summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/IR/Verifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/IR/Verifier.cpp')
-rw-r--r--contrib/llvm/lib/IR/Verifier.cpp3719
1 files changed, 3719 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/Verifier.cpp b/contrib/llvm/lib/IR/Verifier.cpp
new file mode 100644
index 0000000..2a0a4ff
--- /dev/null
+++ b/contrib/llvm/lib/IR/Verifier.cpp
@@ -0,0 +1,3719 @@
+//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the function verifier interface, that can be used for some
+// sanity checking of input to the system.
+//
+// Note that this does not provide full `Java style' security and verifications,
+// instead it just tries to ensure that code is well-formed.
+//
+// * Both of a binary operator's parameters are of the same type
+// * Verify that the indices of mem access instructions match other operands
+// * Verify that arithmetic and other things are only performed on first-class
+// types. Verify that shifts & logicals only happen on integrals f.e.
+// * All of the constants in a switch statement are of the correct type
+// * The code is in valid SSA form
+// * It should be illegal to put a label into any other type (like a structure)
+// or to return one. [except constant arrays!]
+// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
+// * PHI nodes must have an entry for each predecessor, with no extras.
+// * PHI nodes must be the first thing in a basic block, all grouped together
+// * PHI nodes must have at least one entry
+// * All basic blocks should only end with terminator insts, not contain them
+// * The entry node to a function must not have predecessors
+// * All Instructions must be embedded into a basic block
+// * Functions cannot take a void-typed parameter
+// * Verify that a function's argument list agrees with it's declared type.
+// * It is illegal to specify a name for a void value.
+// * It is illegal to have a internal global value with no initializer
+// * It is illegal to have a ret instruction that returns a value that does not
+// agree with the function return value type.
+// * Function call argument types match the function prototype
+// * A landing pad is defined by a landingpad instruction, and can be jumped to
+// only by the unwind edge of an invoke instruction.
+// * A landingpad instruction must be the first non-PHI instruction in the
+// block.
+// * All landingpad instructions must use the same personality function with
+// the same function.
+// * All other things that are tested by asserts spread about the code...
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Verifier.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdarg>
+using namespace llvm;
+
+static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
+
+namespace {
+struct VerifierSupport {
+ raw_ostream &OS;
+ const Module *M;
+
+ /// \brief Track the brokenness of the module while recursively visiting.
+ bool Broken;
+
+ explicit VerifierSupport(raw_ostream &OS)
+ : OS(OS), M(nullptr), Broken(false) {}
+
+private:
+ void Write(const Value *V) {
+ if (!V)
+ return;
+ if (isa<Instruction>(V)) {
+ OS << *V << '\n';
+ } else {
+ V->printAsOperand(OS, true, M);
+ OS << '\n';
+ }
+ }
+ void Write(ImmutableCallSite CS) {
+ Write(CS.getInstruction());
+ }
+
+ void Write(const Metadata *MD) {
+ if (!MD)
+ return;
+ MD->print(OS, M);
+ OS << '\n';
+ }
+
+ template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
+ Write(MD.get());
+ }
+
+ void Write(const NamedMDNode *NMD) {
+ if (!NMD)
+ return;
+ NMD->print(OS);
+ OS << '\n';
+ }
+
+ void Write(Type *T) {
+ if (!T)
+ return;
+ OS << ' ' << *T;
+ }
+
+ void Write(const Comdat *C) {
+ if (!C)
+ return;
+ OS << *C;
+ }
+
+ template <typename T1, typename... Ts>
+ void WriteTs(const T1 &V1, const Ts &... Vs) {
+ Write(V1);
+ WriteTs(Vs...);
+ }
+
+ template <typename... Ts> void WriteTs() {}
+
+public:
+ /// \brief A check failed, so printout out the condition and the message.
+ ///
+ /// This provides a nice place to put a breakpoint if you want to see why
+ /// something is not correct.
+ void CheckFailed(const Twine &Message) {
+ OS << Message << '\n';
+ Broken = true;
+ }
+
+ /// \brief A check failed (with values to print).
+ ///
+ /// This calls the Message-only version so that the above is easier to set a
+ /// breakpoint on.
+ template <typename T1, typename... Ts>
+ void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
+ CheckFailed(Message);
+ WriteTs(V1, Vs...);
+ }
+};
+
+class Verifier : public InstVisitor<Verifier>, VerifierSupport {
+ friend class InstVisitor<Verifier>;
+
+ LLVMContext *Context;
+ DominatorTree DT;
+
+ /// \brief When verifying a basic block, keep track of all of the
+ /// instructions we have seen so far.
+ ///
+ /// This allows us to do efficient dominance checks for the case when an
+ /// instruction has an operand that is an instruction in the same block.
+ SmallPtrSet<Instruction *, 16> InstsInThisBlock;
+
+ /// \brief Keep track of the metadata nodes that have been checked already.
+ SmallPtrSet<const Metadata *, 32> MDNodes;
+
+ /// \brief Track unresolved string-based type references.
+ SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
+
+ /// \brief Whether we've seen a call to @llvm.localescape in this function
+ /// already.
+ bool SawFrameEscape;
+
+ /// Stores the count of how many objects were passed to llvm.localescape for a
+ /// given function and the largest index passed to llvm.localrecover.
+ DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
+
+public:
+ explicit Verifier(raw_ostream &OS)
+ : VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {}
+
+ bool verify(const Function &F) {
+ M = F.getParent();
+ Context = &M->getContext();
+
+ // First ensure the function is well-enough formed to compute dominance
+ // information.
+ if (F.empty()) {
+ OS << "Function '" << F.getName()
+ << "' does not contain an entry block!\n";
+ return false;
+ }
+ for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ if (I->empty() || !I->back().isTerminator()) {
+ OS << "Basic Block in function '" << F.getName()
+ << "' does not have terminator!\n";
+ I->printAsOperand(OS, true);
+ OS << "\n";
+ return false;
+ }
+ }
+
+ // Now directly compute a dominance tree. We don't rely on the pass
+ // manager to provide this as it isolates us from a potentially
+ // out-of-date dominator tree and makes it significantly more complex to
+ // run this code outside of a pass manager.
+ // FIXME: It's really gross that we have to cast away constness here.
+ DT.recalculate(const_cast<Function &>(F));
+
+ Broken = false;
+ // FIXME: We strip const here because the inst visitor strips const.
+ visit(const_cast<Function &>(F));
+ InstsInThisBlock.clear();
+ SawFrameEscape = false;
+
+ return !Broken;
+ }
+
+ bool verify(const Module &M) {
+ this->M = &M;
+ Context = &M.getContext();
+ Broken = false;
+
+ // Scan through, checking all of the external function's linkage now...
+ for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ visitGlobalValue(*I);
+
+ // Check to make sure function prototypes are okay.
+ if (I->isDeclaration())
+ visitFunction(*I);
+ }
+
+ // Now that we've visited every function, verify that we never asked to
+ // recover a frame index that wasn't escaped.
+ verifyFrameRecoverIndices();
+
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I)
+ visitGlobalVariable(*I);
+
+ for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
+ I != E; ++I)
+ visitGlobalAlias(*I);
+
+ for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
+ E = M.named_metadata_end();
+ I != E; ++I)
+ visitNamedMDNode(*I);
+
+ for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
+ visitComdat(SMEC.getValue());
+
+ visitModuleFlags(M);
+ visitModuleIdents(M);
+
+ // Verify type referneces last.
+ verifyTypeRefs();
+
+ return !Broken;
+ }
+
+private:
+ // Verification methods...
+ void visitGlobalValue(const GlobalValue &GV);
+ void visitGlobalVariable(const GlobalVariable &GV);
+ void visitGlobalAlias(const GlobalAlias &GA);
+ void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
+ void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
+ const GlobalAlias &A, const Constant &C);
+ void visitNamedMDNode(const NamedMDNode &NMD);
+ void visitMDNode(const MDNode &MD);
+ void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
+ void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
+ void visitComdat(const Comdat &C);
+ void visitModuleIdents(const Module &M);
+ void visitModuleFlags(const Module &M);
+ void visitModuleFlag(const MDNode *Op,
+ DenseMap<const MDString *, const MDNode *> &SeenIDs,
+ SmallVectorImpl<const MDNode *> &Requirements);
+ void visitFunction(const Function &F);
+ void visitBasicBlock(BasicBlock &BB);
+ void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
+
+ template <class Ty> bool isValidMetadataArray(const MDTuple &N);
+#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
+#include "llvm/IR/Metadata.def"
+ void visitDIScope(const DIScope &N);
+ void visitDIDerivedTypeBase(const DIDerivedTypeBase &N);
+ void visitDIVariable(const DIVariable &N);
+ void visitDILexicalBlockBase(const DILexicalBlockBase &N);
+ void visitDITemplateParameter(const DITemplateParameter &N);
+
+ void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
+
+ /// \brief Check for a valid string-based type reference.
+ ///
+ /// Checks if \c MD is a string-based type reference. If it is, keeps track
+ /// of it (and its user, \c N) for error messages later.
+ bool isValidUUID(const MDNode &N, const Metadata *MD);
+
+ /// \brief Check for a valid type reference.
+ ///
+ /// Checks for subclasses of \a DIType, or \a isValidUUID().
+ bool isTypeRef(const MDNode &N, const Metadata *MD);
+
+ /// \brief Check for a valid scope reference.
+ ///
+ /// Checks for subclasses of \a DIScope, or \a isValidUUID().
+ bool isScopeRef(const MDNode &N, const Metadata *MD);
+
+ /// \brief Check for a valid debug info reference.
+ ///
+ /// Checks for subclasses of \a DINode, or \a isValidUUID().
+ bool isDIRef(const MDNode &N, const Metadata *MD);
+
+ // InstVisitor overrides...
+ using InstVisitor<Verifier>::visit;
+ void visit(Instruction &I);
+
+ void visitTruncInst(TruncInst &I);
+ void visitZExtInst(ZExtInst &I);
+ void visitSExtInst(SExtInst &I);
+ void visitFPTruncInst(FPTruncInst &I);
+ void visitFPExtInst(FPExtInst &I);
+ void visitFPToUIInst(FPToUIInst &I);
+ void visitFPToSIInst(FPToSIInst &I);
+ void visitUIToFPInst(UIToFPInst &I);
+ void visitSIToFPInst(SIToFPInst &I);
+ void visitIntToPtrInst(IntToPtrInst &I);
+ void visitPtrToIntInst(PtrToIntInst &I);
+ void visitBitCastInst(BitCastInst &I);
+ void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
+ void visitPHINode(PHINode &PN);
+ void visitBinaryOperator(BinaryOperator &B);
+ void visitICmpInst(ICmpInst &IC);
+ void visitFCmpInst(FCmpInst &FC);
+ void visitExtractElementInst(ExtractElementInst &EI);
+ void visitInsertElementInst(InsertElementInst &EI);
+ void visitShuffleVectorInst(ShuffleVectorInst &EI);
+ void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
+ void visitCallInst(CallInst &CI);
+ void visitInvokeInst(InvokeInst &II);
+ void visitGetElementPtrInst(GetElementPtrInst &GEP);
+ void visitLoadInst(LoadInst &LI);
+ void visitStoreInst(StoreInst &SI);
+ void verifyDominatesUse(Instruction &I, unsigned i);
+ void visitInstruction(Instruction &I);
+ void visitTerminatorInst(TerminatorInst &I);
+ void visitBranchInst(BranchInst &BI);
+ void visitReturnInst(ReturnInst &RI);
+ void visitSwitchInst(SwitchInst &SI);
+ void visitIndirectBrInst(IndirectBrInst &BI);
+ void visitSelectInst(SelectInst &SI);
+ void visitUserOp1(Instruction &I);
+ void visitUserOp2(Instruction &I) { visitUserOp1(I); }
+ void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
+ template <class DbgIntrinsicTy>
+ void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
+ void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
+ void visitAtomicRMWInst(AtomicRMWInst &RMWI);
+ void visitFenceInst(FenceInst &FI);
+ void visitAllocaInst(AllocaInst &AI);
+ void visitExtractValueInst(ExtractValueInst &EVI);
+ void visitInsertValueInst(InsertValueInst &IVI);
+ void visitLandingPadInst(LandingPadInst &LPI);
+
+ void VerifyCallSite(CallSite CS);
+ void verifyMustTailCall(CallInst &CI);
+ bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
+ unsigned ArgNo, std::string &Suffix);
+ bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type *> &ArgTys);
+ bool VerifyIntrinsicIsVarArg(bool isVarArg,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos);
+ bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
+ void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
+ const Value *V);
+ void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
+ bool isReturnValue, const Value *V);
+ void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
+ const Value *V);
+ void VerifyFunctionMetadata(
+ const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
+
+ void VerifyConstantExprBitcastType(const ConstantExpr *CE);
+ void VerifyStatepoint(ImmutableCallSite CS);
+ void verifyFrameRecoverIndices();
+
+ // Module-level debug info verification...
+ void verifyTypeRefs();
+ template <class MapTy>
+ void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
+ const MapTy &TypeRefs);
+ void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
+};
+} // End anonymous namespace
+
+// Assert - We know that cond should be true, if not print an error message.
+#define Assert(C, ...) \
+ do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
+
+void Verifier::visit(Instruction &I) {
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
+ InstVisitor<Verifier>::visit(I);
+}
+
+
+void Verifier::visitGlobalValue(const GlobalValue &GV) {
+ Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
+ GV.hasExternalWeakLinkage(),
+ "Global is external, but doesn't have external or weak linkage!", &GV);
+
+ Assert(GV.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &GV);
+ Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
+ "Only global variables can have appending linkage!", &GV);
+
+ if (GV.hasAppendingLinkage()) {
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
+ Assert(GVar && GVar->getValueType()->isArrayTy(),
+ "Only global arrays can have appending linkage!", GVar);
+ }
+
+ if (GV.isDeclarationForLinker())
+ Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
+}
+
+void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
+ if (GV.hasInitializer()) {
+ Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
+ "Global variable initializer type does not match global "
+ "variable type!",
+ &GV);
+
+ // If the global has common linkage, it must have a zero initializer and
+ // cannot be constant.
+ if (GV.hasCommonLinkage()) {
+ Assert(GV.getInitializer()->isNullValue(),
+ "'common' global must have a zero initializer!", &GV);
+ Assert(!GV.isConstant(), "'common' global may not be marked constant!",
+ &GV);
+ Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
+ }
+ } else {
+ Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
+ "invalid linkage type for global declaration", &GV);
+ }
+
+ if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
+ GV.getName() == "llvm.global_dtors")) {
+ Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
+ "invalid linkage for intrinsic global variable", &GV);
+ // Don't worry about emitting an error for it not being an array,
+ // visitGlobalValue will complain on appending non-array.
+ if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
+ StructType *STy = dyn_cast<StructType>(ATy->getElementType());
+ PointerType *FuncPtrTy =
+ FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
+ // FIXME: Reject the 2-field form in LLVM 4.0.
+ Assert(STy &&
+ (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
+ STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
+ STy->getTypeAtIndex(1) == FuncPtrTy,
+ "wrong type for intrinsic global variable", &GV);
+ if (STy->getNumElements() == 3) {
+ Type *ETy = STy->getTypeAtIndex(2);
+ Assert(ETy->isPointerTy() &&
+ cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
+ "wrong type for intrinsic global variable", &GV);
+ }
+ }
+ }
+
+ if (GV.hasName() && (GV.getName() == "llvm.used" ||
+ GV.getName() == "llvm.compiler.used")) {
+ Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
+ "invalid linkage for intrinsic global variable", &GV);
+ Type *GVType = GV.getValueType();
+ if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
+ PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
+ Assert(PTy, "wrong type for intrinsic global variable", &GV);
+ if (GV.hasInitializer()) {
+ const Constant *Init = GV.getInitializer();
+ const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
+ Assert(InitArray, "wrong initalizer for intrinsic global variable",
+ Init);
+ for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
+ Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
+ Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
+ isa<GlobalAlias>(V),
+ "invalid llvm.used member", V);
+ Assert(V->hasName(), "members of llvm.used must be named", V);
+ }
+ }
+ }
+ }
+
+ Assert(!GV.hasDLLImportStorageClass() ||
+ (GV.isDeclaration() && GV.hasExternalLinkage()) ||
+ GV.hasAvailableExternallyLinkage(),
+ "Global is marked as dllimport, but not external", &GV);
+
+ if (!GV.hasInitializer()) {
+ visitGlobalValue(GV);
+ return;
+ }
+
+ // Walk any aggregate initializers looking for bitcasts between address spaces
+ SmallPtrSet<const Value *, 4> Visited;
+ SmallVector<const Value *, 4> WorkStack;
+ WorkStack.push_back(cast<Value>(GV.getInitializer()));
+
+ while (!WorkStack.empty()) {
+ const Value *V = WorkStack.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ if (const User *U = dyn_cast<User>(V)) {
+ WorkStack.append(U->op_begin(), U->op_end());
+ }
+
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ VerifyConstantExprBitcastType(CE);
+ if (Broken)
+ return;
+ }
+ }
+
+ visitGlobalValue(GV);
+}
+
+void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
+ SmallPtrSet<const GlobalAlias*, 4> Visited;
+ Visited.insert(&GA);
+ visitAliaseeSubExpr(Visited, GA, C);
+}
+
+void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
+ const GlobalAlias &GA, const Constant &C) {
+ if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
+ Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
+
+ if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
+ Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
+
+ Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
+ &GA);
+ } else {
+ // Only continue verifying subexpressions of GlobalAliases.
+ // Do not recurse into global initializers.
+ return;
+ }
+ }
+
+ if (const auto *CE = dyn_cast<ConstantExpr>(&C))
+ VerifyConstantExprBitcastType(CE);
+
+ for (const Use &U : C.operands()) {
+ Value *V = &*U;
+ if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
+ visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
+ else if (const auto *C2 = dyn_cast<Constant>(V))
+ visitAliaseeSubExpr(Visited, GA, *C2);
+ }
+}
+
+void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
+ Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
+ "Alias should have private, internal, linkonce, weak, linkonce_odr, "
+ "weak_odr, or external linkage!",
+ &GA);
+ const Constant *Aliasee = GA.getAliasee();
+ Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
+ Assert(GA.getType() == Aliasee->getType(),
+ "Alias and aliasee types should match!", &GA);
+
+ Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
+ "Aliasee should be either GlobalValue or ConstantExpr", &GA);
+
+ visitAliaseeSubExpr(GA, *Aliasee);
+
+ visitGlobalValue(GA);
+}
+
+void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
+ for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
+ MDNode *MD = NMD.getOperand(i);
+
+ if (NMD.getName() == "llvm.dbg.cu") {
+ Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
+ }
+
+ if (!MD)
+ continue;
+
+ visitMDNode(*MD);
+ }
+}
+
+void Verifier::visitMDNode(const MDNode &MD) {
+ // Only visit each node once. Metadata can be mutually recursive, so this
+ // avoids infinite recursion here, as well as being an optimization.
+ if (!MDNodes.insert(&MD).second)
+ return;
+
+ switch (MD.getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid MDNode subclass");
+ case Metadata::MDTupleKind:
+ break;
+#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ visit##CLASS(cast<CLASS>(MD)); \
+ break;
+#include "llvm/IR/Metadata.def"
+ }
+
+ for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
+ Metadata *Op = MD.getOperand(i);
+ if (!Op)
+ continue;
+ Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
+ &MD, Op);
+ if (auto *N = dyn_cast<MDNode>(Op)) {
+ visitMDNode(*N);
+ continue;
+ }
+ if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
+ visitValueAsMetadata(*V, nullptr);
+ continue;
+ }
+ }
+
+ // Check these last, so we diagnose problems in operands first.
+ Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
+ Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
+}
+
+void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
+ Assert(MD.getValue(), "Expected valid value", &MD);
+ Assert(!MD.getValue()->getType()->isMetadataTy(),
+ "Unexpected metadata round-trip through values", &MD, MD.getValue());
+
+ auto *L = dyn_cast<LocalAsMetadata>(&MD);
+ if (!L)
+ return;
+
+ Assert(F, "function-local metadata used outside a function", L);
+
+ // If this was an instruction, bb, or argument, verify that it is in the
+ // function that we expect.
+ Function *ActualF = nullptr;
+ if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
+ Assert(I->getParent(), "function-local metadata not in basic block", L, I);
+ ActualF = I->getParent()->getParent();
+ } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
+ ActualF = BB->getParent();
+ else if (Argument *A = dyn_cast<Argument>(L->getValue()))
+ ActualF = A->getParent();
+ assert(ActualF && "Unimplemented function local metadata case!");
+
+ Assert(ActualF == F, "function-local metadata used in wrong function", L);
+}
+
+void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
+ Metadata *MD = MDV.getMetadata();
+ if (auto *N = dyn_cast<MDNode>(MD)) {
+ visitMDNode(*N);
+ return;
+ }
+
+ // Only visit each node once. Metadata can be mutually recursive, so this
+ // avoids infinite recursion here, as well as being an optimization.
+ if (!MDNodes.insert(MD).second)
+ return;
+
+ if (auto *V = dyn_cast<ValueAsMetadata>(MD))
+ visitValueAsMetadata(*V, F);
+}
+
+bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
+ auto *S = dyn_cast<MDString>(MD);
+ if (!S)
+ return false;
+ if (S->getString().empty())
+ return false;
+
+ // Keep track of names of types referenced via UUID so we can check that they
+ // actually exist.
+ UnresolvedTypeRefs.insert(std::make_pair(S, &N));
+ return true;
+}
+
+/// \brief Check if a value can be a reference to a type.
+bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
+ return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
+}
+
+/// \brief Check if a value can be a ScopeRef.
+bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
+ return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
+}
+
+/// \brief Check if a value can be a debug info ref.
+bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
+ return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
+}
+
+template <class Ty>
+bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
+ for (Metadata *MD : N.operands()) {
+ if (MD) {
+ if (!isa<Ty>(MD))
+ return false;
+ } else {
+ if (!AllowNull)
+ return false;
+ }
+ }
+ return true;
+}
+
+template <class Ty>
+bool isValidMetadataArray(const MDTuple &N) {
+ return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
+}
+
+template <class Ty>
+bool isValidMetadataNullArray(const MDTuple &N) {
+ return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
+}
+
+void Verifier::visitDILocation(const DILocation &N) {
+ Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
+ "location requires a valid scope", &N, N.getRawScope());
+ if (auto *IA = N.getRawInlinedAt())
+ Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
+}
+
+void Verifier::visitGenericDINode(const GenericDINode &N) {
+ Assert(N.getTag(), "invalid tag", &N);
+}
+
+void Verifier::visitDIScope(const DIScope &N) {
+ if (auto *F = N.getRawFile())
+ Assert(isa<DIFile>(F), "invalid file", &N, F);
+}
+
+void Verifier::visitDISubrange(const DISubrange &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
+ Assert(N.getCount() >= -1, "invalid subrange count", &N);
+}
+
+void Verifier::visitDIEnumerator(const DIEnumerator &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
+}
+
+void Verifier::visitDIBasicType(const DIBasicType &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_base_type ||
+ N.getTag() == dwarf::DW_TAG_unspecified_type,
+ "invalid tag", &N);
+}
+
+void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) {
+ // Common scope checks.
+ visitDIScope(N);
+
+ Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
+ Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
+ N.getBaseType());
+
+ // FIXME: Sink this into the subclass verifies.
+ if (!N.getFile() || N.getFile()->getFilename().empty()) {
+ // Check whether the filename is allowed to be empty.
+ uint16_t Tag = N.getTag();
+ Assert(
+ Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
+ Tag == dwarf::DW_TAG_pointer_type ||
+ Tag == dwarf::DW_TAG_ptr_to_member_type ||
+ Tag == dwarf::DW_TAG_reference_type ||
+ Tag == dwarf::DW_TAG_rvalue_reference_type ||
+ Tag == dwarf::DW_TAG_restrict_type ||
+ Tag == dwarf::DW_TAG_array_type ||
+ Tag == dwarf::DW_TAG_enumeration_type ||
+ Tag == dwarf::DW_TAG_subroutine_type ||
+ Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
+ Tag == dwarf::DW_TAG_structure_type ||
+ Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
+ "derived/composite type requires a filename", &N, N.getFile());
+ }
+}
+
+void Verifier::visitDIDerivedType(const DIDerivedType &N) {
+ // Common derived type checks.
+ visitDIDerivedTypeBase(N);
+
+ Assert(N.getTag() == dwarf::DW_TAG_typedef ||
+ N.getTag() == dwarf::DW_TAG_pointer_type ||
+ N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
+ N.getTag() == dwarf::DW_TAG_reference_type ||
+ N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
+ N.getTag() == dwarf::DW_TAG_const_type ||
+ N.getTag() == dwarf::DW_TAG_volatile_type ||
+ N.getTag() == dwarf::DW_TAG_restrict_type ||
+ N.getTag() == dwarf::DW_TAG_member ||
+ N.getTag() == dwarf::DW_TAG_inheritance ||
+ N.getTag() == dwarf::DW_TAG_friend,
+ "invalid tag", &N);
+ if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
+ Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
+ N.getExtraData());
+ }
+}
+
+static bool hasConflictingReferenceFlags(unsigned Flags) {
+ return (Flags & DINode::FlagLValueReference) &&
+ (Flags & DINode::FlagRValueReference);
+}
+
+void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
+ auto *Params = dyn_cast<MDTuple>(&RawParams);
+ Assert(Params, "invalid template params", &N, &RawParams);
+ for (Metadata *Op : Params->operands()) {
+ Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
+ Params, Op);
+ }
+}
+
+void Verifier::visitDICompositeType(const DICompositeType &N) {
+ // Common derived type checks.
+ visitDIDerivedTypeBase(N);
+
+ Assert(N.getTag() == dwarf::DW_TAG_array_type ||
+ N.getTag() == dwarf::DW_TAG_structure_type ||
+ N.getTag() == dwarf::DW_TAG_union_type ||
+ N.getTag() == dwarf::DW_TAG_enumeration_type ||
+ N.getTag() == dwarf::DW_TAG_subroutine_type ||
+ N.getTag() == dwarf::DW_TAG_class_type,
+ "invalid tag", &N);
+
+ Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
+ "invalid composite elements", &N, N.getRawElements());
+ Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
+ N.getRawVTableHolder());
+ Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
+ "invalid composite elements", &N, N.getRawElements());
+ Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
+ &N);
+ if (auto *Params = N.getRawTemplateParams())
+ visitTemplateParams(N, *Params);
+}
+
+void Verifier::visitDISubroutineType(const DISubroutineType &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
+ if (auto *Types = N.getRawTypeArray()) {
+ Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
+ for (Metadata *Ty : N.getTypeArray()->operands()) {
+ Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
+ }
+ }
+ Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
+ &N);
+}
+
+void Verifier::visitDIFile(const DIFile &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
+}
+
+void Verifier::visitDICompileUnit(const DICompileUnit &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
+
+ // Don't bother verifying the compilation directory or producer string
+ // as those could be empty.
+ Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
+ N.getRawFile());
+ Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
+ N.getFile());
+
+ if (auto *Array = N.getRawEnumTypes()) {
+ Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
+ for (Metadata *Op : N.getEnumTypes()->operands()) {
+ auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
+ Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
+ "invalid enum type", &N, N.getEnumTypes(), Op);
+ }
+ }
+ if (auto *Array = N.getRawRetainedTypes()) {
+ Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
+ for (Metadata *Op : N.getRetainedTypes()->operands()) {
+ Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
+ }
+ }
+ if (auto *Array = N.getRawSubprograms()) {
+ Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
+ for (Metadata *Op : N.getSubprograms()->operands()) {
+ Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
+ }
+ }
+ if (auto *Array = N.getRawGlobalVariables()) {
+ Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
+ for (Metadata *Op : N.getGlobalVariables()->operands()) {
+ Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
+ Op);
+ }
+ }
+ if (auto *Array = N.getRawImportedEntities()) {
+ Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
+ for (Metadata *Op : N.getImportedEntities()->operands()) {
+ Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
+ Op);
+ }
+ }
+}
+
+void Verifier::visitDISubprogram(const DISubprogram &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
+ Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
+ if (auto *T = N.getRawType())
+ Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
+ Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
+ N.getRawContainingType());
+ if (auto *RawF = N.getRawFunction()) {
+ auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
+ auto *F = FMD ? FMD->getValue() : nullptr;
+ auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
+ Assert(F && FT && isa<FunctionType>(FT->getElementType()),
+ "invalid function", &N, F, FT);
+ }
+ if (auto *Params = N.getRawTemplateParams())
+ visitTemplateParams(N, *Params);
+ if (auto *S = N.getRawDeclaration()) {
+ Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
+ "invalid subprogram declaration", &N, S);
+ }
+ if (auto *RawVars = N.getRawVariables()) {
+ auto *Vars = dyn_cast<MDTuple>(RawVars);
+ Assert(Vars, "invalid variable list", &N, RawVars);
+ for (Metadata *Op : Vars->operands()) {
+ Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
+ Op);
+ }
+ }
+ Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
+ &N);
+
+ auto *F = N.getFunction();
+ if (!F)
+ return;
+
+ // Check that all !dbg attachments lead to back to N (or, at least, another
+ // subprogram that describes the same function).
+ //
+ // FIXME: Check this incrementally while visiting !dbg attachments.
+ // FIXME: Only check when N is the canonical subprogram for F.
+ SmallPtrSet<const MDNode *, 32> Seen;
+ for (auto &BB : *F)
+ for (auto &I : BB) {
+ // Be careful about using DILocation here since we might be dealing with
+ // broken code (this is the Verifier after all).
+ DILocation *DL =
+ dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
+ if (!DL)
+ continue;
+ if (!Seen.insert(DL).second)
+ continue;
+
+ DILocalScope *Scope = DL->getInlinedAtScope();
+ if (Scope && !Seen.insert(Scope).second)
+ continue;
+
+ DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
+ if (SP && !Seen.insert(SP).second)
+ continue;
+
+ // FIXME: Once N is canonical, check "SP == &N".
+ Assert(SP->describes(F),
+ "!dbg attachment points at wrong subprogram for function", &N, F,
+ &I, DL, Scope, SP);
+ }
+}
+
+void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
+ Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
+ "invalid local scope", &N, N.getRawScope());
+}
+
+void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
+ visitDILexicalBlockBase(N);
+
+ Assert(N.getLine() || !N.getColumn(),
+ "cannot have column info without line info", &N);
+}
+
+void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
+ visitDILexicalBlockBase(N);
+}
+
+void Verifier::visitDINamespace(const DINamespace &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
+ if (auto *S = N.getRawScope())
+ Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
+}
+
+void Verifier::visitDIModule(const DIModule &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
+ Assert(!N.getName().empty(), "anonymous module", &N);
+}
+
+void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
+ Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
+}
+
+void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
+ visitDITemplateParameter(N);
+
+ Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
+ &N);
+}
+
+void Verifier::visitDITemplateValueParameter(
+ const DITemplateValueParameter &N) {
+ visitDITemplateParameter(N);
+
+ Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
+ N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
+ N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
+ "invalid tag", &N);
+}
+
+void Verifier::visitDIVariable(const DIVariable &N) {
+ if (auto *S = N.getRawScope())
+ Assert(isa<DIScope>(S), "invalid scope", &N, S);
+ Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
+ if (auto *F = N.getRawFile())
+ Assert(isa<DIFile>(F), "invalid file", &N, F);
+}
+
+void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
+ // Checks common to all variables.
+ visitDIVariable(N);
+
+ Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
+ Assert(!N.getName().empty(), "missing global variable name", &N);
+ if (auto *V = N.getRawVariable()) {
+ Assert(isa<ConstantAsMetadata>(V) &&
+ !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
+ "invalid global varaible ref", &N, V);
+ }
+ if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
+ Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
+ &N, Member);
+ }
+}
+
+void Verifier::visitDILocalVariable(const DILocalVariable &N) {
+ // Checks common to all variables.
+ visitDIVariable(N);
+
+ Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
+ N.getTag() == dwarf::DW_TAG_arg_variable,
+ "invalid tag", &N);
+ Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
+ "local variable requires a valid scope", &N, N.getRawScope());
+}
+
+void Verifier::visitDIExpression(const DIExpression &N) {
+ Assert(N.isValid(), "invalid expression", &N);
+}
+
+void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
+ if (auto *T = N.getRawType())
+ Assert(isTypeRef(N, T), "invalid type ref", &N, T);
+ if (auto *F = N.getRawFile())
+ Assert(isa<DIFile>(F), "invalid file", &N, F);
+}
+
+void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
+ Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
+ N.getTag() == dwarf::DW_TAG_imported_declaration,
+ "invalid tag", &N);
+ if (auto *S = N.getRawScope())
+ Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
+ Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
+ N.getEntity());
+}
+
+void Verifier::visitComdat(const Comdat &C) {
+ // The Module is invalid if the GlobalValue has private linkage. Entities
+ // with private linkage don't have entries in the symbol table.
+ if (const GlobalValue *GV = M->getNamedValue(C.getName()))
+ Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
+ GV);
+}
+
+void Verifier::visitModuleIdents(const Module &M) {
+ const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
+ if (!Idents)
+ return;
+
+ // llvm.ident takes a list of metadata entry. Each entry has only one string.
+ // Scan each llvm.ident entry and make sure that this requirement is met.
+ for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
+ const MDNode *N = Idents->getOperand(i);
+ Assert(N->getNumOperands() == 1,
+ "incorrect number of operands in llvm.ident metadata", N);
+ Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
+ ("invalid value for llvm.ident metadata entry operand"
+ "(the operand should be a string)"),
+ N->getOperand(0));
+ }
+}
+
+void Verifier::visitModuleFlags(const Module &M) {
+ const NamedMDNode *Flags = M.getModuleFlagsMetadata();
+ if (!Flags) return;
+
+ // Scan each flag, and track the flags and requirements.
+ DenseMap<const MDString*, const MDNode*> SeenIDs;
+ SmallVector<const MDNode*, 16> Requirements;
+ for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
+ visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
+ }
+
+ // Validate that the requirements in the module are valid.
+ for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
+ const MDNode *Requirement = Requirements[I];
+ const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
+ const Metadata *ReqValue = Requirement->getOperand(1);
+
+ const MDNode *Op = SeenIDs.lookup(Flag);
+ if (!Op) {
+ CheckFailed("invalid requirement on flag, flag is not present in module",
+ Flag);
+ continue;
+ }
+
+ if (Op->getOperand(2) != ReqValue) {
+ CheckFailed(("invalid requirement on flag, "
+ "flag does not have the required value"),
+ Flag);
+ continue;
+ }
+ }
+}
+
+void
+Verifier::visitModuleFlag(const MDNode *Op,
+ DenseMap<const MDString *, const MDNode *> &SeenIDs,
+ SmallVectorImpl<const MDNode *> &Requirements) {
+ // Each module flag should have three arguments, the merge behavior (a
+ // constant int), the flag ID (an MDString), and the value.
+ Assert(Op->getNumOperands() == 3,
+ "incorrect number of operands in module flag", Op);
+ Module::ModFlagBehavior MFB;
+ if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
+ Assert(
+ mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
+ "invalid behavior operand in module flag (expected constant integer)",
+ Op->getOperand(0));
+ Assert(false,
+ "invalid behavior operand in module flag (unexpected constant)",
+ Op->getOperand(0));
+ }
+ MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
+ Assert(ID, "invalid ID operand in module flag (expected metadata string)",
+ Op->getOperand(1));
+
+ // Sanity check the values for behaviors with additional requirements.
+ switch (MFB) {
+ case Module::Error:
+ case Module::Warning:
+ case Module::Override:
+ // These behavior types accept any value.
+ break;
+
+ case Module::Require: {
+ // The value should itself be an MDNode with two operands, a flag ID (an
+ // MDString), and a value.
+ MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
+ Assert(Value && Value->getNumOperands() == 2,
+ "invalid value for 'require' module flag (expected metadata pair)",
+ Op->getOperand(2));
+ Assert(isa<MDString>(Value->getOperand(0)),
+ ("invalid value for 'require' module flag "
+ "(first value operand should be a string)"),
+ Value->getOperand(0));
+
+ // Append it to the list of requirements, to check once all module flags are
+ // scanned.
+ Requirements.push_back(Value);
+ break;
+ }
+
+ case Module::Append:
+ case Module::AppendUnique: {
+ // These behavior types require the operand be an MDNode.
+ Assert(isa<MDNode>(Op->getOperand(2)),
+ "invalid value for 'append'-type module flag "
+ "(expected a metadata node)",
+ Op->getOperand(2));
+ break;
+ }
+ }
+
+ // Unless this is a "requires" flag, check the ID is unique.
+ if (MFB != Module::Require) {
+ bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
+ Assert(Inserted,
+ "module flag identifiers must be unique (or of 'require' type)", ID);
+ }
+}
+
+void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
+ bool isFunction, const Value *V) {
+ unsigned Slot = ~0U;
+ for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
+ if (Attrs.getSlotIndex(I) == Idx) {
+ Slot = I;
+ break;
+ }
+
+ assert(Slot != ~0U && "Attribute set inconsistency!");
+
+ for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
+ I != E; ++I) {
+ if (I->isStringAttribute())
+ continue;
+
+ if (I->getKindAsEnum() == Attribute::NoReturn ||
+ I->getKindAsEnum() == Attribute::NoUnwind ||
+ I->getKindAsEnum() == Attribute::NoInline ||
+ I->getKindAsEnum() == Attribute::AlwaysInline ||
+ I->getKindAsEnum() == Attribute::OptimizeForSize ||
+ I->getKindAsEnum() == Attribute::StackProtect ||
+ I->getKindAsEnum() == Attribute::StackProtectReq ||
+ I->getKindAsEnum() == Attribute::StackProtectStrong ||
+ I->getKindAsEnum() == Attribute::SafeStack ||
+ I->getKindAsEnum() == Attribute::NoRedZone ||
+ I->getKindAsEnum() == Attribute::NoImplicitFloat ||
+ I->getKindAsEnum() == Attribute::Naked ||
+ I->getKindAsEnum() == Attribute::InlineHint ||
+ I->getKindAsEnum() == Attribute::StackAlignment ||
+ I->getKindAsEnum() == Attribute::UWTable ||
+ I->getKindAsEnum() == Attribute::NonLazyBind ||
+ I->getKindAsEnum() == Attribute::ReturnsTwice ||
+ I->getKindAsEnum() == Attribute::SanitizeAddress ||
+ I->getKindAsEnum() == Attribute::SanitizeThread ||
+ I->getKindAsEnum() == Attribute::SanitizeMemory ||
+ I->getKindAsEnum() == Attribute::MinSize ||
+ I->getKindAsEnum() == Attribute::NoDuplicate ||
+ I->getKindAsEnum() == Attribute::Builtin ||
+ I->getKindAsEnum() == Attribute::NoBuiltin ||
+ I->getKindAsEnum() == Attribute::Cold ||
+ I->getKindAsEnum() == Attribute::OptimizeNone ||
+ I->getKindAsEnum() == Attribute::JumpTable ||
+ I->getKindAsEnum() == Attribute::Convergent ||
+ I->getKindAsEnum() == Attribute::ArgMemOnly) {
+ if (!isFunction) {
+ CheckFailed("Attribute '" + I->getAsString() +
+ "' only applies to functions!", V);
+ return;
+ }
+ } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
+ I->getKindAsEnum() == Attribute::ReadNone) {
+ if (Idx == 0) {
+ CheckFailed("Attribute '" + I->getAsString() +
+ "' does not apply to function returns");
+ return;
+ }
+ } else if (isFunction) {
+ CheckFailed("Attribute '" + I->getAsString() +
+ "' does not apply to functions!", V);
+ return;
+ }
+ }
+}
+
+// VerifyParameterAttrs - Check the given attributes for an argument or return
+// value of the specified type. The value V is printed in error messages.
+void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
+ bool isReturnValue, const Value *V) {
+ if (!Attrs.hasAttributes(Idx))
+ return;
+
+ VerifyAttributeTypes(Attrs, Idx, false, V);
+
+ if (isReturnValue)
+ Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
+ !Attrs.hasAttribute(Idx, Attribute::Nest) &&
+ !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
+ !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
+ !Attrs.hasAttribute(Idx, Attribute::Returned) &&
+ !Attrs.hasAttribute(Idx, Attribute::InAlloca),
+ "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
+ "'returned' do not apply to return values!",
+ V);
+
+ // Check for mutually incompatible attributes. Only inreg is compatible with
+ // sret.
+ unsigned AttrCount = 0;
+ AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
+ AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
+ AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
+ Attrs.hasAttribute(Idx, Attribute::InReg);
+ AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
+ Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
+ "and 'sret' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
+ Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
+ "Attributes "
+ "'inalloca and readonly' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
+ Attrs.hasAttribute(Idx, Attribute::Returned)),
+ "Attributes "
+ "'sret and returned' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
+ Attrs.hasAttribute(Idx, Attribute::SExt)),
+ "Attributes "
+ "'zeroext and signext' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
+ Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
+ "Attributes "
+ "'readnone and readonly' are incompatible!",
+ V);
+
+ Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
+ Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
+ "Attributes "
+ "'noinline and alwaysinline' are incompatible!",
+ V);
+
+ Assert(!AttrBuilder(Attrs, Idx)
+ .overlaps(AttributeFuncs::typeIncompatible(Ty)),
+ "Wrong types for attribute: " +
+ AttributeSet::get(*Context, Idx,
+ AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
+ V);
+
+ if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+ SmallPtrSet<const Type*, 4> Visited;
+ if (!PTy->getElementType()->isSized(&Visited)) {
+ Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
+ !Attrs.hasAttribute(Idx, Attribute::InAlloca),
+ "Attributes 'byval' and 'inalloca' do not support unsized types!",
+ V);
+ }
+ } else {
+ Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
+ "Attribute 'byval' only applies to parameters with pointer type!",
+ V);
+ }
+}
+
+// VerifyFunctionAttrs - Check parameter attributes against a function type.
+// The value V is printed in error messages.
+void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
+ const Value *V) {
+ if (Attrs.isEmpty())
+ return;
+
+ bool SawNest = false;
+ bool SawReturned = false;
+ bool SawSRet = false;
+
+ for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
+ unsigned Idx = Attrs.getSlotIndex(i);
+
+ Type *Ty;
+ if (Idx == 0)
+ Ty = FT->getReturnType();
+ else if (Idx-1 < FT->getNumParams())
+ Ty = FT->getParamType(Idx-1);
+ else
+ break; // VarArgs attributes, verified elsewhere.
+
+ VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
+
+ if (Idx == 0)
+ continue;
+
+ if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
+ Assert(!SawNest, "More than one parameter has attribute nest!", V);
+ SawNest = true;
+ }
+
+ if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
+ Assert(!SawReturned, "More than one parameter has attribute returned!",
+ V);
+ Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
+ "Incompatible "
+ "argument and return types for 'returned' attribute",
+ V);
+ SawReturned = true;
+ }
+
+ if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
+ Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
+ Assert(Idx == 1 || Idx == 2,
+ "Attribute 'sret' is not on first or second parameter!", V);
+ SawSRet = true;
+ }
+
+ if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
+ Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
+ V);
+ }
+ }
+
+ if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
+ return;
+
+ VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
+
+ Assert(
+ !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
+ Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
+ "Attributes 'readnone and readonly' are incompatible!", V);
+
+ Assert(
+ !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
+ Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::AlwaysInline)),
+ "Attributes 'noinline and alwaysinline' are incompatible!", V);
+
+ if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeNone)) {
+ Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
+ "Attribute 'optnone' requires 'noinline'!", V);
+
+ Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize),
+ "Attributes 'optsize and optnone' are incompatible!", V);
+
+ Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
+ "Attributes 'minsize and optnone' are incompatible!", V);
+ }
+
+ if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::JumpTable)) {
+ const GlobalValue *GV = cast<GlobalValue>(V);
+ Assert(GV->hasUnnamedAddr(),
+ "Attribute 'jumptable' requires 'unnamed_addr'", V);
+ }
+}
+
+void Verifier::VerifyFunctionMetadata(
+ const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
+ if (MDs.empty())
+ return;
+
+ for (unsigned i = 0; i < MDs.size(); i++) {
+ if (MDs[i].first == LLVMContext::MD_prof) {
+ MDNode *MD = MDs[i].second;
+ Assert(MD->getNumOperands() == 2,
+ "!prof annotations should have exactly 2 operands", MD);
+
+ // Check first operand.
+ Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
+ MD);
+ Assert(isa<MDString>(MD->getOperand(0)),
+ "expected string with name of the !prof annotation", MD);
+ MDString *MDS = cast<MDString>(MD->getOperand(0));
+ StringRef ProfName = MDS->getString();
+ Assert(ProfName.equals("function_entry_count"),
+ "first operand should be 'function_entry_count'", MD);
+
+ // Check second operand.
+ Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
+ MD);
+ Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
+ "expected integer argument to function_entry_count", MD);
+ }
+ }
+}
+
+void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
+ if (CE->getOpcode() != Instruction::BitCast)
+ return;
+
+ Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
+ CE->getType()),
+ "Invalid bitcast", CE);
+}
+
+bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
+ if (Attrs.getNumSlots() == 0)
+ return true;
+
+ unsigned LastSlot = Attrs.getNumSlots() - 1;
+ unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
+ if (LastIndex <= Params
+ || (LastIndex == AttributeSet::FunctionIndex
+ && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
+ return true;
+
+ return false;
+}
+
+/// \brief Verify that statepoint intrinsic is well formed.
+void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
+ assert(CS.getCalledFunction() &&
+ CS.getCalledFunction()->getIntrinsicID() ==
+ Intrinsic::experimental_gc_statepoint);
+
+ const Instruction &CI = *CS.getInstruction();
+
+ Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
+ !CS.onlyAccessesArgMemory(),
+ "gc.statepoint must read and write all memory to preserve "
+ "reordering restrictions required by safepoint semantics",
+ &CI);
+
+ const Value *IDV = CS.getArgument(0);
+ Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
+ &CI);
+
+ const Value *NumPatchBytesV = CS.getArgument(1);
+ Assert(isa<ConstantInt>(NumPatchBytesV),
+ "gc.statepoint number of patchable bytes must be a constant integer",
+ &CI);
+ const int64_t NumPatchBytes =
+ cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
+ assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
+ Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
+ "positive",
+ &CI);
+
+ const Value *Target = CS.getArgument(2);
+ const PointerType *PT = dyn_cast<PointerType>(Target->getType());
+ Assert(PT && PT->getElementType()->isFunctionTy(),
+ "gc.statepoint callee must be of function pointer type", &CI, Target);
+ FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
+
+ if (NumPatchBytes)
+ Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()),
+ "gc.statepoint must have null as call target if number of patchable "
+ "bytes is non zero",
+ &CI);
+
+ const Value *NumCallArgsV = CS.getArgument(3);
+ Assert(isa<ConstantInt>(NumCallArgsV),
+ "gc.statepoint number of arguments to underlying call "
+ "must be constant integer",
+ &CI);
+ const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
+ Assert(NumCallArgs >= 0,
+ "gc.statepoint number of arguments to underlying call "
+ "must be positive",
+ &CI);
+ const int NumParams = (int)TargetFuncType->getNumParams();
+ if (TargetFuncType->isVarArg()) {
+ Assert(NumCallArgs >= NumParams,
+ "gc.statepoint mismatch in number of vararg call args", &CI);
+
+ // TODO: Remove this limitation
+ Assert(TargetFuncType->getReturnType()->isVoidTy(),
+ "gc.statepoint doesn't support wrapping non-void "
+ "vararg functions yet",
+ &CI);
+ } else
+ Assert(NumCallArgs == NumParams,
+ "gc.statepoint mismatch in number of call args", &CI);
+
+ const Value *FlagsV = CS.getArgument(4);
+ Assert(isa<ConstantInt>(FlagsV),
+ "gc.statepoint flags must be constant integer", &CI);
+ const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
+ Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
+ "unknown flag used in gc.statepoint flags argument", &CI);
+
+ // Verify that the types of the call parameter arguments match
+ // the type of the wrapped callee.
+ for (int i = 0; i < NumParams; i++) {
+ Type *ParamType = TargetFuncType->getParamType(i);
+ Type *ArgType = CS.getArgument(5 + i)->getType();
+ Assert(ArgType == ParamType,
+ "gc.statepoint call argument does not match wrapped "
+ "function type",
+ &CI);
+ }
+
+ const int EndCallArgsInx = 4 + NumCallArgs;
+
+ const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
+ Assert(isa<ConstantInt>(NumTransitionArgsV),
+ "gc.statepoint number of transition arguments "
+ "must be constant integer",
+ &CI);
+ const int NumTransitionArgs =
+ cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
+ Assert(NumTransitionArgs >= 0,
+ "gc.statepoint number of transition arguments must be positive", &CI);
+ const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
+
+ const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
+ Assert(isa<ConstantInt>(NumDeoptArgsV),
+ "gc.statepoint number of deoptimization arguments "
+ "must be constant integer",
+ &CI);
+ const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
+ Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
+ "must be positive",
+ &CI);
+
+ const int ExpectedNumArgs =
+ 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
+ Assert(ExpectedNumArgs <= (int)CS.arg_size(),
+ "gc.statepoint too few arguments according to length fields", &CI);
+
+ // Check that the only uses of this gc.statepoint are gc.result or
+ // gc.relocate calls which are tied to this statepoint and thus part
+ // of the same statepoint sequence
+ for (const User *U : CI.users()) {
+ const CallInst *Call = dyn_cast<const CallInst>(U);
+ Assert(Call, "illegal use of statepoint token", &CI, U);
+ if (!Call) continue;
+ Assert(isGCRelocate(Call) || isGCResult(Call),
+ "gc.result or gc.relocate are the only value uses"
+ "of a gc.statepoint",
+ &CI, U);
+ if (isGCResult(Call)) {
+ Assert(Call->getArgOperand(0) == &CI,
+ "gc.result connected to wrong gc.statepoint", &CI, Call);
+ } else if (isGCRelocate(Call)) {
+ Assert(Call->getArgOperand(0) == &CI,
+ "gc.relocate connected to wrong gc.statepoint", &CI, Call);
+ }
+ }
+
+ // Note: It is legal for a single derived pointer to be listed multiple
+ // times. It's non-optimal, but it is legal. It can also happen after
+ // insertion if we strip a bitcast away.
+ // Note: It is really tempting to check that each base is relocated and
+ // that a derived pointer is never reused as a base pointer. This turns
+ // out to be problematic since optimizations run after safepoint insertion
+ // can recognize equality properties that the insertion logic doesn't know
+ // about. See example statepoint.ll in the verifier subdirectory
+}
+
+void Verifier::verifyFrameRecoverIndices() {
+ for (auto &Counts : FrameEscapeInfo) {
+ Function *F = Counts.first;
+ unsigned EscapedObjectCount = Counts.second.first;
+ unsigned MaxRecoveredIndex = Counts.second.second;
+ Assert(MaxRecoveredIndex <= EscapedObjectCount,
+ "all indices passed to llvm.localrecover must be less than the "
+ "number of arguments passed ot llvm.localescape in the parent "
+ "function",
+ F);
+ }
+}
+
+// visitFunction - Verify that a function is ok.
+//
+void Verifier::visitFunction(const Function &F) {
+ // Check function arguments.
+ FunctionType *FT = F.getFunctionType();
+ unsigned NumArgs = F.arg_size();
+
+ Assert(Context == &F.getContext(),
+ "Function context does not match Module context!", &F);
+
+ Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
+ Assert(FT->getNumParams() == NumArgs,
+ "# formal arguments must match # of arguments for function type!", &F,
+ FT);
+ Assert(F.getReturnType()->isFirstClassType() ||
+ F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
+ "Functions cannot return aggregate values!", &F);
+
+ Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
+ "Invalid struct return type!", &F);
+
+ AttributeSet Attrs = F.getAttributes();
+
+ Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
+ "Attribute after last parameter!", &F);
+
+ // Check function attributes.
+ VerifyFunctionAttrs(FT, Attrs, &F);
+
+ // On function declarations/definitions, we do not support the builtin
+ // attribute. We do not check this in VerifyFunctionAttrs since that is
+ // checking for Attributes that can/can not ever be on functions.
+ Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
+ "Attribute 'builtin' can only be applied to a callsite.", &F);
+
+ // Check that this function meets the restrictions on this calling convention.
+ // Sometimes varargs is used for perfectly forwarding thunks, so some of these
+ // restrictions can be lifted.
+ switch (F.getCallingConv()) {
+ default:
+ case CallingConv::C:
+ break;
+ case CallingConv::Fast:
+ case CallingConv::Cold:
+ case CallingConv::Intel_OCL_BI:
+ case CallingConv::PTX_Kernel:
+ case CallingConv::PTX_Device:
+ Assert(!F.isVarArg(), "Calling convention does not support varargs or "
+ "perfect forwarding!",
+ &F);
+ break;
+ }
+
+ bool isLLVMdotName = F.getName().size() >= 5 &&
+ F.getName().substr(0, 5) == "llvm.";
+
+ // Check that the argument values match the function type for this function...
+ unsigned i = 0;
+ for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
+ ++I, ++i) {
+ Assert(I->getType() == FT->getParamType(i),
+ "Argument value does not match function argument type!", I,
+ FT->getParamType(i));
+ Assert(I->getType()->isFirstClassType(),
+ "Function arguments must have first-class types!", I);
+ if (!isLLVMdotName)
+ Assert(!I->getType()->isMetadataTy(),
+ "Function takes metadata but isn't an intrinsic", I, &F);
+ }
+
+ // Get the function metadata attachments.
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ F.getAllMetadata(MDs);
+ assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
+ VerifyFunctionMetadata(MDs);
+
+ if (F.isMaterializable()) {
+ // Function has a body somewhere we can't see.
+ Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
+ MDs.empty() ? nullptr : MDs.front().second);
+ } else if (F.isDeclaration()) {
+ Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
+ "invalid linkage type for function declaration", &F);
+ Assert(MDs.empty(), "function without a body cannot have metadata", &F,
+ MDs.empty() ? nullptr : MDs.front().second);
+ Assert(!F.hasPersonalityFn(),
+ "Function declaration shouldn't have a personality routine", &F);
+ } else {
+ // Verify that this function (which has a body) is not named "llvm.*". It
+ // is not legal to define intrinsics.
+ Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
+
+ // Check the entry node
+ const BasicBlock *Entry = &F.getEntryBlock();
+ Assert(pred_empty(Entry),
+ "Entry block to function must not have predecessors!", Entry);
+
+ // The address of the entry block cannot be taken, unless it is dead.
+ if (Entry->hasAddressTaken()) {
+ Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
+ "blockaddress may not be used with the entry block!", Entry);
+ }
+
+ // Visit metadata attachments.
+ for (const auto &I : MDs)
+ visitMDNode(*I.second);
+ }
+
+ // If this function is actually an intrinsic, verify that it is only used in
+ // direct call/invokes, never having its "address taken".
+ if (F.getIntrinsicID()) {
+ const User *U;
+ if (F.hasAddressTaken(&U))
+ Assert(0, "Invalid user of intrinsic instruction!", U);
+ }
+
+ Assert(!F.hasDLLImportStorageClass() ||
+ (F.isDeclaration() && F.hasExternalLinkage()) ||
+ F.hasAvailableExternallyLinkage(),
+ "Function is marked as dllimport, but not external.", &F);
+}
+
+// verifyBasicBlock - Verify that a basic block is well formed...
+//
+void Verifier::visitBasicBlock(BasicBlock &BB) {
+ InstsInThisBlock.clear();
+
+ // Ensure that basic blocks have terminators!
+ Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
+
+ // Check constraints that this basic block imposes on all of the PHI nodes in
+ // it.
+ if (isa<PHINode>(BB.front())) {
+ SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
+ SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
+ std::sort(Preds.begin(), Preds.end());
+ PHINode *PN;
+ for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
+ // Ensure that PHI nodes have at least one entry!
+ Assert(PN->getNumIncomingValues() != 0,
+ "PHI nodes must have at least one entry. If the block is dead, "
+ "the PHI should be removed!",
+ PN);
+ Assert(PN->getNumIncomingValues() == Preds.size(),
+ "PHINode should have one entry for each predecessor of its "
+ "parent basic block!",
+ PN);
+
+ // Get and sort all incoming values in the PHI node...
+ Values.clear();
+ Values.reserve(PN->getNumIncomingValues());
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ Values.push_back(std::make_pair(PN->getIncomingBlock(i),
+ PN->getIncomingValue(i)));
+ std::sort(Values.begin(), Values.end());
+
+ for (unsigned i = 0, e = Values.size(); i != e; ++i) {
+ // Check to make sure that if there is more than one entry for a
+ // particular basic block in this PHI node, that the incoming values are
+ // all identical.
+ //
+ Assert(i == 0 || Values[i].first != Values[i - 1].first ||
+ Values[i].second == Values[i - 1].second,
+ "PHI node has multiple entries for the same basic block with "
+ "different incoming values!",
+ PN, Values[i].first, Values[i].second, Values[i - 1].second);
+
+ // Check to make sure that the predecessors and PHI node entries are
+ // matched up.
+ Assert(Values[i].first == Preds[i],
+ "PHI node entries do not match predecessors!", PN,
+ Values[i].first, Preds[i]);
+ }
+ }
+ }
+
+ // Check that all instructions have their parent pointers set up correctly.
+ for (auto &I : BB)
+ {
+ Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
+ }
+}
+
+void Verifier::visitTerminatorInst(TerminatorInst &I) {
+ // Ensure that terminators only exist at the end of the basic block.
+ Assert(&I == I.getParent()->getTerminator(),
+ "Terminator found in the middle of a basic block!", I.getParent());
+ visitInstruction(I);
+}
+
+void Verifier::visitBranchInst(BranchInst &BI) {
+ if (BI.isConditional()) {
+ Assert(BI.getCondition()->getType()->isIntegerTy(1),
+ "Branch condition is not 'i1' type!", &BI, BI.getCondition());
+ }
+ visitTerminatorInst(BI);
+}
+
+void Verifier::visitReturnInst(ReturnInst &RI) {
+ Function *F = RI.getParent()->getParent();
+ unsigned N = RI.getNumOperands();
+ if (F->getReturnType()->isVoidTy())
+ Assert(N == 0,
+ "Found return instr that returns non-void in Function of void "
+ "return type!",
+ &RI, F->getReturnType());
+ else
+ Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
+ "Function return type does not match operand "
+ "type of return inst!",
+ &RI, F->getReturnType());
+
+ // Check to make sure that the return value has necessary properties for
+ // terminators...
+ visitTerminatorInst(RI);
+}
+
+void Verifier::visitSwitchInst(SwitchInst &SI) {
+ // Check to make sure that all of the constants in the switch instruction
+ // have the same type as the switched-on value.
+ Type *SwitchTy = SI.getCondition()->getType();
+ SmallPtrSet<ConstantInt*, 32> Constants;
+ for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
+ Assert(i.getCaseValue()->getType() == SwitchTy,
+ "Switch constants must all be same type as switch value!", &SI);
+ Assert(Constants.insert(i.getCaseValue()).second,
+ "Duplicate integer as switch case", &SI, i.getCaseValue());
+ }
+
+ visitTerminatorInst(SI);
+}
+
+void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
+ Assert(BI.getAddress()->getType()->isPointerTy(),
+ "Indirectbr operand must have pointer type!", &BI);
+ for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
+ Assert(BI.getDestination(i)->getType()->isLabelTy(),
+ "Indirectbr destinations must all have pointer type!", &BI);
+
+ visitTerminatorInst(BI);
+}
+
+void Verifier::visitSelectInst(SelectInst &SI) {
+ Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
+ SI.getOperand(2)),
+ "Invalid operands for select instruction!", &SI);
+
+ Assert(SI.getTrueValue()->getType() == SI.getType(),
+ "Select values must have same type as select instruction!", &SI);
+ visitInstruction(SI);
+}
+
+/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
+/// a pass, if any exist, it's an error.
+///
+void Verifier::visitUserOp1(Instruction &I) {
+ Assert(0, "User-defined operators should not live outside of a pass!", &I);
+}
+
+void Verifier::visitTruncInst(TruncInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
+ Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "trunc source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitZExtInst(ZExtInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
+ Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "zext source and destination must both be a vector or neither", &I);
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSExtInst(SExtInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
+ Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "sext source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPTruncInst(FPTruncInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "fptrunc source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPExtInst(FPExtInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ // Get the size of the types in bits, we'll need this later
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
+ "fpext source and destination must both be a vector or neither", &I);
+ Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitUIToFPInst(UIToFPInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert(SrcVec == DstVec,
+ "UIToFP source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isIntOrIntVectorTy(),
+ "UIToFP source must be integer or integer vector", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
+ &I);
+
+ if (SrcVec && DstVec)
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "UIToFP source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitSIToFPInst(SIToFPInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert(SrcVec == DstVec,
+ "SIToFP source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isIntOrIntVectorTy(),
+ "SIToFP source must be integer or integer vector", &I);
+ Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
+ &I);
+
+ if (SrcVec && DstVec)
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "SIToFP source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToUIInst(FPToUIInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert(SrcVec == DstVec,
+ "FPToUI source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
+ &I);
+ Assert(DestTy->isIntOrIntVectorTy(),
+ "FPToUI result must be integer or integer vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToUI source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitFPToSIInst(FPToSIInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ bool SrcVec = SrcTy->isVectorTy();
+ bool DstVec = DestTy->isVectorTy();
+
+ Assert(SrcVec == DstVec,
+ "FPToSI source and dest must both be vector or scalar", &I);
+ Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
+ &I);
+ Assert(DestTy->isIntOrIntVectorTy(),
+ "FPToSI result must be integer or integer vector", &I);
+
+ if (SrcVec && DstVec)
+ Assert(cast<VectorType>(SrcTy)->getNumElements() ==
+ cast<VectorType>(DestTy)->getNumElements(),
+ "FPToSI source and dest vector length mismatch", &I);
+
+ visitInstruction(I);
+}
+
+void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ Assert(SrcTy->getScalarType()->isPointerTy(),
+ "PtrToInt source must be pointer", &I);
+ Assert(DestTy->getScalarType()->isIntegerTy(),
+ "PtrToInt result must be integral", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
+ &I);
+
+ if (SrcTy->isVectorTy()) {
+ VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
+ VectorType *VDest = dyn_cast<VectorType>(DestTy);
+ Assert(VSrc->getNumElements() == VDest->getNumElements(),
+ "PtrToInt Vector width mismatch", &I);
+ }
+
+ visitInstruction(I);
+}
+
+void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
+ // Get the source and destination types
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ Assert(SrcTy->getScalarType()->isIntegerTy(),
+ "IntToPtr source must be an integral", &I);
+ Assert(DestTy->getScalarType()->isPointerTy(),
+ "IntToPtr result must be a pointer", &I);
+ Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
+ &I);
+ if (SrcTy->isVectorTy()) {
+ VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
+ VectorType *VDest = dyn_cast<VectorType>(DestTy);
+ Assert(VSrc->getNumElements() == VDest->getNumElements(),
+ "IntToPtr Vector width mismatch", &I);
+ }
+ visitInstruction(I);
+}
+
+void Verifier::visitBitCastInst(BitCastInst &I) {
+ Assert(
+ CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
+ "Invalid bitcast", &I);
+ visitInstruction(I);
+}
+
+void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
+ Type *SrcTy = I.getOperand(0)->getType();
+ Type *DestTy = I.getType();
+
+ Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
+ &I);
+ Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
+ &I);
+ Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
+ "AddrSpaceCast must be between different address spaces", &I);
+ if (SrcTy->isVectorTy())
+ Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
+ "AddrSpaceCast vector pointer number of elements mismatch", &I);
+ visitInstruction(I);
+}
+
+/// visitPHINode - Ensure that a PHI node is well formed.
+///
+void Verifier::visitPHINode(PHINode &PN) {
+ // Ensure that the PHI nodes are all grouped together at the top of the block.
+ // This can be tested by checking whether the instruction before this is
+ // either nonexistent (because this is begin()) or is a PHI node. If not,
+ // then there is some other instruction before a PHI.
+ Assert(&PN == &PN.getParent()->front() ||
+ isa<PHINode>(--BasicBlock::iterator(&PN)),
+ "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
+
+ // Check that all of the values of the PHI node have the same type as the
+ // result, and that the incoming blocks are really basic blocks.
+ for (Value *IncValue : PN.incoming_values()) {
+ Assert(PN.getType() == IncValue->getType(),
+ "PHI node operands are not the same type as the result!", &PN);
+ }
+
+ // All other PHI node constraints are checked in the visitBasicBlock method.
+
+ visitInstruction(PN);
+}
+
+void Verifier::VerifyCallSite(CallSite CS) {
+ Instruction *I = CS.getInstruction();
+
+ Assert(CS.getCalledValue()->getType()->isPointerTy(),
+ "Called function must be a pointer!", I);
+ PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
+
+ Assert(FPTy->getElementType()->isFunctionTy(),
+ "Called function is not pointer to function type!", I);
+
+ Assert(FPTy->getElementType() == CS.getFunctionType(),
+ "Called function is not the same type as the call!", I);
+
+ FunctionType *FTy = CS.getFunctionType();
+
+ // Verify that the correct number of arguments are being passed
+ if (FTy->isVarArg())
+ Assert(CS.arg_size() >= FTy->getNumParams(),
+ "Called function requires more parameters than were provided!", I);
+ else
+ Assert(CS.arg_size() == FTy->getNumParams(),
+ "Incorrect number of arguments passed to called function!", I);
+
+ // Verify that all arguments to the call match the function type.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
+ "Call parameter type does not match function signature!",
+ CS.getArgument(i), FTy->getParamType(i), I);
+
+ AttributeSet Attrs = CS.getAttributes();
+
+ Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
+ "Attribute after last parameter!", I);
+
+ // Verify call attributes.
+ VerifyFunctionAttrs(FTy, Attrs, I);
+
+ // Conservatively check the inalloca argument.
+ // We have a bug if we can find that there is an underlying alloca without
+ // inalloca.
+ if (CS.hasInAllocaArgument()) {
+ Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
+ if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
+ Assert(AI->isUsedWithInAlloca(),
+ "inalloca argument for call has mismatched alloca", AI, I);
+ }
+
+ if (FTy->isVarArg()) {
+ // FIXME? is 'nest' even legal here?
+ bool SawNest = false;
+ bool SawReturned = false;
+
+ for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
+ if (Attrs.hasAttribute(Idx, Attribute::Nest))
+ SawNest = true;
+ if (Attrs.hasAttribute(Idx, Attribute::Returned))
+ SawReturned = true;
+ }
+
+ // Check attributes on the varargs part.
+ for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
+ Type *Ty = CS.getArgument(Idx-1)->getType();
+ VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
+
+ if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
+ Assert(!SawNest, "More than one parameter has attribute nest!", I);
+ SawNest = true;
+ }
+
+ if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
+ Assert(!SawReturned, "More than one parameter has attribute returned!",
+ I);
+ Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
+ "Incompatible argument and return types for 'returned' "
+ "attribute",
+ I);
+ SawReturned = true;
+ }
+
+ Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
+ "Attribute 'sret' cannot be used for vararg call arguments!", I);
+
+ if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
+ Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
+ }
+ }
+
+ // Verify that there's no metadata unless it's a direct call to an intrinsic.
+ if (CS.getCalledFunction() == nullptr ||
+ !CS.getCalledFunction()->getName().startswith("llvm.")) {
+ for (FunctionType::param_iterator PI = FTy->param_begin(),
+ PE = FTy->param_end(); PI != PE; ++PI)
+ Assert(!(*PI)->isMetadataTy(),
+ "Function has metadata parameter but isn't an intrinsic", I);
+ }
+
+ if (Function *F = CS.getCalledFunction())
+ if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
+ visitIntrinsicCallSite(ID, CS);
+
+ visitInstruction(*I);
+}
+
+/// Two types are "congruent" if they are identical, or if they are both pointer
+/// types with different pointee types and the same address space.
+static bool isTypeCongruent(Type *L, Type *R) {
+ if (L == R)
+ return true;
+ PointerType *PL = dyn_cast<PointerType>(L);
+ PointerType *PR = dyn_cast<PointerType>(R);
+ if (!PL || !PR)
+ return false;
+ return PL->getAddressSpace() == PR->getAddressSpace();
+}
+
+static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
+ static const Attribute::AttrKind ABIAttrs[] = {
+ Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
+ Attribute::InReg, Attribute::Returned};
+ AttrBuilder Copy;
+ for (auto AK : ABIAttrs) {
+ if (Attrs.hasAttribute(I + 1, AK))
+ Copy.addAttribute(AK);
+ }
+ if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
+ Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
+ return Copy;
+}
+
+void Verifier::verifyMustTailCall(CallInst &CI) {
+ Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
+
+ // - The caller and callee prototypes must match. Pointer types of
+ // parameters or return types may differ in pointee type, but not
+ // address space.
+ Function *F = CI.getParent()->getParent();
+ FunctionType *CallerTy = F->getFunctionType();
+ FunctionType *CalleeTy = CI.getFunctionType();
+ Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
+ "cannot guarantee tail call due to mismatched parameter counts", &CI);
+ Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
+ "cannot guarantee tail call due to mismatched varargs", &CI);
+ Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
+ "cannot guarantee tail call due to mismatched return types", &CI);
+ for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
+ Assert(
+ isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
+ "cannot guarantee tail call due to mismatched parameter types", &CI);
+ }
+
+ // - The calling conventions of the caller and callee must match.
+ Assert(F->getCallingConv() == CI.getCallingConv(),
+ "cannot guarantee tail call due to mismatched calling conv", &CI);
+
+ // - All ABI-impacting function attributes, such as sret, byval, inreg,
+ // returned, and inalloca, must match.
+ AttributeSet CallerAttrs = F->getAttributes();
+ AttributeSet CalleeAttrs = CI.getAttributes();
+ for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
+ AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
+ AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
+ Assert(CallerABIAttrs == CalleeABIAttrs,
+ "cannot guarantee tail call due to mismatched ABI impacting "
+ "function attributes",
+ &CI, CI.getOperand(I));
+ }
+
+ // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
+ // or a pointer bitcast followed by a ret instruction.
+ // - The ret instruction must return the (possibly bitcasted) value
+ // produced by the call or void.
+ Value *RetVal = &CI;
+ Instruction *Next = CI.getNextNode();
+
+ // Handle the optional bitcast.
+ if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
+ Assert(BI->getOperand(0) == RetVal,
+ "bitcast following musttail call must use the call", BI);
+ RetVal = BI;
+ Next = BI->getNextNode();
+ }
+
+ // Check the return.
+ ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
+ Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
+ &CI);
+ Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
+ "musttail call result must be returned", Ret);
+}
+
+void Verifier::visitCallInst(CallInst &CI) {
+ VerifyCallSite(&CI);
+
+ if (CI.isMustTailCall())
+ verifyMustTailCall(CI);
+}
+
+void Verifier::visitInvokeInst(InvokeInst &II) {
+ VerifyCallSite(&II);
+
+ // Verify that there is a landingpad instruction as the first non-PHI
+ // instruction of the 'unwind' destination.
+ Assert(II.getUnwindDest()->isLandingPad(),
+ "The unwind destination does not have a landingpad instruction!", &II);
+
+ visitTerminatorInst(II);
+}
+
+/// visitBinaryOperator - Check that both arguments to the binary operator are
+/// of the same type!
+///
+void Verifier::visitBinaryOperator(BinaryOperator &B) {
+ Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
+ "Both operands to a binary operator are not of the same type!", &B);
+
+ switch (B.getOpcode()) {
+ // Check that integer arithmetic operators are only used with
+ // integral operands.
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::SRem:
+ case Instruction::URem:
+ Assert(B.getType()->isIntOrIntVectorTy(),
+ "Integer arithmetic operators only work with integral types!", &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Integer arithmetic operators must have same type "
+ "for operands and result!",
+ &B);
+ break;
+ // Check that floating-point arithmetic operators are only used with
+ // floating-point operands.
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ Assert(B.getType()->isFPOrFPVectorTy(),
+ "Floating-point arithmetic operators only work with "
+ "floating-point types!",
+ &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Floating-point arithmetic operators must have same type "
+ "for operands and result!",
+ &B);
+ break;
+ // Check that logical operators are only used with integral operands.
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ Assert(B.getType()->isIntOrIntVectorTy(),
+ "Logical operators only work with integral types!", &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Logical operators must have same type for operands and result!",
+ &B);
+ break;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ Assert(B.getType()->isIntOrIntVectorTy(),
+ "Shifts only work with integral types!", &B);
+ Assert(B.getType() == B.getOperand(0)->getType(),
+ "Shift return type must be same as operands!", &B);
+ break;
+ default:
+ llvm_unreachable("Unknown BinaryOperator opcode!");
+ }
+
+ visitInstruction(B);
+}
+
+void Verifier::visitICmpInst(ICmpInst &IC) {
+ // Check that the operands are the same type
+ Type *Op0Ty = IC.getOperand(0)->getType();
+ Type *Op1Ty = IC.getOperand(1)->getType();
+ Assert(Op0Ty == Op1Ty,
+ "Both operands to ICmp instruction are not of the same type!", &IC);
+ // Check that the operands are the right type
+ Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
+ "Invalid operand types for ICmp instruction", &IC);
+ // Check that the predicate is valid.
+ Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
+ IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
+ "Invalid predicate in ICmp instruction!", &IC);
+
+ visitInstruction(IC);
+}
+
+void Verifier::visitFCmpInst(FCmpInst &FC) {
+ // Check that the operands are the same type
+ Type *Op0Ty = FC.getOperand(0)->getType();
+ Type *Op1Ty = FC.getOperand(1)->getType();
+ Assert(Op0Ty == Op1Ty,
+ "Both operands to FCmp instruction are not of the same type!", &FC);
+ // Check that the operands are the right type
+ Assert(Op0Ty->isFPOrFPVectorTy(),
+ "Invalid operand types for FCmp instruction", &FC);
+ // Check that the predicate is valid.
+ Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
+ FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
+ "Invalid predicate in FCmp instruction!", &FC);
+
+ visitInstruction(FC);
+}
+
+void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
+ Assert(
+ ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
+ "Invalid extractelement operands!", &EI);
+ visitInstruction(EI);
+}
+
+void Verifier::visitInsertElementInst(InsertElementInst &IE) {
+ Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
+ IE.getOperand(2)),
+ "Invalid insertelement operands!", &IE);
+ visitInstruction(IE);
+}
+
+void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
+ Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
+ SV.getOperand(2)),
+ "Invalid shufflevector operands!", &SV);
+ visitInstruction(SV);
+}
+
+void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
+
+ Assert(isa<PointerType>(TargetTy),
+ "GEP base pointer is not a vector or a vector of pointers", &GEP);
+ Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
+ SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
+ Type *ElTy =
+ GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
+ Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
+
+ Assert(GEP.getType()->getScalarType()->isPointerTy() &&
+ GEP.getResultElementType() == ElTy,
+ "GEP is not of right type for indices!", &GEP, ElTy);
+
+ if (GEP.getType()->isVectorTy()) {
+ // Additional checks for vector GEPs.
+ unsigned GEPWidth = GEP.getType()->getVectorNumElements();
+ if (GEP.getPointerOperandType()->isVectorTy())
+ Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
+ "Vector GEP result width doesn't match operand's", &GEP);
+ for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
+ Type *IndexTy = Idxs[i]->getType();
+ if (IndexTy->isVectorTy()) {
+ unsigned IndexWidth = IndexTy->getVectorNumElements();
+ Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
+ }
+ Assert(IndexTy->getScalarType()->isIntegerTy(),
+ "All GEP indices should be of integer type");
+ }
+ }
+ visitInstruction(GEP);
+}
+
+static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
+ return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
+}
+
+void Verifier::visitRangeMetadata(Instruction& I,
+ MDNode* Range, Type* Ty) {
+ assert(Range &&
+ Range == I.getMetadata(LLVMContext::MD_range) &&
+ "precondition violation");
+
+ unsigned NumOperands = Range->getNumOperands();
+ Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
+ unsigned NumRanges = NumOperands / 2;
+ Assert(NumRanges >= 1, "It should have at least one range!", Range);
+
+ ConstantRange LastRange(1); // Dummy initial value
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Low =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
+ Assert(Low, "The lower limit must be an integer!", Low);
+ ConstantInt *High =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
+ Assert(High, "The upper limit must be an integer!", High);
+ Assert(High->getType() == Low->getType() && High->getType() == Ty,
+ "Range types must match instruction type!", &I);
+
+ APInt HighV = High->getValue();
+ APInt LowV = Low->getValue();
+ ConstantRange CurRange(LowV, HighV);
+ Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
+ "Range must not be empty!", Range);
+ if (i != 0) {
+ Assert(CurRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
+ Range);
+ Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
+ Range);
+ }
+ LastRange = ConstantRange(LowV, HighV);
+ }
+ if (NumRanges > 2) {
+ APInt FirstLow =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
+ APInt FirstHigh =
+ mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
+ ConstantRange FirstRange(FirstLow, FirstHigh);
+ Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
+ "Intervals are overlapping", Range);
+ Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
+ Range);
+ }
+}
+
+void Verifier::visitLoadInst(LoadInst &LI) {
+ PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
+ Assert(PTy, "Load operand must be a pointer.", &LI);
+ Type *ElTy = LI.getType();
+ Assert(LI.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &LI);
+ if (LI.isAtomic()) {
+ Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
+ "Load cannot have Release ordering", &LI);
+ Assert(LI.getAlignment() != 0,
+ "Atomic load must specify explicit alignment", &LI);
+ if (!ElTy->isPointerTy()) {
+ Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
+ &LI, ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "atomic load operand must be power-of-two byte-sized integer", &LI,
+ ElTy);
+ }
+ } else {
+ Assert(LI.getSynchScope() == CrossThread,
+ "Non-atomic load cannot have SynchronizationScope specified", &LI);
+ }
+
+ visitInstruction(LI);
+}
+
+void Verifier::visitStoreInst(StoreInst &SI) {
+ PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
+ Assert(PTy, "Store operand must be a pointer.", &SI);
+ Type *ElTy = PTy->getElementType();
+ Assert(ElTy == SI.getOperand(0)->getType(),
+ "Stored value type does not match pointer operand type!", &SI, ElTy);
+ Assert(SI.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &SI);
+ if (SI.isAtomic()) {
+ Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
+ "Store cannot have Acquire ordering", &SI);
+ Assert(SI.getAlignment() != 0,
+ "Atomic store must specify explicit alignment", &SI);
+ if (!ElTy->isPointerTy()) {
+ Assert(ElTy->isIntegerTy(),
+ "atomic store operand must have integer type!", &SI, ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "atomic store operand must be power-of-two byte-sized integer",
+ &SI, ElTy);
+ }
+ } else {
+ Assert(SI.getSynchScope() == CrossThread,
+ "Non-atomic store cannot have SynchronizationScope specified", &SI);
+ }
+ visitInstruction(SI);
+}
+
+void Verifier::visitAllocaInst(AllocaInst &AI) {
+ SmallPtrSet<const Type*, 4> Visited;
+ PointerType *PTy = AI.getType();
+ Assert(PTy->getAddressSpace() == 0,
+ "Allocation instruction pointer not in the generic address space!",
+ &AI);
+ Assert(AI.getAllocatedType()->isSized(&Visited),
+ "Cannot allocate unsized type", &AI);
+ Assert(AI.getArraySize()->getType()->isIntegerTy(),
+ "Alloca array size must have integer type", &AI);
+ Assert(AI.getAlignment() <= Value::MaximumAlignment,
+ "huge alignment values are unsupported", &AI);
+
+ visitInstruction(AI);
+}
+
+void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
+
+ // FIXME: more conditions???
+ Assert(CXI.getSuccessOrdering() != NotAtomic,
+ "cmpxchg instructions must be atomic.", &CXI);
+ Assert(CXI.getFailureOrdering() != NotAtomic,
+ "cmpxchg instructions must be atomic.", &CXI);
+ Assert(CXI.getSuccessOrdering() != Unordered,
+ "cmpxchg instructions cannot be unordered.", &CXI);
+ Assert(CXI.getFailureOrdering() != Unordered,
+ "cmpxchg instructions cannot be unordered.", &CXI);
+ Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
+ "cmpxchg instructions be at least as constrained on success as fail",
+ &CXI);
+ Assert(CXI.getFailureOrdering() != Release &&
+ CXI.getFailureOrdering() != AcquireRelease,
+ "cmpxchg failure ordering cannot include release semantics", &CXI);
+
+ PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
+ Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
+ Type *ElTy = PTy->getElementType();
+ Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
+ ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
+ Assert(ElTy == CXI.getOperand(1)->getType(),
+ "Expected value type does not match pointer operand type!", &CXI,
+ ElTy);
+ Assert(ElTy == CXI.getOperand(2)->getType(),
+ "Stored value type does not match pointer operand type!", &CXI, ElTy);
+ visitInstruction(CXI);
+}
+
+void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
+ Assert(RMWI.getOrdering() != NotAtomic,
+ "atomicrmw instructions must be atomic.", &RMWI);
+ Assert(RMWI.getOrdering() != Unordered,
+ "atomicrmw instructions cannot be unordered.", &RMWI);
+ PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
+ Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
+ Type *ElTy = PTy->getElementType();
+ Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
+ &RMWI, ElTy);
+ unsigned Size = ElTy->getPrimitiveSizeInBits();
+ Assert(Size >= 8 && !(Size & (Size - 1)),
+ "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
+ ElTy);
+ Assert(ElTy == RMWI.getOperand(1)->getType(),
+ "Argument value type does not match pointer operand type!", &RMWI,
+ ElTy);
+ Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
+ RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
+ "Invalid binary operation!", &RMWI);
+ visitInstruction(RMWI);
+}
+
+void Verifier::visitFenceInst(FenceInst &FI) {
+ const AtomicOrdering Ordering = FI.getOrdering();
+ Assert(Ordering == Acquire || Ordering == Release ||
+ Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
+ "fence instructions may only have "
+ "acquire, release, acq_rel, or seq_cst ordering.",
+ &FI);
+ visitInstruction(FI);
+}
+
+void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
+ Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
+ EVI.getIndices()) == EVI.getType(),
+ "Invalid ExtractValueInst operands!", &EVI);
+
+ visitInstruction(EVI);
+}
+
+void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
+ Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
+ IVI.getIndices()) ==
+ IVI.getOperand(1)->getType(),
+ "Invalid InsertValueInst operands!", &IVI);
+
+ visitInstruction(IVI);
+}
+
+void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
+ BasicBlock *BB = LPI.getParent();
+
+ // The landingpad instruction is ill-formed if it doesn't have any clauses and
+ // isn't a cleanup.
+ Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
+ "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
+
+ // The landingpad instruction defines its parent as a landing pad block. The
+ // landing pad block may be branched to only by the unwind edge of an invoke.
+ for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
+ const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
+ Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
+ "Block containing LandingPadInst must be jumped to "
+ "only by the unwind edge of an invoke.",
+ &LPI);
+ }
+
+ Function *F = LPI.getParent()->getParent();
+ Assert(F->hasPersonalityFn(),
+ "LandingPadInst needs to be in a function with a personality.", &LPI);
+
+ // The landingpad instruction must be the first non-PHI instruction in the
+ // block.
+ Assert(LPI.getParent()->getLandingPadInst() == &LPI,
+ "LandingPadInst not the first non-PHI instruction in the block.",
+ &LPI);
+
+ for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
+ Constant *Clause = LPI.getClause(i);
+ if (LPI.isCatch(i)) {
+ Assert(isa<PointerType>(Clause->getType()),
+ "Catch operand does not have pointer type!", &LPI);
+ } else {
+ Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
+ Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
+ "Filter operand is not an array of constants!", &LPI);
+ }
+ }
+
+ visitInstruction(LPI);
+}
+
+void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
+ Instruction *Op = cast<Instruction>(I.getOperand(i));
+ // If the we have an invalid invoke, don't try to compute the dominance.
+ // We already reject it in the invoke specific checks and the dominance
+ // computation doesn't handle multiple edges.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
+ if (II->getNormalDest() == II->getUnwindDest())
+ return;
+ }
+
+ const Use &U = I.getOperandUse(i);
+ Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
+ "Instruction does not dominate all uses!", Op, &I);
+}
+
+/// verifyInstruction - Verify that an instruction is well formed.
+///
+void Verifier::visitInstruction(Instruction &I) {
+ BasicBlock *BB = I.getParent();
+ Assert(BB, "Instruction not embedded in basic block!", &I);
+
+ if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
+ for (User *U : I.users()) {
+ Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
+ "Only PHI nodes may reference their own value!", &I);
+ }
+ }
+
+ // Check that void typed values don't have names
+ Assert(!I.getType()->isVoidTy() || !I.hasName(),
+ "Instruction has a name, but provides a void value!", &I);
+
+ // Check that the return value of the instruction is either void or a legal
+ // value type.
+ Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
+ "Instruction returns a non-scalar type!", &I);
+
+ // Check that the instruction doesn't produce metadata. Calls are already
+ // checked against the callee type.
+ Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
+ "Invalid use of metadata!", &I);
+
+ // Check that all uses of the instruction, if they are instructions
+ // themselves, actually have parent basic blocks. If the use is not an
+ // instruction, it is an error!
+ for (Use &U : I.uses()) {
+ if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
+ Assert(Used->getParent() != nullptr,
+ "Instruction referencing"
+ " instruction not embedded in a basic block!",
+ &I, Used);
+ else {
+ CheckFailed("Use of instruction is not an instruction!", U);
+ return;
+ }
+ }
+
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
+
+ // Check to make sure that only first-class-values are operands to
+ // instructions.
+ if (!I.getOperand(i)->getType()->isFirstClassType()) {
+ Assert(0, "Instruction operands must be first-class values!", &I);
+ }
+
+ if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
+ // Check to make sure that the "address of" an intrinsic function is never
+ // taken.
+ Assert(
+ !F->isIntrinsic() ||
+ i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
+ "Cannot take the address of an intrinsic!", &I);
+ Assert(
+ !F->isIntrinsic() || isa<CallInst>(I) ||
+ F->getIntrinsicID() == Intrinsic::donothing ||
+ F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
+ F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
+ F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
+ "Cannot invoke an intrinsinc other than"
+ " donothing or patchpoint",
+ &I);
+ Assert(F->getParent() == M, "Referencing function in another module!",
+ &I);
+ } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
+ Assert(OpBB->getParent() == BB->getParent(),
+ "Referring to a basic block in another function!", &I);
+ } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
+ Assert(OpArg->getParent() == BB->getParent(),
+ "Referring to an argument in another function!", &I);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
+ Assert(GV->getParent() == M, "Referencing global in another module!", &I);
+ } else if (isa<Instruction>(I.getOperand(i))) {
+ verifyDominatesUse(I, i);
+ } else if (isa<InlineAsm>(I.getOperand(i))) {
+ Assert((i + 1 == e && isa<CallInst>(I)) ||
+ (i + 3 == e && isa<InvokeInst>(I)),
+ "Cannot take the address of an inline asm!", &I);
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
+ if (CE->getType()->isPtrOrPtrVectorTy()) {
+ // If we have a ConstantExpr pointer, we need to see if it came from an
+ // illegal bitcast (inttoptr <constant int> )
+ SmallVector<const ConstantExpr *, 4> Stack;
+ SmallPtrSet<const ConstantExpr *, 4> Visited;
+ Stack.push_back(CE);
+
+ while (!Stack.empty()) {
+ const ConstantExpr *V = Stack.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ VerifyConstantExprBitcastType(V);
+
+ for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
+ if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
+ Stack.push_back(Op);
+ }
+ }
+ }
+ }
+ }
+
+ if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
+ Assert(I.getType()->isFPOrFPVectorTy(),
+ "fpmath requires a floating point result!", &I);
+ Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
+ if (ConstantFP *CFP0 =
+ mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
+ APFloat Accuracy = CFP0->getValueAPF();
+ Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
+ "fpmath accuracy not a positive number!", &I);
+ } else {
+ Assert(false, "invalid fpmath accuracy!", &I);
+ }
+ }
+
+ if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
+ Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
+ "Ranges are only for loads, calls and invokes!", &I);
+ visitRangeMetadata(I, Range, I.getType());
+ }
+
+ if (I.getMetadata(LLVMContext::MD_nonnull)) {
+ Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
+ &I);
+ Assert(isa<LoadInst>(I),
+ "nonnull applies only to load instructions, use attributes"
+ " for calls or invokes",
+ &I);
+ }
+
+ if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
+ Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
+ visitMDNode(*N);
+ }
+
+ InstsInThisBlock.insert(&I);
+}
+
+/// VerifyIntrinsicType - Verify that the specified type (which comes from an
+/// intrinsic argument or return value) matches the type constraints specified
+/// by the .td file (e.g. an "any integer" argument really is an integer).
+///
+/// This return true on error but does not print a message.
+bool Verifier::VerifyIntrinsicType(Type *Ty,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos,
+ SmallVectorImpl<Type*> &ArgTys) {
+ using namespace Intrinsic;
+
+ // If we ran out of descriptors, there are too many arguments.
+ if (Infos.empty()) return true;
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+
+ switch (D.Kind) {
+ case IITDescriptor::Void: return !Ty->isVoidTy();
+ case IITDescriptor::VarArg: return true;
+ case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
+ case IITDescriptor::Metadata: return !Ty->isMetadataTy();
+ case IITDescriptor::Half: return !Ty->isHalfTy();
+ case IITDescriptor::Float: return !Ty->isFloatTy();
+ case IITDescriptor::Double: return !Ty->isDoubleTy();
+ case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
+ case IITDescriptor::Vector: {
+ VectorType *VT = dyn_cast<VectorType>(Ty);
+ return !VT || VT->getNumElements() != D.Vector_Width ||
+ VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
+ }
+ case IITDescriptor::Pointer: {
+ PointerType *PT = dyn_cast<PointerType>(Ty);
+ return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
+ VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
+ }
+
+ case IITDescriptor::Struct: {
+ StructType *ST = dyn_cast<StructType>(Ty);
+ if (!ST || ST->getNumElements() != D.Struct_NumElements)
+ return true;
+
+ for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
+ if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
+ return true;
+ return false;
+ }
+
+ case IITDescriptor::Argument:
+ // Two cases here - If this is the second occurrence of an argument, verify
+ // that the later instance matches the previous instance.
+ if (D.getArgumentNumber() < ArgTys.size())
+ return Ty != ArgTys[D.getArgumentNumber()];
+
+ // Otherwise, if this is the first instance of an argument, record it and
+ // verify the "Any" kind.
+ assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
+ ArgTys.push_back(Ty);
+
+ switch (D.getArgumentKind()) {
+ case IITDescriptor::AK_Any: return false; // Success
+ case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
+ case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
+ case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
+ case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
+ }
+ llvm_unreachable("all argument kinds not covered");
+
+ case IITDescriptor::ExtendArgument: {
+ // This may only be used when referring to a previous vector argument.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
+ NewTy = VectorType::getExtendedElementVectorType(VTy);
+ else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
+ NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
+ else
+ return true;
+
+ return Ty != NewTy;
+ }
+ case IITDescriptor::TruncArgument: {
+ // This may only be used when referring to a previous vector argument.
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+
+ Type *NewTy = ArgTys[D.getArgumentNumber()];
+ if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
+ NewTy = VectorType::getTruncatedElementVectorType(VTy);
+ else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
+ NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
+ else
+ return true;
+
+ return Ty != NewTy;
+ }
+ case IITDescriptor::HalfVecArgument:
+ // This may only be used when referring to a previous vector argument.
+ return D.getArgumentNumber() >= ArgTys.size() ||
+ !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
+ VectorType::getHalfElementsVectorType(
+ cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
+ case IITDescriptor::SameVecWidthArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+ VectorType * ReferenceType =
+ dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
+ VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
+ if (!ThisArgType || !ReferenceType ||
+ (ReferenceType->getVectorNumElements() !=
+ ThisArgType->getVectorNumElements()))
+ return true;
+ return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
+ Infos, ArgTys);
+ }
+ case IITDescriptor::PtrToArgument: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+ Type * ReferenceType = ArgTys[D.getArgumentNumber()];
+ PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
+ return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
+ }
+ case IITDescriptor::VecOfPtrsToElt: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+ VectorType * ReferenceType =
+ dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
+ VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
+ if (!ThisArgVecTy || !ReferenceType ||
+ (ReferenceType->getVectorNumElements() !=
+ ThisArgVecTy->getVectorNumElements()))
+ return true;
+ PointerType *ThisArgEltTy =
+ dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
+ if (!ThisArgEltTy)
+ return true;
+ return ThisArgEltTy->getElementType() !=
+ ReferenceType->getVectorElementType();
+ }
+ }
+ llvm_unreachable("unhandled");
+}
+
+/// \brief Verify if the intrinsic has variable arguments.
+/// This method is intended to be called after all the fixed arguments have been
+/// verified first.
+///
+/// This method returns true on error and does not print an error message.
+bool
+Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
+ ArrayRef<Intrinsic::IITDescriptor> &Infos) {
+ using namespace Intrinsic;
+
+ // If there are no descriptors left, then it can't be a vararg.
+ if (Infos.empty())
+ return isVarArg;
+
+ // There should be only one descriptor remaining at this point.
+ if (Infos.size() != 1)
+ return true;
+
+ // Check and verify the descriptor.
+ IITDescriptor D = Infos.front();
+ Infos = Infos.slice(1);
+ if (D.Kind == IITDescriptor::VarArg)
+ return !isVarArg;
+
+ return true;
+}
+
+/// Allow intrinsics to be verified in different ways.
+void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
+ Function *IF = CS.getCalledFunction();
+ Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
+ IF);
+
+ // Verify that the intrinsic prototype lines up with what the .td files
+ // describe.
+ FunctionType *IFTy = IF->getFunctionType();
+ bool IsVarArg = IFTy->isVarArg();
+
+ SmallVector<Intrinsic::IITDescriptor, 8> Table;
+ getIntrinsicInfoTableEntries(ID, Table);
+ ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
+
+ SmallVector<Type *, 4> ArgTys;
+ Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
+ "Intrinsic has incorrect return type!", IF);
+ for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
+ Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
+ "Intrinsic has incorrect argument type!", IF);
+
+ // Verify if the intrinsic call matches the vararg property.
+ if (IsVarArg)
+ Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
+ "Intrinsic was not defined with variable arguments!", IF);
+ else
+ Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
+ "Callsite was not defined with variable arguments!", IF);
+
+ // All descriptors should be absorbed by now.
+ Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
+
+ // Now that we have the intrinsic ID and the actual argument types (and we
+ // know they are legal for the intrinsic!) get the intrinsic name through the
+ // usual means. This allows us to verify the mangling of argument types into
+ // the name.
+ const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
+ Assert(ExpectedName == IF->getName(),
+ "Intrinsic name not mangled correctly for type arguments! "
+ "Should be: " +
+ ExpectedName,
+ IF);
+
+ // If the intrinsic takes MDNode arguments, verify that they are either global
+ // or are local to *this* function.
+ for (Value *V : CS.args())
+ if (auto *MD = dyn_cast<MetadataAsValue>(V))
+ visitMetadataAsValue(*MD, CS.getCaller());
+
+ switch (ID) {
+ default:
+ break;
+ case Intrinsic::ctlz: // llvm.ctlz
+ case Intrinsic::cttz: // llvm.cttz
+ Assert(isa<ConstantInt>(CS.getArgOperand(1)),
+ "is_zero_undef argument of bit counting intrinsics must be a "
+ "constant int",
+ CS);
+ break;
+ case Intrinsic::dbg_declare: // llvm.dbg.declare
+ Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
+ "invalid llvm.dbg.declare intrinsic call 1", CS);
+ visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
+ break;
+ case Intrinsic::dbg_value: // llvm.dbg.value
+ visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
+ break;
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset: {
+ ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
+ Assert(AlignCI,
+ "alignment argument of memory intrinsics must be a constant int",
+ CS);
+ const APInt &AlignVal = AlignCI->getValue();
+ Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
+ "alignment argument of memory intrinsics must be a power of 2", CS);
+ Assert(isa<ConstantInt>(CS.getArgOperand(4)),
+ "isvolatile argument of memory intrinsics must be a constant int",
+ CS);
+ break;
+ }
+ case Intrinsic::gcroot:
+ case Intrinsic::gcwrite:
+ case Intrinsic::gcread:
+ if (ID == Intrinsic::gcroot) {
+ AllocaInst *AI =
+ dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
+ Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
+ Assert(isa<Constant>(CS.getArgOperand(1)),
+ "llvm.gcroot parameter #2 must be a constant.", CS);
+ if (!AI->getAllocatedType()->isPointerTy()) {
+ Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
+ "llvm.gcroot parameter #1 must either be a pointer alloca, "
+ "or argument #2 must be a non-null constant.",
+ CS);
+ }
+ }
+
+ Assert(CS.getParent()->getParent()->hasGC(),
+ "Enclosing function does not use GC.", CS);
+ break;
+ case Intrinsic::init_trampoline:
+ Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
+ "llvm.init_trampoline parameter #2 must resolve to a function.",
+ CS);
+ break;
+ case Intrinsic::prefetch:
+ Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
+ isa<ConstantInt>(CS.getArgOperand(2)) &&
+ cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
+ cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
+ "invalid arguments to llvm.prefetch", CS);
+ break;
+ case Intrinsic::stackprotector:
+ Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
+ "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
+ break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start:
+ Assert(isa<ConstantInt>(CS.getArgOperand(0)),
+ "size argument of memory use markers must be a constant integer",
+ CS);
+ break;
+ case Intrinsic::invariant_end:
+ Assert(isa<ConstantInt>(CS.getArgOperand(1)),
+ "llvm.invariant.end parameter #2 must be a constant integer", CS);
+ break;
+
+ case Intrinsic::localescape: {
+ BasicBlock *BB = CS.getParent();
+ Assert(BB == &BB->getParent()->front(),
+ "llvm.localescape used outside of entry block", CS);
+ Assert(!SawFrameEscape,
+ "multiple calls to llvm.localescape in one function", CS);
+ for (Value *Arg : CS.args()) {
+ if (isa<ConstantPointerNull>(Arg))
+ continue; // Null values are allowed as placeholders.
+ auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
+ Assert(AI && AI->isStaticAlloca(),
+ "llvm.localescape only accepts static allocas", CS);
+ }
+ FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
+ SawFrameEscape = true;
+ break;
+ }
+ case Intrinsic::localrecover: {
+ Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
+ Function *Fn = dyn_cast<Function>(FnArg);
+ Assert(Fn && !Fn->isDeclaration(),
+ "llvm.localrecover first "
+ "argument must be function defined in this module",
+ CS);
+ auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
+ Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
+ CS);
+ auto &Entry = FrameEscapeInfo[Fn];
+ Entry.second = unsigned(
+ std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
+ break;
+ }
+
+ case Intrinsic::experimental_gc_statepoint:
+ Assert(!CS.isInlineAsm(),
+ "gc.statepoint support for inline assembly unimplemented", CS);
+ Assert(CS.getParent()->getParent()->hasGC(),
+ "Enclosing function does not use GC.", CS);
+
+ VerifyStatepoint(CS);
+ break;
+ case Intrinsic::experimental_gc_result_int:
+ case Intrinsic::experimental_gc_result_float:
+ case Intrinsic::experimental_gc_result_ptr:
+ case Intrinsic::experimental_gc_result: {
+ Assert(CS.getParent()->getParent()->hasGC(),
+ "Enclosing function does not use GC.", CS);
+ // Are we tied to a statepoint properly?
+ CallSite StatepointCS(CS.getArgOperand(0));
+ const Function *StatepointFn =
+ StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
+ Assert(StatepointFn && StatepointFn->isDeclaration() &&
+ StatepointFn->getIntrinsicID() ==
+ Intrinsic::experimental_gc_statepoint,
+ "gc.result operand #1 must be from a statepoint", CS,
+ CS.getArgOperand(0));
+
+ // Assert that result type matches wrapped callee.
+ const Value *Target = StatepointCS.getArgument(2);
+ const PointerType *PT = cast<PointerType>(Target->getType());
+ const FunctionType *TargetFuncType =
+ cast<FunctionType>(PT->getElementType());
+ Assert(CS.getType() == TargetFuncType->getReturnType(),
+ "gc.result result type does not match wrapped callee", CS);
+ break;
+ }
+ case Intrinsic::experimental_gc_relocate: {
+ Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
+
+ // Check that this relocate is correctly tied to the statepoint
+
+ // This is case for relocate on the unwinding path of an invoke statepoint
+ if (ExtractValueInst *ExtractValue =
+ dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
+ Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
+ "gc relocate on unwind path incorrectly linked to the statepoint",
+ CS);
+
+ const BasicBlock *InvokeBB =
+ ExtractValue->getParent()->getUniquePredecessor();
+
+ // Landingpad relocates should have only one predecessor with invoke
+ // statepoint terminator
+ Assert(InvokeBB, "safepoints should have unique landingpads",
+ ExtractValue->getParent());
+ Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
+ InvokeBB);
+ Assert(isStatepoint(InvokeBB->getTerminator()),
+ "gc relocate should be linked to a statepoint", InvokeBB);
+ }
+ else {
+ // In all other cases relocate should be tied to the statepoint directly.
+ // This covers relocates on a normal return path of invoke statepoint and
+ // relocates of a call statepoint
+ auto Token = CS.getArgOperand(0);
+ Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
+ "gc relocate is incorrectly tied to the statepoint", CS, Token);
+ }
+
+ // Verify rest of the relocate arguments
+
+ GCRelocateOperands Ops(CS);
+ ImmutableCallSite StatepointCS(Ops.getStatepoint());
+
+ // Both the base and derived must be piped through the safepoint
+ Value* Base = CS.getArgOperand(1);
+ Assert(isa<ConstantInt>(Base),
+ "gc.relocate operand #2 must be integer offset", CS);
+
+ Value* Derived = CS.getArgOperand(2);
+ Assert(isa<ConstantInt>(Derived),
+ "gc.relocate operand #3 must be integer offset", CS);
+
+ const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
+ const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
+ // Check the bounds
+ Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
+ "gc.relocate: statepoint base index out of bounds", CS);
+ Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
+ "gc.relocate: statepoint derived index out of bounds", CS);
+
+ // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
+ // section of the statepoint's argument
+ Assert(StatepointCS.arg_size() > 0,
+ "gc.statepoint: insufficient arguments");
+ Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
+ "gc.statement: number of call arguments must be constant integer");
+ const unsigned NumCallArgs =
+ cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
+ Assert(StatepointCS.arg_size() > NumCallArgs + 5,
+ "gc.statepoint: mismatch in number of call arguments");
+ Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
+ "gc.statepoint: number of transition arguments must be "
+ "a constant integer");
+ const int NumTransitionArgs =
+ cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
+ ->getZExtValue();
+ const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
+ Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
+ "gc.statepoint: number of deoptimization arguments must be "
+ "a constant integer");
+ const int NumDeoptArgs =
+ cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
+ const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
+ const int GCParamArgsEnd = StatepointCS.arg_size();
+ Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
+ "gc.relocate: statepoint base index doesn't fall within the "
+ "'gc parameters' section of the statepoint call",
+ CS);
+ Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
+ "gc.relocate: statepoint derived index doesn't fall within the "
+ "'gc parameters' section of the statepoint call",
+ CS);
+
+ // Relocated value must be a pointer type, but gc_relocate does not need to return the
+ // same pointer type as the relocated pointer. It can be casted to the correct type later
+ // if it's desired. However, they must have the same address space.
+ GCRelocateOperands Operands(CS);
+ Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
+ "gc.relocate: relocated value must be a gc pointer", CS);
+
+ // gc_relocate return type must be a pointer type, and is verified earlier in
+ // VerifyIntrinsicType().
+ Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
+ cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
+ "gc.relocate: relocating a pointer shouldn't change its address space", CS);
+ break;
+ }
+ };
+}
+
+/// \brief Carefully grab the subprogram from a local scope.
+///
+/// This carefully grabs the subprogram from a local scope, avoiding the
+/// built-in assertions that would typically fire.
+static DISubprogram *getSubprogram(Metadata *LocalScope) {
+ if (!LocalScope)
+ return nullptr;
+
+ if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
+ return SP;
+
+ if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
+ return getSubprogram(LB->getRawScope());
+
+ // Just return null; broken scope chains are checked elsewhere.
+ assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
+ return nullptr;
+}
+
+template <class DbgIntrinsicTy>
+void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
+ auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
+ Assert(isa<ValueAsMetadata>(MD) ||
+ (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
+ "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
+ Assert(isa<DILocalVariable>(DII.getRawVariable()),
+ "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
+ DII.getRawVariable());
+ Assert(isa<DIExpression>(DII.getRawExpression()),
+ "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
+ DII.getRawExpression());
+
+ // Ignore broken !dbg attachments; they're checked elsewhere.
+ if (MDNode *N = DII.getDebugLoc().getAsMDNode())
+ if (!isa<DILocation>(N))
+ return;
+
+ BasicBlock *BB = DII.getParent();
+ Function *F = BB ? BB->getParent() : nullptr;
+
+ // The scopes for variables and !dbg attachments must agree.
+ DILocalVariable *Var = DII.getVariable();
+ DILocation *Loc = DII.getDebugLoc();
+ Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
+ &DII, BB, F);
+
+ DISubprogram *VarSP = getSubprogram(Var->getRawScope());
+ DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
+ if (!VarSP || !LocSP)
+ return; // Broken scope chains are checked elsewhere.
+
+ Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
+ " variable and !dbg attachment",
+ &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
+ Loc->getScope()->getSubprogram());
+}
+
+template <class MapTy>
+static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
+ // Be careful of broken types (checked elsewhere).
+ const Metadata *RawType = V.getRawType();
+ while (RawType) {
+ // Try to get the size directly.
+ if (auto *T = dyn_cast<DIType>(RawType))
+ if (uint64_t Size = T->getSizeInBits())
+ return Size;
+
+ if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
+ // Look at the base type.
+ RawType = DT->getRawBaseType();
+ continue;
+ }
+
+ if (auto *S = dyn_cast<MDString>(RawType)) {
+ // Don't error on missing types (checked elsewhere).
+ RawType = Map.lookup(S);
+ continue;
+ }
+
+ // Missing type or size.
+ break;
+ }
+
+ // Fail gracefully.
+ return 0;
+}
+
+template <class MapTy>
+void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
+ const MapTy &TypeRefs) {
+ DILocalVariable *V;
+ DIExpression *E;
+ if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
+ V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
+ E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
+ } else {
+ auto *DDI = cast<DbgDeclareInst>(&I);
+ V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
+ E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
+ }
+
+ // We don't know whether this intrinsic verified correctly.
+ if (!V || !E || !E->isValid())
+ return;
+
+ // Nothing to do if this isn't a bit piece expression.
+ if (!E->isBitPiece())
+ return;
+
+ // The frontend helps out GDB by emitting the members of local anonymous
+ // unions as artificial local variables with shared storage. When SROA splits
+ // the storage for artificial local variables that are smaller than the entire
+ // union, the overhang piece will be outside of the allotted space for the
+ // variable and this check fails.
+ // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
+ if (V->isArtificial())
+ return;
+
+ // If there's no size, the type is broken, but that should be checked
+ // elsewhere.
+ uint64_t VarSize = getVariableSize(*V, TypeRefs);
+ if (!VarSize)
+ return;
+
+ unsigned PieceSize = E->getBitPieceSize();
+ unsigned PieceOffset = E->getBitPieceOffset();
+ Assert(PieceSize + PieceOffset <= VarSize,
+ "piece is larger than or outside of variable", &I, V, E);
+ Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
+}
+
+void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
+ // This is in its own function so we get an error for each bad type ref (not
+ // just the first).
+ Assert(false, "unresolved type ref", S, N);
+}
+
+void Verifier::verifyTypeRefs() {
+ auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
+ if (!CUs)
+ return;
+
+ // Visit all the compile units again to map the type references.
+ SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
+ for (auto *CU : CUs->operands())
+ if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
+ for (DIType *Op : Ts)
+ if (auto *T = dyn_cast<DICompositeType>(Op))
+ if (auto *S = T->getRawIdentifier()) {
+ UnresolvedTypeRefs.erase(S);
+ TypeRefs.insert(std::make_pair(S, T));
+ }
+
+ // Verify debug info intrinsic bit piece expressions. This needs a second
+ // pass through the intructions, since we haven't built TypeRefs yet when
+ // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
+ // later/now would queue up some that could be later deleted.
+ for (const Function &F : *M)
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
+ verifyBitPieceExpression(*DII, TypeRefs);
+
+ // Return early if all typerefs were resolved.
+ if (UnresolvedTypeRefs.empty())
+ return;
+
+ // Sort the unresolved references by name so the output is deterministic.
+ typedef std::pair<const MDString *, const MDNode *> TypeRef;
+ SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
+ UnresolvedTypeRefs.end());
+ std::sort(Unresolved.begin(), Unresolved.end(),
+ [](const TypeRef &LHS, const TypeRef &RHS) {
+ return LHS.first->getString() < RHS.first->getString();
+ });
+
+ // Visit the unresolved refs (printing out the errors).
+ for (const TypeRef &TR : Unresolved)
+ visitUnresolvedTypeRef(TR.first, TR.second);
+}
+
+//===----------------------------------------------------------------------===//
+// Implement the public interfaces to this file...
+//===----------------------------------------------------------------------===//
+
+bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
+ Function &F = const_cast<Function &>(f);
+ assert(!F.isDeclaration() && "Cannot verify external functions");
+
+ raw_null_ostream NullStr;
+ Verifier V(OS ? *OS : NullStr);
+
+ // Note that this function's return value is inverted from what you would
+ // expect of a function called "verify".
+ return !V.verify(F);
+}
+
+bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
+ raw_null_ostream NullStr;
+ Verifier V(OS ? *OS : NullStr);
+
+ bool Broken = false;
+ for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
+ if (!I->isDeclaration() && !I->isMaterializable())
+ Broken |= !V.verify(*I);
+
+ // Note that this function's return value is inverted from what you would
+ // expect of a function called "verify".
+ return !V.verify(M) || Broken;
+}
+
+namespace {
+struct VerifierLegacyPass : public FunctionPass {
+ static char ID;
+
+ Verifier V;
+ bool FatalErrors;
+
+ VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
+ initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+ explicit VerifierLegacyPass(bool FatalErrors)
+ : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
+ initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (!V.verify(F) && FatalErrors)
+ report_fatal_error("Broken function found, compilation aborted!");
+
+ return false;
+ }
+
+ bool doFinalization(Module &M) override {
+ if (!V.verify(M) && FatalErrors)
+ report_fatal_error("Broken module found, compilation aborted!");
+
+ return false;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+};
+}
+
+char VerifierLegacyPass::ID = 0;
+INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
+
+FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
+ return new VerifierLegacyPass(FatalErrors);
+}
+
+PreservedAnalyses VerifierPass::run(Module &M) {
+ if (verifyModule(M, &dbgs()) && FatalErrors)
+ report_fatal_error("Broken module found, compilation aborted!");
+
+ return PreservedAnalyses::all();
+}
+
+PreservedAnalyses VerifierPass::run(Function &F) {
+ if (verifyFunction(F, &dbgs()) && FatalErrors)
+ report_fatal_error("Broken function found, compilation aborted!");
+
+ return PreservedAnalyses::all();
+}
OpenPOWER on IntegriCloud