summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/IR/Verifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/IR/Verifier.cpp')
-rw-r--r--contrib/llvm/lib/IR/Verifier.cpp682
1 files changed, 491 insertions, 191 deletions
diff --git a/contrib/llvm/lib/IR/Verifier.cpp b/contrib/llvm/lib/IR/Verifier.cpp
index 2a0a4ff..81c87e4 100644
--- a/contrib/llvm/lib/IR/Verifier.cpp
+++ b/contrib/llvm/lib/IR/Verifier.cpp
@@ -39,8 +39,7 @@
// only by the unwind edge of an invoke instruction.
// * A landingpad instruction must be the first non-PHI instruction in the
// block.
-// * All landingpad instructions must use the same personality function with
-// the same function.
+// * Landingpad instructions must be in a function with a personality function.
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
@@ -92,6 +91,16 @@ struct VerifierSupport {
: OS(OS), M(nullptr), Broken(false) {}
private:
+ template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
+ Write(&*I);
+ }
+
+ void Write(const Module *M) {
+ if (!M)
+ return;
+ OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
+ }
+
void Write(const Value *V) {
if (!V)
return;
@@ -184,6 +193,9 @@ class Verifier : public InstVisitor<Verifier>, VerifierSupport {
/// \brief Track unresolved string-based type references.
SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
+ /// \brief The result type for a landingpad.
+ Type *LandingPadResultTy;
+
/// \brief Whether we've seen a call to @llvm.localescape in this function
/// already.
bool SawFrameEscape;
@@ -192,9 +204,15 @@ class Verifier : public InstVisitor<Verifier>, VerifierSupport {
/// given function and the largest index passed to llvm.localrecover.
DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
+ /// Cache of constants visited in search of ConstantExprs.
+ SmallPtrSet<const Constant *, 32> ConstantExprVisited;
+
+ void checkAtomicMemAccessSize(const Module *M, Type *Ty,
+ const Instruction *I);
public:
explicit Verifier(raw_ostream &OS)
- : VerifierSupport(OS), Context(nullptr), SawFrameEscape(false) {}
+ : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
+ SawFrameEscape(false) {}
bool verify(const Function &F) {
M = F.getParent();
@@ -228,6 +246,7 @@ public:
// FIXME: We strip const here because the inst visitor strips const.
visit(const_cast<Function &>(F));
InstsInThisBlock.clear();
+ LandingPadResultTy = nullptr;
SawFrameEscape = false;
return !Broken;
@@ -297,12 +316,12 @@ private:
void visitFunction(const Function &F);
void visitBasicBlock(BasicBlock &BB);
void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
+ void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
template <class Ty> bool isValidMetadataArray(const MDTuple &N);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
#include "llvm/IR/Metadata.def"
void visitDIScope(const DIScope &N);
- void visitDIDerivedTypeBase(const DIDerivedTypeBase &N);
void visitDIVariable(const DIVariable &N);
void visitDILexicalBlockBase(const DILexicalBlockBase &N);
void visitDITemplateParameter(const DITemplateParameter &N);
@@ -379,7 +398,13 @@ private:
void visitAllocaInst(AllocaInst &AI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
+ void visitEHPadPredecessors(Instruction &I);
void visitLandingPadInst(LandingPadInst &LPI);
+ void visitCatchPadInst(CatchPadInst &CPI);
+ void visitCatchReturnInst(CatchReturnInst &CatchReturn);
+ void visitCleanupPadInst(CleanupPadInst &CPI);
+ void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
+ void visitCleanupReturnInst(CleanupReturnInst &CRI);
void VerifyCallSite(CallSite CS);
void verifyMustTailCall(CallInst &CI);
@@ -399,7 +424,8 @@ private:
void VerifyFunctionMetadata(
const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
- void VerifyConstantExprBitcastType(const ConstantExpr *CE);
+ void visitConstantExprsRecursively(const Constant *EntryC);
+ void visitConstantExpr(const ConstantExpr *CE);
void VerifyStatepoint(ImmutableCallSite CS);
void verifyFrameRecoverIndices();
@@ -524,25 +550,7 @@ void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
}
// Walk any aggregate initializers looking for bitcasts between address spaces
- SmallPtrSet<const Value *, 4> Visited;
- SmallVector<const Value *, 4> WorkStack;
- WorkStack.push_back(cast<Value>(GV.getInitializer()));
-
- while (!WorkStack.empty()) {
- const Value *V = WorkStack.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
-
- if (const User *U = dyn_cast<User>(V)) {
- WorkStack.append(U->op_begin(), U->op_end());
- }
-
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- VerifyConstantExprBitcastType(CE);
- if (Broken)
- return;
- }
- }
+ visitConstantExprsRecursively(GV.getInitializer());
visitGlobalValue(GV);
}
@@ -556,7 +564,8 @@ void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
const GlobalAlias &GA, const Constant &C) {
if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
- Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
+ Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
+ &GA);
if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
@@ -571,7 +580,7 @@ void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
}
if (const auto *CE = dyn_cast<ConstantExpr>(&C))
- VerifyConstantExprBitcastType(CE);
+ visitConstantExprsRecursively(CE);
for (const Use &U : C.operands()) {
Value *V = &*U;
@@ -779,39 +788,10 @@ void Verifier::visitDIBasicType(const DIBasicType &N) {
"invalid tag", &N);
}
-void Verifier::visitDIDerivedTypeBase(const DIDerivedTypeBase &N) {
+void Verifier::visitDIDerivedType(const DIDerivedType &N) {
// Common scope checks.
visitDIScope(N);
- Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
- Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
- N.getBaseType());
-
- // FIXME: Sink this into the subclass verifies.
- if (!N.getFile() || N.getFile()->getFilename().empty()) {
- // Check whether the filename is allowed to be empty.
- uint16_t Tag = N.getTag();
- Assert(
- Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
- Tag == dwarf::DW_TAG_pointer_type ||
- Tag == dwarf::DW_TAG_ptr_to_member_type ||
- Tag == dwarf::DW_TAG_reference_type ||
- Tag == dwarf::DW_TAG_rvalue_reference_type ||
- Tag == dwarf::DW_TAG_restrict_type ||
- Tag == dwarf::DW_TAG_array_type ||
- Tag == dwarf::DW_TAG_enumeration_type ||
- Tag == dwarf::DW_TAG_subroutine_type ||
- Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
- Tag == dwarf::DW_TAG_structure_type ||
- Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
- "derived/composite type requires a filename", &N, N.getFile());
- }
-}
-
-void Verifier::visitDIDerivedType(const DIDerivedType &N) {
- // Common derived type checks.
- visitDIDerivedTypeBase(N);
-
Assert(N.getTag() == dwarf::DW_TAG_typedef ||
N.getTag() == dwarf::DW_TAG_pointer_type ||
N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
@@ -828,6 +808,10 @@ void Verifier::visitDIDerivedType(const DIDerivedType &N) {
Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
N.getExtraData());
}
+
+ Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
+ Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
+ N.getBaseType());
}
static bool hasConflictingReferenceFlags(unsigned Flags) {
@@ -845,27 +829,34 @@ void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
}
void Verifier::visitDICompositeType(const DICompositeType &N) {
- // Common derived type checks.
- visitDIDerivedTypeBase(N);
+ // Common scope checks.
+ visitDIScope(N);
Assert(N.getTag() == dwarf::DW_TAG_array_type ||
N.getTag() == dwarf::DW_TAG_structure_type ||
N.getTag() == dwarf::DW_TAG_union_type ||
N.getTag() == dwarf::DW_TAG_enumeration_type ||
- N.getTag() == dwarf::DW_TAG_subroutine_type ||
N.getTag() == dwarf::DW_TAG_class_type,
"invalid tag", &N);
+ Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
+ Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
+ N.getBaseType());
+
Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
"invalid composite elements", &N, N.getRawElements());
Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
N.getRawVTableHolder());
- Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
- "invalid composite elements", &N, N.getRawElements());
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
&N);
if (auto *Params = N.getRawTemplateParams())
visitTemplateParams(N, *Params);
+
+ if (N.getTag() == dwarf::DW_TAG_class_type ||
+ N.getTag() == dwarf::DW_TAG_union_type) {
+ Assert(N.getFile() && !N.getFile()->getFilename().empty(),
+ "class/union requires a filename", &N, N.getFile());
+ }
}
void Verifier::visitDISubroutineType(const DISubroutineType &N) {
@@ -885,6 +876,7 @@ void Verifier::visitDIFile(const DIFile &N) {
}
void Verifier::visitDICompileUnit(const DICompileUnit &N) {
+ Assert(N.isDistinct(), "compile units must be distinct", &N);
Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
// Don't bother verifying the compilation directory or producer string
@@ -928,6 +920,12 @@ void Verifier::visitDICompileUnit(const DICompileUnit &N) {
Op);
}
}
+ if (auto *Array = N.getRawMacros()) {
+ Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
+ for (Metadata *Op : N.getMacros()->operands()) {
+ Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
+ }
+ }
}
void Verifier::visitDISubprogram(const DISubprogram &N) {
@@ -937,13 +935,6 @@ void Verifier::visitDISubprogram(const DISubprogram &N) {
Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
N.getRawContainingType());
- if (auto *RawF = N.getRawFunction()) {
- auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
- auto *F = FMD ? FMD->getValue() : nullptr;
- auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
- Assert(F && FT && isa<FunctionType>(FT->getElementType()),
- "invalid function", &N, F, FT);
- }
if (auto *Params = N.getRawTemplateParams())
visitTemplateParams(N, *Params);
if (auto *S = N.getRawDeclaration()) {
@@ -961,40 +952,8 @@ void Verifier::visitDISubprogram(const DISubprogram &N) {
Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
&N);
- auto *F = N.getFunction();
- if (!F)
- return;
-
- // Check that all !dbg attachments lead to back to N (or, at least, another
- // subprogram that describes the same function).
- //
- // FIXME: Check this incrementally while visiting !dbg attachments.
- // FIXME: Only check when N is the canonical subprogram for F.
- SmallPtrSet<const MDNode *, 32> Seen;
- for (auto &BB : *F)
- for (auto &I : BB) {
- // Be careful about using DILocation here since we might be dealing with
- // broken code (this is the Verifier after all).
- DILocation *DL =
- dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
- if (!DL)
- continue;
- if (!Seen.insert(DL).second)
- continue;
-
- DILocalScope *Scope = DL->getInlinedAtScope();
- if (Scope && !Seen.insert(Scope).second)
- continue;
-
- DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
- if (SP && !Seen.insert(SP).second)
- continue;
-
- // FIXME: Once N is canonical, check "SP == &N".
- Assert(SP->describes(F),
- "!dbg attachment points at wrong subprogram for function", &N, F,
- &I, DL, Scope, SP);
- }
+ if (N.isDefinition())
+ Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
}
void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
@@ -1020,6 +979,27 @@ void Verifier::visitDINamespace(const DINamespace &N) {
Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
}
+void Verifier::visitDIMacro(const DIMacro &N) {
+ Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
+ N.getMacinfoType() == dwarf::DW_MACINFO_undef,
+ "invalid macinfo type", &N);
+ Assert(!N.getName().empty(), "anonymous macro", &N);
+}
+
+void Verifier::visitDIMacroFile(const DIMacroFile &N) {
+ Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
+ "invalid macinfo type", &N);
+ if (auto *F = N.getRawFile())
+ Assert(isa<DIFile>(F), "invalid file", &N, F);
+
+ if (auto *Array = N.getRawElements()) {
+ Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
+ for (Metadata *Op : N.getElements()->operands()) {
+ Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
+ }
+ }
+}
+
void Verifier::visitDIModule(const DIModule &N) {
Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
Assert(!N.getName().empty(), "anonymous module", &N);
@@ -1075,9 +1055,7 @@ void Verifier::visitDILocalVariable(const DILocalVariable &N) {
// Checks common to all variables.
visitDIVariable(N);
- Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
- N.getTag() == dwarf::DW_TAG_arg_variable,
- "invalid tag", &N);
+ Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
"local variable requires a valid scope", &N, N.getRawScope());
}
@@ -1274,7 +1252,10 @@ void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
I->getKindAsEnum() == Attribute::OptimizeNone ||
I->getKindAsEnum() == Attribute::JumpTable ||
I->getKindAsEnum() == Attribute::Convergent ||
- I->getKindAsEnum() == Attribute::ArgMemOnly) {
+ I->getKindAsEnum() == Attribute::ArgMemOnly ||
+ I->getKindAsEnum() == Attribute::NoRecurse ||
+ I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
+ I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
if (!isFunction) {
CheckFailed("Attribute '" + I->getAsString() +
"' only applies to functions!", V);
@@ -1365,7 +1346,7 @@ void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
V);
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
- SmallPtrSet<const Type*, 4> Visited;
+ SmallPtrSet<Type*, 4> Visited;
if (!PTy->getElementType()->isSized(&Visited)) {
Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca),
@@ -1445,6 +1426,18 @@ void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
"Attributes 'readnone and readonly' are incompatible!", V);
Assert(
+ !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
+ Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::InaccessibleMemOrArgMemOnly)),
+ "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
+
+ Assert(
+ !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
+ Attrs.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::InaccessibleMemOnly)),
+ "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
+
+ Assert(
!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
Attrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::AlwaysInline)),
@@ -1501,7 +1494,35 @@ void Verifier::VerifyFunctionMetadata(
}
}
-void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
+void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
+ if (!ConstantExprVisited.insert(EntryC).second)
+ return;
+
+ SmallVector<const Constant *, 16> Stack;
+ Stack.push_back(EntryC);
+
+ while (!Stack.empty()) {
+ const Constant *C = Stack.pop_back_val();
+
+ // Check this constant expression.
+ if (const auto *CE = dyn_cast<ConstantExpr>(C))
+ visitConstantExpr(CE);
+
+ // Visit all sub-expressions.
+ for (const Use &U : C->operands()) {
+ const auto *OpC = dyn_cast<Constant>(U);
+ if (!OpC)
+ continue;
+ if (isa<GlobalValue>(OpC))
+ continue; // Global values get visited separately.
+ if (!ConstantExprVisited.insert(OpC).second)
+ continue;
+ Stack.push_back(OpC);
+ }
+ }
+}
+
+void Verifier::visitConstantExpr(const ConstantExpr *CE) {
if (CE->getOpcode() != Instruction::BitCast)
return;
@@ -1554,17 +1575,11 @@ void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
&CI);
const Value *Target = CS.getArgument(2);
- const PointerType *PT = dyn_cast<PointerType>(Target->getType());
+ auto *PT = dyn_cast<PointerType>(Target->getType());
Assert(PT && PT->getElementType()->isFunctionTy(),
"gc.statepoint callee must be of function pointer type", &CI, Target);
FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
- if (NumPatchBytes)
- Assert(isa<ConstantPointerNull>(Target->stripPointerCasts()),
- "gc.statepoint must have null as call target if number of patchable "
- "bytes is non zero",
- &CI);
-
const Value *NumCallArgsV = CS.getArgument(3);
Assert(isa<ConstantInt>(NumCallArgsV),
"gc.statepoint number of arguments to underlying call "
@@ -1743,17 +1758,33 @@ void Verifier::visitFunction(const Function &F) {
FT->getParamType(i));
Assert(I->getType()->isFirstClassType(),
"Function arguments must have first-class types!", I);
- if (!isLLVMdotName)
+ if (!isLLVMdotName) {
Assert(!I->getType()->isMetadataTy(),
"Function takes metadata but isn't an intrinsic", I, &F);
+ Assert(!I->getType()->isTokenTy(),
+ "Function takes token but isn't an intrinsic", I, &F);
+ }
}
+ if (!isLLVMdotName)
+ Assert(!F.getReturnType()->isTokenTy(),
+ "Functions returns a token but isn't an intrinsic", &F);
+
// Get the function metadata attachments.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F.getAllMetadata(MDs);
assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
VerifyFunctionMetadata(MDs);
+ // Check validity of the personality function
+ if (F.hasPersonalityFn()) {
+ auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
+ if (Per)
+ Assert(Per->getParent() == F.getParent(),
+ "Referencing personality function in another module!",
+ &F, F.getParent(), Per, Per->getParent());
+ }
+
if (F.isMaterializable()) {
// Function has a body somewhere we can't see.
Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
@@ -1782,13 +1813,27 @@ void Verifier::visitFunction(const Function &F) {
}
// Visit metadata attachments.
- for (const auto &I : MDs)
+ for (const auto &I : MDs) {
+ // Verify that the attachment is legal.
+ switch (I.first) {
+ default:
+ break;
+ case LLVMContext::MD_dbg:
+ Assert(isa<DISubprogram>(I.second),
+ "function !dbg attachment must be a subprogram", &F, I.second);
+ break;
+ }
+
+ // Verify the metadata itself.
visitMDNode(*I.second);
+ }
}
// If this function is actually an intrinsic, verify that it is only used in
// direct call/invokes, never having its "address taken".
- if (F.getIntrinsicID()) {
+ // Only do this if the module is materialized, otherwise we don't have all the
+ // uses.
+ if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
const User *U;
if (F.hasAddressTaken(&U))
Assert(0, "Invalid user of intrinsic instruction!", U);
@@ -1798,6 +1843,44 @@ void Verifier::visitFunction(const Function &F) {
(F.isDeclaration() && F.hasExternalLinkage()) ||
F.hasAvailableExternallyLinkage(),
"Function is marked as dllimport, but not external.", &F);
+
+ auto *N = F.getSubprogram();
+ if (!N)
+ return;
+
+ // Check that all !dbg attachments lead to back to N (or, at least, another
+ // subprogram that describes the same function).
+ //
+ // FIXME: Check this incrementally while visiting !dbg attachments.
+ // FIXME: Only check when N is the canonical subprogram for F.
+ SmallPtrSet<const MDNode *, 32> Seen;
+ for (auto &BB : F)
+ for (auto &I : BB) {
+ // Be careful about using DILocation here since we might be dealing with
+ // broken code (this is the Verifier after all).
+ DILocation *DL =
+ dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
+ if (!DL)
+ continue;
+ if (!Seen.insert(DL).second)
+ continue;
+
+ DILocalScope *Scope = DL->getInlinedAtScope();
+ if (Scope && !Seen.insert(Scope).second)
+ continue;
+
+ DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
+
+ // Scope and SP could be the same MDNode and we don't want to skip
+ // validation in that case
+ if (SP && ((Scope != SP) && !Seen.insert(SP).second))
+ continue;
+
+ // FIXME: Once N is canonical, check "SP == &N".
+ Assert(SP->describes(&F),
+ "!dbg attachment points at wrong subprogram for function", N, &F,
+ &I, DL, Scope, SP);
+ }
}
// verifyBasicBlock - Verify that a basic block is well formed...
@@ -2194,6 +2277,9 @@ void Verifier::visitPHINode(PHINode &PN) {
isa<PHINode>(--BasicBlock::iterator(&PN)),
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
+ // Check that a PHI doesn't yield a Token.
+ Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
+
// Check that all of the values of the PHI node have the same type as the
// result, and that the incoming blocks are really basic blocks.
for (Value *IncValue : PN.incoming_values()) {
@@ -2296,16 +2382,44 @@ void Verifier::VerifyCallSite(CallSite CS) {
// Verify that there's no metadata unless it's a direct call to an intrinsic.
if (CS.getCalledFunction() == nullptr ||
!CS.getCalledFunction()->getName().startswith("llvm.")) {
- for (FunctionType::param_iterator PI = FTy->param_begin(),
- PE = FTy->param_end(); PI != PE; ++PI)
- Assert(!(*PI)->isMetadataTy(),
+ for (Type *ParamTy : FTy->params()) {
+ Assert(!ParamTy->isMetadataTy(),
"Function has metadata parameter but isn't an intrinsic", I);
+ Assert(!ParamTy->isTokenTy(),
+ "Function has token parameter but isn't an intrinsic", I);
+ }
}
+ // Verify that indirect calls don't return tokens.
+ if (CS.getCalledFunction() == nullptr)
+ Assert(!FTy->getReturnType()->isTokenTy(),
+ "Return type cannot be token for indirect call!");
+
if (Function *F = CS.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicCallSite(ID, CS);
+ // Verify that a callsite has at most one "deopt" and one "funclet" operand
+ // bundle.
+ bool FoundDeoptBundle = false, FoundFuncletBundle = false;
+ for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
+ OperandBundleUse BU = CS.getOperandBundleAt(i);
+ uint32_t Tag = BU.getTagID();
+ if (Tag == LLVMContext::OB_deopt) {
+ Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
+ FoundDeoptBundle = true;
+ }
+ if (Tag == LLVMContext::OB_funclet) {
+ Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
+ FoundFuncletBundle = true;
+ Assert(BU.Inputs.size() == 1,
+ "Expected exactly one funclet bundle operand", I);
+ Assert(isa<FuncletPadInst>(BU.Inputs.front()),
+ "Funclet bundle operands should correspond to a FuncletPadInst",
+ I);
+ }
+ }
+
visitInstruction(*I);
}
@@ -2406,10 +2520,12 @@ void Verifier::visitCallInst(CallInst &CI) {
void Verifier::visitInvokeInst(InvokeInst &II) {
VerifyCallSite(&II);
- // Verify that there is a landingpad instruction as the first non-PHI
- // instruction of the 'unwind' destination.
- Assert(II.getUnwindDest()->isLandingPad(),
- "The unwind destination does not have a landingpad instruction!", &II);
+ // Verify that the first non-PHI instruction of the unwind destination is an
+ // exception handling instruction.
+ Assert(
+ II.getUnwindDest()->isEHPad(),
+ "The unwind destination does not have an exception handling instruction!",
+ &II);
visitTerminatorInst(II);
}
@@ -2622,6 +2738,14 @@ void Verifier::visitRangeMetadata(Instruction& I,
}
}
+void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
+ const Instruction *I) {
+ unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
+ Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
+ Assert(!(Size & (Size - 1)),
+ "atomic memory access' operand must have a power-of-two size", Ty, I);
+}
+
void Verifier::visitLoadInst(LoadInst &LI) {
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert(PTy, "Load operand must be a pointer.", &LI);
@@ -2633,14 +2757,12 @@ void Verifier::visitLoadInst(LoadInst &LI) {
"Load cannot have Release ordering", &LI);
Assert(LI.getAlignment() != 0,
"Atomic load must specify explicit alignment", &LI);
- if (!ElTy->isPointerTy()) {
- Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
- &LI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "atomic load operand must be power-of-two byte-sized integer", &LI,
- ElTy);
- }
+ Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
+ ElTy->isFloatingPointTy(),
+ "atomic load operand must have integer, pointer, or floating point "
+ "type!",
+ ElTy, &LI);
+ checkAtomicMemAccessSize(M, ElTy, &LI);
} else {
Assert(LI.getSynchScope() == CrossThread,
"Non-atomic load cannot have SynchronizationScope specified", &LI);
@@ -2662,14 +2784,12 @@ void Verifier::visitStoreInst(StoreInst &SI) {
"Store cannot have Acquire ordering", &SI);
Assert(SI.getAlignment() != 0,
"Atomic store must specify explicit alignment", &SI);
- if (!ElTy->isPointerTy()) {
- Assert(ElTy->isIntegerTy(),
- "atomic store operand must have integer type!", &SI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "atomic store operand must be power-of-two byte-sized integer",
- &SI, ElTy);
- }
+ Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
+ ElTy->isFloatingPointTy(),
+ "atomic store operand must have integer, pointer, or floating point "
+ "type!",
+ ElTy, &SI);
+ checkAtomicMemAccessSize(M, ElTy, &SI);
} else {
Assert(SI.getSynchScope() == CrossThread,
"Non-atomic store cannot have SynchronizationScope specified", &SI);
@@ -2678,7 +2798,7 @@ void Verifier::visitStoreInst(StoreInst &SI) {
}
void Verifier::visitAllocaInst(AllocaInst &AI) {
- SmallPtrSet<const Type*, 4> Visited;
+ SmallPtrSet<Type*, 4> Visited;
PointerType *PTy = AI.getType();
Assert(PTy->getAddressSpace() == 0,
"Allocation instruction pointer not in the generic address space!",
@@ -2716,9 +2836,7 @@ void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
Type *ElTy = PTy->getElementType();
Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
+ checkAtomicMemAccessSize(M, ElTy, &CXI);
Assert(ElTy == CXI.getOperand(1)->getType(),
"Expected value type does not match pointer operand type!", &CXI,
ElTy);
@@ -2737,10 +2855,7 @@ void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
Type *ElTy = PTy->getElementType();
Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
&RMWI, ElTy);
- unsigned Size = ElTy->getPrimitiveSizeInBits();
- Assert(Size >= 8 && !(Size & (Size - 1)),
- "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
- ElTy);
+ checkAtomicMemAccessSize(M, ElTy, &RMWI);
Assert(ElTy == RMWI.getOperand(1)->getType(),
"Argument value type does not match pointer operand type!", &RMWI,
ElTy);
@@ -2777,23 +2892,62 @@ void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
visitInstruction(IVI);
}
-void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
- BasicBlock *BB = LPI.getParent();
+void Verifier::visitEHPadPredecessors(Instruction &I) {
+ assert(I.isEHPad());
+
+ BasicBlock *BB = I.getParent();
+ Function *F = BB->getParent();
+
+ Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
+
+ if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
+ // The landingpad instruction defines its parent as a landing pad block. The
+ // landing pad block may be branched to only by the unwind edge of an
+ // invoke.
+ for (BasicBlock *PredBB : predecessors(BB)) {
+ const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
+ Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
+ "Block containing LandingPadInst must be jumped to "
+ "only by the unwind edge of an invoke.",
+ LPI);
+ }
+ return;
+ }
+ if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
+ if (!pred_empty(BB))
+ Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
+ "Block containg CatchPadInst must be jumped to "
+ "only by its catchswitch.",
+ CPI);
+ return;
+ }
+
+ for (BasicBlock *PredBB : predecessors(BB)) {
+ TerminatorInst *TI = PredBB->getTerminator();
+ if (auto *II = dyn_cast<InvokeInst>(TI)) {
+ Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
+ "EH pad must be jumped to via an unwind edge", &I, II);
+ } else if (!isa<CleanupReturnInst>(TI) && !isa<CatchSwitchInst>(TI)) {
+ Assert(false, "EH pad must be jumped to via an unwind edge", &I, TI);
+ }
+ }
+}
+void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
// The landingpad instruction is ill-formed if it doesn't have any clauses and
// isn't a cleanup.
Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
"LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
- // The landingpad instruction defines its parent as a landing pad block. The
- // landing pad block may be branched to only by the unwind edge of an invoke.
- for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
- const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
- Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
- "Block containing LandingPadInst must be jumped to "
- "only by the unwind edge of an invoke.",
+ visitEHPadPredecessors(LPI);
+
+ if (!LandingPadResultTy)
+ LandingPadResultTy = LPI.getType();
+ else
+ Assert(LandingPadResultTy == LPI.getType(),
+ "The landingpad instruction should have a consistent result type "
+ "inside a function.",
&LPI);
- }
Function *F = LPI.getParent()->getParent();
Assert(F->hasPersonalityFn(),
@@ -2820,6 +2974,132 @@ void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
visitInstruction(LPI);
}
+void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
+ visitEHPadPredecessors(CPI);
+
+ BasicBlock *BB = CPI.getParent();
+
+ Function *F = BB->getParent();
+ Assert(F->hasPersonalityFn(),
+ "CatchPadInst needs to be in a function with a personality.", &CPI);
+
+ Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
+ "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
+ CPI.getParentPad());
+
+ // The catchpad instruction must be the first non-PHI instruction in the
+ // block.
+ Assert(BB->getFirstNonPHI() == &CPI,
+ "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
+
+ visitInstruction(CPI);
+}
+
+void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
+ Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
+ "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
+ CatchReturn.getOperand(0));
+
+ visitTerminatorInst(CatchReturn);
+}
+
+void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
+ visitEHPadPredecessors(CPI);
+
+ BasicBlock *BB = CPI.getParent();
+
+ Function *F = BB->getParent();
+ Assert(F->hasPersonalityFn(),
+ "CleanupPadInst needs to be in a function with a personality.", &CPI);
+
+ // The cleanuppad instruction must be the first non-PHI instruction in the
+ // block.
+ Assert(BB->getFirstNonPHI() == &CPI,
+ "CleanupPadInst not the first non-PHI instruction in the block.",
+ &CPI);
+
+ auto *ParentPad = CPI.getParentPad();
+ Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
+ isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
+ "CleanupPadInst has an invalid parent.", &CPI);
+
+ User *FirstUser = nullptr;
+ BasicBlock *FirstUnwindDest = nullptr;
+ for (User *U : CPI.users()) {
+ BasicBlock *UnwindDest;
+ if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(U)) {
+ UnwindDest = CRI->getUnwindDest();
+ } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
+ continue;
+ } else if (CallSite(U)) {
+ continue;
+ } else {
+ Assert(false, "bogus cleanuppad use", &CPI);
+ }
+
+ if (!FirstUser) {
+ FirstUser = U;
+ FirstUnwindDest = UnwindDest;
+ } else {
+ Assert(
+ UnwindDest == FirstUnwindDest,
+ "cleanupret instructions from the same cleanuppad must have the same "
+ "unwind destination",
+ FirstUser, U);
+ }
+ }
+
+ visitInstruction(CPI);
+}
+
+void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
+ visitEHPadPredecessors(CatchSwitch);
+
+ BasicBlock *BB = CatchSwitch.getParent();
+
+ Function *F = BB->getParent();
+ Assert(F->hasPersonalityFn(),
+ "CatchSwitchInst needs to be in a function with a personality.",
+ &CatchSwitch);
+
+ // The catchswitch instruction must be the first non-PHI instruction in the
+ // block.
+ Assert(BB->getFirstNonPHI() == &CatchSwitch,
+ "CatchSwitchInst not the first non-PHI instruction in the block.",
+ &CatchSwitch);
+
+ if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
+ Instruction *I = UnwindDest->getFirstNonPHI();
+ Assert(I->isEHPad() && !isa<LandingPadInst>(I),
+ "CatchSwitchInst must unwind to an EH block which is not a "
+ "landingpad.",
+ &CatchSwitch);
+ }
+
+ auto *ParentPad = CatchSwitch.getParentPad();
+ Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
+ isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
+ "CatchSwitchInst has an invalid parent.", ParentPad);
+
+ visitTerminatorInst(CatchSwitch);
+}
+
+void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
+ Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
+ "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
+ CRI.getOperand(0));
+
+ if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
+ Instruction *I = UnwindDest->getFirstNonPHI();
+ Assert(I->isEHPad() && !isa<LandingPadInst>(I),
+ "CleanupReturnInst must unwind to an EH block which is not a "
+ "landingpad.",
+ &CRI);
+ }
+
+ visitTerminatorInst(CRI);
+}
+
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
Instruction *Op = cast<Instruction>(I.getOperand(i));
// If the we have an invalid invoke, don't try to compute the dominance.
@@ -2835,6 +3115,19 @@ void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
"Instruction does not dominate all uses!", Op, &I);
}
+void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
+ Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
+ "apply only to pointer types", &I);
+ Assert(isa<LoadInst>(I),
+ "dereferenceable, dereferenceable_or_null apply only to load"
+ " instructions, use attributes for calls or invokes", &I);
+ Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
+ "take one operand!", &I);
+ ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
+ Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
+ "dereferenceable_or_null metadata value must be an i64!", &I);
+}
+
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
@@ -2903,7 +3196,7 @@ void Verifier::visitInstruction(Instruction &I) {
" donothing or patchpoint",
&I);
Assert(F->getParent() == M, "Referencing function in another module!",
- &I);
+ &I, M, F, F->getParent());
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
@@ -2911,7 +3204,7 @@ void Verifier::visitInstruction(Instruction &I) {
Assert(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
- Assert(GV->getParent() == M, "Referencing global in another module!", &I);
+ Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
} else if (isa<Instruction>(I.getOperand(i))) {
verifyDominatesUse(I, i);
} else if (isa<InlineAsm>(I.getOperand(i))) {
@@ -2922,22 +3215,7 @@ void Verifier::visitInstruction(Instruction &I) {
if (CE->getType()->isPtrOrPtrVectorTy()) {
// If we have a ConstantExpr pointer, we need to see if it came from an
// illegal bitcast (inttoptr <constant int> )
- SmallVector<const ConstantExpr *, 4> Stack;
- SmallPtrSet<const ConstantExpr *, 4> Visited;
- Stack.push_back(CE);
-
- while (!Stack.empty()) {
- const ConstantExpr *V = Stack.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
-
- VerifyConstantExprBitcastType(V);
-
- for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
- if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
- Stack.push_back(Op);
- }
- }
+ visitConstantExprsRecursively(CE);
}
}
}
@@ -2971,6 +3249,28 @@ void Verifier::visitInstruction(Instruction &I) {
&I);
}
+ if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
+ visitDereferenceableMetadata(I, MD);
+
+ if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
+ visitDereferenceableMetadata(I, MD);
+
+ if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
+ Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
+ &I);
+ Assert(isa<LoadInst>(I), "align applies only to load instructions, "
+ "use attributes for calls or invokes", &I);
+ Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
+ ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
+ Assert(CI && CI->getType()->isIntegerTy(64),
+ "align metadata value must be an i64!", &I);
+ uint64_t Align = CI->getZExtValue();
+ Assert(isPowerOf2_64(Align),
+ "align metadata value must be a power of 2!", &I);
+ Assert(Align <= Value::MaximumAlignment,
+ "alignment is larger that implementation defined limit", &I);
+ }
+
if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
visitMDNode(*N);
@@ -2998,6 +3298,7 @@ bool Verifier::VerifyIntrinsicType(Type *Ty,
case IITDescriptor::Void: return !Ty->isVoidTy();
case IITDescriptor::VarArg: return true;
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
+ case IITDescriptor::Token: return !Ty->isTokenTy();
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
case IITDescriptor::Half: return !Ty->isHalfTy();
case IITDescriptor::Float: return !Ty->isFloatTy();
@@ -3321,9 +3622,6 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
VerifyStatepoint(CS);
break;
- case Intrinsic::experimental_gc_result_int:
- case Intrinsic::experimental_gc_result_float:
- case Intrinsic::experimental_gc_result_ptr:
case Intrinsic::experimental_gc_result: {
Assert(CS.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", CS);
@@ -3339,9 +3637,8 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
// Assert that result type matches wrapped callee.
const Value *Target = StatepointCS.getArgument(2);
- const PointerType *PT = cast<PointerType>(Target->getType());
- const FunctionType *TargetFuncType =
- cast<FunctionType>(PT->getElementType());
+ auto *PT = cast<PointerType>(Target->getType());
+ auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
Assert(CS.getType() == TargetFuncType->getReturnType(),
"gc.result result type does not match wrapped callee", CS);
break;
@@ -3352,19 +3649,16 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
// Check that this relocate is correctly tied to the statepoint
// This is case for relocate on the unwinding path of an invoke statepoint
- if (ExtractValueInst *ExtractValue =
- dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
- Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
- "gc relocate on unwind path incorrectly linked to the statepoint",
- CS);
+ if (LandingPadInst *LandingPad =
+ dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
const BasicBlock *InvokeBB =
- ExtractValue->getParent()->getUniquePredecessor();
+ LandingPad->getParent()->getUniquePredecessor();
// Landingpad relocates should have only one predecessor with invoke
// statepoint terminator
Assert(InvokeBB, "safepoints should have unique landingpads",
- ExtractValue->getParent());
+ LandingPad->getParent());
Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
InvokeBB);
Assert(isStatepoint(InvokeBB->getTerminator()),
@@ -3448,6 +3742,12 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
"gc.relocate: relocating a pointer shouldn't change its address space", CS);
break;
}
+ case Intrinsic::eh_exceptioncode:
+ case Intrinsic::eh_exceptionpointer: {
+ Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
+ "eh.exceptionpointer argument must be a catchpad", CS);
+ break;
+ }
};
}
@@ -3598,7 +3898,7 @@ void Verifier::verifyTypeRefs() {
for (auto *CU : CUs->operands())
if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
for (DIType *Op : Ts)
- if (auto *T = dyn_cast<DICompositeType>(Op))
+ if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
if (auto *S = T->getRawIdentifier()) {
UnresolvedTypeRefs.erase(S);
TypeRefs.insert(std::make_pair(S, T));
OpenPOWER on IntegriCloud