summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/IR/SafepointIRVerifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/IR/SafepointIRVerifier.cpp')
-rw-r--r--contrib/llvm/lib/IR/SafepointIRVerifier.cpp437
1 files changed, 437 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/SafepointIRVerifier.cpp b/contrib/llvm/lib/IR/SafepointIRVerifier.cpp
new file mode 100644
index 0000000..8b328c2
--- /dev/null
+++ b/contrib/llvm/lib/IR/SafepointIRVerifier.cpp
@@ -0,0 +1,437 @@
+//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Run a sanity check on the IR to ensure that Safepoints - if they've been
+// inserted - were inserted correctly. In particular, look for use of
+// non-relocated values after a safepoint. It's primary use is to check the
+// correctness of safepoint insertion immediately after insertion, but it can
+// also be used to verify that later transforms have not found a way to break
+// safepoint semenatics.
+//
+// In its current form, this verify checks a property which is sufficient, but
+// not neccessary for correctness. There are some cases where an unrelocated
+// pointer can be used after the safepoint. Consider this example:
+//
+// a = ...
+// b = ...
+// (a',b') = safepoint(a,b)
+// c = cmp eq a b
+// br c, ..., ....
+//
+// Because it is valid to reorder 'c' above the safepoint, this is legal. In
+// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
+// idioms like this. The verifier knows about these cases and avoids reporting
+// false positives.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/SafepointIRVerifier.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "safepoint-ir-verifier"
+
+using namespace llvm;
+
+/// This option is used for writing test cases. Instead of crashing the program
+/// when verification fails, report a message to the console (for FileCheck
+/// usage) and continue execution as if nothing happened.
+static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
+ cl::init(false));
+
+static void Verify(const Function &F, const DominatorTree &DT);
+
+struct SafepointIRVerifier : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ DominatorTree DT;
+ SafepointIRVerifier() : FunctionPass(ID) {
+ initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ DT.recalculate(F);
+ Verify(F, DT);
+ return false; // no modifications
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+
+ StringRef getPassName() const override { return "safepoint verifier"; }
+};
+
+void llvm::verifySafepointIR(Function &F) {
+ SafepointIRVerifier pass;
+ pass.runOnFunction(F);
+}
+
+char SafepointIRVerifier::ID = 0;
+
+FunctionPass *llvm::createSafepointIRVerifierPass() {
+ return new SafepointIRVerifier();
+}
+
+INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
+ "Safepoint IR Verifier", false, true)
+INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
+ "Safepoint IR Verifier", false, true)
+
+static bool isGCPointerType(Type *T) {
+ if (auto *PT = dyn_cast<PointerType>(T))
+ // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
+ // GC managed heap. We know that a pointer into this heap needs to be
+ // updated and that no other pointer does.
+ return (1 == PT->getAddressSpace());
+ return false;
+}
+
+static bool containsGCPtrType(Type *Ty) {
+ if (isGCPointerType(Ty))
+ return true;
+ if (VectorType *VT = dyn_cast<VectorType>(Ty))
+ return isGCPointerType(VT->getScalarType());
+ if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
+ return containsGCPtrType(AT->getElementType());
+ if (StructType *ST = dyn_cast<StructType>(Ty))
+ return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
+ containsGCPtrType);
+ return false;
+}
+
+// Debugging aid -- prints a [Begin, End) range of values.
+template<typename IteratorTy>
+static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
+ OS << "[ ";
+ while (Begin != End) {
+ OS << **Begin << " ";
+ ++Begin;
+ }
+ OS << "]";
+}
+
+/// The verifier algorithm is phrased in terms of availability. The set of
+/// values "available" at a given point in the control flow graph is the set of
+/// correctly relocated value at that point, and is a subset of the set of
+/// definitions dominating that point.
+
+/// State we compute and track per basic block.
+struct BasicBlockState {
+ // Set of values available coming in, before the phi nodes
+ DenseSet<const Value *> AvailableIn;
+
+ // Set of values available going out
+ DenseSet<const Value *> AvailableOut;
+
+ // AvailableOut minus AvailableIn.
+ // All elements are Instructions
+ DenseSet<const Value *> Contribution;
+
+ // True if this block contains a safepoint and thus AvailableIn does not
+ // contribute to AvailableOut.
+ bool Cleared = false;
+};
+
+
+/// Gather all the definitions dominating the start of BB into Result. This is
+/// simply the Defs introduced by every dominating basic block and the function
+/// arguments.
+static void GatherDominatingDefs(const BasicBlock *BB,
+ DenseSet<const Value *> &Result,
+ const DominatorTree &DT,
+ DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) {
+ DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
+
+ while (DTN->getIDom()) {
+ DTN = DTN->getIDom();
+ const auto &Defs = BlockMap[DTN->getBlock()]->Contribution;
+ Result.insert(Defs.begin(), Defs.end());
+ // If this block is 'Cleared', then nothing LiveIn to this block can be
+ // available after this block completes. Note: This turns out to be
+ // really important for reducing memory consuption of the initial available
+ // sets and thus peak memory usage by this verifier.
+ if (BlockMap[DTN->getBlock()]->Cleared)
+ return;
+ }
+
+ for (const Argument &A : BB->getParent()->args())
+ if (containsGCPtrType(A.getType()))
+ Result.insert(&A);
+}
+
+/// Model the effect of an instruction on the set of available values.
+static void TransferInstruction(const Instruction &I, bool &Cleared,
+ DenseSet<const Value *> &Available) {
+ if (isStatepoint(I)) {
+ Cleared = true;
+ Available.clear();
+ } else if (containsGCPtrType(I.getType()))
+ Available.insert(&I);
+}
+
+/// Compute the AvailableOut set for BB, based on the
+/// BasicBlockState BBS, which is the BasicBlockState for BB. FirstPass is set
+/// when the verifier runs for the first time computing the AvailableOut set
+/// for BB.
+static void TransferBlock(const BasicBlock *BB,
+ BasicBlockState &BBS, bool FirstPass) {
+
+ const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn;
+ DenseSet<const Value *> &AvailableOut = BBS.AvailableOut;
+
+ if (BBS.Cleared) {
+ // AvailableOut does not change no matter how the input changes, just
+ // leave it be. We need to force this calculation the first time so that
+ // we have a AvailableOut at all.
+ if (FirstPass) {
+ AvailableOut = BBS.Contribution;
+ }
+ } else {
+ // Otherwise, we need to reduce the AvailableOut set by things which are no
+ // longer in our AvailableIn
+ DenseSet<const Value *> Temp = BBS.Contribution;
+ set_union(Temp, AvailableIn);
+ AvailableOut = std::move(Temp);
+ }
+
+ DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
+ PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
+ dbgs() << " to ";
+ PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
+ dbgs() << "\n";);
+}
+
+/// A given derived pointer can have multiple base pointers through phi/selects.
+/// This type indicates when the base pointer is exclusively constant
+/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
+/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
+/// NonConstant.
+enum BaseType {
+ NonConstant = 1, // Base pointers is not exclusively constant.
+ ExclusivelyNull,
+ ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
+ // set of constants, but they are not exclusively
+ // null.
+};
+
+/// Return the baseType for Val which states whether Val is exclusively
+/// derived from constant/null, or not exclusively derived from constant.
+/// Val is exclusively derived off a constant base when all operands of phi and
+/// selects are derived off a constant base.
+static enum BaseType getBaseType(const Value *Val) {
+
+ SmallVector<const Value *, 32> Worklist;
+ DenseSet<const Value *> Visited;
+ bool isExclusivelyDerivedFromNull = true;
+ Worklist.push_back(Val);
+ // Strip through all the bitcasts and geps to get base pointer. Also check for
+ // the exclusive value when there can be multiple base pointers (through phis
+ // or selects).
+ while(!Worklist.empty()) {
+ const Value *V = Worklist.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ if (const auto *CI = dyn_cast<CastInst>(V)) {
+ Worklist.push_back(CI->stripPointerCasts());
+ continue;
+ }
+ if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
+ Worklist.push_back(GEP->getPointerOperand());
+ continue;
+ }
+ // Push all the incoming values of phi node into the worklist for
+ // processing.
+ if (const auto *PN = dyn_cast<PHINode>(V)) {
+ for (Value *InV: PN->incoming_values())
+ Worklist.push_back(InV);
+ continue;
+ }
+ if (const auto *SI = dyn_cast<SelectInst>(V)) {
+ // Push in the true and false values
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+ if (isa<Constant>(V)) {
+ // We found at least one base pointer which is non-null, so this derived
+ // pointer is not exclusively derived from null.
+ if (V != Constant::getNullValue(V->getType()))
+ isExclusivelyDerivedFromNull = false;
+ // Continue processing the remaining values to make sure it's exclusively
+ // constant.
+ continue;
+ }
+ // At this point, we know that the base pointer is not exclusively
+ // constant.
+ return BaseType::NonConstant;
+ }
+ // Now, we know that the base pointer is exclusively constant, but we need to
+ // differentiate between exclusive null constant and non-null constant.
+ return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
+ : BaseType::ExclusivelySomeConstant;
+}
+
+static void Verify(const Function &F, const DominatorTree &DT) {
+ SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
+ DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
+
+ DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n");
+ if (PrintOnly)
+ dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
+
+
+ for (const BasicBlock &BB : F) {
+ BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState;
+ for (const auto &I : BB)
+ TransferInstruction(I, BBS->Cleared, BBS->Contribution);
+ BlockMap[&BB] = BBS;
+ }
+
+ for (auto &BBI : BlockMap) {
+ GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap);
+ TransferBlock(BBI.first, *BBI.second, true);
+ }
+
+ SetVector<const BasicBlock *> Worklist;
+ for (auto &BBI : BlockMap)
+ Worklist.insert(BBI.first);
+
+ // This loop iterates the AvailableIn and AvailableOut sets to a fixed point.
+ // The AvailableIn and AvailableOut sets decrease as we iterate.
+ while (!Worklist.empty()) {
+ const BasicBlock *BB = Worklist.pop_back_val();
+ BasicBlockState *BBS = BlockMap[BB];
+
+ size_t OldInCount = BBS->AvailableIn.size();
+ for (const BasicBlock *PBB : predecessors(BB))
+ set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut);
+
+ if (OldInCount == BBS->AvailableIn.size())
+ continue;
+
+ assert(OldInCount > BBS->AvailableIn.size() && "invariant!");
+
+ size_t OldOutCount = BBS->AvailableOut.size();
+ TransferBlock(BB, *BBS, false);
+ if (OldOutCount != BBS->AvailableOut.size()) {
+ assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
+ Worklist.insert(succ_begin(BB), succ_end(BB));
+ }
+ }
+
+ // We now have all the information we need to decide if the use of a heap
+ // reference is legal or not, given our safepoint semantics.
+
+ bool AnyInvalidUses = false;
+
+ auto ReportInvalidUse = [&AnyInvalidUses](const Value &V,
+ const Instruction &I) {
+ errs() << "Illegal use of unrelocated value found!\n";
+ errs() << "Def: " << V << "\n";
+ errs() << "Use: " << I << "\n";
+ if (!PrintOnly)
+ abort();
+ AnyInvalidUses = true;
+ };
+
+ auto isNotExclusivelyConstantDerived = [](const Value *V) {
+ return getBaseType(V) == BaseType::NonConstant;
+ };
+
+ for (const BasicBlock &BB : F) {
+ // We destructively modify AvailableIn as we traverse the block instruction
+ // by instruction.
+ DenseSet<const Value *> &AvailableSet = BlockMap[&BB]->AvailableIn;
+ for (const Instruction &I : BB) {
+ if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
+ if (containsGCPtrType(PN->getType()))
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ const BasicBlock *InBB = PN->getIncomingBlock(i);
+ const Value *InValue = PN->getIncomingValue(i);
+
+ if (isNotExclusivelyConstantDerived(InValue) &&
+ !BlockMap[InBB]->AvailableOut.count(InValue))
+ ReportInvalidUse(*InValue, *PN);
+ }
+ } else if (isa<CmpInst>(I) &&
+ containsGCPtrType(I.getOperand(0)->getType())) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ enum BaseType baseTyLHS = getBaseType(LHS),
+ baseTyRHS = getBaseType(RHS);
+
+ // Returns true if LHS and RHS are unrelocated pointers and they are
+ // valid unrelocated uses.
+ auto hasValidUnrelocatedUse = [&AvailableSet, baseTyLHS, baseTyRHS, &LHS, &RHS] () {
+ // A cmp instruction has valid unrelocated pointer operands only if
+ // both operands are unrelocated pointers.
+ // In the comparison between two pointers, if one is an unrelocated
+ // use, the other *should be* an unrelocated use, for this
+ // instruction to contain valid unrelocated uses. This unrelocated
+ // use can be a null constant as well, or another unrelocated
+ // pointer.
+ if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
+ return false;
+ // Constant pointers (that are not exclusively null) may have
+ // meaning in different VMs, so we cannot reorder the compare
+ // against constant pointers before the safepoint. In other words,
+ // comparison of an unrelocated use against a non-null constant
+ // maybe invalid.
+ if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
+ baseTyRHS == BaseType::NonConstant) ||
+ (baseTyLHS == BaseType::NonConstant &&
+ baseTyRHS == BaseType::ExclusivelySomeConstant))
+ return false;
+ // All other cases are valid cases enumerated below:
+ // 1. Comparison between an exlusively derived null pointer and a
+ // constant base pointer.
+ // 2. Comparison between an exlusively derived null pointer and a
+ // non-constant unrelocated base pointer.
+ // 3. Comparison between 2 unrelocated pointers.
+ return true;
+ };
+ if (!hasValidUnrelocatedUse()) {
+ // Print out all non-constant derived pointers that are unrelocated
+ // uses, which are invalid.
+ if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
+ ReportInvalidUse(*LHS, I);
+ if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
+ ReportInvalidUse(*RHS, I);
+ }
+ } else {
+ for (const Value *V : I.operands())
+ if (containsGCPtrType(V->getType()) &&
+ isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
+ ReportInvalidUse(*V, I);
+ }
+
+ bool Cleared = false;
+ TransferInstruction(I, Cleared, AvailableSet);
+ (void)Cleared;
+ }
+ }
+
+ if (PrintOnly && !AnyInvalidUses) {
+ dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
+ << "\n";
+ }
+}
OpenPOWER on IntegriCloud