summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Linker/LinkModules.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Linker/LinkModules.cpp')
-rw-r--r--contrib/llvm/lib/Linker/LinkModules.cpp1383
1 files changed, 1383 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Linker/LinkModules.cpp b/contrib/llvm/lib/Linker/LinkModules.cpp
new file mode 100644
index 0000000..8487c83
--- /dev/null
+++ b/contrib/llvm/lib/Linker/LinkModules.cpp
@@ -0,0 +1,1383 @@
+//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LLVM module linker.
+//
+// Specifically, this:
+// * Merges global variables between the two modules
+// * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
+// * Merges functions between two modules
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Linker.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/TypeSymbolTable.h"
+#include "llvm/ValueSymbolTable.h"
+#include "llvm/Instructions.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/System/Path.h"
+#include "llvm/ADT/DenseMap.h"
+using namespace llvm;
+
+// Error - Simple wrapper function to conditionally assign to E and return true.
+// This just makes error return conditions a little bit simpler...
+static inline bool Error(std::string *E, const Twine &Message) {
+ if (E) *E = Message.str();
+ return true;
+}
+
+// Function: ResolveTypes()
+//
+// Description:
+// Attempt to link the two specified types together.
+//
+// Inputs:
+// DestTy - The type to which we wish to resolve.
+// SrcTy - The original type which we want to resolve.
+//
+// Outputs:
+// DestST - The symbol table in which the new type should be placed.
+//
+// Return value:
+// true - There is an error and the types cannot yet be linked.
+// false - No errors.
+//
+static bool ResolveTypes(const Type *DestTy, const Type *SrcTy) {
+ if (DestTy == SrcTy) return false; // If already equal, noop
+ assert(DestTy && SrcTy && "Can't handle null types");
+
+ if (const OpaqueType *OT = dyn_cast<OpaqueType>(DestTy)) {
+ // Type _is_ in module, just opaque...
+ const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(SrcTy);
+ } else if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) {
+ const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy);
+ } else {
+ return true; // Cannot link types... not-equal and neither is opaque.
+ }
+ return false;
+}
+
+/// LinkerTypeMap - This implements a map of types that is stable
+/// even if types are resolved/refined to other types. This is not a general
+/// purpose map, it is specific to the linker's use.
+namespace {
+class LinkerTypeMap : public AbstractTypeUser {
+ typedef DenseMap<const Type*, PATypeHolder> TheMapTy;
+ TheMapTy TheMap;
+
+ LinkerTypeMap(const LinkerTypeMap&); // DO NOT IMPLEMENT
+ void operator=(const LinkerTypeMap&); // DO NOT IMPLEMENT
+public:
+ LinkerTypeMap() {}
+ ~LinkerTypeMap() {
+ for (DenseMap<const Type*, PATypeHolder>::iterator I = TheMap.begin(),
+ E = TheMap.end(); I != E; ++I)
+ I->first->removeAbstractTypeUser(this);
+ }
+
+ /// lookup - Return the value for the specified type or null if it doesn't
+ /// exist.
+ const Type *lookup(const Type *Ty) const {
+ TheMapTy::const_iterator I = TheMap.find(Ty);
+ if (I != TheMap.end()) return I->second;
+ return 0;
+ }
+
+ /// erase - Remove the specified type, returning true if it was in the set.
+ bool erase(const Type *Ty) {
+ if (!TheMap.erase(Ty))
+ return false;
+ if (Ty->isAbstract())
+ Ty->removeAbstractTypeUser(this);
+ return true;
+ }
+
+ /// insert - This returns true if the pointer was new to the set, false if it
+ /// was already in the set.
+ bool insert(const Type *Src, const Type *Dst) {
+ if (!TheMap.insert(std::make_pair(Src, PATypeHolder(Dst))).second)
+ return false; // Already in map.
+ if (Src->isAbstract())
+ Src->addAbstractTypeUser(this);
+ return true;
+ }
+
+protected:
+ /// refineAbstractType - The callback method invoked when an abstract type is
+ /// resolved to another type. An object must override this method to update
+ /// its internal state to reference NewType instead of OldType.
+ ///
+ virtual void refineAbstractType(const DerivedType *OldTy,
+ const Type *NewTy) {
+ TheMapTy::iterator I = TheMap.find(OldTy);
+ const Type *DstTy = I->second;
+
+ TheMap.erase(I);
+ if (OldTy->isAbstract())
+ OldTy->removeAbstractTypeUser(this);
+
+ // Don't reinsert into the map if the key is concrete now.
+ if (NewTy->isAbstract())
+ insert(NewTy, DstTy);
+ }
+
+ /// The other case which AbstractTypeUsers must be aware of is when a type
+ /// makes the transition from being abstract (where it has clients on it's
+ /// AbstractTypeUsers list) to concrete (where it does not). This method
+ /// notifies ATU's when this occurs for a type.
+ virtual void typeBecameConcrete(const DerivedType *AbsTy) {
+ TheMap.erase(AbsTy);
+ AbsTy->removeAbstractTypeUser(this);
+ }
+
+ // for debugging...
+ virtual void dump() const {
+ dbgs() << "AbstractTypeSet!\n";
+ }
+};
+}
+
+
+// RecursiveResolveTypes - This is just like ResolveTypes, except that it
+// recurses down into derived types, merging the used types if the parent types
+// are compatible.
+static bool RecursiveResolveTypesI(const Type *DstTy, const Type *SrcTy,
+ LinkerTypeMap &Pointers) {
+ if (DstTy == SrcTy) return false; // If already equal, noop
+
+ // If we found our opaque type, resolve it now!
+ if (DstTy->isOpaqueTy() || SrcTy->isOpaqueTy())
+ return ResolveTypes(DstTy, SrcTy);
+
+ // Two types cannot be resolved together if they are of different primitive
+ // type. For example, we cannot resolve an int to a float.
+ if (DstTy->getTypeID() != SrcTy->getTypeID()) return true;
+
+ // If neither type is abstract, then they really are just different types.
+ if (!DstTy->isAbstract() && !SrcTy->isAbstract())
+ return true;
+
+ // Otherwise, resolve the used type used by this derived type...
+ switch (DstTy->getTypeID()) {
+ default:
+ return true;
+ case Type::FunctionTyID: {
+ const FunctionType *DstFT = cast<FunctionType>(DstTy);
+ const FunctionType *SrcFT = cast<FunctionType>(SrcTy);
+ if (DstFT->isVarArg() != SrcFT->isVarArg() ||
+ DstFT->getNumContainedTypes() != SrcFT->getNumContainedTypes())
+ return true;
+
+ // Use TypeHolder's so recursive resolution won't break us.
+ PATypeHolder ST(SrcFT), DT(DstFT);
+ for (unsigned i = 0, e = DstFT->getNumContainedTypes(); i != e; ++i) {
+ const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
+ if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
+ return true;
+ }
+ return false;
+ }
+ case Type::StructTyID: {
+ const StructType *DstST = cast<StructType>(DstTy);
+ const StructType *SrcST = cast<StructType>(SrcTy);
+ if (DstST->getNumContainedTypes() != SrcST->getNumContainedTypes())
+ return true;
+
+ PATypeHolder ST(SrcST), DT(DstST);
+ for (unsigned i = 0, e = DstST->getNumContainedTypes(); i != e; ++i) {
+ const Type *SE = ST->getContainedType(i), *DE = DT->getContainedType(i);
+ if (SE != DE && RecursiveResolveTypesI(DE, SE, Pointers))
+ return true;
+ }
+ return false;
+ }
+ case Type::ArrayTyID: {
+ const ArrayType *DAT = cast<ArrayType>(DstTy);
+ const ArrayType *SAT = cast<ArrayType>(SrcTy);
+ if (DAT->getNumElements() != SAT->getNumElements()) return true;
+ return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(),
+ Pointers);
+ }
+ case Type::VectorTyID: {
+ const VectorType *DVT = cast<VectorType>(DstTy);
+ const VectorType *SVT = cast<VectorType>(SrcTy);
+ if (DVT->getNumElements() != SVT->getNumElements()) return true;
+ return RecursiveResolveTypesI(DVT->getElementType(), SVT->getElementType(),
+ Pointers);
+ }
+ case Type::PointerTyID: {
+ const PointerType *DstPT = cast<PointerType>(DstTy);
+ const PointerType *SrcPT = cast<PointerType>(SrcTy);
+
+ if (DstPT->getAddressSpace() != SrcPT->getAddressSpace())
+ return true;
+
+ // If this is a pointer type, check to see if we have already seen it. If
+ // so, we are in a recursive branch. Cut off the search now. We cannot use
+ // an associative container for this search, because the type pointers (keys
+ // in the container) change whenever types get resolved.
+ if (SrcPT->isAbstract())
+ if (const Type *ExistingDestTy = Pointers.lookup(SrcPT))
+ return ExistingDestTy != DstPT;
+
+ if (DstPT->isAbstract())
+ if (const Type *ExistingSrcTy = Pointers.lookup(DstPT))
+ return ExistingSrcTy != SrcPT;
+ // Otherwise, add the current pointers to the vector to stop recursion on
+ // this pair.
+ if (DstPT->isAbstract())
+ Pointers.insert(DstPT, SrcPT);
+ if (SrcPT->isAbstract())
+ Pointers.insert(SrcPT, DstPT);
+
+ return RecursiveResolveTypesI(DstPT->getElementType(),
+ SrcPT->getElementType(), Pointers);
+ }
+ }
+}
+
+static bool RecursiveResolveTypes(const Type *DestTy, const Type *SrcTy) {
+ LinkerTypeMap PointerTypes;
+ return RecursiveResolveTypesI(DestTy, SrcTy, PointerTypes);
+}
+
+
+// LinkTypes - Go through the symbol table of the Src module and see if any
+// types are named in the src module that are not named in the Dst module.
+// Make sure there are no type name conflicts.
+static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) {
+ TypeSymbolTable *DestST = &Dest->getTypeSymbolTable();
+ const TypeSymbolTable *SrcST = &Src->getTypeSymbolTable();
+
+ // Look for a type plane for Type's...
+ TypeSymbolTable::const_iterator TI = SrcST->begin();
+ TypeSymbolTable::const_iterator TE = SrcST->end();
+ if (TI == TE) return false; // No named types, do nothing.
+
+ // Some types cannot be resolved immediately because they depend on other
+ // types being resolved to each other first. This contains a list of types we
+ // are waiting to recheck.
+ std::vector<std::string> DelayedTypesToResolve;
+
+ for ( ; TI != TE; ++TI ) {
+ const std::string &Name = TI->first;
+ const Type *RHS = TI->second;
+
+ // Check to see if this type name is already in the dest module.
+ Type *Entry = DestST->lookup(Name);
+
+ // If the name is just in the source module, bring it over to the dest.
+ if (Entry == 0) {
+ if (!Name.empty())
+ DestST->insert(Name, const_cast<Type*>(RHS));
+ } else if (ResolveTypes(Entry, RHS)) {
+ // They look different, save the types 'till later to resolve.
+ DelayedTypesToResolve.push_back(Name);
+ }
+ }
+
+ // Iteratively resolve types while we can...
+ while (!DelayedTypesToResolve.empty()) {
+ // Loop over all of the types, attempting to resolve them if possible...
+ unsigned OldSize = DelayedTypesToResolve.size();
+
+ // Try direct resolution by name...
+ for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) {
+ const std::string &Name = DelayedTypesToResolve[i];
+ Type *T1 = SrcST->lookup(Name);
+ Type *T2 = DestST->lookup(Name);
+ if (!ResolveTypes(T2, T1)) {
+ // We are making progress!
+ DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
+ --i;
+ }
+ }
+
+ // Did we not eliminate any types?
+ if (DelayedTypesToResolve.size() == OldSize) {
+ // Attempt to resolve subelements of types. This allows us to merge these
+ // two types: { int* } and { opaque* }
+ for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) {
+ const std::string &Name = DelayedTypesToResolve[i];
+ if (!RecursiveResolveTypes(SrcST->lookup(Name), DestST->lookup(Name))) {
+ // We are making progress!
+ DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i);
+
+ // Go back to the main loop, perhaps we can resolve directly by name
+ // now...
+ break;
+ }
+ }
+
+ // If we STILL cannot resolve the types, then there is something wrong.
+ if (DelayedTypesToResolve.size() == OldSize) {
+ // Remove the symbol name from the destination.
+ DelayedTypesToResolve.pop_back();
+ }
+ }
+ }
+
+
+ return false;
+}
+
+#ifndef NDEBUG
+static void PrintMap(const std::map<const Value*, Value*> &M) {
+ for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end();
+ I != E; ++I) {
+ dbgs() << " Fr: " << (void*)I->first << " ";
+ I->first->dump();
+ dbgs() << " To: " << (void*)I->second << " ";
+ I->second->dump();
+ dbgs() << "\n";
+ }
+}
+#endif
+
+
+// RemapOperand - Use ValueMap to convert constants from one module to another.
+static Value *RemapOperand(const Value *In,
+ std::map<const Value*, Value*> &ValueMap) {
+ std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In);
+ if (I != ValueMap.end())
+ return I->second;
+
+ // Check to see if it's a constant that we are interested in transforming.
+ Value *Result = 0;
+ if (const Constant *CPV = dyn_cast<Constant>(In)) {
+ if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) ||
+ isa<ConstantInt>(CPV) || isa<ConstantAggregateZero>(CPV))
+ return const_cast<Constant*>(CPV); // Simple constants stay identical.
+
+ if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
+ std::vector<Constant*> Operands(CPA->getNumOperands());
+ for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+ Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap));
+ Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
+ } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
+ std::vector<Constant*> Operands(CPS->getNumOperands());
+ for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+ Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap));
+ Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
+ } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) {
+ Result = const_cast<Constant*>(CPV);
+ } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CPV)) {
+ std::vector<Constant*> Operands(CP->getNumOperands());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap));
+ Result = ConstantVector::get(Operands);
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
+ std::vector<Constant*> Ops;
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
+ Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap)));
+ Result = CE->getWithOperands(Ops);
+ } else if (const BlockAddress *CE = dyn_cast<BlockAddress>(CPV)) {
+ Result = BlockAddress::get(
+ cast<Function>(RemapOperand(CE->getFunction(), ValueMap)),
+ CE->getBasicBlock());
+ } else {
+ assert(!isa<GlobalValue>(CPV) && "Unmapped global?");
+ llvm_unreachable("Unknown type of derived type constant value!");
+ }
+ } else if (const MDNode *MD = dyn_cast<MDNode>(In)) {
+ if (MD->isFunctionLocal()) {
+ SmallVector<Value*, 4> Elts;
+ for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
+ if (MD->getOperand(i))
+ Elts.push_back(RemapOperand(MD->getOperand(i), ValueMap));
+ else
+ Elts.push_back(NULL);
+ }
+ Result = MDNode::get(In->getContext(), Elts.data(), MD->getNumOperands());
+ } else {
+ Result = const_cast<Value*>(In);
+ }
+ } else if (isa<MDString>(In) || isa<InlineAsm>(In) || isa<Instruction>(In)) {
+ Result = const_cast<Value*>(In);
+ }
+
+ // Cache the mapping in our local map structure
+ if (Result) {
+ ValueMap[In] = Result;
+ return Result;
+ }
+
+#ifndef NDEBUG
+ dbgs() << "LinkModules ValueMap: \n";
+ PrintMap(ValueMap);
+
+ dbgs() << "Couldn't remap value: " << (void*)In << " " << *In << "\n";
+ llvm_unreachable("Couldn't remap value!");
+#endif
+ return 0;
+}
+
+/// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
+/// in the symbol table. This is good for all clients except for us. Go
+/// through the trouble to force this back.
+static void ForceRenaming(GlobalValue *GV, const std::string &Name) {
+ assert(GV->getName() != Name && "Can't force rename to self");
+ ValueSymbolTable &ST = GV->getParent()->getValueSymbolTable();
+
+ // If there is a conflict, rename the conflict.
+ if (GlobalValue *ConflictGV = cast_or_null<GlobalValue>(ST.lookup(Name))) {
+ assert(ConflictGV->hasLocalLinkage() &&
+ "Not conflicting with a static global, should link instead!");
+ GV->takeName(ConflictGV);
+ ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
+ assert(ConflictGV->getName() != Name && "ForceRenaming didn't work");
+ } else {
+ GV->setName(Name); // Force the name back
+ }
+}
+
+/// CopyGVAttributes - copy additional attributes (those not needed to construct
+/// a GlobalValue) from the SrcGV to the DestGV.
+static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
+ // Use the maximum alignment, rather than just copying the alignment of SrcGV.
+ unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
+ DestGV->copyAttributesFrom(SrcGV);
+ DestGV->setAlignment(Alignment);
+}
+
+/// GetLinkageResult - This analyzes the two global values and determines what
+/// the result will look like in the destination module. In particular, it
+/// computes the resultant linkage type, computes whether the global in the
+/// source should be copied over to the destination (replacing the existing
+/// one), and computes whether this linkage is an error or not. It also performs
+/// visibility checks: we cannot link together two symbols with different
+/// visibilities.
+static bool GetLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
+ GlobalValue::LinkageTypes &LT, bool &LinkFromSrc,
+ std::string *Err) {
+ assert((!Dest || !Src->hasLocalLinkage()) &&
+ "If Src has internal linkage, Dest shouldn't be set!");
+ if (!Dest) {
+ // Linking something to nothing.
+ LinkFromSrc = true;
+ LT = Src->getLinkage();
+ } else if (Src->isDeclaration()) {
+ // If Src is external or if both Src & Dest are external.. Just link the
+ // external globals, we aren't adding anything.
+ if (Src->hasDLLImportLinkage()) {
+ // If one of GVs has DLLImport linkage, result should be dllimport'ed.
+ if (Dest->isDeclaration()) {
+ LinkFromSrc = true;
+ LT = Src->getLinkage();
+ }
+ } else if (Dest->hasExternalWeakLinkage()) {
+ // If the Dest is weak, use the source linkage.
+ LinkFromSrc = true;
+ LT = Src->getLinkage();
+ } else {
+ LinkFromSrc = false;
+ LT = Dest->getLinkage();
+ }
+ } else if (Dest->isDeclaration() && !Dest->hasDLLImportLinkage()) {
+ // If Dest is external but Src is not:
+ LinkFromSrc = true;
+ LT = Src->getLinkage();
+ } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) {
+ if (Src->getLinkage() != Dest->getLinkage())
+ return Error(Err, "Linking globals named '" + Src->getName() +
+ "': can only link appending global with another appending global!");
+ LinkFromSrc = true; // Special cased.
+ LT = Src->getLinkage();
+ } else if (Src->isWeakForLinker()) {
+ // At this point we know that Dest has LinkOnce, External*, Weak, Common,
+ // or DLL* linkage.
+ if (Dest->hasExternalWeakLinkage() ||
+ Dest->hasAvailableExternallyLinkage() ||
+ (Dest->hasLinkOnceLinkage() &&
+ (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
+ LinkFromSrc = true;
+ LT = Src->getLinkage();
+ } else {
+ LinkFromSrc = false;
+ LT = Dest->getLinkage();
+ }
+ } else if (Dest->isWeakForLinker()) {
+ // At this point we know that Src has External* or DLL* linkage.
+ if (Src->hasExternalWeakLinkage()) {
+ LinkFromSrc = false;
+ LT = Dest->getLinkage();
+ } else {
+ LinkFromSrc = true;
+ LT = GlobalValue::ExternalLinkage;
+ }
+ } else {
+ assert((Dest->hasExternalLinkage() ||
+ Dest->hasDLLImportLinkage() ||
+ Dest->hasDLLExportLinkage() ||
+ Dest->hasExternalWeakLinkage()) &&
+ (Src->hasExternalLinkage() ||
+ Src->hasDLLImportLinkage() ||
+ Src->hasDLLExportLinkage() ||
+ Src->hasExternalWeakLinkage()) &&
+ "Unexpected linkage type!");
+ return Error(Err, "Linking globals named '" + Src->getName() +
+ "': symbol multiply defined!");
+ }
+
+ // Check visibility
+ if (Dest && Src->getVisibility() != Dest->getVisibility())
+ if (!Src->isDeclaration() && !Dest->isDeclaration())
+ return Error(Err, "Linking globals named '" + Src->getName() +
+ "': symbols have different visibilities!");
+ return false;
+}
+
+// Insert all of the named mdnoes in Src into the Dest module.
+static void LinkNamedMDNodes(Module *Dest, Module *Src) {
+ for (Module::const_named_metadata_iterator I = Src->named_metadata_begin(),
+ E = Src->named_metadata_end(); I != E; ++I) {
+ const NamedMDNode *SrcNMD = I;
+ NamedMDNode *DestNMD = Dest->getNamedMetadata(SrcNMD->getName());
+ if (!DestNMD)
+ NamedMDNode::Create(SrcNMD, Dest);
+ else {
+ // Add Src elements into Dest node.
+ for (unsigned i = 0, e = SrcNMD->getNumOperands(); i != e; ++i)
+ DestNMD->addOperand(SrcNMD->getOperand(i));
+ }
+ }
+}
+
+// LinkGlobals - Loop through the global variables in the src module and merge
+// them into the dest module.
+static bool LinkGlobals(Module *Dest, const Module *Src,
+ std::map<const Value*, Value*> &ValueMap,
+ std::multimap<std::string, GlobalVariable *> &AppendingVars,
+ std::string *Err) {
+ ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
+
+ // Loop over all of the globals in the src module, mapping them over as we go
+ for (Module::const_global_iterator I = Src->global_begin(),
+ E = Src->global_end(); I != E; ++I) {
+ const GlobalVariable *SGV = I;
+ GlobalValue *DGV = 0;
+
+ // Check to see if may have to link the global with the global, alias or
+ // function.
+ if (SGV->hasName() && !SGV->hasLocalLinkage())
+ DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SGV->getName()));
+
+ // If we found a global with the same name in the dest module, but it has
+ // internal linkage, we are really not doing any linkage here.
+ if (DGV && DGV->hasLocalLinkage())
+ DGV = 0;
+
+ // If types don't agree due to opaque types, try to resolve them.
+ if (DGV && DGV->getType() != SGV->getType())
+ RecursiveResolveTypes(SGV->getType(), DGV->getType());
+
+ assert((SGV->hasInitializer() || SGV->hasExternalWeakLinkage() ||
+ SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage()) &&
+ "Global must either be external or have an initializer!");
+
+ GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
+ bool LinkFromSrc = false;
+ if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err))
+ return true;
+
+ if (DGV == 0) {
+ // No linking to be performed, simply create an identical version of the
+ // symbol over in the dest module... the initializer will be filled in
+ // later by LinkGlobalInits.
+ GlobalVariable *NewDGV =
+ new GlobalVariable(*Dest, SGV->getType()->getElementType(),
+ SGV->isConstant(), SGV->getLinkage(), /*init*/0,
+ SGV->getName(), 0, false,
+ SGV->getType()->getAddressSpace());
+ // Propagate alignment, visibility and section info.
+ CopyGVAttributes(NewDGV, SGV);
+
+ // If the LLVM runtime renamed the global, but it is an externally visible
+ // symbol, DGV must be an existing global with internal linkage. Rename
+ // it.
+ if (!NewDGV->hasLocalLinkage() && NewDGV->getName() != SGV->getName())
+ ForceRenaming(NewDGV, SGV->getName());
+
+ // Make sure to remember this mapping.
+ ValueMap[SGV] = NewDGV;
+
+ // Keep track that this is an appending variable.
+ if (SGV->hasAppendingLinkage())
+ AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
+ continue;
+ }
+
+ // If the visibilities of the symbols disagree and the destination is a
+ // prototype, take the visibility of its input.
+ if (DGV->isDeclaration())
+ DGV->setVisibility(SGV->getVisibility());
+
+ if (DGV->hasAppendingLinkage()) {
+ // No linking is performed yet. Just insert a new copy of the global, and
+ // keep track of the fact that it is an appending variable in the
+ // AppendingVars map. The name is cleared out so that no linkage is
+ // performed.
+ GlobalVariable *NewDGV =
+ new GlobalVariable(*Dest, SGV->getType()->getElementType(),
+ SGV->isConstant(), SGV->getLinkage(), /*init*/0,
+ "", 0, false,
+ SGV->getType()->getAddressSpace());
+
+ // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
+ NewDGV->setAlignment(DGV->getAlignment());
+ // Propagate alignment, section and visibility info.
+ CopyGVAttributes(NewDGV, SGV);
+
+ // Make sure to remember this mapping...
+ ValueMap[SGV] = NewDGV;
+
+ // Keep track that this is an appending variable...
+ AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV));
+ continue;
+ }
+
+ if (LinkFromSrc) {
+ if (isa<GlobalAlias>(DGV))
+ return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
+ "': symbol multiple defined");
+
+ // If the types don't match, and if we are to link from the source, nuke
+ // DGV and create a new one of the appropriate type. Note that the thing
+ // we are replacing may be a function (if a prototype, weak, etc) or a
+ // global variable.
+ GlobalVariable *NewDGV =
+ new GlobalVariable(*Dest, SGV->getType()->getElementType(),
+ SGV->isConstant(), NewLinkage, /*init*/0,
+ DGV->getName(), 0, false,
+ SGV->getType()->getAddressSpace());
+
+ // Propagate alignment, section, and visibility info.
+ CopyGVAttributes(NewDGV, SGV);
+ DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV,
+ DGV->getType()));
+
+ // DGV will conflict with NewDGV because they both had the same
+ // name. We must erase this now so ForceRenaming doesn't assert
+ // because DGV might not have internal linkage.
+ if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
+ Var->eraseFromParent();
+ else
+ cast<Function>(DGV)->eraseFromParent();
+
+ // If the symbol table renamed the global, but it is an externally visible
+ // symbol, DGV must be an existing global with internal linkage. Rename.
+ if (NewDGV->getName() != SGV->getName() && !NewDGV->hasLocalLinkage())
+ ForceRenaming(NewDGV, SGV->getName());
+
+ // Inherit const as appropriate.
+ NewDGV->setConstant(SGV->isConstant());
+
+ // Make sure to remember this mapping.
+ ValueMap[SGV] = NewDGV;
+ continue;
+ }
+
+ // Not "link from source", keep the one in the DestModule and remap the
+ // input onto it.
+
+ // Special case for const propagation.
+ if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
+ if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
+ DGVar->setConstant(true);
+
+ // SGV is global, but DGV is alias.
+ if (isa<GlobalAlias>(DGV)) {
+ // The only valid mappings are:
+ // - SGV is external declaration, which is effectively a no-op.
+ // - SGV is weak, when we just need to throw SGV out.
+ if (!SGV->isDeclaration() && !SGV->isWeakForLinker())
+ return Error(Err, "Global-Alias Collision on '" + SGV->getName() +
+ "': symbol multiple defined");
+ }
+
+ // Set calculated linkage
+ DGV->setLinkage(NewLinkage);
+
+ // Make sure to remember this mapping...
+ ValueMap[SGV] = ConstantExpr::getBitCast(DGV, SGV->getType());
+ }
+ return false;
+}
+
+static GlobalValue::LinkageTypes
+CalculateAliasLinkage(const GlobalValue *SGV, const GlobalValue *DGV) {
+ GlobalValue::LinkageTypes SL = SGV->getLinkage();
+ GlobalValue::LinkageTypes DL = DGV->getLinkage();
+ if (SL == GlobalValue::ExternalLinkage || DL == GlobalValue::ExternalLinkage)
+ return GlobalValue::ExternalLinkage;
+ else if (SL == GlobalValue::WeakAnyLinkage ||
+ DL == GlobalValue::WeakAnyLinkage)
+ return GlobalValue::WeakAnyLinkage;
+ else if (SL == GlobalValue::WeakODRLinkage ||
+ DL == GlobalValue::WeakODRLinkage)
+ return GlobalValue::WeakODRLinkage;
+ else if (SL == GlobalValue::InternalLinkage &&
+ DL == GlobalValue::InternalLinkage)
+ return GlobalValue::InternalLinkage;
+ else if (SL == GlobalValue::LinkerPrivateLinkage &&
+ DL == GlobalValue::LinkerPrivateLinkage)
+ return GlobalValue::LinkerPrivateLinkage;
+ else {
+ assert (SL == GlobalValue::PrivateLinkage &&
+ DL == GlobalValue::PrivateLinkage && "Unexpected linkage type");
+ return GlobalValue::PrivateLinkage;
+ }
+}
+
+// LinkAlias - Loop through the alias in the src module and link them into the
+// dest module. We're assuming, that all functions/global variables were already
+// linked in.
+static bool LinkAlias(Module *Dest, const Module *Src,
+ std::map<const Value*, Value*> &ValueMap,
+ std::string *Err) {
+ // Loop over all alias in the src module
+ for (Module::const_alias_iterator I = Src->alias_begin(),
+ E = Src->alias_end(); I != E; ++I) {
+ const GlobalAlias *SGA = I;
+ const GlobalValue *SAliasee = SGA->getAliasedGlobal();
+ GlobalAlias *NewGA = NULL;
+
+ // Globals were already linked, thus we can just query ValueMap for variant
+ // of SAliasee in Dest.
+ std::map<const Value*,Value*>::const_iterator VMI = ValueMap.find(SAliasee);
+ assert(VMI != ValueMap.end() && "Aliasee not linked");
+ GlobalValue* DAliasee = cast<GlobalValue>(VMI->second);
+ GlobalValue* DGV = NULL;
+
+ // Try to find something 'similar' to SGA in destination module.
+ if (!DGV && !SGA->hasLocalLinkage()) {
+ DGV = Dest->getNamedAlias(SGA->getName());
+
+ // If types don't agree due to opaque types, try to resolve them.
+ if (DGV && DGV->getType() != SGA->getType())
+ RecursiveResolveTypes(SGA->getType(), DGV->getType());
+ }
+
+ if (!DGV && !SGA->hasLocalLinkage()) {
+ DGV = Dest->getGlobalVariable(SGA->getName());
+
+ // If types don't agree due to opaque types, try to resolve them.
+ if (DGV && DGV->getType() != SGA->getType())
+ RecursiveResolveTypes(SGA->getType(), DGV->getType());
+ }
+
+ if (!DGV && !SGA->hasLocalLinkage()) {
+ DGV = Dest->getFunction(SGA->getName());
+
+ // If types don't agree due to opaque types, try to resolve them.
+ if (DGV && DGV->getType() != SGA->getType())
+ RecursiveResolveTypes(SGA->getType(), DGV->getType());
+ }
+
+ // No linking to be performed on internal stuff.
+ if (DGV && DGV->hasLocalLinkage())
+ DGV = NULL;
+
+ if (GlobalAlias *DGA = dyn_cast_or_null<GlobalAlias>(DGV)) {
+ // Types are known to be the same, check whether aliasees equal. As
+ // globals are already linked we just need query ValueMap to find the
+ // mapping.
+ if (DAliasee == DGA->getAliasedGlobal()) {
+ // This is just two copies of the same alias. Propagate linkage, if
+ // necessary.
+ DGA->setLinkage(CalculateAliasLinkage(SGA, DGA));
+
+ NewGA = DGA;
+ // Proceed to 'common' steps
+ } else
+ return Error(Err, "Alias Collision on '" + SGA->getName()+
+ "': aliases have different aliasees");
+ } else if (GlobalVariable *DGVar = dyn_cast_or_null<GlobalVariable>(DGV)) {
+ // The only allowed way is to link alias with external declaration or weak
+ // symbol..
+ if (DGVar->isDeclaration() || DGVar->isWeakForLinker()) {
+ // But only if aliasee is global too...
+ if (!isa<GlobalVariable>(DAliasee))
+ return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
+ "': aliasee is not global variable");
+
+ NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
+ SGA->getName(), DAliasee, Dest);
+ CopyGVAttributes(NewGA, SGA);
+
+ // Any uses of DGV need to change to NewGA, with cast, if needed.
+ if (SGA->getType() != DGVar->getType())
+ DGVar->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
+ DGVar->getType()));
+ else
+ DGVar->replaceAllUsesWith(NewGA);
+
+ // DGVar will conflict with NewGA because they both had the same
+ // name. We must erase this now so ForceRenaming doesn't assert
+ // because DGV might not have internal linkage.
+ DGVar->eraseFromParent();
+
+ // Proceed to 'common' steps
+ } else
+ return Error(Err, "Global-Alias Collision on '" + SGA->getName() +
+ "': symbol multiple defined");
+ } else if (Function *DF = dyn_cast_or_null<Function>(DGV)) {
+ // The only allowed way is to link alias with external declaration or weak
+ // symbol...
+ if (DF->isDeclaration() || DF->isWeakForLinker()) {
+ // But only if aliasee is function too...
+ if (!isa<Function>(DAliasee))
+ return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
+ "': aliasee is not function");
+
+ NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
+ SGA->getName(), DAliasee, Dest);
+ CopyGVAttributes(NewGA, SGA);
+
+ // Any uses of DF need to change to NewGA, with cast, if needed.
+ if (SGA->getType() != DF->getType())
+ DF->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA,
+ DF->getType()));
+ else
+ DF->replaceAllUsesWith(NewGA);
+
+ // DF will conflict with NewGA because they both had the same
+ // name. We must erase this now so ForceRenaming doesn't assert
+ // because DF might not have internal linkage.
+ DF->eraseFromParent();
+
+ // Proceed to 'common' steps
+ } else
+ return Error(Err, "Function-Alias Collision on '" + SGA->getName() +
+ "': symbol multiple defined");
+ } else {
+ // No linking to be performed, simply create an identical version of the
+ // alias over in the dest module...
+ Constant *Aliasee = DAliasee;
+ // Fixup aliases to bitcasts. Note that aliases to GEPs are still broken
+ // by this, but aliases to GEPs are broken to a lot of other things, so
+ // it's less important.
+ if (SGA->getType() != DAliasee->getType())
+ Aliasee = ConstantExpr::getBitCast(DAliasee, SGA->getType());
+ NewGA = new GlobalAlias(SGA->getType(), SGA->getLinkage(),
+ SGA->getName(), Aliasee, Dest);
+ CopyGVAttributes(NewGA, SGA);
+
+ // Proceed to 'common' steps
+ }
+
+ assert(NewGA && "No alias was created in destination module!");
+
+ // If the symbol table renamed the alias, but it is an externally visible
+ // symbol, DGA must be an global value with internal linkage. Rename it.
+ if (NewGA->getName() != SGA->getName() &&
+ !NewGA->hasLocalLinkage())
+ ForceRenaming(NewGA, SGA->getName());
+
+ // Remember this mapping so uses in the source module get remapped
+ // later by RemapOperand.
+ ValueMap[SGA] = NewGA;
+ }
+
+ return false;
+}
+
+
+// LinkGlobalInits - Update the initializers in the Dest module now that all
+// globals that may be referenced are in Dest.
+static bool LinkGlobalInits(Module *Dest, const Module *Src,
+ std::map<const Value*, Value*> &ValueMap,
+ std::string *Err) {
+ // Loop over all of the globals in the src module, mapping them over as we go
+ for (Module::const_global_iterator I = Src->global_begin(),
+ E = Src->global_end(); I != E; ++I) {
+ const GlobalVariable *SGV = I;
+
+ if (SGV->hasInitializer()) { // Only process initialized GV's
+ // Figure out what the initializer looks like in the dest module...
+ Constant *SInit =
+ cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap));
+ // Grab destination global variable or alias.
+ GlobalValue *DGV = cast<GlobalValue>(ValueMap[SGV]->stripPointerCasts());
+
+ // If dest if global variable, check that initializers match.
+ if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV)) {
+ if (DGVar->hasInitializer()) {
+ if (SGV->hasExternalLinkage()) {
+ if (DGVar->getInitializer() != SInit)
+ return Error(Err, "Global Variable Collision on '" +
+ SGV->getName() +
+ "': global variables have different initializers");
+ } else if (DGVar->isWeakForLinker()) {
+ // Nothing is required, mapped values will take the new global
+ // automatically.
+ } else if (SGV->isWeakForLinker()) {
+ // Nothing is required, mapped values will take the new global
+ // automatically.
+ } else if (DGVar->hasAppendingLinkage()) {
+ llvm_unreachable("Appending linkage unimplemented!");
+ } else {
+ llvm_unreachable("Unknown linkage!");
+ }
+ } else {
+ // Copy the initializer over now...
+ DGVar->setInitializer(SInit);
+ }
+ } else {
+ // Destination is alias, the only valid situation is when source is
+ // weak. Also, note, that we already checked linkage in LinkGlobals(),
+ // thus we assert here.
+ // FIXME: Should we weaken this assumption, 'dereference' alias and
+ // check for initializer of aliasee?
+ assert(SGV->isWeakForLinker());
+ }
+ }
+ }
+ return false;
+}
+
+// LinkFunctionProtos - Link the functions together between the two modules,
+// without doing function bodies... this just adds external function prototypes
+// to the Dest function...
+//
+static bool LinkFunctionProtos(Module *Dest, const Module *Src,
+ std::map<const Value*, Value*> &ValueMap,
+ std::string *Err) {
+ ValueSymbolTable &DestSymTab = Dest->getValueSymbolTable();
+
+ // Loop over all of the functions in the src module, mapping them over
+ for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
+ const Function *SF = I; // SrcFunction
+ GlobalValue *DGV = 0;
+
+ // Check to see if may have to link the function with the global, alias or
+ // function.
+ if (SF->hasName() && !SF->hasLocalLinkage())
+ DGV = cast_or_null<GlobalValue>(DestSymTab.lookup(SF->getName()));
+
+ // If we found a global with the same name in the dest module, but it has
+ // internal linkage, we are really not doing any linkage here.
+ if (DGV && DGV->hasLocalLinkage())
+ DGV = 0;
+
+ // If types don't agree due to opaque types, try to resolve them.
+ if (DGV && DGV->getType() != SF->getType())
+ RecursiveResolveTypes(SF->getType(), DGV->getType());
+
+ GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
+ bool LinkFromSrc = false;
+ if (GetLinkageResult(DGV, SF, NewLinkage, LinkFromSrc, Err))
+ return true;
+
+ // If there is no linkage to be performed, just bring over SF without
+ // modifying it.
+ if (DGV == 0) {
+ // Function does not already exist, simply insert an function signature
+ // identical to SF into the dest module.
+ Function *NewDF = Function::Create(SF->getFunctionType(),
+ SF->getLinkage(),
+ SF->getName(), Dest);
+ CopyGVAttributes(NewDF, SF);
+
+ // If the LLVM runtime renamed the function, but it is an externally
+ // visible symbol, DF must be an existing function with internal linkage.
+ // Rename it.
+ if (!NewDF->hasLocalLinkage() && NewDF->getName() != SF->getName())
+ ForceRenaming(NewDF, SF->getName());
+
+ // ... and remember this mapping...
+ ValueMap[SF] = NewDF;
+ continue;
+ }
+
+ // If the visibilities of the symbols disagree and the destination is a
+ // prototype, take the visibility of its input.
+ if (DGV->isDeclaration())
+ DGV->setVisibility(SF->getVisibility());
+
+ if (LinkFromSrc) {
+ if (isa<GlobalAlias>(DGV))
+ return Error(Err, "Function-Alias Collision on '" + SF->getName() +
+ "': symbol multiple defined");
+
+ // We have a definition of the same name but different type in the
+ // source module. Copy the prototype to the destination and replace
+ // uses of the destination's prototype with the new prototype.
+ Function *NewDF = Function::Create(SF->getFunctionType(), NewLinkage,
+ SF->getName(), Dest);
+ CopyGVAttributes(NewDF, SF);
+
+ // Any uses of DF need to change to NewDF, with cast
+ DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF,
+ DGV->getType()));
+
+ // DF will conflict with NewDF because they both had the same. We must
+ // erase this now so ForceRenaming doesn't assert because DF might
+ // not have internal linkage.
+ if (GlobalVariable *Var = dyn_cast<GlobalVariable>(DGV))
+ Var->eraseFromParent();
+ else
+ cast<Function>(DGV)->eraseFromParent();
+
+ // If the symbol table renamed the function, but it is an externally
+ // visible symbol, DF must be an existing function with internal
+ // linkage. Rename it.
+ if (NewDF->getName() != SF->getName() && !NewDF->hasLocalLinkage())
+ ForceRenaming(NewDF, SF->getName());
+
+ // Remember this mapping so uses in the source module get remapped
+ // later by RemapOperand.
+ ValueMap[SF] = NewDF;
+ continue;
+ }
+
+ // Not "link from source", keep the one in the DestModule and remap the
+ // input onto it.
+
+ if (isa<GlobalAlias>(DGV)) {
+ // The only valid mappings are:
+ // - SF is external declaration, which is effectively a no-op.
+ // - SF is weak, when we just need to throw SF out.
+ if (!SF->isDeclaration() && !SF->isWeakForLinker())
+ return Error(Err, "Function-Alias Collision on '" + SF->getName() +
+ "': symbol multiple defined");
+ }
+
+ // Set calculated linkage
+ DGV->setLinkage(NewLinkage);
+
+ // Make sure to remember this mapping.
+ ValueMap[SF] = ConstantExpr::getBitCast(DGV, SF->getType());
+ }
+ return false;
+}
+
+// LinkFunctionBody - Copy the source function over into the dest function and
+// fix up references to values. At this point we know that Dest is an external
+// function, and that Src is not.
+static bool LinkFunctionBody(Function *Dest, Function *Src,
+ std::map<const Value*, Value*> &ValueMap,
+ std::string *Err) {
+ assert(Src && Dest && Dest->isDeclaration() && !Src->isDeclaration());
+
+ // Go through and convert function arguments over, remembering the mapping.
+ Function::arg_iterator DI = Dest->arg_begin();
+ for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
+ I != E; ++I, ++DI) {
+ DI->setName(I->getName()); // Copy the name information over...
+
+ // Add a mapping to our local map
+ ValueMap[I] = DI;
+ }
+
+ // Splice the body of the source function into the dest function.
+ Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList());
+
+ // At this point, all of the instructions and values of the function are now
+ // copied over. The only problem is that they are still referencing values in
+ // the Source function as operands. Loop through all of the operands of the
+ // functions and patch them up to point to the local versions...
+ //
+ for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
+ OI != OE; ++OI)
+ if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI))
+ *OI = RemapOperand(*OI, ValueMap);
+
+ // There is no need to map the arguments anymore.
+ for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
+ I != E; ++I)
+ ValueMap.erase(I);
+
+ return false;
+}
+
+
+// LinkFunctionBodies - Link in the function bodies that are defined in the
+// source module into the DestModule. This consists basically of copying the
+// function over and fixing up references to values.
+static bool LinkFunctionBodies(Module *Dest, Module *Src,
+ std::map<const Value*, Value*> &ValueMap,
+ std::string *Err) {
+
+ // Loop over all of the functions in the src module, mapping them over as we
+ // go
+ for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) {
+ if (!SF->isDeclaration()) { // No body if function is external
+ Function *DF = dyn_cast<Function>(ValueMap[SF]); // Destination function
+
+ // DF not external SF external?
+ if (DF && DF->isDeclaration())
+ // Only provide the function body if there isn't one already.
+ if (LinkFunctionBody(DF, SF, ValueMap, Err))
+ return true;
+ }
+ }
+ return false;
+}
+
+// LinkAppendingVars - If there were any appending global variables, link them
+// together now. Return true on error.
+static bool LinkAppendingVars(Module *M,
+ std::multimap<std::string, GlobalVariable *> &AppendingVars,
+ std::string *ErrorMsg) {
+ if (AppendingVars.empty()) return false; // Nothing to do.
+
+ // Loop over the multimap of appending vars, processing any variables with the
+ // same name, forming a new appending global variable with both of the
+ // initializers merged together, then rewrite references to the old variables
+ // and delete them.
+ std::vector<Constant*> Inits;
+ while (AppendingVars.size() > 1) {
+ // Get the first two elements in the map...
+ std::multimap<std::string,
+ GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++;
+
+ // If the first two elements are for different names, there is no pair...
+ // Otherwise there is a pair, so link them together...
+ if (First->first == Second->first) {
+ GlobalVariable *G1 = First->second, *G2 = Second->second;
+ const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType());
+ const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType());
+
+ // Check to see that they two arrays agree on type...
+ if (T1->getElementType() != T2->getElementType())
+ return Error(ErrorMsg,
+ "Appending variables with different element types need to be linked!");
+ if (G1->isConstant() != G2->isConstant())
+ return Error(ErrorMsg,
+ "Appending variables linked with different const'ness!");
+
+ if (G1->getAlignment() != G2->getAlignment())
+ return Error(ErrorMsg,
+ "Appending variables with different alignment need to be linked!");
+
+ if (G1->getVisibility() != G2->getVisibility())
+ return Error(ErrorMsg,
+ "Appending variables with different visibility need to be linked!");
+
+ if (G1->getSection() != G2->getSection())
+ return Error(ErrorMsg,
+ "Appending variables with different section name need to be linked!");
+
+ unsigned NewSize = T1->getNumElements() + T2->getNumElements();
+ ArrayType *NewType = ArrayType::get(T1->getElementType(),
+ NewSize);
+
+ G1->setName(""); // Clear G1's name in case of a conflict!
+
+ // Create the new global variable...
+ GlobalVariable *NG =
+ new GlobalVariable(*M, NewType, G1->isConstant(), G1->getLinkage(),
+ /*init*/0, First->first, 0, G1->isThreadLocal(),
+ G1->getType()->getAddressSpace());
+
+ // Propagate alignment, visibility and section info.
+ CopyGVAttributes(NG, G1);
+
+ // Merge the initializer...
+ Inits.reserve(NewSize);
+ if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) {
+ for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
+ Inits.push_back(I->getOperand(i));
+ } else {
+ assert(isa<ConstantAggregateZero>(G1->getInitializer()));
+ Constant *CV = Constant::getNullValue(T1->getElementType());
+ for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i)
+ Inits.push_back(CV);
+ }
+ if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) {
+ for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
+ Inits.push_back(I->getOperand(i));
+ } else {
+ assert(isa<ConstantAggregateZero>(G2->getInitializer()));
+ Constant *CV = Constant::getNullValue(T2->getElementType());
+ for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i)
+ Inits.push_back(CV);
+ }
+ NG->setInitializer(ConstantArray::get(NewType, Inits));
+ Inits.clear();
+
+ // Replace any uses of the two global variables with uses of the new
+ // global...
+
+ // FIXME: This should rewrite simple/straight-forward uses such as
+ // getelementptr instructions to not use the Cast!
+ G1->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
+ G1->getType()));
+ G2->replaceAllUsesWith(ConstantExpr::getBitCast(NG,
+ G2->getType()));
+
+ // Remove the two globals from the module now...
+ M->getGlobalList().erase(G1);
+ M->getGlobalList().erase(G2);
+
+ // Put the new global into the AppendingVars map so that we can handle
+ // linking of more than two vars...
+ Second->second = NG;
+ }
+ AppendingVars.erase(First);
+ }
+
+ return false;
+}
+
+static bool ResolveAliases(Module *Dest) {
+ for (Module::alias_iterator I = Dest->alias_begin(), E = Dest->alias_end();
+ I != E; ++I)
+ // We can't sue resolveGlobalAlias here because we need to preserve
+ // bitcasts and GEPs.
+ if (const Constant *C = I->getAliasee()) {
+ while (dyn_cast<GlobalAlias>(C))
+ C = cast<GlobalAlias>(C)->getAliasee();
+ const GlobalValue *GV = dyn_cast<GlobalValue>(C);
+ if (C != I && !(GV && GV->isDeclaration()))
+ I->replaceAllUsesWith(const_cast<Constant*>(C));
+ }
+
+ return false;
+}
+
+// LinkModules - This function links two modules together, with the resulting
+// left module modified to be the composite of the two input modules. If an
+// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
+// the problem. Upon failure, the Dest module could be in a modified state, and
+// shouldn't be relied on to be consistent.
+bool
+Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) {
+ assert(Dest != 0 && "Invalid Destination module");
+ assert(Src != 0 && "Invalid Source Module");
+
+ if (Dest->getDataLayout().empty()) {
+ if (!Src->getDataLayout().empty()) {
+ Dest->setDataLayout(Src->getDataLayout());
+ } else {
+ std::string DataLayout;
+
+ if (Dest->getEndianness() == Module::AnyEndianness) {
+ if (Src->getEndianness() == Module::BigEndian)
+ DataLayout.append("E");
+ else if (Src->getEndianness() == Module::LittleEndian)
+ DataLayout.append("e");
+ }
+
+ if (Dest->getPointerSize() == Module::AnyPointerSize) {
+ if (Src->getPointerSize() == Module::Pointer64)
+ DataLayout.append(DataLayout.length() == 0 ? "p:64:64" : "-p:64:64");
+ else if (Src->getPointerSize() == Module::Pointer32)
+ DataLayout.append(DataLayout.length() == 0 ? "p:32:32" : "-p:32:32");
+ }
+ Dest->setDataLayout(DataLayout);
+ }
+ }
+
+ // Copy the target triple from the source to dest if the dest's is empty.
+ if (Dest->getTargetTriple().empty() && !Src->getTargetTriple().empty())
+ Dest->setTargetTriple(Src->getTargetTriple());
+
+ if (!Src->getDataLayout().empty() && !Dest->getDataLayout().empty() &&
+ Src->getDataLayout() != Dest->getDataLayout())
+ errs() << "WARNING: Linking two modules of different data layouts!\n";
+ if (!Src->getTargetTriple().empty() &&
+ Dest->getTargetTriple() != Src->getTargetTriple())
+ errs() << "WARNING: Linking two modules of different target triples!\n";
+
+ // Append the module inline asm string.
+ if (!Src->getModuleInlineAsm().empty()) {
+ if (Dest->getModuleInlineAsm().empty())
+ Dest->setModuleInlineAsm(Src->getModuleInlineAsm());
+ else
+ Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+
+ Src->getModuleInlineAsm());
+ }
+
+ // Update the destination module's dependent libraries list with the libraries
+ // from the source module. There's no opportunity for duplicates here as the
+ // Module ensures that duplicate insertions are discarded.
+ for (Module::lib_iterator SI = Src->lib_begin(), SE = Src->lib_end();
+ SI != SE; ++SI)
+ Dest->addLibrary(*SI);
+
+ // LinkTypes - Go through the symbol table of the Src module and see if any
+ // types are named in the src module that are not named in the Dst module.
+ // Make sure there are no type name conflicts.
+ if (LinkTypes(Dest, Src, ErrorMsg))
+ return true;
+
+ // ValueMap - Mapping of values from what they used to be in Src, to what they
+ // are now in Dest.
+ std::map<const Value*, Value*> ValueMap;
+
+ // AppendingVars - Keep track of global variables in the destination module
+ // with appending linkage. After the module is linked together, they are
+ // appended and the module is rewritten.
+ std::multimap<std::string, GlobalVariable *> AppendingVars;
+ for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end();
+ I != E; ++I) {
+ // Add all of the appending globals already in the Dest module to
+ // AppendingVars.
+ if (I->hasAppendingLinkage())
+ AppendingVars.insert(std::make_pair(I->getName(), I));
+ }
+
+ // Insert all of the named mdnoes in Src into the Dest module.
+ LinkNamedMDNodes(Dest, Src);
+
+ // Insert all of the globals in src into the Dest module... without linking
+ // initializers (which could refer to functions not yet mapped over).
+ if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg))
+ return true;
+
+ // Link the functions together between the two modules, without doing function
+ // bodies... this just adds external function prototypes to the Dest
+ // function... We do this so that when we begin processing function bodies,
+ // all of the global values that may be referenced are available in our
+ // ValueMap.
+ if (LinkFunctionProtos(Dest, Src, ValueMap, ErrorMsg))
+ return true;
+
+ // If there were any alias, link them now. We really need to do this now,
+ // because all of the aliases that may be referenced need to be available in
+ // ValueMap
+ if (LinkAlias(Dest, Src, ValueMap, ErrorMsg)) return true;
+
+ // Update the initializers in the Dest module now that all globals that may
+ // be referenced are in Dest.
+ if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true;
+
+ // Link in the function bodies that are defined in the source module into the
+ // DestModule. This consists basically of copying the function over and
+ // fixing up references to values.
+ if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true;
+
+ // If there were any appending global variables, link them together now.
+ if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true;
+
+ // Resolve all uses of aliases with aliasees
+ if (ResolveAliases(Dest)) return true;
+
+ // If the source library's module id is in the dependent library list of the
+ // destination library, remove it since that module is now linked in.
+ sys::Path modId;
+ modId.set(Src->getModuleIdentifier());
+ if (!modId.isEmpty())
+ Dest->removeLibrary(modId.getBasename());
+
+ return false;
+}
+
+// vim: sw=2
OpenPOWER on IntegriCloud