diff options
Diffstat (limited to 'contrib/llvm/lib/IR/Value.cpp')
-rw-r--r-- | contrib/llvm/lib/IR/Value.cpp | 758 |
1 files changed, 758 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/Value.cpp b/contrib/llvm/lib/IR/Value.cpp new file mode 100644 index 0000000..f554d59 --- /dev/null +++ b/contrib/llvm/lib/IR/Value.cpp @@ -0,0 +1,758 @@ +//===-- Value.cpp - Implement the Value class -----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Value, ValueHandle, and User classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Value.h" +#include "LLVMContextImpl.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +//===----------------------------------------------------------------------===// +// Value Class +//===----------------------------------------------------------------------===// +static inline Type *checkType(Type *Ty) { + assert(Ty && "Value defined with a null type: Error!"); + return Ty; +} + +Value::Value(Type *ty, unsigned scid) + : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), + HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), + NumUserOperands(0), IsUsedByMD(false), HasName(false) { + // FIXME: Why isn't this in the subclass gunk?? + // Note, we cannot call isa<CallInst> before the CallInst has been + // constructed. + if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke) + assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && + "invalid CallInst type!"); + else if (SubclassID != BasicBlockVal && + (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal)) + assert((VTy->isFirstClassType() || VTy->isVoidTy()) && + "Cannot create non-first-class values except for constants!"); +} + +Value::~Value() { + // Notify all ValueHandles (if present) that this value is going away. + if (HasValueHandle) + ValueHandleBase::ValueIsDeleted(this); + if (isUsedByMetadata()) + ValueAsMetadata::handleDeletion(this); + +#ifndef NDEBUG // Only in -g mode... + // Check to make sure that there are no uses of this value that are still + // around when the value is destroyed. If there are, then we have a dangling + // reference and something is wrong. This code is here to print out where + // the value is still being referenced. + // + if (!use_empty()) { + dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; + for (auto *U : users()) + dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; + } +#endif + assert(use_empty() && "Uses remain when a value is destroyed!"); + + // If this value is named, destroy the name. This should not be in a symtab + // at this point. + destroyValueName(); +} + +void Value::destroyValueName() { + ValueName *Name = getValueName(); + if (Name) + Name->Destroy(); + setValueName(nullptr); +} + +bool Value::hasNUses(unsigned N) const { + const_use_iterator UI = use_begin(), E = use_end(); + + for (; N; --N, ++UI) + if (UI == E) return false; // Too few. + return UI == E; +} + +bool Value::hasNUsesOrMore(unsigned N) const { + const_use_iterator UI = use_begin(), E = use_end(); + + for (; N; --N, ++UI) + if (UI == E) return false; // Too few. + + return true; +} + +bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { + // This can be computed either by scanning the instructions in BB, or by + // scanning the use list of this Value. Both lists can be very long, but + // usually one is quite short. + // + // Scan both lists simultaneously until one is exhausted. This limits the + // search to the shorter list. + BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); + const_user_iterator UI = user_begin(), UE = user_end(); + for (; BI != BE && UI != UE; ++BI, ++UI) { + // Scan basic block: Check if this Value is used by the instruction at BI. + if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end()) + return true; + // Scan use list: Check if the use at UI is in BB. + const Instruction *User = dyn_cast<Instruction>(*UI); + if (User && User->getParent() == BB) + return true; + } + return false; +} + +unsigned Value::getNumUses() const { + return (unsigned)std::distance(use_begin(), use_end()); +} + +static bool getSymTab(Value *V, ValueSymbolTable *&ST) { + ST = nullptr; + if (Instruction *I = dyn_cast<Instruction>(V)) { + if (BasicBlock *P = I->getParent()) + if (Function *PP = P->getParent()) + ST = &PP->getValueSymbolTable(); + } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { + if (Function *P = BB->getParent()) + ST = &P->getValueSymbolTable(); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + if (Module *P = GV->getParent()) + ST = &P->getValueSymbolTable(); + } else if (Argument *A = dyn_cast<Argument>(V)) { + if (Function *P = A->getParent()) + ST = &P->getValueSymbolTable(); + } else { + assert(isa<Constant>(V) && "Unknown value type!"); + return true; // no name is setable for this. + } + return false; +} + +ValueName *Value::getValueName() const { + if (!HasName) return nullptr; + + LLVMContext &Ctx = getContext(); + auto I = Ctx.pImpl->ValueNames.find(this); + assert(I != Ctx.pImpl->ValueNames.end() && + "No name entry found!"); + + return I->second; +} + +void Value::setValueName(ValueName *VN) { + LLVMContext &Ctx = getContext(); + + assert(HasName == Ctx.pImpl->ValueNames.count(this) && + "HasName bit out of sync!"); + + if (!VN) { + if (HasName) + Ctx.pImpl->ValueNames.erase(this); + HasName = false; + return; + } + + HasName = true; + Ctx.pImpl->ValueNames[this] = VN; +} + +StringRef Value::getName() const { + // Make sure the empty string is still a C string. For historical reasons, + // some clients want to call .data() on the result and expect it to be null + // terminated. + if (!hasName()) + return StringRef("", 0); + return getValueName()->getKey(); +} + +void Value::setNameImpl(const Twine &NewName) { + // Fast path for common IRBuilder case of setName("") when there is no name. + if (NewName.isTriviallyEmpty() && !hasName()) + return; + + SmallString<256> NameData; + StringRef NameRef = NewName.toStringRef(NameData); + assert(NameRef.find_first_of(0) == StringRef::npos && + "Null bytes are not allowed in names"); + + // Name isn't changing? + if (getName() == NameRef) + return; + + assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); + + // Get the symbol table to update for this object. + ValueSymbolTable *ST; + if (getSymTab(this, ST)) + return; // Cannot set a name on this value (e.g. constant). + + if (!ST) { // No symbol table to update? Just do the change. + if (NameRef.empty()) { + // Free the name for this value. + destroyValueName(); + return; + } + + // NOTE: Could optimize for the case the name is shrinking to not deallocate + // then reallocated. + destroyValueName(); + + // Create the new name. + setValueName(ValueName::Create(NameRef)); + getValueName()->setValue(this); + return; + } + + // NOTE: Could optimize for the case the name is shrinking to not deallocate + // then reallocated. + if (hasName()) { + // Remove old name. + ST->removeValueName(getValueName()); + destroyValueName(); + + if (NameRef.empty()) + return; + } + + // Name is changing to something new. + setValueName(ST->createValueName(NameRef, this)); +} + +void Value::setName(const Twine &NewName) { + setNameImpl(NewName); + if (Function *F = dyn_cast<Function>(this)) + F->recalculateIntrinsicID(); +} + +void Value::takeName(Value *V) { + ValueSymbolTable *ST = nullptr; + // If this value has a name, drop it. + if (hasName()) { + // Get the symtab this is in. + if (getSymTab(this, ST)) { + // We can't set a name on this value, but we need to clear V's name if + // it has one. + if (V->hasName()) V->setName(""); + return; // Cannot set a name on this value (e.g. constant). + } + + // Remove old name. + if (ST) + ST->removeValueName(getValueName()); + destroyValueName(); + } + + // Now we know that this has no name. + + // If V has no name either, we're done. + if (!V->hasName()) return; + + // Get this's symtab if we didn't before. + if (!ST) { + if (getSymTab(this, ST)) { + // Clear V's name. + V->setName(""); + return; // Cannot set a name on this value (e.g. constant). + } + } + + // Get V's ST, this should always succed, because V has a name. + ValueSymbolTable *VST; + bool Failure = getSymTab(V, VST); + assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; + + // If these values are both in the same symtab, we can do this very fast. + // This works even if both values have no symtab yet. + if (ST == VST) { + // Take the name! + setValueName(V->getValueName()); + V->setValueName(nullptr); + getValueName()->setValue(this); + return; + } + + // Otherwise, things are slightly more complex. Remove V's name from VST and + // then reinsert it into ST. + + if (VST) + VST->removeValueName(V->getValueName()); + setValueName(V->getValueName()); + V->setValueName(nullptr); + getValueName()->setValue(this); + + if (ST) + ST->reinsertValue(this); +} + +#ifndef NDEBUG +static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, + Constant *C) { + if (!Cache.insert(Expr).second) + return false; + + for (auto &O : Expr->operands()) { + if (O == C) + return true; + auto *CE = dyn_cast<ConstantExpr>(O); + if (!CE) + continue; + if (contains(Cache, CE, C)) + return true; + } + return false; +} + +static bool contains(Value *Expr, Value *V) { + if (Expr == V) + return true; + + auto *C = dyn_cast<Constant>(V); + if (!C) + return false; + + auto *CE = dyn_cast<ConstantExpr>(Expr); + if (!CE) + return false; + + SmallPtrSet<ConstantExpr *, 4> Cache; + return contains(Cache, CE, C); +} +#endif + +void Value::replaceAllUsesWith(Value *New) { + assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); + assert(!contains(New, this) && + "this->replaceAllUsesWith(expr(this)) is NOT valid!"); + assert(New->getType() == getType() && + "replaceAllUses of value with new value of different type!"); + + // Notify all ValueHandles (if present) that this value is going away. + if (HasValueHandle) + ValueHandleBase::ValueIsRAUWd(this, New); + if (isUsedByMetadata()) + ValueAsMetadata::handleRAUW(this, New); + + while (!use_empty()) { + Use &U = *UseList; + // Must handle Constants specially, we cannot call replaceUsesOfWith on a + // constant because they are uniqued. + if (auto *C = dyn_cast<Constant>(U.getUser())) { + if (!isa<GlobalValue>(C)) { + C->handleOperandChange(this, New, &U); + continue; + } + } + + U.set(New); + } + + if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) + BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); +} + +// Like replaceAllUsesWith except it does not handle constants or basic blocks. +// This routine leaves uses within BB. +void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { + assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); + assert(!contains(New, this) && + "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); + assert(New->getType() == getType() && + "replaceUses of value with new value of different type!"); + assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); + + use_iterator UI = use_begin(), E = use_end(); + for (; UI != E;) { + Use &U = *UI; + ++UI; + auto *Usr = dyn_cast<Instruction>(U.getUser()); + if (Usr && Usr->getParent() == BB) + continue; + U.set(New); + } + return; +} + +namespace { +// Various metrics for how much to strip off of pointers. +enum PointerStripKind { + PSK_ZeroIndices, + PSK_ZeroIndicesAndAliases, + PSK_InBoundsConstantIndices, + PSK_InBounds +}; + +template <PointerStripKind StripKind> +static Value *stripPointerCastsAndOffsets(Value *V) { + if (!V->getType()->isPointerTy()) + return V; + + // Even though we don't look through PHI nodes, we could be called on an + // instruction in an unreachable block, which may be on a cycle. + SmallPtrSet<Value *, 4> Visited; + + Visited.insert(V); + do { + if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + switch (StripKind) { + case PSK_ZeroIndicesAndAliases: + case PSK_ZeroIndices: + if (!GEP->hasAllZeroIndices()) + return V; + break; + case PSK_InBoundsConstantIndices: + if (!GEP->hasAllConstantIndices()) + return V; + // fallthrough + case PSK_InBounds: + if (!GEP->isInBounds()) + return V; + break; + } + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast || + Operator::getOpcode(V) == Instruction::AddrSpaceCast) { + V = cast<Operator>(V)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden()) + return V; + V = GA->getAliasee(); + } else { + return V; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } while (Visited.insert(V).second); + + return V; +} +} // namespace + +Value *Value::stripPointerCasts() { + return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); +} + +Value *Value::stripPointerCastsNoFollowAliases() { + return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); +} + +Value *Value::stripInBoundsConstantOffsets() { + return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); +} + +Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, + APInt &Offset) { + if (!getType()->isPointerTy()) + return this; + + assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>( + getType())->getAddressSpace()) && + "The offset must have exactly as many bits as our pointer."); + + // Even though we don't look through PHI nodes, we could be called on an + // instruction in an unreachable block, which may be on a cycle. + SmallPtrSet<Value *, 4> Visited; + Visited.insert(this); + Value *V = this; + do { + if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + if (!GEP->isInBounds()) + return V; + APInt GEPOffset(Offset); + if (!GEP->accumulateConstantOffset(DL, GEPOffset)) + return V; + Offset = GEPOffset; + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast || + Operator::getOpcode(V) == Instruction::AddrSpaceCast) { + V = cast<Operator>(V)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + V = GA->getAliasee(); + } else { + return V; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } while (Visited.insert(V).second); + + return V; +} + +Value *Value::stripInBoundsOffsets() { + return stripPointerCastsAndOffsets<PSK_InBounds>(this); +} + +Value *Value::DoPHITranslation(const BasicBlock *CurBB, + const BasicBlock *PredBB) { + PHINode *PN = dyn_cast<PHINode>(this); + if (PN && PN->getParent() == CurBB) + return PN->getIncomingValueForBlock(PredBB); + return this; +} + +LLVMContext &Value::getContext() const { return VTy->getContext(); } + +void Value::reverseUseList() { + if (!UseList || !UseList->Next) + // No need to reverse 0 or 1 uses. + return; + + Use *Head = UseList; + Use *Current = UseList->Next; + Head->Next = nullptr; + while (Current) { + Use *Next = Current->Next; + Current->Next = Head; + Head->setPrev(&Current->Next); + Head = Current; + Current = Next; + } + UseList = Head; + Head->setPrev(&UseList); +} + +//===----------------------------------------------------------------------===// +// ValueHandleBase Class +//===----------------------------------------------------------------------===// + +void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { + assert(List && "Handle list is null?"); + + // Splice ourselves into the list. + Next = *List; + *List = this; + setPrevPtr(List); + if (Next) { + Next->setPrevPtr(&Next); + assert(V == Next->V && "Added to wrong list?"); + } +} + +void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { + assert(List && "Must insert after existing node"); + + Next = List->Next; + setPrevPtr(&List->Next); + List->Next = this; + if (Next) + Next->setPrevPtr(&Next); +} + +void ValueHandleBase::AddToUseList() { + assert(V && "Null pointer doesn't have a use list!"); + + LLVMContextImpl *pImpl = V->getContext().pImpl; + + if (V->HasValueHandle) { + // If this value already has a ValueHandle, then it must be in the + // ValueHandles map already. + ValueHandleBase *&Entry = pImpl->ValueHandles[V]; + assert(Entry && "Value doesn't have any handles?"); + AddToExistingUseList(&Entry); + return; + } + + // Ok, it doesn't have any handles yet, so we must insert it into the + // DenseMap. However, doing this insertion could cause the DenseMap to + // reallocate itself, which would invalidate all of the PrevP pointers that + // point into the old table. Handle this by checking for reallocation and + // updating the stale pointers only if needed. + DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; + const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); + + ValueHandleBase *&Entry = Handles[V]; + assert(!Entry && "Value really did already have handles?"); + AddToExistingUseList(&Entry); + V->HasValueHandle = true; + + // If reallocation didn't happen or if this was the first insertion, don't + // walk the table. + if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || + Handles.size() == 1) { + return; + } + + // Okay, reallocation did happen. Fix the Prev Pointers. + for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), + E = Handles.end(); I != E; ++I) { + assert(I->second && I->first == I->second->V && + "List invariant broken!"); + I->second->setPrevPtr(&I->second); + } +} + +void ValueHandleBase::RemoveFromUseList() { + assert(V && V->HasValueHandle && + "Pointer doesn't have a use list!"); + + // Unlink this from its use list. + ValueHandleBase **PrevPtr = getPrevPtr(); + assert(*PrevPtr == this && "List invariant broken"); + + *PrevPtr = Next; + if (Next) { + assert(Next->getPrevPtr() == &Next && "List invariant broken"); + Next->setPrevPtr(PrevPtr); + return; + } + + // If the Next pointer was null, then it is possible that this was the last + // ValueHandle watching VP. If so, delete its entry from the ValueHandles + // map. + LLVMContextImpl *pImpl = V->getContext().pImpl; + DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; + if (Handles.isPointerIntoBucketsArray(PrevPtr)) { + Handles.erase(V); + V->HasValueHandle = false; + } +} + + +void ValueHandleBase::ValueIsDeleted(Value *V) { + assert(V->HasValueHandle && "Should only be called if ValueHandles present"); + + // Get the linked list base, which is guaranteed to exist since the + // HasValueHandle flag is set. + LLVMContextImpl *pImpl = V->getContext().pImpl; + ValueHandleBase *Entry = pImpl->ValueHandles[V]; + assert(Entry && "Value bit set but no entries exist"); + + // We use a local ValueHandleBase as an iterator so that ValueHandles can add + // and remove themselves from the list without breaking our iteration. This + // is not really an AssertingVH; we just have to give ValueHandleBase a kind. + // Note that we deliberately do not the support the case when dropping a value + // handle results in a new value handle being permanently added to the list + // (as might occur in theory for CallbackVH's): the new value handle will not + // be processed and the checking code will mete out righteous punishment if + // the handle is still present once we have finished processing all the other + // value handles (it is fine to momentarily add then remove a value handle). + for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { + Iterator.RemoveFromUseList(); + Iterator.AddToExistingUseListAfter(Entry); + assert(Entry->Next == &Iterator && "Loop invariant broken."); + + switch (Entry->getKind()) { + case Assert: + break; + case Tracking: + // Mark that this value has been deleted by setting it to an invalid Value + // pointer. + Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey()); + break; + case Weak: + // Weak just goes to null, which will unlink it from the list. + Entry->operator=(nullptr); + break; + case Callback: + // Forward to the subclass's implementation. + static_cast<CallbackVH*>(Entry)->deleted(); + break; + } + } + + // All callbacks, weak references, and assertingVHs should be dropped by now. + if (V->HasValueHandle) { +#ifndef NDEBUG // Only in +Asserts mode... + dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() + << "\n"; + if (pImpl->ValueHandles[V]->getKind() == Assert) + llvm_unreachable("An asserting value handle still pointed to this" + " value!"); + +#endif + llvm_unreachable("All references to V were not removed?"); + } +} + + +void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { + assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); + assert(Old != New && "Changing value into itself!"); + assert(Old->getType() == New->getType() && + "replaceAllUses of value with new value of different type!"); + + // Get the linked list base, which is guaranteed to exist since the + // HasValueHandle flag is set. + LLVMContextImpl *pImpl = Old->getContext().pImpl; + ValueHandleBase *Entry = pImpl->ValueHandles[Old]; + + assert(Entry && "Value bit set but no entries exist"); + + // We use a local ValueHandleBase as an iterator so that + // ValueHandles can add and remove themselves from the list without + // breaking our iteration. This is not really an AssertingVH; we + // just have to give ValueHandleBase some kind. + for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { + Iterator.RemoveFromUseList(); + Iterator.AddToExistingUseListAfter(Entry); + assert(Entry->Next == &Iterator && "Loop invariant broken."); + + switch (Entry->getKind()) { + case Assert: + // Asserting handle does not follow RAUW implicitly. + break; + case Tracking: + // Tracking goes to new value like a WeakVH. Note that this may make it + // something incompatible with its templated type. We don't want to have a + // virtual (or inline) interface to handle this though, so instead we make + // the TrackingVH accessors guarantee that a client never sees this value. + + // FALLTHROUGH + case Weak: + // Weak goes to the new value, which will unlink it from Old's list. + Entry->operator=(New); + break; + case Callback: + // Forward to the subclass's implementation. + static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); + break; + } + } + +#ifndef NDEBUG + // If any new tracking or weak value handles were added while processing the + // list, then complain about it now. + if (Old->HasValueHandle) + for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) + switch (Entry->getKind()) { + case Tracking: + case Weak: + dbgs() << "After RAUW from " << *Old->getType() << " %" + << Old->getName() << " to " << *New->getType() << " %" + << New->getName() << "\n"; + llvm_unreachable("A tracking or weak value handle still pointed to the" + " old value!\n"); + default: + break; + } +#endif +} + +// Pin the vtable to this file. +void CallbackVH::anchor() {} |