diff options
Diffstat (limited to 'contrib/llvm/lib/IR/Verifier.cpp')
-rw-r--r-- | contrib/llvm/lib/IR/Verifier.cpp | 3719 |
1 files changed, 3719 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/Verifier.cpp b/contrib/llvm/lib/IR/Verifier.cpp new file mode 100644 index 0000000..2a0a4ff --- /dev/null +++ b/contrib/llvm/lib/IR/Verifier.cpp @@ -0,0 +1,3719 @@ +//===-- Verifier.cpp - Implement the Module Verifier -----------------------==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the function verifier interface, that can be used for some +// sanity checking of input to the system. +// +// Note that this does not provide full `Java style' security and verifications, +// instead it just tries to ensure that code is well-formed. +// +// * Both of a binary operator's parameters are of the same type +// * Verify that the indices of mem access instructions match other operands +// * Verify that arithmetic and other things are only performed on first-class +// types. Verify that shifts & logicals only happen on integrals f.e. +// * All of the constants in a switch statement are of the correct type +// * The code is in valid SSA form +// * It should be illegal to put a label into any other type (like a structure) +// or to return one. [except constant arrays!] +// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad +// * PHI nodes must have an entry for each predecessor, with no extras. +// * PHI nodes must be the first thing in a basic block, all grouped together +// * PHI nodes must have at least one entry +// * All basic blocks should only end with terminator insts, not contain them +// * The entry node to a function must not have predecessors +// * All Instructions must be embedded into a basic block +// * Functions cannot take a void-typed parameter +// * Verify that a function's argument list agrees with it's declared type. +// * It is illegal to specify a name for a void value. +// * It is illegal to have a internal global value with no initializer +// * It is illegal to have a ret instruction that returns a value that does not +// agree with the function return value type. +// * Function call argument types match the function prototype +// * A landing pad is defined by a landingpad instruction, and can be jumped to +// only by the unwind edge of an invoke instruction. +// * A landingpad instruction must be the first non-PHI instruction in the +// block. +// * All landingpad instructions must use the same personality function with +// the same function. +// * All other things that are tested by asserts spread about the code... +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Verifier.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstdarg> +using namespace llvm; + +static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true)); + +namespace { +struct VerifierSupport { + raw_ostream &OS; + const Module *M; + + /// \brief Track the brokenness of the module while recursively visiting. + bool Broken; + + explicit VerifierSupport(raw_ostream &OS) + : OS(OS), M(nullptr), Broken(false) {} + +private: + void Write(const Value *V) { + if (!V) + return; + if (isa<Instruction>(V)) { + OS << *V << '\n'; + } else { + V->printAsOperand(OS, true, M); + OS << '\n'; + } + } + void Write(ImmutableCallSite CS) { + Write(CS.getInstruction()); + } + + void Write(const Metadata *MD) { + if (!MD) + return; + MD->print(OS, M); + OS << '\n'; + } + + template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { + Write(MD.get()); + } + + void Write(const NamedMDNode *NMD) { + if (!NMD) + return; + NMD->print(OS); + OS << '\n'; + } + + void Write(Type *T) { + if (!T) + return; + OS << ' ' << *T; + } + + void Write(const Comdat *C) { + if (!C) + return; + OS << *C; + } + + template <typename T1, typename... Ts> + void WriteTs(const T1 &V1, const Ts &... Vs) { + Write(V1); + WriteTs(Vs...); + } + + template <typename... Ts> void WriteTs() {} + +public: + /// \brief A check failed, so printout out the condition and the message. + /// + /// This provides a nice place to put a breakpoint if you want to see why + /// something is not correct. + void CheckFailed(const Twine &Message) { + OS << Message << '\n'; + Broken = true; + } + + /// \brief A check failed (with values to print). + /// + /// This calls the Message-only version so that the above is easier to set a + /// breakpoint on. + template <typename T1, typename... Ts> + void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { + CheckFailed(Message); + WriteTs(V1, Vs...); + } +}; + +class Verifier : public InstVisitor<Verifier>, VerifierSupport { + friend class InstVisitor<Verifier>; + + LLVMContext *Context; + DominatorTree DT; + + /// \brief When verifying a basic block, keep track of all of the + /// instructions we have seen so far. + /// + /// This allows us to do efficient dominance checks for the case when an + /// instruction has an operand that is an instruction in the same block. + SmallPtrSet<Instruction *, 16> InstsInThisBlock; + + /// \brief Keep track of the metadata nodes that have been checked already. + SmallPtrSet<const Metadata *, 32> MDNodes; + + /// \brief Track unresolved string-based type references. + SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs; + + /// \brief Whether we've seen a call to @llvm.localescape in this function + /// already. + bool SawFrameEscape; + + /// Stores the count of how many objects were passed to llvm.localescape for a + /// given function and the largest index passed to llvm.localrecover. + DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; + +public: + explicit Verifier(raw_ostream &OS) + : VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {} + + bool verify(const Function &F) { + M = F.getParent(); + Context = &M->getContext(); + + // First ensure the function is well-enough formed to compute dominance + // information. + if (F.empty()) { + OS << "Function '" << F.getName() + << "' does not contain an entry block!\n"; + return false; + } + for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) { + if (I->empty() || !I->back().isTerminator()) { + OS << "Basic Block in function '" << F.getName() + << "' does not have terminator!\n"; + I->printAsOperand(OS, true); + OS << "\n"; + return false; + } + } + + // Now directly compute a dominance tree. We don't rely on the pass + // manager to provide this as it isolates us from a potentially + // out-of-date dominator tree and makes it significantly more complex to + // run this code outside of a pass manager. + // FIXME: It's really gross that we have to cast away constness here. + DT.recalculate(const_cast<Function &>(F)); + + Broken = false; + // FIXME: We strip const here because the inst visitor strips const. + visit(const_cast<Function &>(F)); + InstsInThisBlock.clear(); + SawFrameEscape = false; + + return !Broken; + } + + bool verify(const Module &M) { + this->M = &M; + Context = &M.getContext(); + Broken = false; + + // Scan through, checking all of the external function's linkage now... + for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { + visitGlobalValue(*I); + + // Check to make sure function prototypes are okay. + if (I->isDeclaration()) + visitFunction(*I); + } + + // Now that we've visited every function, verify that we never asked to + // recover a frame index that wasn't escaped. + verifyFrameRecoverIndices(); + + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) + visitGlobalVariable(*I); + + for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); + I != E; ++I) + visitGlobalAlias(*I); + + for (Module::const_named_metadata_iterator I = M.named_metadata_begin(), + E = M.named_metadata_end(); + I != E; ++I) + visitNamedMDNode(*I); + + for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) + visitComdat(SMEC.getValue()); + + visitModuleFlags(M); + visitModuleIdents(M); + + // Verify type referneces last. + verifyTypeRefs(); + + return !Broken; + } + +private: + // Verification methods... + void visitGlobalValue(const GlobalValue &GV); + void visitGlobalVariable(const GlobalVariable &GV); + void visitGlobalAlias(const GlobalAlias &GA); + void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); + void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, + const GlobalAlias &A, const Constant &C); + void visitNamedMDNode(const NamedMDNode &NMD); + void visitMDNode(const MDNode &MD); + void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); + void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); + void visitComdat(const Comdat &C); + void visitModuleIdents(const Module &M); + void visitModuleFlags(const Module &M); + void visitModuleFlag(const MDNode *Op, + DenseMap<const MDString *, const MDNode *> &SeenIDs, + SmallVectorImpl<const MDNode *> &Requirements); + void visitFunction(const Function &F); + void visitBasicBlock(BasicBlock &BB); + void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty); + + template <class Ty> bool isValidMetadataArray(const MDTuple &N); +#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); +#include "llvm/IR/Metadata.def" + void visitDIScope(const DIScope &N); + void visitDIDerivedTypeBase(const DIDerivedTypeBase &N); + void visitDIVariable(const DIVariable &N); + void visitDILexicalBlockBase(const DILexicalBlockBase &N); + void visitDITemplateParameter(const DITemplateParameter &N); + + void visitTemplateParams(const MDNode &N, const Metadata &RawParams); + + /// \brief Check for a valid string-based type reference. + /// + /// Checks if \c MD is a string-based type reference. If it is, keeps track + /// of it (and its user, \c N) for error messages later. + bool isValidUUID(const MDNode &N, const Metadata *MD); + + /// \brief Check for a valid type reference. + /// + /// Checks for subclasses of \a DIType, or \a isValidUUID(). + bool isTypeRef(const MDNode &N, const Metadata *MD); + + /// \brief Check for a valid scope reference. + /// + /// Checks for subclasses of \a DIScope, or \a isValidUUID(). + bool isScopeRef(const MDNode &N, const Metadata *MD); + + /// \brief Check for a valid debug info reference. + /// + /// Checks for subclasses of \a DINode, or \a isValidUUID(). + bool isDIRef(const MDNode &N, const Metadata *MD); + + // InstVisitor overrides... + using InstVisitor<Verifier>::visit; + void visit(Instruction &I); + + void visitTruncInst(TruncInst &I); + void visitZExtInst(ZExtInst &I); + void visitSExtInst(SExtInst &I); + void visitFPTruncInst(FPTruncInst &I); + void visitFPExtInst(FPExtInst &I); + void visitFPToUIInst(FPToUIInst &I); + void visitFPToSIInst(FPToSIInst &I); + void visitUIToFPInst(UIToFPInst &I); + void visitSIToFPInst(SIToFPInst &I); + void visitIntToPtrInst(IntToPtrInst &I); + void visitPtrToIntInst(PtrToIntInst &I); + void visitBitCastInst(BitCastInst &I); + void visitAddrSpaceCastInst(AddrSpaceCastInst &I); + void visitPHINode(PHINode &PN); + void visitBinaryOperator(BinaryOperator &B); + void visitICmpInst(ICmpInst &IC); + void visitFCmpInst(FCmpInst &FC); + void visitExtractElementInst(ExtractElementInst &EI); + void visitInsertElementInst(InsertElementInst &EI); + void visitShuffleVectorInst(ShuffleVectorInst &EI); + void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } + void visitCallInst(CallInst &CI); + void visitInvokeInst(InvokeInst &II); + void visitGetElementPtrInst(GetElementPtrInst &GEP); + void visitLoadInst(LoadInst &LI); + void visitStoreInst(StoreInst &SI); + void verifyDominatesUse(Instruction &I, unsigned i); + void visitInstruction(Instruction &I); + void visitTerminatorInst(TerminatorInst &I); + void visitBranchInst(BranchInst &BI); + void visitReturnInst(ReturnInst &RI); + void visitSwitchInst(SwitchInst &SI); + void visitIndirectBrInst(IndirectBrInst &BI); + void visitSelectInst(SelectInst &SI); + void visitUserOp1(Instruction &I); + void visitUserOp2(Instruction &I) { visitUserOp1(I); } + void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS); + template <class DbgIntrinsicTy> + void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII); + void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); + void visitAtomicRMWInst(AtomicRMWInst &RMWI); + void visitFenceInst(FenceInst &FI); + void visitAllocaInst(AllocaInst &AI); + void visitExtractValueInst(ExtractValueInst &EVI); + void visitInsertValueInst(InsertValueInst &IVI); + void visitLandingPadInst(LandingPadInst &LPI); + + void VerifyCallSite(CallSite CS); + void verifyMustTailCall(CallInst &CI); + bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, + unsigned ArgNo, std::string &Suffix); + bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, + SmallVectorImpl<Type *> &ArgTys); + bool VerifyIntrinsicIsVarArg(bool isVarArg, + ArrayRef<Intrinsic::IITDescriptor> &Infos); + bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params); + void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction, + const Value *V); + void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, + bool isReturnValue, const Value *V); + void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, + const Value *V); + void VerifyFunctionMetadata( + const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs); + + void VerifyConstantExprBitcastType(const ConstantExpr *CE); + void VerifyStatepoint(ImmutableCallSite CS); + void verifyFrameRecoverIndices(); + + // Module-level debug info verification... + void verifyTypeRefs(); + template <class MapTy> + void verifyBitPieceExpression(const DbgInfoIntrinsic &I, + const MapTy &TypeRefs); + void visitUnresolvedTypeRef(const MDString *S, const MDNode *N); +}; +} // End anonymous namespace + +// Assert - We know that cond should be true, if not print an error message. +#define Assert(C, ...) \ + do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0) + +void Verifier::visit(Instruction &I) { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Assert(I.getOperand(i) != nullptr, "Operand is null", &I); + InstVisitor<Verifier>::visit(I); +} + + +void Verifier::visitGlobalValue(const GlobalValue &GV) { + Assert(!GV.isDeclaration() || GV.hasExternalLinkage() || + GV.hasExternalWeakLinkage(), + "Global is external, but doesn't have external or weak linkage!", &GV); + + Assert(GV.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &GV); + Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), + "Only global variables can have appending linkage!", &GV); + + if (GV.hasAppendingLinkage()) { + const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); + Assert(GVar && GVar->getValueType()->isArrayTy(), + "Only global arrays can have appending linkage!", GVar); + } + + if (GV.isDeclarationForLinker()) + Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); +} + +void Verifier::visitGlobalVariable(const GlobalVariable &GV) { + if (GV.hasInitializer()) { + Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(), + "Global variable initializer type does not match global " + "variable type!", + &GV); + + // If the global has common linkage, it must have a zero initializer and + // cannot be constant. + if (GV.hasCommonLinkage()) { + Assert(GV.getInitializer()->isNullValue(), + "'common' global must have a zero initializer!", &GV); + Assert(!GV.isConstant(), "'common' global may not be marked constant!", + &GV); + Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); + } + } else { + Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(), + "invalid linkage type for global declaration", &GV); + } + + if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || + GV.getName() == "llvm.global_dtors")) { + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); + // Don't worry about emitting an error for it not being an array, + // visitGlobalValue will complain on appending non-array. + if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { + StructType *STy = dyn_cast<StructType>(ATy->getElementType()); + PointerType *FuncPtrTy = + FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); + // FIXME: Reject the 2-field form in LLVM 4.0. + Assert(STy && + (STy->getNumElements() == 2 || STy->getNumElements() == 3) && + STy->getTypeAtIndex(0u)->isIntegerTy(32) && + STy->getTypeAtIndex(1) == FuncPtrTy, + "wrong type for intrinsic global variable", &GV); + if (STy->getNumElements() == 3) { + Type *ETy = STy->getTypeAtIndex(2); + Assert(ETy->isPointerTy() && + cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), + "wrong type for intrinsic global variable", &GV); + } + } + } + + if (GV.hasName() && (GV.getName() == "llvm.used" || + GV.getName() == "llvm.compiler.used")) { + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); + Type *GVType = GV.getValueType(); + if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { + PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); + Assert(PTy, "wrong type for intrinsic global variable", &GV); + if (GV.hasInitializer()) { + const Constant *Init = GV.getInitializer(); + const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); + Assert(InitArray, "wrong initalizer for intrinsic global variable", + Init); + for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) { + Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases(); + Assert(isa<GlobalVariable>(V) || isa<Function>(V) || + isa<GlobalAlias>(V), + "invalid llvm.used member", V); + Assert(V->hasName(), "members of llvm.used must be named", V); + } + } + } + } + + Assert(!GV.hasDLLImportStorageClass() || + (GV.isDeclaration() && GV.hasExternalLinkage()) || + GV.hasAvailableExternallyLinkage(), + "Global is marked as dllimport, but not external", &GV); + + if (!GV.hasInitializer()) { + visitGlobalValue(GV); + return; + } + + // Walk any aggregate initializers looking for bitcasts between address spaces + SmallPtrSet<const Value *, 4> Visited; + SmallVector<const Value *, 4> WorkStack; + WorkStack.push_back(cast<Value>(GV.getInitializer())); + + while (!WorkStack.empty()) { + const Value *V = WorkStack.pop_back_val(); + if (!Visited.insert(V).second) + continue; + + if (const User *U = dyn_cast<User>(V)) { + WorkStack.append(U->op_begin(), U->op_end()); + } + + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + VerifyConstantExprBitcastType(CE); + if (Broken) + return; + } + } + + visitGlobalValue(GV); +} + +void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { + SmallPtrSet<const GlobalAlias*, 4> Visited; + Visited.insert(&GA); + visitAliaseeSubExpr(Visited, GA, C); +} + +void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, + const GlobalAlias &GA, const Constant &C) { + if (const auto *GV = dyn_cast<GlobalValue>(&C)) { + Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA); + + if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { + Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); + + Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias", + &GA); + } else { + // Only continue verifying subexpressions of GlobalAliases. + // Do not recurse into global initializers. + return; + } + } + + if (const auto *CE = dyn_cast<ConstantExpr>(&C)) + VerifyConstantExprBitcastType(CE); + + for (const Use &U : C.operands()) { + Value *V = &*U; + if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) + visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); + else if (const auto *C2 = dyn_cast<Constant>(V)) + visitAliaseeSubExpr(Visited, GA, *C2); + } +} + +void Verifier::visitGlobalAlias(const GlobalAlias &GA) { + Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), + "Alias should have private, internal, linkonce, weak, linkonce_odr, " + "weak_odr, or external linkage!", + &GA); + const Constant *Aliasee = GA.getAliasee(); + Assert(Aliasee, "Aliasee cannot be NULL!", &GA); + Assert(GA.getType() == Aliasee->getType(), + "Alias and aliasee types should match!", &GA); + + Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), + "Aliasee should be either GlobalValue or ConstantExpr", &GA); + + visitAliaseeSubExpr(GA, *Aliasee); + + visitGlobalValue(GA); +} + +void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { + for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { + MDNode *MD = NMD.getOperand(i); + + if (NMD.getName() == "llvm.dbg.cu") { + Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); + } + + if (!MD) + continue; + + visitMDNode(*MD); + } +} + +void Verifier::visitMDNode(const MDNode &MD) { + // Only visit each node once. Metadata can be mutually recursive, so this + // avoids infinite recursion here, as well as being an optimization. + if (!MDNodes.insert(&MD).second) + return; + + switch (MD.getMetadataID()) { + default: + llvm_unreachable("Invalid MDNode subclass"); + case Metadata::MDTupleKind: + break; +#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ + case Metadata::CLASS##Kind: \ + visit##CLASS(cast<CLASS>(MD)); \ + break; +#include "llvm/IR/Metadata.def" + } + + for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { + Metadata *Op = MD.getOperand(i); + if (!Op) + continue; + Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", + &MD, Op); + if (auto *N = dyn_cast<MDNode>(Op)) { + visitMDNode(*N); + continue; + } + if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { + visitValueAsMetadata(*V, nullptr); + continue; + } + } + + // Check these last, so we diagnose problems in operands first. + Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); + Assert(MD.isResolved(), "All nodes should be resolved!", &MD); +} + +void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { + Assert(MD.getValue(), "Expected valid value", &MD); + Assert(!MD.getValue()->getType()->isMetadataTy(), + "Unexpected metadata round-trip through values", &MD, MD.getValue()); + + auto *L = dyn_cast<LocalAsMetadata>(&MD); + if (!L) + return; + + Assert(F, "function-local metadata used outside a function", L); + + // If this was an instruction, bb, or argument, verify that it is in the + // function that we expect. + Function *ActualF = nullptr; + if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { + Assert(I->getParent(), "function-local metadata not in basic block", L, I); + ActualF = I->getParent()->getParent(); + } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) + ActualF = BB->getParent(); + else if (Argument *A = dyn_cast<Argument>(L->getValue())) + ActualF = A->getParent(); + assert(ActualF && "Unimplemented function local metadata case!"); + + Assert(ActualF == F, "function-local metadata used in wrong function", L); +} + +void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { + Metadata *MD = MDV.getMetadata(); + if (auto *N = dyn_cast<MDNode>(MD)) { + visitMDNode(*N); + return; + } + + // Only visit each node once. Metadata can be mutually recursive, so this + // avoids infinite recursion here, as well as being an optimization. + if (!MDNodes.insert(MD).second) + return; + + if (auto *V = dyn_cast<ValueAsMetadata>(MD)) + visitValueAsMetadata(*V, F); +} + +bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) { + auto *S = dyn_cast<MDString>(MD); + if (!S) + return false; + if (S->getString().empty()) + return false; + + // Keep track of names of types referenced via UUID so we can check that they + // actually exist. + UnresolvedTypeRefs.insert(std::make_pair(S, &N)); + return true; +} + +/// \brief Check if a value can be a reference to a type. +bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) { + return !MD || isValidUUID(N, MD) || isa<DIType>(MD); +} + +/// \brief Check if a value can be a ScopeRef. +bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) { + return !MD || isValidUUID(N, MD) || isa<DIScope>(MD); +} + +/// \brief Check if a value can be a debug info ref. +bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) { + return !MD || isValidUUID(N, MD) || isa<DINode>(MD); +} + +template <class Ty> +bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) { + for (Metadata *MD : N.operands()) { + if (MD) { + if (!isa<Ty>(MD)) + return false; + } else { + if (!AllowNull) + return false; + } + } + return true; +} + +template <class Ty> +bool isValidMetadataArray(const MDTuple &N) { + return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false); +} + +template <class Ty> +bool isValidMetadataNullArray(const MDTuple &N) { + return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true); +} + +void Verifier::visitDILocation(const DILocation &N) { + Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), + "location requires a valid scope", &N, N.getRawScope()); + if (auto *IA = N.getRawInlinedAt()) + Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); +} + +void Verifier::visitGenericDINode(const GenericDINode &N) { + Assert(N.getTag(), "invalid tag", &N); +} + +void Verifier::visitDIScope(const DIScope &N) { + if (auto *F = N.getRawFile()) + Assert(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDISubrange(const DISubrange &N) { + Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); + Assert(N.getCount() >= -1, "invalid subrange count", &N); +} + +void Verifier::visitDIEnumerator(const DIEnumerator &N) { + Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); +} + +void Verifier::visitDIBasicType(const DIBasicType &N) { + Assert(N.getTag() == dwarf::DW_TAG_base_type || + N.getTag() == dwarf::DW_TAG_unspecified_type, + "invalid tag", &N); +} + +void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) { + // Common scope checks. + visitDIScope(N); + + Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope()); + Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N, + N.getBaseType()); + + // FIXME: Sink this into the subclass verifies. + if (!N.getFile() || N.getFile()->getFilename().empty()) { + // Check whether the filename is allowed to be empty. + uint16_t Tag = N.getTag(); + Assert( + Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || + Tag == dwarf::DW_TAG_pointer_type || + Tag == dwarf::DW_TAG_ptr_to_member_type || + Tag == dwarf::DW_TAG_reference_type || + Tag == dwarf::DW_TAG_rvalue_reference_type || + Tag == dwarf::DW_TAG_restrict_type || + Tag == dwarf::DW_TAG_array_type || + Tag == dwarf::DW_TAG_enumeration_type || + Tag == dwarf::DW_TAG_subroutine_type || + Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend || + Tag == dwarf::DW_TAG_structure_type || + Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef, + "derived/composite type requires a filename", &N, N.getFile()); + } +} + +void Verifier::visitDIDerivedType(const DIDerivedType &N) { + // Common derived type checks. + visitDIDerivedTypeBase(N); + + Assert(N.getTag() == dwarf::DW_TAG_typedef || + N.getTag() == dwarf::DW_TAG_pointer_type || + N.getTag() == dwarf::DW_TAG_ptr_to_member_type || + N.getTag() == dwarf::DW_TAG_reference_type || + N.getTag() == dwarf::DW_TAG_rvalue_reference_type || + N.getTag() == dwarf::DW_TAG_const_type || + N.getTag() == dwarf::DW_TAG_volatile_type || + N.getTag() == dwarf::DW_TAG_restrict_type || + N.getTag() == dwarf::DW_TAG_member || + N.getTag() == dwarf::DW_TAG_inheritance || + N.getTag() == dwarf::DW_TAG_friend, + "invalid tag", &N); + if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { + Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N, + N.getExtraData()); + } +} + +static bool hasConflictingReferenceFlags(unsigned Flags) { + return (Flags & DINode::FlagLValueReference) && + (Flags & DINode::FlagRValueReference); +} + +void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { + auto *Params = dyn_cast<MDTuple>(&RawParams); + Assert(Params, "invalid template params", &N, &RawParams); + for (Metadata *Op : Params->operands()) { + Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N, + Params, Op); + } +} + +void Verifier::visitDICompositeType(const DICompositeType &N) { + // Common derived type checks. + visitDIDerivedTypeBase(N); + + Assert(N.getTag() == dwarf::DW_TAG_array_type || + N.getTag() == dwarf::DW_TAG_structure_type || + N.getTag() == dwarf::DW_TAG_union_type || + N.getTag() == dwarf::DW_TAG_enumeration_type || + N.getTag() == dwarf::DW_TAG_subroutine_type || + N.getTag() == dwarf::DW_TAG_class_type, + "invalid tag", &N); + + Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), + "invalid composite elements", &N, N.getRawElements()); + Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N, + N.getRawVTableHolder()); + Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), + "invalid composite elements", &N, N.getRawElements()); + Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", + &N); + if (auto *Params = N.getRawTemplateParams()) + visitTemplateParams(N, *Params); +} + +void Verifier::visitDISubroutineType(const DISubroutineType &N) { + Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); + if (auto *Types = N.getRawTypeArray()) { + Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types); + for (Metadata *Ty : N.getTypeArray()->operands()) { + Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty); + } + } + Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", + &N); +} + +void Verifier::visitDIFile(const DIFile &N) { + Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); +} + +void Verifier::visitDICompileUnit(const DICompileUnit &N) { + Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); + + // Don't bother verifying the compilation directory or producer string + // as those could be empty. + Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, + N.getRawFile()); + Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N, + N.getFile()); + + if (auto *Array = N.getRawEnumTypes()) { + Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array); + for (Metadata *Op : N.getEnumTypes()->operands()) { + auto *Enum = dyn_cast_or_null<DICompositeType>(Op); + Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, + "invalid enum type", &N, N.getEnumTypes(), Op); + } + } + if (auto *Array = N.getRawRetainedTypes()) { + Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array); + for (Metadata *Op : N.getRetainedTypes()->operands()) { + Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op); + } + } + if (auto *Array = N.getRawSubprograms()) { + Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array); + for (Metadata *Op : N.getSubprograms()->operands()) { + Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op); + } + } + if (auto *Array = N.getRawGlobalVariables()) { + Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array); + for (Metadata *Op : N.getGlobalVariables()->operands()) { + Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N, + Op); + } + } + if (auto *Array = N.getRawImportedEntities()) { + Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); + for (Metadata *Op : N.getImportedEntities()->operands()) { + Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N, + Op); + } + } +} + +void Verifier::visitDISubprogram(const DISubprogram &N) { + Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); + Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope()); + if (auto *T = N.getRawType()) + Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); + Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N, + N.getRawContainingType()); + if (auto *RawF = N.getRawFunction()) { + auto *FMD = dyn_cast<ConstantAsMetadata>(RawF); + auto *F = FMD ? FMD->getValue() : nullptr; + auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr; + Assert(F && FT && isa<FunctionType>(FT->getElementType()), + "invalid function", &N, F, FT); + } + if (auto *Params = N.getRawTemplateParams()) + visitTemplateParams(N, *Params); + if (auto *S = N.getRawDeclaration()) { + Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), + "invalid subprogram declaration", &N, S); + } + if (auto *RawVars = N.getRawVariables()) { + auto *Vars = dyn_cast<MDTuple>(RawVars); + Assert(Vars, "invalid variable list", &N, RawVars); + for (Metadata *Op : Vars->operands()) { + Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars, + Op); + } + } + Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags", + &N); + + auto *F = N.getFunction(); + if (!F) + return; + + // Check that all !dbg attachments lead to back to N (or, at least, another + // subprogram that describes the same function). + // + // FIXME: Check this incrementally while visiting !dbg attachments. + // FIXME: Only check when N is the canonical subprogram for F. + SmallPtrSet<const MDNode *, 32> Seen; + for (auto &BB : *F) + for (auto &I : BB) { + // Be careful about using DILocation here since we might be dealing with + // broken code (this is the Verifier after all). + DILocation *DL = + dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode()); + if (!DL) + continue; + if (!Seen.insert(DL).second) + continue; + + DILocalScope *Scope = DL->getInlinedAtScope(); + if (Scope && !Seen.insert(Scope).second) + continue; + + DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; + if (SP && !Seen.insert(SP).second) + continue; + + // FIXME: Once N is canonical, check "SP == &N". + Assert(SP->describes(F), + "!dbg attachment points at wrong subprogram for function", &N, F, + &I, DL, Scope, SP); + } +} + +void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { + Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); + Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), + "invalid local scope", &N, N.getRawScope()); +} + +void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { + visitDILexicalBlockBase(N); + + Assert(N.getLine() || !N.getColumn(), + "cannot have column info without line info", &N); +} + +void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { + visitDILexicalBlockBase(N); +} + +void Verifier::visitDINamespace(const DINamespace &N) { + Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); + if (auto *S = N.getRawScope()) + Assert(isa<DIScope>(S), "invalid scope ref", &N, S); +} + +void Verifier::visitDIModule(const DIModule &N) { + Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); + Assert(!N.getName().empty(), "anonymous module", &N); +} + +void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { + Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType()); +} + +void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { + visitDITemplateParameter(N); + + Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", + &N); +} + +void Verifier::visitDITemplateValueParameter( + const DITemplateValueParameter &N) { + visitDITemplateParameter(N); + + Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter || + N.getTag() == dwarf::DW_TAG_GNU_template_template_param || + N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, + "invalid tag", &N); +} + +void Verifier::visitDIVariable(const DIVariable &N) { + if (auto *S = N.getRawScope()) + Assert(isa<DIScope>(S), "invalid scope", &N, S); + Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType()); + if (auto *F = N.getRawFile()) + Assert(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { + // Checks common to all variables. + visitDIVariable(N); + + Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); + Assert(!N.getName().empty(), "missing global variable name", &N); + if (auto *V = N.getRawVariable()) { + Assert(isa<ConstantAsMetadata>(V) && + !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()), + "invalid global varaible ref", &N, V); + } + if (auto *Member = N.getRawStaticDataMemberDeclaration()) { + Assert(isa<DIDerivedType>(Member), "invalid static data member declaration", + &N, Member); + } +} + +void Verifier::visitDILocalVariable(const DILocalVariable &N) { + // Checks common to all variables. + visitDIVariable(N); + + Assert(N.getTag() == dwarf::DW_TAG_auto_variable || + N.getTag() == dwarf::DW_TAG_arg_variable, + "invalid tag", &N); + Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), + "local variable requires a valid scope", &N, N.getRawScope()); +} + +void Verifier::visitDIExpression(const DIExpression &N) { + Assert(N.isValid(), "invalid expression", &N); +} + +void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { + Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); + if (auto *T = N.getRawType()) + Assert(isTypeRef(N, T), "invalid type ref", &N, T); + if (auto *F = N.getRawFile()) + Assert(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { + Assert(N.getTag() == dwarf::DW_TAG_imported_module || + N.getTag() == dwarf::DW_TAG_imported_declaration, + "invalid tag", &N); + if (auto *S = N.getRawScope()) + Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S); + Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N, + N.getEntity()); +} + +void Verifier::visitComdat(const Comdat &C) { + // The Module is invalid if the GlobalValue has private linkage. Entities + // with private linkage don't have entries in the symbol table. + if (const GlobalValue *GV = M->getNamedValue(C.getName())) + Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage", + GV); +} + +void Verifier::visitModuleIdents(const Module &M) { + const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); + if (!Idents) + return; + + // llvm.ident takes a list of metadata entry. Each entry has only one string. + // Scan each llvm.ident entry and make sure that this requirement is met. + for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) { + const MDNode *N = Idents->getOperand(i); + Assert(N->getNumOperands() == 1, + "incorrect number of operands in llvm.ident metadata", N); + Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), + ("invalid value for llvm.ident metadata entry operand" + "(the operand should be a string)"), + N->getOperand(0)); + } +} + +void Verifier::visitModuleFlags(const Module &M) { + const NamedMDNode *Flags = M.getModuleFlagsMetadata(); + if (!Flags) return; + + // Scan each flag, and track the flags and requirements. + DenseMap<const MDString*, const MDNode*> SeenIDs; + SmallVector<const MDNode*, 16> Requirements; + for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) { + visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements); + } + + // Validate that the requirements in the module are valid. + for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { + const MDNode *Requirement = Requirements[I]; + const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); + const Metadata *ReqValue = Requirement->getOperand(1); + + const MDNode *Op = SeenIDs.lookup(Flag); + if (!Op) { + CheckFailed("invalid requirement on flag, flag is not present in module", + Flag); + continue; + } + + if (Op->getOperand(2) != ReqValue) { + CheckFailed(("invalid requirement on flag, " + "flag does not have the required value"), + Flag); + continue; + } + } +} + +void +Verifier::visitModuleFlag(const MDNode *Op, + DenseMap<const MDString *, const MDNode *> &SeenIDs, + SmallVectorImpl<const MDNode *> &Requirements) { + // Each module flag should have three arguments, the merge behavior (a + // constant int), the flag ID (an MDString), and the value. + Assert(Op->getNumOperands() == 3, + "incorrect number of operands in module flag", Op); + Module::ModFlagBehavior MFB; + if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { + Assert( + mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), + "invalid behavior operand in module flag (expected constant integer)", + Op->getOperand(0)); + Assert(false, + "invalid behavior operand in module flag (unexpected constant)", + Op->getOperand(0)); + } + MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); + Assert(ID, "invalid ID operand in module flag (expected metadata string)", + Op->getOperand(1)); + + // Sanity check the values for behaviors with additional requirements. + switch (MFB) { + case Module::Error: + case Module::Warning: + case Module::Override: + // These behavior types accept any value. + break; + + case Module::Require: { + // The value should itself be an MDNode with two operands, a flag ID (an + // MDString), and a value. + MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); + Assert(Value && Value->getNumOperands() == 2, + "invalid value for 'require' module flag (expected metadata pair)", + Op->getOperand(2)); + Assert(isa<MDString>(Value->getOperand(0)), + ("invalid value for 'require' module flag " + "(first value operand should be a string)"), + Value->getOperand(0)); + + // Append it to the list of requirements, to check once all module flags are + // scanned. + Requirements.push_back(Value); + break; + } + + case Module::Append: + case Module::AppendUnique: { + // These behavior types require the operand be an MDNode. + Assert(isa<MDNode>(Op->getOperand(2)), + "invalid value for 'append'-type module flag " + "(expected a metadata node)", + Op->getOperand(2)); + break; + } + } + + // Unless this is a "requires" flag, check the ID is unique. + if (MFB != Module::Require) { + bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; + Assert(Inserted, + "module flag identifiers must be unique (or of 'require' type)", ID); + } +} + +void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, + bool isFunction, const Value *V) { + unsigned Slot = ~0U; + for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I) + if (Attrs.getSlotIndex(I) == Idx) { + Slot = I; + break; + } + + assert(Slot != ~0U && "Attribute set inconsistency!"); + + for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot); + I != E; ++I) { + if (I->isStringAttribute()) + continue; + + if (I->getKindAsEnum() == Attribute::NoReturn || + I->getKindAsEnum() == Attribute::NoUnwind || + I->getKindAsEnum() == Attribute::NoInline || + I->getKindAsEnum() == Attribute::AlwaysInline || + I->getKindAsEnum() == Attribute::OptimizeForSize || + I->getKindAsEnum() == Attribute::StackProtect || + I->getKindAsEnum() == Attribute::StackProtectReq || + I->getKindAsEnum() == Attribute::StackProtectStrong || + I->getKindAsEnum() == Attribute::SafeStack || + I->getKindAsEnum() == Attribute::NoRedZone || + I->getKindAsEnum() == Attribute::NoImplicitFloat || + I->getKindAsEnum() == Attribute::Naked || + I->getKindAsEnum() == Attribute::InlineHint || + I->getKindAsEnum() == Attribute::StackAlignment || + I->getKindAsEnum() == Attribute::UWTable || + I->getKindAsEnum() == Attribute::NonLazyBind || + I->getKindAsEnum() == Attribute::ReturnsTwice || + I->getKindAsEnum() == Attribute::SanitizeAddress || + I->getKindAsEnum() == Attribute::SanitizeThread || + I->getKindAsEnum() == Attribute::SanitizeMemory || + I->getKindAsEnum() == Attribute::MinSize || + I->getKindAsEnum() == Attribute::NoDuplicate || + I->getKindAsEnum() == Attribute::Builtin || + I->getKindAsEnum() == Attribute::NoBuiltin || + I->getKindAsEnum() == Attribute::Cold || + I->getKindAsEnum() == Attribute::OptimizeNone || + I->getKindAsEnum() == Attribute::JumpTable || + I->getKindAsEnum() == Attribute::Convergent || + I->getKindAsEnum() == Attribute::ArgMemOnly) { + if (!isFunction) { + CheckFailed("Attribute '" + I->getAsString() + + "' only applies to functions!", V); + return; + } + } else if (I->getKindAsEnum() == Attribute::ReadOnly || + I->getKindAsEnum() == Attribute::ReadNone) { + if (Idx == 0) { + CheckFailed("Attribute '" + I->getAsString() + + "' does not apply to function returns"); + return; + } + } else if (isFunction) { + CheckFailed("Attribute '" + I->getAsString() + + "' does not apply to functions!", V); + return; + } + } +} + +// VerifyParameterAttrs - Check the given attributes for an argument or return +// value of the specified type. The value V is printed in error messages. +void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty, + bool isReturnValue, const Value *V) { + if (!Attrs.hasAttributes(Idx)) + return; + + VerifyAttributeTypes(Attrs, Idx, false, V); + + if (isReturnValue) + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && + !Attrs.hasAttribute(Idx, Attribute::Nest) && + !Attrs.hasAttribute(Idx, Attribute::StructRet) && + !Attrs.hasAttribute(Idx, Attribute::NoCapture) && + !Attrs.hasAttribute(Idx, Attribute::Returned) && + !Attrs.hasAttribute(Idx, Attribute::InAlloca), + "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and " + "'returned' do not apply to return values!", + V); + + // Check for mutually incompatible attributes. Only inreg is compatible with + // sret. + unsigned AttrCount = 0; + AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal); + AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca); + AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) || + Attrs.hasAttribute(Idx, Attribute::InReg); + AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest); + Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " + "and 'sret' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) && + Attrs.hasAttribute(Idx, Attribute::ReadOnly)), + "Attributes " + "'inalloca and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) && + Attrs.hasAttribute(Idx, Attribute::Returned)), + "Attributes " + "'sret and returned' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) && + Attrs.hasAttribute(Idx, Attribute::SExt)), + "Attributes " + "'zeroext and signext' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) && + Attrs.hasAttribute(Idx, Attribute::ReadOnly)), + "Attributes " + "'readnone and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) && + Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), + "Attributes " + "'noinline and alwaysinline' are incompatible!", + V); + + Assert(!AttrBuilder(Attrs, Idx) + .overlaps(AttributeFuncs::typeIncompatible(Ty)), + "Wrong types for attribute: " + + AttributeSet::get(*Context, Idx, + AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx), + V); + + if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { + SmallPtrSet<const Type*, 4> Visited; + if (!PTy->getElementType()->isSized(&Visited)) { + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) && + !Attrs.hasAttribute(Idx, Attribute::InAlloca), + "Attributes 'byval' and 'inalloca' do not support unsized types!", + V); + } + } else { + Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal), + "Attribute 'byval' only applies to parameters with pointer type!", + V); + } +} + +// VerifyFunctionAttrs - Check parameter attributes against a function type. +// The value V is printed in error messages. +void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs, + const Value *V) { + if (Attrs.isEmpty()) + return; + + bool SawNest = false; + bool SawReturned = false; + bool SawSRet = false; + + for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { + unsigned Idx = Attrs.getSlotIndex(i); + + Type *Ty; + if (Idx == 0) + Ty = FT->getReturnType(); + else if (Idx-1 < FT->getNumParams()) + Ty = FT->getParamType(Idx-1); + else + break; // VarArgs attributes, verified elsewhere. + + VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V); + + if (Idx == 0) + continue; + + if (Attrs.hasAttribute(Idx, Attribute::Nest)) { + Assert(!SawNest, "More than one parameter has attribute nest!", V); + SawNest = true; + } + + if (Attrs.hasAttribute(Idx, Attribute::Returned)) { + Assert(!SawReturned, "More than one parameter has attribute returned!", + V); + Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), + "Incompatible " + "argument and return types for 'returned' attribute", + V); + SawReturned = true; + } + + if (Attrs.hasAttribute(Idx, Attribute::StructRet)) { + Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); + Assert(Idx == 1 || Idx == 2, + "Attribute 'sret' is not on first or second parameter!", V); + SawSRet = true; + } + + if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) { + Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!", + V); + } + } + + if (!Attrs.hasAttributes(AttributeSet::FunctionIndex)) + return; + + VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V); + + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)), + "Attributes 'readnone and readonly' are incompatible!", V); + + Assert( + !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) && + Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::AlwaysInline)), + "Attributes 'noinline and alwaysinline' are incompatible!", V); + + if (Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeNone)) { + Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline), + "Attribute 'optnone' requires 'noinline'!", V); + + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeForSize), + "Attributes 'optsize and optnone' are incompatible!", V); + + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize), + "Attributes 'minsize and optnone' are incompatible!", V); + } + + if (Attrs.hasAttribute(AttributeSet::FunctionIndex, + Attribute::JumpTable)) { + const GlobalValue *GV = cast<GlobalValue>(V); + Assert(GV->hasUnnamedAddr(), + "Attribute 'jumptable' requires 'unnamed_addr'", V); + } +} + +void Verifier::VerifyFunctionMetadata( + const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) { + if (MDs.empty()) + return; + + for (unsigned i = 0; i < MDs.size(); i++) { + if (MDs[i].first == LLVMContext::MD_prof) { + MDNode *MD = MDs[i].second; + Assert(MD->getNumOperands() == 2, + "!prof annotations should have exactly 2 operands", MD); + + // Check first operand. + Assert(MD->getOperand(0) != nullptr, "first operand should not be null", + MD); + Assert(isa<MDString>(MD->getOperand(0)), + "expected string with name of the !prof annotation", MD); + MDString *MDS = cast<MDString>(MD->getOperand(0)); + StringRef ProfName = MDS->getString(); + Assert(ProfName.equals("function_entry_count"), + "first operand should be 'function_entry_count'", MD); + + // Check second operand. + Assert(MD->getOperand(1) != nullptr, "second operand should not be null", + MD); + Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), + "expected integer argument to function_entry_count", MD); + } + } +} + +void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) { + if (CE->getOpcode() != Instruction::BitCast) + return; + + Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), + CE->getType()), + "Invalid bitcast", CE); +} + +bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) { + if (Attrs.getNumSlots() == 0) + return true; + + unsigned LastSlot = Attrs.getNumSlots() - 1; + unsigned LastIndex = Attrs.getSlotIndex(LastSlot); + if (LastIndex <= Params + || (LastIndex == AttributeSet::FunctionIndex + && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params))) + return true; + + return false; +} + +/// \brief Verify that statepoint intrinsic is well formed. +void Verifier::VerifyStatepoint(ImmutableCallSite CS) { + assert(CS.getCalledFunction() && + CS.getCalledFunction()->getIntrinsicID() == + Intrinsic::experimental_gc_statepoint); + + const Instruction &CI = *CS.getInstruction(); + + Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() && + !CS.onlyAccessesArgMemory(), + "gc.statepoint must read and write all memory to preserve " + "reordering restrictions required by safepoint semantics", + &CI); + + const Value *IDV = CS.getArgument(0); + Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer", + &CI); + + const Value *NumPatchBytesV = CS.getArgument(1); + Assert(isa<ConstantInt>(NumPatchBytesV), + "gc.statepoint number of patchable bytes must be a constant integer", + &CI); + const int64_t NumPatchBytes = + cast<ConstantInt>(NumPatchBytesV)->getSExtValue(); + assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); + Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be " + "positive", + &CI); + + const Value *Target = CS.getArgument(2); + const PointerType *PT = dyn_cast<PointerType>(Target->getType()); + Assert(PT && PT->getElementType()->isFunctionTy(), + "gc.statepoint callee must be of function pointer type", &CI, Target); + FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); + + if (NumPatchBytes) + Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()), + "gc.statepoint must have null as call target if number of patchable " + "bytes is non zero", + &CI); + + const Value *NumCallArgsV = CS.getArgument(3); + Assert(isa<ConstantInt>(NumCallArgsV), + "gc.statepoint number of arguments to underlying call " + "must be constant integer", + &CI); + const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue(); + Assert(NumCallArgs >= 0, + "gc.statepoint number of arguments to underlying call " + "must be positive", + &CI); + const int NumParams = (int)TargetFuncType->getNumParams(); + if (TargetFuncType->isVarArg()) { + Assert(NumCallArgs >= NumParams, + "gc.statepoint mismatch in number of vararg call args", &CI); + + // TODO: Remove this limitation + Assert(TargetFuncType->getReturnType()->isVoidTy(), + "gc.statepoint doesn't support wrapping non-void " + "vararg functions yet", + &CI); + } else + Assert(NumCallArgs == NumParams, + "gc.statepoint mismatch in number of call args", &CI); + + const Value *FlagsV = CS.getArgument(4); + Assert(isa<ConstantInt>(FlagsV), + "gc.statepoint flags must be constant integer", &CI); + const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue(); + Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, + "unknown flag used in gc.statepoint flags argument", &CI); + + // Verify that the types of the call parameter arguments match + // the type of the wrapped callee. + for (int i = 0; i < NumParams; i++) { + Type *ParamType = TargetFuncType->getParamType(i); + Type *ArgType = CS.getArgument(5 + i)->getType(); + Assert(ArgType == ParamType, + "gc.statepoint call argument does not match wrapped " + "function type", + &CI); + } + + const int EndCallArgsInx = 4 + NumCallArgs; + + const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1); + Assert(isa<ConstantInt>(NumTransitionArgsV), + "gc.statepoint number of transition arguments " + "must be constant integer", + &CI); + const int NumTransitionArgs = + cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); + Assert(NumTransitionArgs >= 0, + "gc.statepoint number of transition arguments must be positive", &CI); + const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; + + const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1); + Assert(isa<ConstantInt>(NumDeoptArgsV), + "gc.statepoint number of deoptimization arguments " + "must be constant integer", + &CI); + const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); + Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments " + "must be positive", + &CI); + + const int ExpectedNumArgs = + 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; + Assert(ExpectedNumArgs <= (int)CS.arg_size(), + "gc.statepoint too few arguments according to length fields", &CI); + + // Check that the only uses of this gc.statepoint are gc.result or + // gc.relocate calls which are tied to this statepoint and thus part + // of the same statepoint sequence + for (const User *U : CI.users()) { + const CallInst *Call = dyn_cast<const CallInst>(U); + Assert(Call, "illegal use of statepoint token", &CI, U); + if (!Call) continue; + Assert(isGCRelocate(Call) || isGCResult(Call), + "gc.result or gc.relocate are the only value uses" + "of a gc.statepoint", + &CI, U); + if (isGCResult(Call)) { + Assert(Call->getArgOperand(0) == &CI, + "gc.result connected to wrong gc.statepoint", &CI, Call); + } else if (isGCRelocate(Call)) { + Assert(Call->getArgOperand(0) == &CI, + "gc.relocate connected to wrong gc.statepoint", &CI, Call); + } + } + + // Note: It is legal for a single derived pointer to be listed multiple + // times. It's non-optimal, but it is legal. It can also happen after + // insertion if we strip a bitcast away. + // Note: It is really tempting to check that each base is relocated and + // that a derived pointer is never reused as a base pointer. This turns + // out to be problematic since optimizations run after safepoint insertion + // can recognize equality properties that the insertion logic doesn't know + // about. See example statepoint.ll in the verifier subdirectory +} + +void Verifier::verifyFrameRecoverIndices() { + for (auto &Counts : FrameEscapeInfo) { + Function *F = Counts.first; + unsigned EscapedObjectCount = Counts.second.first; + unsigned MaxRecoveredIndex = Counts.second.second; + Assert(MaxRecoveredIndex <= EscapedObjectCount, + "all indices passed to llvm.localrecover must be less than the " + "number of arguments passed ot llvm.localescape in the parent " + "function", + F); + } +} + +// visitFunction - Verify that a function is ok. +// +void Verifier::visitFunction(const Function &F) { + // Check function arguments. + FunctionType *FT = F.getFunctionType(); + unsigned NumArgs = F.arg_size(); + + Assert(Context == &F.getContext(), + "Function context does not match Module context!", &F); + + Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); + Assert(FT->getNumParams() == NumArgs, + "# formal arguments must match # of arguments for function type!", &F, + FT); + Assert(F.getReturnType()->isFirstClassType() || + F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), + "Functions cannot return aggregate values!", &F); + + Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), + "Invalid struct return type!", &F); + + AttributeSet Attrs = F.getAttributes(); + + Assert(VerifyAttributeCount(Attrs, FT->getNumParams()), + "Attribute after last parameter!", &F); + + // Check function attributes. + VerifyFunctionAttrs(FT, Attrs, &F); + + // On function declarations/definitions, we do not support the builtin + // attribute. We do not check this in VerifyFunctionAttrs since that is + // checking for Attributes that can/can not ever be on functions. + Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin), + "Attribute 'builtin' can only be applied to a callsite.", &F); + + // Check that this function meets the restrictions on this calling convention. + // Sometimes varargs is used for perfectly forwarding thunks, so some of these + // restrictions can be lifted. + switch (F.getCallingConv()) { + default: + case CallingConv::C: + break; + case CallingConv::Fast: + case CallingConv::Cold: + case CallingConv::Intel_OCL_BI: + case CallingConv::PTX_Kernel: + case CallingConv::PTX_Device: + Assert(!F.isVarArg(), "Calling convention does not support varargs or " + "perfect forwarding!", + &F); + break; + } + + bool isLLVMdotName = F.getName().size() >= 5 && + F.getName().substr(0, 5) == "llvm."; + + // Check that the argument values match the function type for this function... + unsigned i = 0; + for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; + ++I, ++i) { + Assert(I->getType() == FT->getParamType(i), + "Argument value does not match function argument type!", I, + FT->getParamType(i)); + Assert(I->getType()->isFirstClassType(), + "Function arguments must have first-class types!", I); + if (!isLLVMdotName) + Assert(!I->getType()->isMetadataTy(), + "Function takes metadata but isn't an intrinsic", I, &F); + } + + // Get the function metadata attachments. + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + F.getAllMetadata(MDs); + assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); + VerifyFunctionMetadata(MDs); + + if (F.isMaterializable()) { + // Function has a body somewhere we can't see. + Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, + MDs.empty() ? nullptr : MDs.front().second); + } else if (F.isDeclaration()) { + Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(), + "invalid linkage type for function declaration", &F); + Assert(MDs.empty(), "function without a body cannot have metadata", &F, + MDs.empty() ? nullptr : MDs.front().second); + Assert(!F.hasPersonalityFn(), + "Function declaration shouldn't have a personality routine", &F); + } else { + // Verify that this function (which has a body) is not named "llvm.*". It + // is not legal to define intrinsics. + Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); + + // Check the entry node + const BasicBlock *Entry = &F.getEntryBlock(); + Assert(pred_empty(Entry), + "Entry block to function must not have predecessors!", Entry); + + // The address of the entry block cannot be taken, unless it is dead. + if (Entry->hasAddressTaken()) { + Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), + "blockaddress may not be used with the entry block!", Entry); + } + + // Visit metadata attachments. + for (const auto &I : MDs) + visitMDNode(*I.second); + } + + // If this function is actually an intrinsic, verify that it is only used in + // direct call/invokes, never having its "address taken". + if (F.getIntrinsicID()) { + const User *U; + if (F.hasAddressTaken(&U)) + Assert(0, "Invalid user of intrinsic instruction!", U); + } + + Assert(!F.hasDLLImportStorageClass() || + (F.isDeclaration() && F.hasExternalLinkage()) || + F.hasAvailableExternallyLinkage(), + "Function is marked as dllimport, but not external.", &F); +} + +// verifyBasicBlock - Verify that a basic block is well formed... +// +void Verifier::visitBasicBlock(BasicBlock &BB) { + InstsInThisBlock.clear(); + + // Ensure that basic blocks have terminators! + Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + + // Check constraints that this basic block imposes on all of the PHI nodes in + // it. + if (isa<PHINode>(BB.front())) { + SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); + SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; + std::sort(Preds.begin(), Preds.end()); + PHINode *PN; + for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) { + // Ensure that PHI nodes have at least one entry! + Assert(PN->getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", + PN); + Assert(PN->getNumIncomingValues() == Preds.size(), + "PHINode should have one entry for each predecessor of its " + "parent basic block!", + PN); + + // Get and sort all incoming values in the PHI node... + Values.clear(); + Values.reserve(PN->getNumIncomingValues()); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + Values.push_back(std::make_pair(PN->getIncomingBlock(i), + PN->getIncomingValue(i))); + std::sort(Values.begin(), Values.end()); + + for (unsigned i = 0, e = Values.size(); i != e; ++i) { + // Check to make sure that if there is more than one entry for a + // particular basic block in this PHI node, that the incoming values are + // all identical. + // + Assert(i == 0 || Values[i].first != Values[i - 1].first || + Values[i].second == Values[i - 1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", + PN, Values[i].first, Values[i].second, Values[i - 1].second); + + // Check to make sure that the predecessors and PHI node entries are + // matched up. + Assert(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", PN, + Values[i].first, Preds[i]); + } + } + } + + // Check that all instructions have their parent pointers set up correctly. + for (auto &I : BB) + { + Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); + } +} + +void Verifier::visitTerminatorInst(TerminatorInst &I) { + // Ensure that terminators only exist at the end of the basic block. + Assert(&I == I.getParent()->getTerminator(), + "Terminator found in the middle of a basic block!", I.getParent()); + visitInstruction(I); +} + +void Verifier::visitBranchInst(BranchInst &BI) { + if (BI.isConditional()) { + Assert(BI.getCondition()->getType()->isIntegerTy(1), + "Branch condition is not 'i1' type!", &BI, BI.getCondition()); + } + visitTerminatorInst(BI); +} + +void Verifier::visitReturnInst(ReturnInst &RI) { + Function *F = RI.getParent()->getParent(); + unsigned N = RI.getNumOperands(); + if (F->getReturnType()->isVoidTy()) + Assert(N == 0, + "Found return instr that returns non-void in Function of void " + "return type!", + &RI, F->getReturnType()); + else + Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), + "Function return type does not match operand " + "type of return inst!", + &RI, F->getReturnType()); + + // Check to make sure that the return value has necessary properties for + // terminators... + visitTerminatorInst(RI); +} + +void Verifier::visitSwitchInst(SwitchInst &SI) { + // Check to make sure that all of the constants in the switch instruction + // have the same type as the switched-on value. + Type *SwitchTy = SI.getCondition()->getType(); + SmallPtrSet<ConstantInt*, 32> Constants; + for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { + Assert(i.getCaseValue()->getType() == SwitchTy, + "Switch constants must all be same type as switch value!", &SI); + Assert(Constants.insert(i.getCaseValue()).second, + "Duplicate integer as switch case", &SI, i.getCaseValue()); + } + + visitTerminatorInst(SI); +} + +void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { + Assert(BI.getAddress()->getType()->isPointerTy(), + "Indirectbr operand must have pointer type!", &BI); + for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) + Assert(BI.getDestination(i)->getType()->isLabelTy(), + "Indirectbr destinations must all have pointer type!", &BI); + + visitTerminatorInst(BI); +} + +void Verifier::visitSelectInst(SelectInst &SI) { + Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); + + Assert(SI.getTrueValue()->getType() == SI.getType(), + "Select values must have same type as select instruction!", &SI); + visitInstruction(SI); +} + +/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of +/// a pass, if any exist, it's an error. +/// +void Verifier::visitUserOp1(Instruction &I) { + Assert(0, "User-defined operators should not live outside of a pass!", &I); +} + +void Verifier::visitTruncInst(TruncInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "trunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); + + visitInstruction(I); +} + +void Verifier::visitZExtInst(ZExtInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "zext source and destination must both be a vector or neither", &I); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); + + visitInstruction(I); +} + +void Verifier::visitSExtInst(SExtInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "sext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); + + visitInstruction(I); +} + +void Verifier::visitFPTruncInst(FPTruncInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fptrunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); + + visitInstruction(I); +} + +void Verifier::visitFPExtInst(FPExtInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fpext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); + + visitInstruction(I); +} + +void Verifier::visitUIToFPInst(UIToFPInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "UIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "UIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", + &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "UIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitSIToFPInst(SIToFPInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "SIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "SIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", + &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "SIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToUIInst(FPToUIInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "FPToUI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToUI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToUI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToSIInst(FPToSIInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "FPToSI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToSI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToSI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitPtrToIntInst(PtrToIntInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + Assert(SrcTy->getScalarType()->isPointerTy(), + "PtrToInt source must be pointer", &I); + Assert(DestTy->getScalarType()->isIntegerTy(), + "PtrToInt result must be integral", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", + &I); + + if (SrcTy->isVectorTy()) { + VectorType *VSrc = dyn_cast<VectorType>(SrcTy); + VectorType *VDest = dyn_cast<VectorType>(DestTy); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "PtrToInt Vector width mismatch", &I); + } + + visitInstruction(I); +} + +void Verifier::visitIntToPtrInst(IntToPtrInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + Assert(SrcTy->getScalarType()->isIntegerTy(), + "IntToPtr source must be an integral", &I); + Assert(DestTy->getScalarType()->isPointerTy(), + "IntToPtr result must be a pointer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", + &I); + if (SrcTy->isVectorTy()) { + VectorType *VSrc = dyn_cast<VectorType>(SrcTy); + VectorType *VDest = dyn_cast<VectorType>(DestTy); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "IntToPtr Vector width mismatch", &I); + } + visitInstruction(I); +} + +void Verifier::visitBitCastInst(BitCastInst &I) { + Assert( + CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), + "Invalid bitcast", &I); + visitInstruction(I); +} + +void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", + &I); + Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", + &I); + Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), + "AddrSpaceCast must be between different address spaces", &I); + if (SrcTy->isVectorTy()) + Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), + "AddrSpaceCast vector pointer number of elements mismatch", &I); + visitInstruction(I); +} + +/// visitPHINode - Ensure that a PHI node is well formed. +/// +void Verifier::visitPHINode(PHINode &PN) { + // Ensure that the PHI nodes are all grouped together at the top of the block. + // This can be tested by checking whether the instruction before this is + // either nonexistent (because this is begin()) or is a PHI node. If not, + // then there is some other instruction before a PHI. + Assert(&PN == &PN.getParent()->front() || + isa<PHINode>(--BasicBlock::iterator(&PN)), + "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); + + // Check that all of the values of the PHI node have the same type as the + // result, and that the incoming blocks are really basic blocks. + for (Value *IncValue : PN.incoming_values()) { + Assert(PN.getType() == IncValue->getType(), + "PHI node operands are not the same type as the result!", &PN); + } + + // All other PHI node constraints are checked in the visitBasicBlock method. + + visitInstruction(PN); +} + +void Verifier::VerifyCallSite(CallSite CS) { + Instruction *I = CS.getInstruction(); + + Assert(CS.getCalledValue()->getType()->isPointerTy(), + "Called function must be a pointer!", I); + PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType()); + + Assert(FPTy->getElementType()->isFunctionTy(), + "Called function is not pointer to function type!", I); + + Assert(FPTy->getElementType() == CS.getFunctionType(), + "Called function is not the same type as the call!", I); + + FunctionType *FTy = CS.getFunctionType(); + + // Verify that the correct number of arguments are being passed + if (FTy->isVarArg()) + Assert(CS.arg_size() >= FTy->getNumParams(), + "Called function requires more parameters than were provided!", I); + else + Assert(CS.arg_size() == FTy->getNumParams(), + "Incorrect number of arguments passed to called function!", I); + + // Verify that all arguments to the call match the function type. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + Assert(CS.getArgument(i)->getType() == FTy->getParamType(i), + "Call parameter type does not match function signature!", + CS.getArgument(i), FTy->getParamType(i), I); + + AttributeSet Attrs = CS.getAttributes(); + + Assert(VerifyAttributeCount(Attrs, CS.arg_size()), + "Attribute after last parameter!", I); + + // Verify call attributes. + VerifyFunctionAttrs(FTy, Attrs, I); + + // Conservatively check the inalloca argument. + // We have a bug if we can find that there is an underlying alloca without + // inalloca. + if (CS.hasInAllocaArgument()) { + Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1); + if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) + Assert(AI->isUsedWithInAlloca(), + "inalloca argument for call has mismatched alloca", AI, I); + } + + if (FTy->isVarArg()) { + // FIXME? is 'nest' even legal here? + bool SawNest = false; + bool SawReturned = false; + + for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) { + if (Attrs.hasAttribute(Idx, Attribute::Nest)) + SawNest = true; + if (Attrs.hasAttribute(Idx, Attribute::Returned)) + SawReturned = true; + } + + // Check attributes on the varargs part. + for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { + Type *Ty = CS.getArgument(Idx-1)->getType(); + VerifyParameterAttrs(Attrs, Idx, Ty, false, I); + + if (Attrs.hasAttribute(Idx, Attribute::Nest)) { + Assert(!SawNest, "More than one parameter has attribute nest!", I); + SawNest = true; + } + + if (Attrs.hasAttribute(Idx, Attribute::Returned)) { + Assert(!SawReturned, "More than one parameter has attribute returned!", + I); + Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), + "Incompatible argument and return types for 'returned' " + "attribute", + I); + SawReturned = true; + } + + Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet), + "Attribute 'sret' cannot be used for vararg call arguments!", I); + + if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) + Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I); + } + } + + // Verify that there's no metadata unless it's a direct call to an intrinsic. + if (CS.getCalledFunction() == nullptr || + !CS.getCalledFunction()->getName().startswith("llvm.")) { + for (FunctionType::param_iterator PI = FTy->param_begin(), + PE = FTy->param_end(); PI != PE; ++PI) + Assert(!(*PI)->isMetadataTy(), + "Function has metadata parameter but isn't an intrinsic", I); + } + + if (Function *F = CS.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) + visitIntrinsicCallSite(ID, CS); + + visitInstruction(*I); +} + +/// Two types are "congruent" if they are identical, or if they are both pointer +/// types with different pointee types and the same address space. +static bool isTypeCongruent(Type *L, Type *R) { + if (L == R) + return true; + PointerType *PL = dyn_cast<PointerType>(L); + PointerType *PR = dyn_cast<PointerType>(R); + if (!PL || !PR) + return false; + return PL->getAddressSpace() == PR->getAddressSpace(); +} + +static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) { + static const Attribute::AttrKind ABIAttrs[] = { + Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, + Attribute::InReg, Attribute::Returned}; + AttrBuilder Copy; + for (auto AK : ABIAttrs) { + if (Attrs.hasAttribute(I + 1, AK)) + Copy.addAttribute(AK); + } + if (Attrs.hasAttribute(I + 1, Attribute::Alignment)) + Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1)); + return Copy; +} + +void Verifier::verifyMustTailCall(CallInst &CI) { + Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); + + // - The caller and callee prototypes must match. Pointer types of + // parameters or return types may differ in pointee type, but not + // address space. + Function *F = CI.getParent()->getParent(); + FunctionType *CallerTy = F->getFunctionType(); + FunctionType *CalleeTy = CI.getFunctionType(); + Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), + "cannot guarantee tail call due to mismatched parameter counts", &CI); + Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), + "cannot guarantee tail call due to mismatched varargs", &CI); + Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), + "cannot guarantee tail call due to mismatched return types", &CI); + for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { + Assert( + isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), + "cannot guarantee tail call due to mismatched parameter types", &CI); + } + + // - The calling conventions of the caller and callee must match. + Assert(F->getCallingConv() == CI.getCallingConv(), + "cannot guarantee tail call due to mismatched calling conv", &CI); + + // - All ABI-impacting function attributes, such as sret, byval, inreg, + // returned, and inalloca, must match. + AttributeSet CallerAttrs = F->getAttributes(); + AttributeSet CalleeAttrs = CI.getAttributes(); + for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { + AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); + AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); + Assert(CallerABIAttrs == CalleeABIAttrs, + "cannot guarantee tail call due to mismatched ABI impacting " + "function attributes", + &CI, CI.getOperand(I)); + } + + // - The call must immediately precede a :ref:`ret <i_ret>` instruction, + // or a pointer bitcast followed by a ret instruction. + // - The ret instruction must return the (possibly bitcasted) value + // produced by the call or void. + Value *RetVal = &CI; + Instruction *Next = CI.getNextNode(); + + // Handle the optional bitcast. + if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { + Assert(BI->getOperand(0) == RetVal, + "bitcast following musttail call must use the call", BI); + RetVal = BI; + Next = BI->getNextNode(); + } + + // Check the return. + ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); + Assert(Ret, "musttail call must be precede a ret with an optional bitcast", + &CI); + Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, + "musttail call result must be returned", Ret); +} + +void Verifier::visitCallInst(CallInst &CI) { + VerifyCallSite(&CI); + + if (CI.isMustTailCall()) + verifyMustTailCall(CI); +} + +void Verifier::visitInvokeInst(InvokeInst &II) { + VerifyCallSite(&II); + + // Verify that there is a landingpad instruction as the first non-PHI + // instruction of the 'unwind' destination. + Assert(II.getUnwindDest()->isLandingPad(), + "The unwind destination does not have a landingpad instruction!", &II); + + visitTerminatorInst(II); +} + +/// visitBinaryOperator - Check that both arguments to the binary operator are +/// of the same type! +/// +void Verifier::visitBinaryOperator(BinaryOperator &B) { + Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), + "Both operands to a binary operator are not of the same type!", &B); + + switch (B.getOpcode()) { + // Check that integer arithmetic operators are only used with + // integral operands. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + Assert(B.getType()->isIntOrIntVectorTy(), + "Integer arithmetic operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Integer arithmetic operators must have same type " + "for operands and result!", + &B); + break; + // Check that floating-point arithmetic operators are only used with + // floating-point operands. + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + Assert(B.getType()->isFPOrFPVectorTy(), + "Floating-point arithmetic operators only work with " + "floating-point types!", + &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Floating-point arithmetic operators must have same type " + "for operands and result!", + &B); + break; + // Check that logical operators are only used with integral operands. + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + Assert(B.getType()->isIntOrIntVectorTy(), + "Logical operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Logical operators must have same type for operands and result!", + &B); + break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + Assert(B.getType()->isIntOrIntVectorTy(), + "Shifts only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Shift return type must be same as operands!", &B); + break; + default: + llvm_unreachable("Unknown BinaryOperator opcode!"); + } + + visitInstruction(B); +} + +void Verifier::visitICmpInst(ICmpInst &IC) { + // Check that the operands are the same type + Type *Op0Ty = IC.getOperand(0)->getType(); + Type *Op1Ty = IC.getOperand(1)->getType(); + Assert(Op0Ty == Op1Ty, + "Both operands to ICmp instruction are not of the same type!", &IC); + // Check that the operands are the right type + Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), + "Invalid operand types for ICmp instruction", &IC); + // Check that the predicate is valid. + Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && + IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, + "Invalid predicate in ICmp instruction!", &IC); + + visitInstruction(IC); +} + +void Verifier::visitFCmpInst(FCmpInst &FC) { + // Check that the operands are the same type + Type *Op0Ty = FC.getOperand(0)->getType(); + Type *Op1Ty = FC.getOperand(1)->getType(); + Assert(Op0Ty == Op1Ty, + "Both operands to FCmp instruction are not of the same type!", &FC); + // Check that the operands are the right type + Assert(Op0Ty->isFPOrFPVectorTy(), + "Invalid operand types for FCmp instruction", &FC); + // Check that the predicate is valid. + Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && + FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, + "Invalid predicate in FCmp instruction!", &FC); + + visitInstruction(FC); +} + +void Verifier::visitExtractElementInst(ExtractElementInst &EI) { + Assert( + ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), + "Invalid extractelement operands!", &EI); + visitInstruction(EI); +} + +void Verifier::visitInsertElementInst(InsertElementInst &IE) { + Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), + IE.getOperand(2)), + "Invalid insertelement operands!", &IE); + visitInstruction(IE); +} + +void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { + Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), + SV.getOperand(2)), + "Invalid shufflevector operands!", &SV); + visitInstruction(SV); +} + +void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { + Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); + + Assert(isa<PointerType>(TargetTy), + "GEP base pointer is not a vector or a vector of pointers", &GEP); + Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); + SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); + Type *ElTy = + GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); + Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); + + Assert(GEP.getType()->getScalarType()->isPointerTy() && + GEP.getResultElementType() == ElTy, + "GEP is not of right type for indices!", &GEP, ElTy); + + if (GEP.getType()->isVectorTy()) { + // Additional checks for vector GEPs. + unsigned GEPWidth = GEP.getType()->getVectorNumElements(); + if (GEP.getPointerOperandType()->isVectorTy()) + Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), + "Vector GEP result width doesn't match operand's", &GEP); + for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { + Type *IndexTy = Idxs[i]->getType(); + if (IndexTy->isVectorTy()) { + unsigned IndexWidth = IndexTy->getVectorNumElements(); + Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); + } + Assert(IndexTy->getScalarType()->isIntegerTy(), + "All GEP indices should be of integer type"); + } + } + visitInstruction(GEP); +} + +static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { + return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); +} + +void Verifier::visitRangeMetadata(Instruction& I, + MDNode* Range, Type* Ty) { + assert(Range && + Range == I.getMetadata(LLVMContext::MD_range) && + "precondition violation"); + + unsigned NumOperands = Range->getNumOperands(); + Assert(NumOperands % 2 == 0, "Unfinished range!", Range); + unsigned NumRanges = NumOperands / 2; + Assert(NumRanges >= 1, "It should have at least one range!", Range); + + ConstantRange LastRange(1); // Dummy initial value + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Low = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); + Assert(Low, "The lower limit must be an integer!", Low); + ConstantInt *High = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); + Assert(High, "The upper limit must be an integer!", High); + Assert(High->getType() == Low->getType() && High->getType() == Ty, + "Range types must match instruction type!", &I); + + APInt HighV = High->getValue(); + APInt LowV = Low->getValue(); + ConstantRange CurRange(LowV, HighV); + Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), + "Range must not be empty!", Range); + if (i != 0) { + Assert(CurRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", + Range); + Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", + Range); + } + LastRange = ConstantRange(LowV, HighV); + } + if (NumRanges > 2) { + APInt FirstLow = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); + APInt FirstHigh = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); + ConstantRange FirstRange(FirstLow, FirstHigh); + Assert(FirstRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", + Range); + } +} + +void Verifier::visitLoadInst(LoadInst &LI) { + PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); + Assert(PTy, "Load operand must be a pointer.", &LI); + Type *ElTy = LI.getType(); + Assert(LI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &LI); + if (LI.isAtomic()) { + Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, + "Load cannot have Release ordering", &LI); + Assert(LI.getAlignment() != 0, + "Atomic load must specify explicit alignment", &LI); + if (!ElTy->isPointerTy()) { + Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!", + &LI, ElTy); + unsigned Size = ElTy->getPrimitiveSizeInBits(); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomic load operand must be power-of-two byte-sized integer", &LI, + ElTy); + } + } else { + Assert(LI.getSynchScope() == CrossThread, + "Non-atomic load cannot have SynchronizationScope specified", &LI); + } + + visitInstruction(LI); +} + +void Verifier::visitStoreInst(StoreInst &SI) { + PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); + Assert(PTy, "Store operand must be a pointer.", &SI); + Type *ElTy = PTy->getElementType(); + Assert(ElTy == SI.getOperand(0)->getType(), + "Stored value type does not match pointer operand type!", &SI, ElTy); + Assert(SI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &SI); + if (SI.isAtomic()) { + Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, + "Store cannot have Acquire ordering", &SI); + Assert(SI.getAlignment() != 0, + "Atomic store must specify explicit alignment", &SI); + if (!ElTy->isPointerTy()) { + Assert(ElTy->isIntegerTy(), + "atomic store operand must have integer type!", &SI, ElTy); + unsigned Size = ElTy->getPrimitiveSizeInBits(); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomic store operand must be power-of-two byte-sized integer", + &SI, ElTy); + } + } else { + Assert(SI.getSynchScope() == CrossThread, + "Non-atomic store cannot have SynchronizationScope specified", &SI); + } + visitInstruction(SI); +} + +void Verifier::visitAllocaInst(AllocaInst &AI) { + SmallPtrSet<const Type*, 4> Visited; + PointerType *PTy = AI.getType(); + Assert(PTy->getAddressSpace() == 0, + "Allocation instruction pointer not in the generic address space!", + &AI); + Assert(AI.getAllocatedType()->isSized(&Visited), + "Cannot allocate unsized type", &AI); + Assert(AI.getArraySize()->getType()->isIntegerTy(), + "Alloca array size must have integer type", &AI); + Assert(AI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &AI); + + visitInstruction(AI); +} + +void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { + + // FIXME: more conditions??? + Assert(CXI.getSuccessOrdering() != NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getFailureOrdering() != NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getSuccessOrdering() != Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(CXI.getFailureOrdering() != Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(), + "cmpxchg instructions be at least as constrained on success as fail", + &CXI); + Assert(CXI.getFailureOrdering() != Release && + CXI.getFailureOrdering() != AcquireRelease, + "cmpxchg failure ordering cannot include release semantics", &CXI); + + PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); + Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); + Type *ElTy = PTy->getElementType(); + Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI, + ElTy); + unsigned Size = ElTy->getPrimitiveSizeInBits(); + Assert(Size >= 8 && !(Size & (Size - 1)), + "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy); + Assert(ElTy == CXI.getOperand(1)->getType(), + "Expected value type does not match pointer operand type!", &CXI, + ElTy); + Assert(ElTy == CXI.getOperand(2)->getType(), + "Stored value type does not match pointer operand type!", &CXI, ElTy); + visitInstruction(CXI); +} + +void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { + Assert(RMWI.getOrdering() != NotAtomic, + "atomicrmw instructions must be atomic.", &RMWI); + Assert(RMWI.getOrdering() != Unordered, + "atomicrmw instructions cannot be unordered.", &RMWI); + PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); + Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); + Type *ElTy = PTy->getElementType(); + Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!", + &RMWI, ElTy); + unsigned Size = ElTy->getPrimitiveSizeInBits(); + Assert(Size >= 8 && !(Size & (Size - 1)), + "atomicrmw operand must be power-of-two byte-sized integer", &RMWI, + ElTy); + Assert(ElTy == RMWI.getOperand(1)->getType(), + "Argument value type does not match pointer operand type!", &RMWI, + ElTy); + Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && + RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, + "Invalid binary operation!", &RMWI); + visitInstruction(RMWI); +} + +void Verifier::visitFenceInst(FenceInst &FI) { + const AtomicOrdering Ordering = FI.getOrdering(); + Assert(Ordering == Acquire || Ordering == Release || + Ordering == AcquireRelease || Ordering == SequentiallyConsistent, + "fence instructions may only have " + "acquire, release, acq_rel, or seq_cst ordering.", + &FI); + visitInstruction(FI); +} + +void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { + Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), + EVI.getIndices()) == EVI.getType(), + "Invalid ExtractValueInst operands!", &EVI); + + visitInstruction(EVI); +} + +void Verifier::visitInsertValueInst(InsertValueInst &IVI) { + Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), + IVI.getIndices()) == + IVI.getOperand(1)->getType(), + "Invalid InsertValueInst operands!", &IVI); + + visitInstruction(IVI); +} + +void Verifier::visitLandingPadInst(LandingPadInst &LPI) { + BasicBlock *BB = LPI.getParent(); + + // The landingpad instruction is ill-formed if it doesn't have any clauses and + // isn't a cleanup. + Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), + "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); + + // The landingpad instruction defines its parent as a landing pad block. The + // landing pad block may be branched to only by the unwind edge of an invoke. + for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { + const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()); + Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, + "Block containing LandingPadInst must be jumped to " + "only by the unwind edge of an invoke.", + &LPI); + } + + Function *F = LPI.getParent()->getParent(); + Assert(F->hasPersonalityFn(), + "LandingPadInst needs to be in a function with a personality.", &LPI); + + // The landingpad instruction must be the first non-PHI instruction in the + // block. + Assert(LPI.getParent()->getLandingPadInst() == &LPI, + "LandingPadInst not the first non-PHI instruction in the block.", + &LPI); + + for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { + Constant *Clause = LPI.getClause(i); + if (LPI.isCatch(i)) { + Assert(isa<PointerType>(Clause->getType()), + "Catch operand does not have pointer type!", &LPI); + } else { + Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); + Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), + "Filter operand is not an array of constants!", &LPI); + } + } + + visitInstruction(LPI); +} + +void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { + Instruction *Op = cast<Instruction>(I.getOperand(i)); + // If the we have an invalid invoke, don't try to compute the dominance. + // We already reject it in the invoke specific checks and the dominance + // computation doesn't handle multiple edges. + if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { + if (II->getNormalDest() == II->getUnwindDest()) + return; + } + + const Use &U = I.getOperandUse(i); + Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U), + "Instruction does not dominate all uses!", Op, &I); +} + +/// verifyInstruction - Verify that an instruction is well formed. +/// +void Verifier::visitInstruction(Instruction &I) { + BasicBlock *BB = I.getParent(); + Assert(BB, "Instruction not embedded in basic block!", &I); + + if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential + for (User *U : I.users()) { + Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), + "Only PHI nodes may reference their own value!", &I); + } + } + + // Check that void typed values don't have names + Assert(!I.getType()->isVoidTy() || !I.hasName(), + "Instruction has a name, but provides a void value!", &I); + + // Check that the return value of the instruction is either void or a legal + // value type. + Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), + "Instruction returns a non-scalar type!", &I); + + // Check that the instruction doesn't produce metadata. Calls are already + // checked against the callee type. + Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), + "Invalid use of metadata!", &I); + + // Check that all uses of the instruction, if they are instructions + // themselves, actually have parent basic blocks. If the use is not an + // instruction, it is an error! + for (Use &U : I.uses()) { + if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) + Assert(Used->getParent() != nullptr, + "Instruction referencing" + " instruction not embedded in a basic block!", + &I, Used); + else { + CheckFailed("Use of instruction is not an instruction!", U); + return; + } + } + + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); + + // Check to make sure that only first-class-values are operands to + // instructions. + if (!I.getOperand(i)->getType()->isFirstClassType()) { + Assert(0, "Instruction operands must be first-class values!", &I); + } + + if (Function *F = dyn_cast<Function>(I.getOperand(i))) { + // Check to make sure that the "address of" an intrinsic function is never + // taken. + Assert( + !F->isIntrinsic() || + i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0), + "Cannot take the address of an intrinsic!", &I); + Assert( + !F->isIntrinsic() || isa<CallInst>(I) || + F->getIntrinsicID() == Intrinsic::donothing || + F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || + F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || + F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint, + "Cannot invoke an intrinsinc other than" + " donothing or patchpoint", + &I); + Assert(F->getParent() == M, "Referencing function in another module!", + &I); + } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { + Assert(OpBB->getParent() == BB->getParent(), + "Referring to a basic block in another function!", &I); + } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { + Assert(OpArg->getParent() == BB->getParent(), + "Referring to an argument in another function!", &I); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { + Assert(GV->getParent() == M, "Referencing global in another module!", &I); + } else if (isa<Instruction>(I.getOperand(i))) { + verifyDominatesUse(I, i); + } else if (isa<InlineAsm>(I.getOperand(i))) { + Assert((i + 1 == e && isa<CallInst>(I)) || + (i + 3 == e && isa<InvokeInst>(I)), + "Cannot take the address of an inline asm!", &I); + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { + if (CE->getType()->isPtrOrPtrVectorTy()) { + // If we have a ConstantExpr pointer, we need to see if it came from an + // illegal bitcast (inttoptr <constant int> ) + SmallVector<const ConstantExpr *, 4> Stack; + SmallPtrSet<const ConstantExpr *, 4> Visited; + Stack.push_back(CE); + + while (!Stack.empty()) { + const ConstantExpr *V = Stack.pop_back_val(); + if (!Visited.insert(V).second) + continue; + + VerifyConstantExprBitcastType(V); + + for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) { + if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I))) + Stack.push_back(Op); + } + } + } + } + } + + if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { + Assert(I.getType()->isFPOrFPVectorTy(), + "fpmath requires a floating point result!", &I); + Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); + if (ConstantFP *CFP0 = + mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { + APFloat Accuracy = CFP0->getValueAPF(); + Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), + "fpmath accuracy not a positive number!", &I); + } else { + Assert(false, "invalid fpmath accuracy!", &I); + } + } + + if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { + Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), + "Ranges are only for loads, calls and invokes!", &I); + visitRangeMetadata(I, Range, I.getType()); + } + + if (I.getMetadata(LLVMContext::MD_nonnull)) { + Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", + &I); + Assert(isa<LoadInst>(I), + "nonnull applies only to load instructions, use attributes" + " for calls or invokes", + &I); + } + + if (MDNode *N = I.getDebugLoc().getAsMDNode()) { + Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); + visitMDNode(*N); + } + + InstsInThisBlock.insert(&I); +} + +/// VerifyIntrinsicType - Verify that the specified type (which comes from an +/// intrinsic argument or return value) matches the type constraints specified +/// by the .td file (e.g. an "any integer" argument really is an integer). +/// +/// This return true on error but does not print a message. +bool Verifier::VerifyIntrinsicType(Type *Ty, + ArrayRef<Intrinsic::IITDescriptor> &Infos, + SmallVectorImpl<Type*> &ArgTys) { + using namespace Intrinsic; + + // If we ran out of descriptors, there are too many arguments. + if (Infos.empty()) return true; + IITDescriptor D = Infos.front(); + Infos = Infos.slice(1); + + switch (D.Kind) { + case IITDescriptor::Void: return !Ty->isVoidTy(); + case IITDescriptor::VarArg: return true; + case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); + case IITDescriptor::Metadata: return !Ty->isMetadataTy(); + case IITDescriptor::Half: return !Ty->isHalfTy(); + case IITDescriptor::Float: return !Ty->isFloatTy(); + case IITDescriptor::Double: return !Ty->isDoubleTy(); + case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); + case IITDescriptor::Vector: { + VectorType *VT = dyn_cast<VectorType>(Ty); + return !VT || VT->getNumElements() != D.Vector_Width || + VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys); + } + case IITDescriptor::Pointer: { + PointerType *PT = dyn_cast<PointerType>(Ty); + return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || + VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys); + } + + case IITDescriptor::Struct: { + StructType *ST = dyn_cast<StructType>(Ty); + if (!ST || ST->getNumElements() != D.Struct_NumElements) + return true; + + for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) + if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys)) + return true; + return false; + } + + case IITDescriptor::Argument: + // Two cases here - If this is the second occurrence of an argument, verify + // that the later instance matches the previous instance. + if (D.getArgumentNumber() < ArgTys.size()) + return Ty != ArgTys[D.getArgumentNumber()]; + + // Otherwise, if this is the first instance of an argument, record it and + // verify the "Any" kind. + assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); + ArgTys.push_back(Ty); + + switch (D.getArgumentKind()) { + case IITDescriptor::AK_Any: return false; // Success + case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); + case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); + case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); + case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); + } + llvm_unreachable("all argument kinds not covered"); + + case IITDescriptor::ExtendArgument: { + // This may only be used when referring to a previous vector argument. + if (D.getArgumentNumber() >= ArgTys.size()) + return true; + + Type *NewTy = ArgTys[D.getArgumentNumber()]; + if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) + NewTy = VectorType::getExtendedElementVectorType(VTy); + else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) + NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); + else + return true; + + return Ty != NewTy; + } + case IITDescriptor::TruncArgument: { + // This may only be used when referring to a previous vector argument. + if (D.getArgumentNumber() >= ArgTys.size()) + return true; + + Type *NewTy = ArgTys[D.getArgumentNumber()]; + if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) + NewTy = VectorType::getTruncatedElementVectorType(VTy); + else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) + NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); + else + return true; + + return Ty != NewTy; + } + case IITDescriptor::HalfVecArgument: + // This may only be used when referring to a previous vector argument. + return D.getArgumentNumber() >= ArgTys.size() || + !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || + VectorType::getHalfElementsVectorType( + cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; + case IITDescriptor::SameVecWidthArgument: { + if (D.getArgumentNumber() >= ArgTys.size()) + return true; + VectorType * ReferenceType = + dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); + VectorType *ThisArgType = dyn_cast<VectorType>(Ty); + if (!ThisArgType || !ReferenceType || + (ReferenceType->getVectorNumElements() != + ThisArgType->getVectorNumElements())) + return true; + return VerifyIntrinsicType(ThisArgType->getVectorElementType(), + Infos, ArgTys); + } + case IITDescriptor::PtrToArgument: { + if (D.getArgumentNumber() >= ArgTys.size()) + return true; + Type * ReferenceType = ArgTys[D.getArgumentNumber()]; + PointerType *ThisArgType = dyn_cast<PointerType>(Ty); + return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); + } + case IITDescriptor::VecOfPtrsToElt: { + if (D.getArgumentNumber() >= ArgTys.size()) + return true; + VectorType * ReferenceType = + dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); + VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); + if (!ThisArgVecTy || !ReferenceType || + (ReferenceType->getVectorNumElements() != + ThisArgVecTy->getVectorNumElements())) + return true; + PointerType *ThisArgEltTy = + dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); + if (!ThisArgEltTy) + return true; + return ThisArgEltTy->getElementType() != + ReferenceType->getVectorElementType(); + } + } + llvm_unreachable("unhandled"); +} + +/// \brief Verify if the intrinsic has variable arguments. +/// This method is intended to be called after all the fixed arguments have been +/// verified first. +/// +/// This method returns true on error and does not print an error message. +bool +Verifier::VerifyIntrinsicIsVarArg(bool isVarArg, + ArrayRef<Intrinsic::IITDescriptor> &Infos) { + using namespace Intrinsic; + + // If there are no descriptors left, then it can't be a vararg. + if (Infos.empty()) + return isVarArg; + + // There should be only one descriptor remaining at this point. + if (Infos.size() != 1) + return true; + + // Check and verify the descriptor. + IITDescriptor D = Infos.front(); + Infos = Infos.slice(1); + if (D.Kind == IITDescriptor::VarArg) + return !isVarArg; + + return true; +} + +/// Allow intrinsics to be verified in different ways. +void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { + Function *IF = CS.getCalledFunction(); + Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", + IF); + + // Verify that the intrinsic prototype lines up with what the .td files + // describe. + FunctionType *IFTy = IF->getFunctionType(); + bool IsVarArg = IFTy->isVarArg(); + + SmallVector<Intrinsic::IITDescriptor, 8> Table; + getIntrinsicInfoTableEntries(ID, Table); + ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; + + SmallVector<Type *, 4> ArgTys; + Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys), + "Intrinsic has incorrect return type!", IF); + for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i) + Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys), + "Intrinsic has incorrect argument type!", IF); + + // Verify if the intrinsic call matches the vararg property. + if (IsVarArg) + Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), + "Intrinsic was not defined with variable arguments!", IF); + else + Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef), + "Callsite was not defined with variable arguments!", IF); + + // All descriptors should be absorbed by now. + Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); + + // Now that we have the intrinsic ID and the actual argument types (and we + // know they are legal for the intrinsic!) get the intrinsic name through the + // usual means. This allows us to verify the mangling of argument types into + // the name. + const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); + Assert(ExpectedName == IF->getName(), + "Intrinsic name not mangled correctly for type arguments! " + "Should be: " + + ExpectedName, + IF); + + // If the intrinsic takes MDNode arguments, verify that they are either global + // or are local to *this* function. + for (Value *V : CS.args()) + if (auto *MD = dyn_cast<MetadataAsValue>(V)) + visitMetadataAsValue(*MD, CS.getCaller()); + + switch (ID) { + default: + break; + case Intrinsic::ctlz: // llvm.ctlz + case Intrinsic::cttz: // llvm.cttz + Assert(isa<ConstantInt>(CS.getArgOperand(1)), + "is_zero_undef argument of bit counting intrinsics must be a " + "constant int", + CS); + break; + case Intrinsic::dbg_declare: // llvm.dbg.declare + Assert(isa<MetadataAsValue>(CS.getArgOperand(0)), + "invalid llvm.dbg.declare intrinsic call 1", CS); + visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction())); + break; + case Intrinsic::dbg_value: // llvm.dbg.value + visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction())); + break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: { + ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3)); + Assert(AlignCI, + "alignment argument of memory intrinsics must be a constant int", + CS); + const APInt &AlignVal = AlignCI->getValue(); + Assert(AlignCI->isZero() || AlignVal.isPowerOf2(), + "alignment argument of memory intrinsics must be a power of 2", CS); + Assert(isa<ConstantInt>(CS.getArgOperand(4)), + "isvolatile argument of memory intrinsics must be a constant int", + CS); + break; + } + case Intrinsic::gcroot: + case Intrinsic::gcwrite: + case Intrinsic::gcread: + if (ID == Intrinsic::gcroot) { + AllocaInst *AI = + dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts()); + Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS); + Assert(isa<Constant>(CS.getArgOperand(1)), + "llvm.gcroot parameter #2 must be a constant.", CS); + if (!AI->getAllocatedType()->isPointerTy()) { + Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)), + "llvm.gcroot parameter #1 must either be a pointer alloca, " + "or argument #2 must be a non-null constant.", + CS); + } + } + + Assert(CS.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", CS); + break; + case Intrinsic::init_trampoline: + Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()), + "llvm.init_trampoline parameter #2 must resolve to a function.", + CS); + break; + case Intrinsic::prefetch: + Assert(isa<ConstantInt>(CS.getArgOperand(1)) && + isa<ConstantInt>(CS.getArgOperand(2)) && + cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 && + cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", CS); + break; + case Intrinsic::stackprotector: + Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", CS); + break; + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: + Assert(isa<ConstantInt>(CS.getArgOperand(0)), + "size argument of memory use markers must be a constant integer", + CS); + break; + case Intrinsic::invariant_end: + Assert(isa<ConstantInt>(CS.getArgOperand(1)), + "llvm.invariant.end parameter #2 must be a constant integer", CS); + break; + + case Intrinsic::localescape: { + BasicBlock *BB = CS.getParent(); + Assert(BB == &BB->getParent()->front(), + "llvm.localescape used outside of entry block", CS); + Assert(!SawFrameEscape, + "multiple calls to llvm.localescape in one function", CS); + for (Value *Arg : CS.args()) { + if (isa<ConstantPointerNull>(Arg)) + continue; // Null values are allowed as placeholders. + auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); + Assert(AI && AI->isStaticAlloca(), + "llvm.localescape only accepts static allocas", CS); + } + FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands(); + SawFrameEscape = true; + break; + } + case Intrinsic::localrecover: { + Value *FnArg = CS.getArgOperand(0)->stripPointerCasts(); + Function *Fn = dyn_cast<Function>(FnArg); + Assert(Fn && !Fn->isDeclaration(), + "llvm.localrecover first " + "argument must be function defined in this module", + CS); + auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2)); + Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int", + CS); + auto &Entry = FrameEscapeInfo[Fn]; + Entry.second = unsigned( + std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); + break; + } + + case Intrinsic::experimental_gc_statepoint: + Assert(!CS.isInlineAsm(), + "gc.statepoint support for inline assembly unimplemented", CS); + Assert(CS.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", CS); + + VerifyStatepoint(CS); + break; + case Intrinsic::experimental_gc_result_int: + case Intrinsic::experimental_gc_result_float: + case Intrinsic::experimental_gc_result_ptr: + case Intrinsic::experimental_gc_result: { + Assert(CS.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", CS); + // Are we tied to a statepoint properly? + CallSite StatepointCS(CS.getArgOperand(0)); + const Function *StatepointFn = + StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr; + Assert(StatepointFn && StatepointFn->isDeclaration() && + StatepointFn->getIntrinsicID() == + Intrinsic::experimental_gc_statepoint, + "gc.result operand #1 must be from a statepoint", CS, + CS.getArgOperand(0)); + + // Assert that result type matches wrapped callee. + const Value *Target = StatepointCS.getArgument(2); + const PointerType *PT = cast<PointerType>(Target->getType()); + const FunctionType *TargetFuncType = + cast<FunctionType>(PT->getElementType()); + Assert(CS.getType() == TargetFuncType->getReturnType(), + "gc.result result type does not match wrapped callee", CS); + break; + } + case Intrinsic::experimental_gc_relocate: { + Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS); + + // Check that this relocate is correctly tied to the statepoint + + // This is case for relocate on the unwinding path of an invoke statepoint + if (ExtractValueInst *ExtractValue = + dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) { + Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()), + "gc relocate on unwind path incorrectly linked to the statepoint", + CS); + + const BasicBlock *InvokeBB = + ExtractValue->getParent()->getUniquePredecessor(); + + // Landingpad relocates should have only one predecessor with invoke + // statepoint terminator + Assert(InvokeBB, "safepoints should have unique landingpads", + ExtractValue->getParent()); + Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", + InvokeBB); + Assert(isStatepoint(InvokeBB->getTerminator()), + "gc relocate should be linked to a statepoint", InvokeBB); + } + else { + // In all other cases relocate should be tied to the statepoint directly. + // This covers relocates on a normal return path of invoke statepoint and + // relocates of a call statepoint + auto Token = CS.getArgOperand(0); + Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), + "gc relocate is incorrectly tied to the statepoint", CS, Token); + } + + // Verify rest of the relocate arguments + + GCRelocateOperands Ops(CS); + ImmutableCallSite StatepointCS(Ops.getStatepoint()); + + // Both the base and derived must be piped through the safepoint + Value* Base = CS.getArgOperand(1); + Assert(isa<ConstantInt>(Base), + "gc.relocate operand #2 must be integer offset", CS); + + Value* Derived = CS.getArgOperand(2); + Assert(isa<ConstantInt>(Derived), + "gc.relocate operand #3 must be integer offset", CS); + + const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); + const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); + // Check the bounds + Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(), + "gc.relocate: statepoint base index out of bounds", CS); + Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(), + "gc.relocate: statepoint derived index out of bounds", CS); + + // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' + // section of the statepoint's argument + Assert(StatepointCS.arg_size() > 0, + "gc.statepoint: insufficient arguments"); + Assert(isa<ConstantInt>(StatepointCS.getArgument(3)), + "gc.statement: number of call arguments must be constant integer"); + const unsigned NumCallArgs = + cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue(); + Assert(StatepointCS.arg_size() > NumCallArgs + 5, + "gc.statepoint: mismatch in number of call arguments"); + Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)), + "gc.statepoint: number of transition arguments must be " + "a constant integer"); + const int NumTransitionArgs = + cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)) + ->getZExtValue(); + const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; + Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)), + "gc.statepoint: number of deoptimization arguments must be " + "a constant integer"); + const int NumDeoptArgs = + cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue(); + const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; + const int GCParamArgsEnd = StatepointCS.arg_size(); + Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, + "gc.relocate: statepoint base index doesn't fall within the " + "'gc parameters' section of the statepoint call", + CS); + Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, + "gc.relocate: statepoint derived index doesn't fall within the " + "'gc parameters' section of the statepoint call", + CS); + + // Relocated value must be a pointer type, but gc_relocate does not need to return the + // same pointer type as the relocated pointer. It can be casted to the correct type later + // if it's desired. However, they must have the same address space. + GCRelocateOperands Operands(CS); + Assert(Operands.getDerivedPtr()->getType()->isPointerTy(), + "gc.relocate: relocated value must be a gc pointer", CS); + + // gc_relocate return type must be a pointer type, and is verified earlier in + // VerifyIntrinsicType(). + Assert(cast<PointerType>(CS.getType())->getAddressSpace() == + cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(), + "gc.relocate: relocating a pointer shouldn't change its address space", CS); + break; + } + }; +} + +/// \brief Carefully grab the subprogram from a local scope. +/// +/// This carefully grabs the subprogram from a local scope, avoiding the +/// built-in assertions that would typically fire. +static DISubprogram *getSubprogram(Metadata *LocalScope) { + if (!LocalScope) + return nullptr; + + if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) + return SP; + + if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) + return getSubprogram(LB->getRawScope()); + + // Just return null; broken scope chains are checked elsewhere. + assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); + return nullptr; +} + +template <class DbgIntrinsicTy> +void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) { + auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); + Assert(isa<ValueAsMetadata>(MD) || + (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), + "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); + Assert(isa<DILocalVariable>(DII.getRawVariable()), + "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, + DII.getRawVariable()); + Assert(isa<DIExpression>(DII.getRawExpression()), + "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, + DII.getRawExpression()); + + // Ignore broken !dbg attachments; they're checked elsewhere. + if (MDNode *N = DII.getDebugLoc().getAsMDNode()) + if (!isa<DILocation>(N)) + return; + + BasicBlock *BB = DII.getParent(); + Function *F = BB ? BB->getParent() : nullptr; + + // The scopes for variables and !dbg attachments must agree. + DILocalVariable *Var = DII.getVariable(); + DILocation *Loc = DII.getDebugLoc(); + Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", + &DII, BB, F); + + DISubprogram *VarSP = getSubprogram(Var->getRawScope()); + DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); + if (!VarSP || !LocSP) + return; // Broken scope chains are checked elsewhere. + + Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + + " variable and !dbg attachment", + &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, + Loc->getScope()->getSubprogram()); +} + +template <class MapTy> +static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) { + // Be careful of broken types (checked elsewhere). + const Metadata *RawType = V.getRawType(); + while (RawType) { + // Try to get the size directly. + if (auto *T = dyn_cast<DIType>(RawType)) + if (uint64_t Size = T->getSizeInBits()) + return Size; + + if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { + // Look at the base type. + RawType = DT->getRawBaseType(); + continue; + } + + if (auto *S = dyn_cast<MDString>(RawType)) { + // Don't error on missing types (checked elsewhere). + RawType = Map.lookup(S); + continue; + } + + // Missing type or size. + break; + } + + // Fail gracefully. + return 0; +} + +template <class MapTy> +void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I, + const MapTy &TypeRefs) { + DILocalVariable *V; + DIExpression *E; + if (auto *DVI = dyn_cast<DbgValueInst>(&I)) { + V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable()); + E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression()); + } else { + auto *DDI = cast<DbgDeclareInst>(&I); + V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable()); + E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression()); + } + + // We don't know whether this intrinsic verified correctly. + if (!V || !E || !E->isValid()) + return; + + // Nothing to do if this isn't a bit piece expression. + if (!E->isBitPiece()) + return; + + // The frontend helps out GDB by emitting the members of local anonymous + // unions as artificial local variables with shared storage. When SROA splits + // the storage for artificial local variables that are smaller than the entire + // union, the overhang piece will be outside of the allotted space for the + // variable and this check fails. + // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. + if (V->isArtificial()) + return; + + // If there's no size, the type is broken, but that should be checked + // elsewhere. + uint64_t VarSize = getVariableSize(*V, TypeRefs); + if (!VarSize) + return; + + unsigned PieceSize = E->getBitPieceSize(); + unsigned PieceOffset = E->getBitPieceOffset(); + Assert(PieceSize + PieceOffset <= VarSize, + "piece is larger than or outside of variable", &I, V, E); + Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E); +} + +void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) { + // This is in its own function so we get an error for each bad type ref (not + // just the first). + Assert(false, "unresolved type ref", S, N); +} + +void Verifier::verifyTypeRefs() { + auto *CUs = M->getNamedMetadata("llvm.dbg.cu"); + if (!CUs) + return; + + // Visit all the compile units again to map the type references. + SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs; + for (auto *CU : CUs->operands()) + if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes()) + for (DIType *Op : Ts) + if (auto *T = dyn_cast<DICompositeType>(Op)) + if (auto *S = T->getRawIdentifier()) { + UnresolvedTypeRefs.erase(S); + TypeRefs.insert(std::make_pair(S, T)); + } + + // Verify debug info intrinsic bit piece expressions. This needs a second + // pass through the intructions, since we haven't built TypeRefs yet when + // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate + // later/now would queue up some that could be later deleted. + for (const Function &F : *M) + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) + if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) + verifyBitPieceExpression(*DII, TypeRefs); + + // Return early if all typerefs were resolved. + if (UnresolvedTypeRefs.empty()) + return; + + // Sort the unresolved references by name so the output is deterministic. + typedef std::pair<const MDString *, const MDNode *> TypeRef; + SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(), + UnresolvedTypeRefs.end()); + std::sort(Unresolved.begin(), Unresolved.end(), + [](const TypeRef &LHS, const TypeRef &RHS) { + return LHS.first->getString() < RHS.first->getString(); + }); + + // Visit the unresolved refs (printing out the errors). + for (const TypeRef &TR : Unresolved) + visitUnresolvedTypeRef(TR.first, TR.second); +} + +//===----------------------------------------------------------------------===// +// Implement the public interfaces to this file... +//===----------------------------------------------------------------------===// + +bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { + Function &F = const_cast<Function &>(f); + assert(!F.isDeclaration() && "Cannot verify external functions"); + + raw_null_ostream NullStr; + Verifier V(OS ? *OS : NullStr); + + // Note that this function's return value is inverted from what you would + // expect of a function called "verify". + return !V.verify(F); +} + +bool llvm::verifyModule(const Module &M, raw_ostream *OS) { + raw_null_ostream NullStr; + Verifier V(OS ? *OS : NullStr); + + bool Broken = false; + for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) + if (!I->isDeclaration() && !I->isMaterializable()) + Broken |= !V.verify(*I); + + // Note that this function's return value is inverted from what you would + // expect of a function called "verify". + return !V.verify(M) || Broken; +} + +namespace { +struct VerifierLegacyPass : public FunctionPass { + static char ID; + + Verifier V; + bool FatalErrors; + + VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) { + initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); + } + explicit VerifierLegacyPass(bool FatalErrors) + : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) { + initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + if (!V.verify(F) && FatalErrors) + report_fatal_error("Broken function found, compilation aborted!"); + + return false; + } + + bool doFinalization(Module &M) override { + if (!V.verify(M) && FatalErrors) + report_fatal_error("Broken module found, compilation aborted!"); + + return false; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } +}; +} + +char VerifierLegacyPass::ID = 0; +INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) + +FunctionPass *llvm::createVerifierPass(bool FatalErrors) { + return new VerifierLegacyPass(FatalErrors); +} + +PreservedAnalyses VerifierPass::run(Module &M) { + if (verifyModule(M, &dbgs()) && FatalErrors) + report_fatal_error("Broken module found, compilation aborted!"); + + return PreservedAnalyses::all(); +} + +PreservedAnalyses VerifierPass::run(Function &F) { + if (verifyFunction(F, &dbgs()) && FatalErrors) + report_fatal_error("Broken function found, compilation aborted!"); + + return PreservedAnalyses::all(); +} |