ // If there is no linkage to be performed or we're linking from the source,
+ // bring over SGA.
+ auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
+ return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
+ SGA->getLinkage(), SGA->getName(), &DstM);
+}
+
+static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
+ const GlobalValue *SGV) {
+ GlobalValue *NewGV;
+ if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
+ NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
+ else if (auto *SF = dyn_cast<Function>(SGV))
+ NewGV = copyFunctionProto(TypeMap, DstM, SF);
+ else
+ NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
+ copyGVAttributes(NewGV, SGV);
+ return NewGV;
+}
+
+Value *ValueMaterializerTy::materializeValueFor(Value *V) {
+ auto *SGV = dyn_cast<GlobalValue>(V);
+ if (!SGV)
+ return nullptr;
+
+ GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
+
+ if (Comdat *SC = SGV->getComdat()) {
+ if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
+ Comdat *DC = DstM->getOrInsertComdat(SC->getName());
+ DGO->setComdat(DC);
+ }
+ }
+
+ LazilyLinkGlobalValues.push_back(SGV);
+ return DGV;
+}
+
+bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
+ const GlobalVariable *&GVar) {
+ const GlobalValue *GVal = M->getNamedValue(ComdatName);
+ if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
+ GVal = GA->getBaseObject();
+ if (!GVal)
+ // We cannot resolve the size of the aliasee yet.
+ return emitError("Linking COMDATs named '" + ComdatName +
+ "': COMDAT key involves incomputable alias size.");
+ }
+
+ GVar = dyn_cast_or_null<GlobalVariable>(GVal);
+ if (!GVar)
+ return emitError(
+ "Linking COMDATs named '" + ComdatName +
+ "': GlobalVariable required for data dependent selection!");
+
+ return false;
+}
+
+bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
+ Comdat::SelectionKind Src,
+ Comdat::SelectionKind Dst,
+ Comdat::SelectionKind &Result,
+ bool &LinkFromSrc) {
+ // The ability to mix Comdat::SelectionKind::Any with
+ // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
+ bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
+ Dst == Comdat::SelectionKind::Largest;
+ bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
+ Src == Comdat::SelectionKind::Largest;
+ if (DstAnyOrLargest && SrcAnyOrLargest) {
+ if (Dst == Comdat::SelectionKind::Largest ||
+ Src == Comdat::SelectionKind::Largest)
+ Result = Comdat::SelectionKind::Largest;
+ else
+ Result = Comdat::SelectionKind::Any;
+ } else if (Src == Dst) {
+ Result = Dst;
+ } else {
+ return emitError("Linking COMDATs named '" + ComdatName +
+ "': invalid selection kinds!");
+ }
+
+ switch (Result) {
+ case Comdat::SelectionKind::Any:
+ // Go with Dst.
+ LinkFromSrc = false;
+ break;
+ case Comdat::SelectionKind::NoDuplicates:
+ return emitError("Linking COMDATs named '" + ComdatName +
+ "': noduplicates has been violated!");
+ case Comdat::SelectionKind::ExactMatch:
+ case Comdat::SelectionKind::Largest:
+ case Comdat::SelectionKind::SameSize: {
+ const GlobalVariable *DstGV;
+ const GlobalVariable *SrcGV;
+ if (getComdatLeader(DstM, ComdatName, DstGV) ||
+ getComdatLeader(SrcM, ComdatName, SrcGV))
+ return true;
+
+ const DataLayout *DstDL = DstM->getDataLayout();
+ const DataLayout *SrcDL = SrcM->getDataLayout();
+ if (!DstDL || !SrcDL) {
+ return emitError(
+ "Linking COMDATs named '" + ComdatName +
+ "': can't do size dependent selection without DataLayout!");
+ }
+ uint64_t DstSize =
+ DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType());
+ uint64_t SrcSize =
+ SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType());
+ if (Result == Comdat::SelectionKind::ExactMatch) {
+ if (SrcGV->getInitializer() != DstGV->getInitializer())
+ return emitError("Linking COMDATs named '" + ComdatName +
+ "': ExactMatch violated!");
+ LinkFromSrc = false;
+ } else if (Result == Comdat::SelectionKind::Largest) {
+ LinkFromSrc = SrcSize > DstSize;
+ } else if (Result == Comdat::SelectionKind::SameSize) {
+ if (SrcSize != DstSize)
+ return emitError("Linking COMDATs named '" + ComdatName +
+ "': SameSize violated!");
+ LinkFromSrc = false;
+ } else {
+ llvm_unreachable("unknown selection kind");
+ }
+ break;
+ }
+ }
+
+ return false;
+}
+
+bool ModuleLinker::getComdatResult(const Comdat *SrcC,
+ Comdat::SelectionKind &Result,
+ bool &LinkFromSrc) {
+ Comdat::SelectionKind SSK = SrcC->getSelectionKind();
+ StringRef ComdatName = SrcC->getName();
+ Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
+ Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
+
+ if (DstCI == ComdatSymTab.end()) {
+ // Use the comdat if it is only available in one of the modules.
+ LinkFromSrc = true;
+ Result = SSK;
+ return false;
+ }
+
+ const Comdat *DstC = &DstCI->second;
+ Comdat::SelectionKind DSK = DstC->getSelectionKind();
+ return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
+ LinkFromSrc);
+}
+
+bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
+ const GlobalValue &Dest,
+ const GlobalValue &Src) {
+ // We always have to add Src if it has appending linkage.
+ if (Src.hasAppendingLinkage()) {
+ LinkFromSrc = true;
+ return false;
+ }
+
+ bool SrcIsDeclaration = Src.isDeclarationForLinker();
+ bool DestIsDeclaration = Dest.isDeclarationForLinker();
+
+ if (SrcIsDeclaration) {
+ // If Src is external or if both Src & Dest are external.. Just link the
+ // external globals, we aren't adding anything.
+ if (Src.hasDLLImportStorageClass()) {
+ // If one of GVs is marked as DLLImport, result should be dllimport'ed.
+ LinkFromSrc = DestIsDeclaration;
+ return false;
+ }
+ // If the Dest is weak, use the source linkage.
+ LinkFromSrc = Dest.hasExternalWeakLinkage();
+ return false;
+ }
+
+ if (DestIsDeclaration) {
+ // If Dest is external but Src is not:
+ LinkFromSrc = true;
+ return false;
+ }
+
+ if (Src.hasCommonLinkage()) {
+ if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
+ LinkFromSrc = true;
+ return false;
+ }
+
+ if (!Dest.hasCommonLinkage()) {
+ LinkFromSrc = false;
+ return false;
+ }
+
+ // FIXME: Make datalayout mandatory and just use getDataLayout().
+ DataLayout DL(Dest.getParent());
+
+ uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
+ uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
+ LinkFromSrc = SrcSize > DestSize;
+ return false;
+ }
+
+ if (Src.isWeakForLinker()) {
+ assert(!Dest.hasExternalWeakLinkage());
+ assert(!Dest.hasAvailableExternallyLinkage());
+
+ if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
+ LinkFromSrc = true;
+ return false;
+ }
+
+ LinkFromSrc = false;
+ return false;
+ }
+
+ if (Dest.isWeakForLinker()) {
+ assert(Src.hasExternalLinkage());
+ LinkFromSrc = true;
+ return false;
+ }
+
+ assert(!Src.hasExternalWeakLinkage());
+ assert(!Dest.hasExternalWeakLinkage());
+ assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
+ "Unexpected linkage type!");
+ return emitError("Linking globals named '" + Src.getName() +
+ "': symbol multiply defined!");
+}
+
+/// Loop over all of the linked values to compute type mappings. For example,
+/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
+/// types 'Foo' but one got renamed when the module was loaded into the same
+/// LLVMContext.
+void ModuleLinker::computeTypeMapping() {
+ for (GlobalValue &SGV : SrcM->globals()) {
+ GlobalValue *DGV = getLinkedToGlobal(&SGV);
+ if (!DGV)
+ continue;
+
+ if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
+ continue;
+ }
+
+ // Unify the element type of appending arrays.
+ ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
+ ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
+ TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
+ }
+
+ for (GlobalValue &SGV : *SrcM) {
+ if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
+ }
+
+ for (GlobalValue &SGV : SrcM->aliases()) {
+ if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
+ TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
+ }
+
+ // Incorporate types by name, scanning all the types in the source module.
+ // At this point, the destination module may have a type "%foo = { i32 }" for
+ // example. When the source module got loaded into the same LLVMContext, if
+ // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
+ std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
+ for (StructType *ST : Types) {
+ if (!ST->hasName())
+ continue;
+
+ // Check to see if there is a dot in the name followed by a digit.
+ size_t DotPos = ST->getName().rfind('.');
+ if (DotPos == 0 || DotPos == StringRef::npos ||
+ ST->getName().back() == '.' ||
+ !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
+ continue;
+
+ // Check to see if the destination module has a struct with the prefix name.
+ StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
+ if (!DST)
+ continue;
+
+ // Don't use it if this actually came from the source module. They're in
+ // the same LLVMContext after all. Also don't use it unless the type is
+ // actually used in the destination module. This can happen in situations
+ // like this:
+ //
+ // Module A Module B
+ // -------- --------
+ // %Z = type { %A } %B = type { %C.1 }
+ // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
+ // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
+ // %C = type { i8* } %B.3 = type { %C.1 }
+ //
+ // When we link Module B with Module A, the '%B' in Module B is
+ // used. However, that would then use '%C.1'. But when we process '%C.1',
+ // we prefer to take the '%C' version. So we are then left with both
+ // '%C.1' and '%C' being used for the same types. This leads to some
+ // variables using one type and some using the other.
+ if (TypeMap.DstStructTypesSet.hasType(DST))
+ TypeMap.addTypeMapping(DST, ST);
+ }
+
+ // Now that we have discovered all of the type equivalences, get a body for
+ // any 'opaque' types in the dest module that are now resolved.
+ TypeMap.linkDefinedTypeBodies();
+}
+
+static void upgradeGlobalArray(GlobalVariable *GV) {
+ ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
+ StructType *OldTy = cast<StructType>(ATy->getElementType());
+ assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
+
+ // Get the upgraded 3 element type.
+ PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
+ Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
+ VoidPtrTy};
+ StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
+
+ // Build new constants with a null third field filled in.
+ Constant *OldInitC = GV->getInitializer();
+ ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
+ if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
+ // Invalid initializer; give up.
+ return;
+ std::vector<Constant *> Initializers;
+ if (OldInit && OldInit->getNumOperands()) {
+ Value *Null = Constant::getNullValue(VoidPtrTy);
+ for (Use &U : OldInit->operands()) {
+ ConstantStruct *Init = cast<ConstantStruct>(U.get());
+ Initializers.push_back(ConstantStruct::get(
+ NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
+ }
+ }
+ assert(Initializers.size() == ATy->getNumElements() &&
+ "Failed to copy all array elements");
+
+ // Replace the old GV with a new one.
+ ATy = ArrayType::get(NewTy, Initializers.size());
+ Constant *NewInit = ConstantArray::get(ATy, Initializers);
+ GlobalVariable *NewGV = new GlobalVariable(
+ *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
+ GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
+ GV->isExternallyInitialized());
+ NewGV->copyAttributesFrom(GV);
+ NewGV->takeName(GV);
+ assert(GV->use_empty() && "program cannot use initializer list");
+ GV->eraseFromParent();
+}
+
+void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
+ // Look for the global arrays.
+ auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
+ if (!DstGV)
+ return;
+ auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
+ if (!SrcGV)
+ return;
+
+ // Check if the types already match.
+ auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
+ auto *SrcTy =
+ cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
+ if (DstTy == SrcTy)
+ return;
+
+ // Grab the element types. We can only upgrade an array of a two-field
+ // struct. Only bother if the other one has three-fields.
+ auto *DstEltTy = cast<StructType>(DstTy->getElementType());
+ auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
+ if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
+ upgradeGlobalArray(DstGV);
+ return;
+ }
+ if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
+ upgradeGlobalArray(SrcGV);
+
+ // We can't upgrade any other differences.
+}
+
+void ModuleLinker::upgradeMismatchedGlobals() {
+ upgradeMismatchedGlobalArray("llvm.global_ctors");
+ upgradeMismatchedGlobalArray("llvm.global_dtors");
+}
+
+/// If there were any appending global variables, link them together now.
+/// Return true on error.
+bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
+ const GlobalVariable *SrcGV) {
+
+ if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
+ return emitError("Linking globals named '" + SrcGV->getName() +
+ "': can only link appending global with another appending global!");
+
+ ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
+ ArrayType *SrcTy =
+ cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
+ Type *EltTy = DstTy->getElementType();
+
+ // Check to see that they two arrays agree on type.
+ if (EltTy != SrcTy->getElementType())
+ return emitError("Appending variables with different element types!");
+ if (DstGV->isConstant() != SrcGV->isConstant())
+ return emitError("Appending variables linked with different const'ness!");
+
+ if (DstGV->getAlignment() != SrcGV->getAlignment())
+ return emitError(
+ "Appending variables with different alignment need to be linked!");
+
+ if (DstGV->getVisibility() != SrcGV->getVisibility())
+ return emitError(
+ "Appending variables with different visibility need to be linked!");
+
+ if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
+ return emitError(
+ "Appending variables with different unnamed_addr need to be linked!");
+
+ if (StringRef(DstGV->getSection()) != SrcGV->getSection())
+ return emitError(
+ "Appending variables with different section name need to be linked!");
+
+ uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
+ ArrayType *NewType = ArrayType::get(EltTy, NewSize);
+
+ // Create the new global variable.
+ GlobalVariable *NG =
+ new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
+ DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
+ DstGV->getThreadLocalMode(),
+ DstGV->getType()->getAddressSpace());
+
+ // Propagate alignment, visibility and section info.
+ copyGVAttributes(NG, DstGV);
+
+ AppendingVarInfo AVI;
+ AVI.NewGV = NG;
+ AVI.DstInit = DstGV->getInitializer();
+ AVI.SrcInit = SrcGV->getInitializer();
+ AppendingVars.push_back(AVI);
+
+ // Replace any uses of the two global variables with uses of the new
+ // global.
+ ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
+
+ DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
+ DstGV->eraseFromParent();
+
+ // Track the source variable so we don't try to link it.
+ DoNotLinkFromSource.insert(SrcGV);
+
+ return false;
+}
+
+bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
+ GlobalValue *DGV = getLinkedToGlobal(SGV);
+
+ // Handle the ultra special appending linkage case first.
+ if (DGV && DGV->hasAppendingLinkage())
+ return linkAppendingVarProto(cast<GlobalVariable>(DGV),
+ cast<GlobalVariable>(SGV));
+
+ bool LinkFromSrc = true;
+ Comdat *C = nullptr;
+ GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
+ bool HasUnnamedAddr = SGV->hasUnnamedAddr();
+
+ if (const Comdat *SC = SGV->getComdat()) {
+ Comdat::SelectionKind SK;
+ std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
+ C = DstM->getOrInsertComdat(SC->getName());
+ C->setSelectionKind(SK);
+ } else if (DGV) {
+ if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
+ return true;
+ }
+
+ if (!LinkFromSrc) {
+ // Track the source global so that we don't attempt to copy it over when
+ // processing global initializers.
+ DoNotLinkFromSource.insert(SGV);
+
+ if (DGV)
+ // Make sure to remember this mapping.
+ ValueMap[SGV] =
+ ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
+ }
+
+ if (DGV) {
+ Visibility = isLessConstraining(Visibility, DGV->getVisibility())
+ ? DGV->getVisibility()
+ : Visibility;
+ HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
+ }
+
+ if (!LinkFromSrc && !DGV)
+ return false;
+
+ GlobalValue *NewGV;
+ if (!LinkFromSrc) {
+ NewGV = DGV;
+ } else {
+ // If the GV is to be lazily linked, don't create it just yet.
+ // The ValueMaterializerTy will deal with creating it if it's used.
+ if (!DGV && (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
+ SGV->hasAvailableExternallyLinkage())) {
+ DoNotLinkFromSource.insert(SGV);
+ return false;
+ }
+
+ NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
+
+ if (DGV && isa<Function>(DGV))
+ if (auto *NewF = dyn_cast<Function>(NewGV))
+ OverridingFunctions.insert(NewF);
+ }
+
+ NewGV->setUnnamedAddr(HasUnnamedAddr);
+ NewGV->setVisibility(Visibility);
+
+ if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
+ if (C)
+ NewGO->setComdat(C);
+
+ if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
+ NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
+ }
+
+ if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
+ auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
+ auto *SGVar = dyn_cast<GlobalVariable>(SGV);
+ if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
+ (!DGVar->isConstant() || !SGVar->isConstant()))
+ NewGVar->setConstant(false);
+ }
+
+ // Make sure to remember this mapping.
+ if (NewGV != DGV) {
+ if (DGV) {
+ DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
+ DGV->eraseFromParent();
+ }
+ ValueMap[SGV] = NewGV;
+ }
+
+ return false;
+}
+
+static void getArrayElements(const Constant *C,
+ SmallVectorImpl<Constant *> &Dest) {
+ unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
+
+ for (unsigned i = 0; i != NumElements; ++i)
+ Dest.push_back(C->getAggregateElement(i));
+}
+
+void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
+ // Merge the initializer.
+ SmallVector<Constant *, 16> DstElements;
+ getArrayElements(AVI.DstInit, DstElements);
+
+ SmallVector<Constant *, 16> SrcElements;
+ getArrayElements(AVI.SrcInit, SrcElements);
+
+ ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
+
+ StringRef Name = AVI.NewGV->getName();
+ bool IsNewStructor =
+ (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
+ cast<StructType>(NewType->getElementType())->getNumElements() == 3;
+
+ for (auto *V : SrcElements) {
+ if (IsNewStructor) {
+ Constant *Key = V->getAggregateElement(2);
+ if (DoNotLinkFromSource.count(Key))
+ continue;
+ }
+ DstElements.push_back(
+ MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
+ }
+ if (IsNewStructor) {
+ NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
+ AVI.NewGV->mutateType(PointerType::get(NewType, 0));
+ }
+
+ AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
+}
+
+/// Update the initializers in the Dest module now that all globals that may be
+/// referenced are in Dest.
+void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
+ // Figure out what the initializer looks like in the dest module.
+ Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
+ &ValMaterializer));
+}
+
+/// Copy the source function over into the dest function and fix up references
+/// to values. At this point we know that Dest is an external function, and
+/// that Src is not.
+bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
+ assert(Dst.isDeclaration() && !Src.isDeclaration());
+
+ // Materialize if needed.
+ if (std::error_code EC = Src.materialize())
+ return emitError(EC.message());
+
+ // Link in the prefix data.
+ if (Src.hasPrefixData())
+ Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
+ &ValMaterializer));
+
+ // Link in the prologue data.
+ if (Src.hasPrologueData())
+ Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
+ &TypeMap, &ValMaterializer));
+
+ // Go through and convert function arguments over, remembering the mapping.
+ Function::arg_iterator DI = Dst.arg_begin();
+ for (Argument &Arg : Src.args()) {
+ DI->setName(Arg.getName()); // Copy the name over.
+
+ // Add a mapping to our mapping.
+ ValueMap[&Arg] = DI;
+ ++DI;
+ }
+
+ // Splice the body of the source function into the dest function.
+ Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
+
+ // At this point, all of the instructions and values of the function are now
+ // copied over. The only problem is that they are still referencing values in
+ // the Source function as operands. Loop through all of the operands of the
+ // functions and patch them up to point to the local versions.
+ for (BasicBlock &BB : Dst)
+ for (Instruction &I : BB)
+ RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
+ &ValMaterializer);
+
+ // There is no need to map the arguments anymore.
+ for (Argument &Arg : Src.args())
+ ValueMap.erase(&Arg);
+
+ Src.Dematerialize();
+ return false;
+}
+
+void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
+ Constant *Aliasee = Src.getAliasee();
+ Constant *Val =
+ MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
+ Dst.setAliasee(Val);
+}
+
+bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
+ Value *Dst = ValueMap[&Src];
+ assert(Dst);
+ if (auto *F = dyn_cast<Function>(&Src))
+ return linkFunctionBody(cast<Function>(*Dst), *F);
+ if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
+ linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
+ return false;
+ }
+ linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
+ return false;
+}
+
+/// Insert all of the named MDNodes in Src into the Dest module.
+void ModuleLinker::linkNamedMDNodes() {
+ const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
+ for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
+ E = SrcM->named_metadata_end(); I != E; ++I) {
+ // Don't link module flags here. Do them separately.
+ if (&*I == SrcModFlags) continue;
+ NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
+ // Add Src elements into Dest node.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ DestNMD->addOperand(MapMetadata(I->getOperand(i), ValueMap, RF_None,
+ &TypeMap, &ValMaterializer));
+ }
+}
+
+/// Drop DISubprograms that have been superseded.
+///
+/// FIXME: this creates an asymmetric result: we strip losing subprograms from
+/// DstM, but leave losing subprograms in SrcM. Instead we should also strip
+/// losers from SrcM, but this requires extra plumbing in MapMetadata.
+void ModuleLinker::stripReplacedSubprograms() {
+ // Avoid quadratic runtime by returning early when there's nothing to do.
+ if (OverridingFunctions.empty())
+ return;
+
+ // Move the functions now, so the set gets cleared even on early returns.
+ auto Functions = std::move(OverridingFunctions);
+ OverridingFunctions.clear();
+
+ // Drop subprograms whose functions have been overridden by the new compile
+ // unit.
+ NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
+ if (!CompileUnits)
+ return;
+ for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
+ DICompileUnit CU(CompileUnits->getOperand(I));
+ assert(CU && "Expected valid compile unit");
+
+ DITypedArray<DISubprogram> SPs(CU.getSubprograms());
+ assert(SPs && "Expected valid subprogram array");
+
+ SmallVector<Metadata *, 16> NewSPs;
+ NewSPs.reserve(SPs.getNumElements());
+ for (unsigned S = 0, SE = SPs.getNumElements(); S != SE; ++S) {
+ DISubprogram SP = SPs.getElement(S);
+ if (SP && SP.getFunction() && Functions.count(SP.getFunction()))
+ continue;
+
+ NewSPs.push_back(SP);
+ }
+
+ // Redirect operand to the overriding subprogram.
+ if (NewSPs.size() != SPs.getNumElements())
+ CU.replaceSubprograms(DIArray(MDNode::get(DstM->getContext(), NewSPs)));
+ }
+}
+
+/// Merge the linker flags in Src into the Dest module.
+bool ModuleLinker::linkModuleFlagsMetadata() {
+ // If the source module has no module flags, we are done.
+ const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
+ if (!SrcModFlags) return false;
+
+ // If the destination module doesn't have module flags yet, then just copy
+ // over the source module's flags.
+ NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
+ if (DstModFlags->getNumOperands() == 0) {
+ for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
+ DstModFlags->addOperand(SrcModFlags->getOperand(I));
+
+ return false;
+ }
+
+ // First build a map of the existing module flags and requirements.
+ DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
+ SmallSetVector<MDNode*, 16> Requirements;
+ for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
+ MDNode *Op = DstModFlags->getOperand(I);
+ ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
+ MDString *ID = cast<MDString>(Op->getOperand(1));
+
+ if (Behavior->getZExtValue() == Module::Require) {
+ Requirements.insert(cast<MDNode>(Op->getOperand(2)));
+ } else {
+ Flags[ID] = std::make_pair(Op, I);
+ }
+ }
+
+ // Merge in the flags from the source module, and also collect its set of
+ // requirements.
+ bool HasErr = false;
+ for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
+ MDNode *SrcOp = SrcModFlags->getOperand(I);
+ ConstantInt *SrcBehavior =
+ mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
+ MDString *ID = cast<MDString>(SrcOp->getOperand(1));
+ MDNode *DstOp;
+ unsigned DstIndex;
+ std::tie(DstOp, DstIndex) = Flags.lookup(ID);
+ unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
+
+ // If this is a requirement, add it and continue.
+ if (SrcBehaviorValue == Module::Require) {
+ // If the destination module does not already have this requirement, add
+ // it.
+ if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
+ DstModFlags->addOperand(SrcOp);
+ }
+ continue;
+ }
+
+ // If there is no existing flag with this ID, just add it.
+ if (!DstOp) {
+ Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
+ DstModFlags->addOperand(SrcOp);
+ continue;
+ }
+
+ // Otherwise, perform a merge.
+ ConstantInt *DstBehavior =
+ mdconst::extract<ConstantInt>(DstOp->getOperand(0));
+ unsigned DstBehaviorValue = DstBehavior->getZExtValue();
+
+ // If either flag has override behavior, handle it first.
+ if (DstBehaviorValue == Module::Override) {
+ // Diagnose inconsistent flags which both have override behavior.
+ if (SrcBehaviorValue == Module::Override &&
+ SrcOp->getOperand(2) != DstOp->getOperand(2)) {
+ HasErr |= emitError("linking module flags '" + ID->getString() +
+ "': IDs have conflicting override values");
+ }
+ continue;
+ } else if (SrcBehaviorValue == Module::Override) {
+ // Update the destination flag to that of the source.
+ DstModFlags->setOperand(DstIndex, SrcOp);
+ Flags[ID].first = SrcOp;
+ continue;
+ }
+
+ // Diagnose inconsistent merge behavior types.
+ if (SrcBehaviorValue != DstBehaviorValue) {
+ HasErr |= emitError("linking module flags '" + ID->getString() +
+ "': IDs have conflicting behaviors");
+ continue;
+ }
+
+ auto replaceDstValue = [&](MDNode *New) {
+ Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
+ MDNode *Flag = MDNode::get(DstM->getContext(), FlagOps);
+ DstModFlags->setOperand(DstIndex, Flag);
+ Flags[ID].first = Flag;
+ };
+
+ // Perform the merge for standard behavior types.
+ switch (SrcBehaviorValue) {
+ case Module::Require:
+ case Module::Override: llvm_unreachable("not possible");
+ case Module::Error: {
+ // Emit an error if the values differ.
+ if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
+ HasErr |= emitError("linking module flags '" + ID->getString() +
+ "': IDs have conflicting values");
+ }
+ continue;
+ }
+ case Module::Warning: {
+ // Emit a warning if the values differ.
+ if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
+ emitWarning("linking module flags '" + ID->getString() +
+ "': IDs have conflicting values");
+ }
+ continue;
+ }
+ case Module::Append: {
+ MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
+ MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
+ SmallVector<Metadata *, 8> MDs;
+ MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
+ for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
+ MDs.push_back(DstValue->getOperand(i));
+ for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
+ MDs.push_back(SrcValue->getOperand(i));
+
+ replaceDstValue(MDNode::get(DstM->getContext(), MDs));
+ break;
+ }
+ case Module::AppendUnique: {
+ SmallSetVector<Metadata *, 16> Elts;
+ MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
+ MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
+ for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
+ Elts.insert(DstValue->getOperand(i));
+ for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
+ Elts.insert(SrcValue->getOperand(i));
+
+ replaceDstValue(MDNode::get(DstM->getContext(),
+ makeArrayRef(Elts.begin(), Elts.end())));
+ break;
+ }
+ }
+ }
+
+ // Check all of the requirements.
+ for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
+ MDNode *Requirement = Requirements[I];
+ MDString *Flag = cast<MDString>(Requirement->getOperand(0));
+ Metadata *ReqValue = Requirement->getOperand(1);
+
+ MDNode *Op = Flags[Flag].first;
+ if (!Op || Op->getOperand(2) != ReqValue) {
+ HasErr |= emitError("linking module flags '" + Flag->getString() +
+ "': does not have the required value");
+ continue;
+ }
+ }
+
+ return HasErr;
+}
+
+bool ModuleLinker::run() {
+ assert(DstM && "Null destination module");
+ assert(SrcM && "Null source module");
+
+ // Inherit the target data from the source module if the destination module
+ // doesn't have one already.
+ if (!DstM->getDataLayout() && SrcM->getDataLayout())
+ DstM->setDataLayout(SrcM->getDataLayout());
+
+ // Copy the target triple from the source to dest if the dest's is empty.
+ if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
+ DstM->setTargetTriple(SrcM->getTargetTriple());
+
+ if (SrcM->getDataLayout() && DstM->getDataLayout() &&
+ *SrcM->getDataLayout() != *DstM->getDataLayout()) {
+ emitWarning("Linking two modules of different data layouts: '" +
+ SrcM->getModuleIdentifier() + "' is '" +
+ SrcM->getDataLayoutStr() + "' whereas '" +
+ DstM->getModuleIdentifier() + "' is '" +
+ DstM->getDataLayoutStr() + "'\n");
+ }
+ if (!SrcM->getTargetTriple().empty() &&
+ DstM->getTargetTriple() != SrcM->getTargetTriple()) {
+ emitWarning("Linking two modules of different target triples: " +
+ SrcM->getModuleIdentifier() + "' is '" +
+ SrcM->getTargetTriple() + "' whereas '" +
+ DstM->getModuleIdentifier() + "' is '" +
+ DstM->getTargetTriple() + "'\n");
+ }
+
+ // Append the module inline asm string.
+ if (!SrcM->getModuleInlineAsm().empty()) {
+ if (DstM->getModuleInlineAsm().empty())
+ DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
+ else
+ DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
+ SrcM->getModuleInlineAsm());
+ }
+
+ // Loop over all of the linked values to compute type mappings.
+ computeTypeMapping();
+
+ ComdatsChosen.clear();
+ for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
+ const Comdat &C = SMEC.getValue();
+ if (ComdatsChosen.count(&C))
+ continue;
+ Comdat::SelectionKind SK;
+ bool LinkFromSrc;
+ if (getComdatResult(&C, SK, LinkFromSrc))
+ return true;
+ ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
+ }
+
+ // Upgrade mismatched global arrays.
+ upgradeMismatchedGlobals();
+
+ // Insert all of the globals in src into the DstM module... without linking
+ // initializers (which could refer to functions not yet mapped over).
+ for (Module::global_iterator I = SrcM->global_begin(),
+ E = SrcM->global_end(); I != E; ++I)
+ if (linkGlobalValueProto(I))
+ return true;
+
+ // Link the functions together between the two modules, without doing function
+ // bodies... this just adds external function prototypes to the DstM
+ // function... We do this so that when we begin processing function bodies,
+ // all of the global values that may be referenced are available in our
+ // ValueMap.
+ for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
+ if (linkGlobalValueProto(I))
+ return true;
+
+ // If there were any aliases, link them now.
+ for (Module::alias_iterator I = SrcM->alias_begin(),
+ E = SrcM->alias_end(); I != E; ++I)
+ if (linkGlobalValueProto(I))
+ return true;
+
+ for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
+ linkAppendingVarInit(AppendingVars[i]);
+
+ for (const auto &Entry : DstM->getComdatSymbolTable()) {
+ const Comdat &C = Entry.getValue();
+ if (C.getSelectionKind() == Comdat::Any)
+ continue;
+ const GlobalValue *GV = SrcM->getNamedValue(C.getName());
+ assert(GV);
+ MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
+ }
+
+ // Link in the function bodies that are defined in the source module into
+ // DstM.
+ for (Function &SF : *SrcM) {
+ // Skip if no body (function is external).
+ if (SF.isDeclaration())
+ continue;
+
+ // Skip if not linking from source.
+ if (DoNotLinkFromSource.count(&SF))
+ continue;
+
+ if (linkGlobalValueBody(SF))
+ return true;
+ }
+
+ // Resolve all uses of aliases with aliasees.
+ for (GlobalAlias &Src : SrcM->aliases()) {
+ if (DoNotLinkFromSource.count(&Src))
+ continue;
+ linkGlobalValueBody(Src);
+ }
+
+ // Strip replaced subprograms before linking together compile units.
+ stripReplacedSubprograms();
+
+ // Remap all of the named MDNodes in Src into the DstM module. We do this
+ // after linking GlobalValues so that MDNodes that reference GlobalValues
+ // are properly remapped.
+ linkNamedMDNodes();
+
+ // Merge the module flags into the DstM module.
+ if (linkModuleFlagsMetadata())
+ return true;
+
+ // Update the initializers in the DstM module now that all globals that may
+ // be referenced are in DstM.
+ for (GlobalVariable &Src : SrcM->globals()) {
+ // Only process initialized GV's or ones not already in dest.
+ if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
+ continue;
+ linkGlobalValueBody(Src);
+ }
+
+ // Process vector of lazily linked in functions.
+ while (!LazilyLinkGlobalValues.empty()) {
+ GlobalValue *SGV = LazilyLinkGlobalValues.back();
+ LazilyLinkGlobalValues.pop_back();
+
+ assert(!SGV->isDeclaration() && "users should not pass down decls");
+ if (linkGlobalValueBody(*SGV))
+ return true;
+ }
+
+ return false;
+}
+
+Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
+ : ETypes(E), IsPacked(P) {}
+
+Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
+ : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
+
+bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
+ if (IsPacked != That.IsPacked)
+ return false;
+ if (ETypes != That.ETypes)
+ return false;
+ return true;
+}
+
+bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
+ return !this->operator==(That);
+}
+
+StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
+ return DenseMapInfo<StructType *>::getEmptyKey();
+}
+
+StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
+ return DenseMapInfo<StructType *>::getTombstoneKey();
+}
+
+unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
+ return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
+ Key.IsPacked);
+}
+
+unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
+ return getHashValue(KeyTy(ST));
+}
+
+bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return false;
+ return LHS == KeyTy(RHS);
+}
+
+bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
+ const StructType *RHS) {
+ if (RHS == getEmptyKey())
+ return LHS == getEmptyKey();
+
+ if (RHS == getTombstoneKey())
+ return LHS == getTombstoneKey();
+
+ return KeyTy(LHS) == KeyTy(RHS);
+}
+
+void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
+ assert(!Ty->isOpaque());
+ NonOpaqueStructTypes.insert(Ty);
+}
+
+void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
+ assert(Ty->isOpaque());
+ OpaqueStructTypes.insert(Ty);
+}
+
+StructType *
+Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
+ bool IsPacked) {
+ Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
+ auto I = NonOpaqueStructTypes.find_as(Key);
+ if (I == NonOpaqueStructTypes.end())
+ return nullptr;
+ return *I;
+}
+
+bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
+ if (Ty->isOpaque())
+ return OpaqueStructTypes.count(Ty);
+ auto I = NonOpaqueStructTypes.find(Ty);
+ if (I == NonOpaqueStructTypes.end())
+ return false;
+ return *I == Ty;
+}
+
+void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
+ this->Composite = M;
+ this->DiagnosticHandler = DiagnosticHandler;
+
+ TypeFinder StructTypes;
+ StructTypes.run(*M, true);
+ for (StructType *Ty : StructTypes) {
+ if (Ty->isOpaque())
+ IdentifiedStructTypes.addOpaque(Ty);
+ else
+ IdentifiedStructTypes.addNonOpaque(Ty);
+ }
+}
+
+Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
+ init(M, DiagnosticHandler);
+}
+
+Linker::Linker(Module *M) {
+ init(M, [this](const DiagnosticInfo &DI) {
+ Composite->getContext().diagnose(DI);
+ });
+}
+
+Linker::~Linker() {
+}
+
+void Linker::deleteModule() {
+ delete Composite;
+ Composite = nullptr;
+}
+
+bool Linker::linkInModule(Module *Src) {
+ ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
+ DiagnosticHandler);
+ return TheLinker.run();
+}
+
+//===----------------------------------------------------------------------===//
+// LinkModules entrypoint.
+//===----------------------------------------------------------------------===//
+
+/// This function links two modules together, with the resulting Dest module
+/// modified to be the composite of the two input modules. If an error occurs,
+/// true is returned and ErrorMsg (if not null) is set to indicate the problem.
+/// Upon failure, the Dest module could be in a modified state, and shouldn't be
+/// relied on to be consistent.
+bool Linker::LinkModules(Module *Dest, Module *Src,
+ DiagnosticHandlerFunction DiagnosticHandler) {
+ Linker L(Dest, DiagnosticHandler);
+ return L.linkInModule(Src);
+}
+
+bool Linker::LinkModules(Module *Dest, Module *Src) {
+ Linker L(Dest);
+ return L.linkInModule(Src);
+}
+
+//===----------------------------------------------------------------------===//
+// C API.
+//===----------------------------------------------------------------------===//
+
+LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
+ unsigned Unused, char **OutMessages) {
+ Module *D = unwrap(Dest);
+ std::string Message;
+ raw_string_ostream Stream(Message);
+ DiagnosticPrinterRawOStream DP(Stream);
+
+ LLVMBool Result = Linker::LinkModules(
+ D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
+
+ if (OutMessages && Result)
+ *OutMessages = strdup(Message.c_str());
+ return Result;
+}
OpenPOWER on IntegriCloud