summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/IR/Metadata.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/IR/Metadata.cpp')
-rw-r--r--contrib/llvm/lib/IR/Metadata.cpp1253
1 files changed, 1253 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/Metadata.cpp b/contrib/llvm/lib/IR/Metadata.cpp
new file mode 100644
index 0000000..1abcf0d
--- /dev/null
+++ b/contrib/llvm/lib/IR/Metadata.cpp
@@ -0,0 +1,1253 @@
+//===- Metadata.cpp - Implement Metadata classes --------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Metadata classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Metadata.h"
+#include "LLVMContextImpl.h"
+#include "MetadataImpl.h"
+#include "SymbolTableListTraitsImpl.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ValueHandle.h"
+
+using namespace llvm;
+
+MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
+ : Value(Ty, MetadataAsValueVal), MD(MD) {
+ track();
+}
+
+MetadataAsValue::~MetadataAsValue() {
+ getType()->getContext().pImpl->MetadataAsValues.erase(MD);
+ untrack();
+}
+
+/// \brief Canonicalize metadata arguments to intrinsics.
+///
+/// To support bitcode upgrades (and assembly semantic sugar) for \a
+/// MetadataAsValue, we need to canonicalize certain metadata.
+///
+/// - nullptr is replaced by an empty MDNode.
+/// - An MDNode with a single null operand is replaced by an empty MDNode.
+/// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
+///
+/// This maintains readability of bitcode from when metadata was a type of
+/// value, and these bridges were unnecessary.
+static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
+ Metadata *MD) {
+ if (!MD)
+ // !{}
+ return MDNode::get(Context, None);
+
+ // Return early if this isn't a single-operand MDNode.
+ auto *N = dyn_cast<MDNode>(MD);
+ if (!N || N->getNumOperands() != 1)
+ return MD;
+
+ if (!N->getOperand(0))
+ // !{}
+ return MDNode::get(Context, None);
+
+ if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
+ // Look through the MDNode.
+ return C;
+
+ return MD;
+}
+
+MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
+ MD = canonicalizeMetadataForValue(Context, MD);
+ auto *&Entry = Context.pImpl->MetadataAsValues[MD];
+ if (!Entry)
+ Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
+ return Entry;
+}
+
+MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
+ Metadata *MD) {
+ MD = canonicalizeMetadataForValue(Context, MD);
+ auto &Store = Context.pImpl->MetadataAsValues;
+ return Store.lookup(MD);
+}
+
+void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
+ LLVMContext &Context = getContext();
+ MD = canonicalizeMetadataForValue(Context, MD);
+ auto &Store = Context.pImpl->MetadataAsValues;
+
+ // Stop tracking the old metadata.
+ Store.erase(this->MD);
+ untrack();
+ this->MD = nullptr;
+
+ // Start tracking MD, or RAUW if necessary.
+ auto *&Entry = Store[MD];
+ if (Entry) {
+ replaceAllUsesWith(Entry);
+ delete this;
+ return;
+ }
+
+ this->MD = MD;
+ track();
+ Entry = this;
+}
+
+void MetadataAsValue::track() {
+ if (MD)
+ MetadataTracking::track(&MD, *MD, *this);
+}
+
+void MetadataAsValue::untrack() {
+ if (MD)
+ MetadataTracking::untrack(MD);
+}
+
+void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
+ bool WasInserted =
+ UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
+ .second;
+ (void)WasInserted;
+ assert(WasInserted && "Expected to add a reference");
+
+ ++NextIndex;
+ assert(NextIndex != 0 && "Unexpected overflow");
+}
+
+void ReplaceableMetadataImpl::dropRef(void *Ref) {
+ bool WasErased = UseMap.erase(Ref);
+ (void)WasErased;
+ assert(WasErased && "Expected to drop a reference");
+}
+
+void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
+ const Metadata &MD) {
+ auto I = UseMap.find(Ref);
+ assert(I != UseMap.end() && "Expected to move a reference");
+ auto OwnerAndIndex = I->second;
+ UseMap.erase(I);
+ bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
+ (void)WasInserted;
+ assert(WasInserted && "Expected to add a reference");
+
+ // Check that the references are direct if there's no owner.
+ (void)MD;
+ assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
+ "Reference without owner must be direct");
+ assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
+ "Reference without owner must be direct");
+}
+
+void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
+ assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) &&
+ "Expected non-temp node");
+
+ if (UseMap.empty())
+ return;
+
+ // Copy out uses since UseMap will get touched below.
+ typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
+ SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
+ std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
+ return L.second.second < R.second.second;
+ });
+ for (const auto &Pair : Uses) {
+ // Check that this Ref hasn't disappeared after RAUW (when updating a
+ // previous Ref).
+ if (!UseMap.count(Pair.first))
+ continue;
+
+ OwnerTy Owner = Pair.second.first;
+ if (!Owner) {
+ // Update unowned tracking references directly.
+ Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
+ Ref = MD;
+ if (MD)
+ MetadataTracking::track(Ref);
+ UseMap.erase(Pair.first);
+ continue;
+ }
+
+ // Check for MetadataAsValue.
+ if (Owner.is<MetadataAsValue *>()) {
+ Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
+ continue;
+ }
+
+ // There's a Metadata owner -- dispatch.
+ Metadata *OwnerMD = Owner.get<Metadata *>();
+ switch (OwnerMD->getMetadataID()) {
+#define HANDLE_METADATA_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
+ continue;
+#include "llvm/IR/Metadata.def"
+ default:
+ llvm_unreachable("Invalid metadata subclass");
+ }
+ }
+ assert(UseMap.empty() && "Expected all uses to be replaced");
+}
+
+void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
+ if (UseMap.empty())
+ return;
+
+ if (!ResolveUsers) {
+ UseMap.clear();
+ return;
+ }
+
+ // Copy out uses since UseMap could get touched below.
+ typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
+ SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
+ std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
+ return L.second.second < R.second.second;
+ });
+ UseMap.clear();
+ for (const auto &Pair : Uses) {
+ auto Owner = Pair.second.first;
+ if (!Owner)
+ continue;
+ if (Owner.is<MetadataAsValue *>())
+ continue;
+
+ // Resolve MDNodes that point at this.
+ auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
+ if (!OwnerMD)
+ continue;
+ if (OwnerMD->isResolved())
+ continue;
+ OwnerMD->decrementUnresolvedOperandCount();
+ }
+}
+
+static Function *getLocalFunction(Value *V) {
+ assert(V && "Expected value");
+ if (auto *A = dyn_cast<Argument>(V))
+ return A->getParent();
+ if (BasicBlock *BB = cast<Instruction>(V)->getParent())
+ return BB->getParent();
+ return nullptr;
+}
+
+ValueAsMetadata *ValueAsMetadata::get(Value *V) {
+ assert(V && "Unexpected null Value");
+
+ auto &Context = V->getContext();
+ auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
+ if (!Entry) {
+ assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
+ "Expected constant or function-local value");
+ assert(!V->IsUsedByMD &&
+ "Expected this to be the only metadata use");
+ V->IsUsedByMD = true;
+ if (auto *C = dyn_cast<Constant>(V))
+ Entry = new ConstantAsMetadata(C);
+ else
+ Entry = new LocalAsMetadata(V);
+ }
+
+ return Entry;
+}
+
+ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
+ assert(V && "Unexpected null Value");
+ return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
+}
+
+void ValueAsMetadata::handleDeletion(Value *V) {
+ assert(V && "Expected valid value");
+
+ auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
+ auto I = Store.find(V);
+ if (I == Store.end())
+ return;
+
+ // Remove old entry from the map.
+ ValueAsMetadata *MD = I->second;
+ assert(MD && "Expected valid metadata");
+ assert(MD->getValue() == V && "Expected valid mapping");
+ Store.erase(I);
+
+ // Delete the metadata.
+ MD->replaceAllUsesWith(nullptr);
+ delete MD;
+}
+
+void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
+ assert(From && "Expected valid value");
+ assert(To && "Expected valid value");
+ assert(From != To && "Expected changed value");
+ assert(From->getType() == To->getType() && "Unexpected type change");
+
+ LLVMContext &Context = From->getType()->getContext();
+ auto &Store = Context.pImpl->ValuesAsMetadata;
+ auto I = Store.find(From);
+ if (I == Store.end()) {
+ assert(!From->IsUsedByMD &&
+ "Expected From not to be used by metadata");
+ return;
+ }
+
+ // Remove old entry from the map.
+ assert(From->IsUsedByMD &&
+ "Expected From to be used by metadata");
+ From->IsUsedByMD = false;
+ ValueAsMetadata *MD = I->second;
+ assert(MD && "Expected valid metadata");
+ assert(MD->getValue() == From && "Expected valid mapping");
+ Store.erase(I);
+
+ if (isa<LocalAsMetadata>(MD)) {
+ if (auto *C = dyn_cast<Constant>(To)) {
+ // Local became a constant.
+ MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
+ delete MD;
+ return;
+ }
+ if (getLocalFunction(From) && getLocalFunction(To) &&
+ getLocalFunction(From) != getLocalFunction(To)) {
+ // Function changed.
+ MD->replaceAllUsesWith(nullptr);
+ delete MD;
+ return;
+ }
+ } else if (!isa<Constant>(To)) {
+ // Changed to function-local value.
+ MD->replaceAllUsesWith(nullptr);
+ delete MD;
+ return;
+ }
+
+ auto *&Entry = Store[To];
+ if (Entry) {
+ // The target already exists.
+ MD->replaceAllUsesWith(Entry);
+ delete MD;
+ return;
+ }
+
+ // Update MD in place (and update the map entry).
+ assert(!To->IsUsedByMD &&
+ "Expected this to be the only metadata use");
+ To->IsUsedByMD = true;
+ MD->V = To;
+ Entry = MD;
+}
+
+//===----------------------------------------------------------------------===//
+// MDString implementation.
+//
+
+MDString *MDString::get(LLVMContext &Context, StringRef Str) {
+ auto &Store = Context.pImpl->MDStringCache;
+ auto I = Store.find(Str);
+ if (I != Store.end())
+ return &I->second;
+
+ auto *Entry =
+ StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
+ bool WasInserted = Store.insert(Entry);
+ (void)WasInserted;
+ assert(WasInserted && "Expected entry to be inserted");
+ Entry->second.Entry = Entry;
+ return &Entry->second;
+}
+
+StringRef MDString::getString() const {
+ assert(Entry && "Expected to find string map entry");
+ return Entry->first();
+}
+
+//===----------------------------------------------------------------------===//
+// MDNode implementation.
+//
+
+// Assert that the MDNode types will not be unaligned by the objects
+// prepended to them.
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ static_assert( \
+ llvm::AlignOf<uint64_t>::Alignment >= llvm::AlignOf<CLASS>::Alignment, \
+ "Alignment is insufficient after objects prepended to " #CLASS);
+#include "llvm/IR/Metadata.def"
+
+void *MDNode::operator new(size_t Size, unsigned NumOps) {
+ size_t OpSize = NumOps * sizeof(MDOperand);
+ // uint64_t is the most aligned type we need support (ensured by static_assert
+ // above)
+ OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
+ void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
+ MDOperand *O = static_cast<MDOperand *>(Ptr);
+ for (MDOperand *E = O - NumOps; O != E; --O)
+ (void)new (O - 1) MDOperand;
+ return Ptr;
+}
+
+void MDNode::operator delete(void *Mem) {
+ MDNode *N = static_cast<MDNode *>(Mem);
+ size_t OpSize = N->NumOperands * sizeof(MDOperand);
+ OpSize = RoundUpToAlignment(OpSize, llvm::alignOf<uint64_t>());
+
+ MDOperand *O = static_cast<MDOperand *>(Mem);
+ for (MDOperand *E = O - N->NumOperands; O != E; --O)
+ (O - 1)->~MDOperand();
+ ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
+}
+
+MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
+ ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
+ : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
+ NumUnresolved(0), Context(Context) {
+ unsigned Op = 0;
+ for (Metadata *MD : Ops1)
+ setOperand(Op++, MD);
+ for (Metadata *MD : Ops2)
+ setOperand(Op++, MD);
+
+ if (isDistinct())
+ return;
+
+ if (isUniqued())
+ // Check whether any operands are unresolved, requiring re-uniquing. If
+ // not, don't support RAUW.
+ if (!countUnresolvedOperands())
+ return;
+
+ this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context));
+}
+
+TempMDNode MDNode::clone() const {
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid MDNode subclass");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case CLASS##Kind: \
+ return cast<CLASS>(this)->cloneImpl();
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+static bool isOperandUnresolved(Metadata *Op) {
+ if (auto *N = dyn_cast_or_null<MDNode>(Op))
+ return !N->isResolved();
+ return false;
+}
+
+unsigned MDNode::countUnresolvedOperands() {
+ assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
+ NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
+ return NumUnresolved;
+}
+
+void MDNode::makeUniqued() {
+ assert(isTemporary() && "Expected this to be temporary");
+ assert(!isResolved() && "Expected this to be unresolved");
+
+ // Enable uniquing callbacks.
+ for (auto &Op : mutable_operands())
+ Op.reset(Op.get(), this);
+
+ // Make this 'uniqued'.
+ Storage = Uniqued;
+ if (!countUnresolvedOperands())
+ resolve();
+
+ assert(isUniqued() && "Expected this to be uniqued");
+}
+
+void MDNode::makeDistinct() {
+ assert(isTemporary() && "Expected this to be temporary");
+ assert(!isResolved() && "Expected this to be unresolved");
+
+ // Pretend to be uniqued, resolve the node, and then store in distinct table.
+ Storage = Uniqued;
+ resolve();
+ storeDistinctInContext();
+
+ assert(isDistinct() && "Expected this to be distinct");
+ assert(isResolved() && "Expected this to be resolved");
+}
+
+void MDNode::resolve() {
+ assert(isUniqued() && "Expected this to be uniqued");
+ assert(!isResolved() && "Expected this to be unresolved");
+
+ // Move the map, so that this immediately looks resolved.
+ auto Uses = Context.takeReplaceableUses();
+ NumUnresolved = 0;
+ assert(isResolved() && "Expected this to be resolved");
+
+ // Drop RAUW support.
+ Uses->resolveAllUses();
+}
+
+void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
+ assert(NumUnresolved != 0 && "Expected unresolved operands");
+
+ // Check if an operand was resolved.
+ if (!isOperandUnresolved(Old)) {
+ if (isOperandUnresolved(New))
+ // An operand was un-resolved!
+ ++NumUnresolved;
+ } else if (!isOperandUnresolved(New))
+ decrementUnresolvedOperandCount();
+}
+
+void MDNode::decrementUnresolvedOperandCount() {
+ if (!--NumUnresolved)
+ // Last unresolved operand has just been resolved.
+ resolve();
+}
+
+void MDNode::resolveCycles() {
+ if (isResolved())
+ return;
+
+ // Resolve this node immediately.
+ resolve();
+
+ // Resolve all operands.
+ for (const auto &Op : operands()) {
+ auto *N = dyn_cast_or_null<MDNode>(Op);
+ if (!N)
+ continue;
+
+ assert(!N->isTemporary() &&
+ "Expected all forward declarations to be resolved");
+ if (!N->isResolved())
+ N->resolveCycles();
+ }
+}
+
+static bool hasSelfReference(MDNode *N) {
+ for (Metadata *MD : N->operands())
+ if (MD == N)
+ return true;
+ return false;
+}
+
+MDNode *MDNode::replaceWithPermanentImpl() {
+ if (hasSelfReference(this))
+ return replaceWithDistinctImpl();
+ return replaceWithUniquedImpl();
+}
+
+MDNode *MDNode::replaceWithUniquedImpl() {
+ // Try to uniquify in place.
+ MDNode *UniquedNode = uniquify();
+
+ if (UniquedNode == this) {
+ makeUniqued();
+ return this;
+ }
+
+ // Collision, so RAUW instead.
+ replaceAllUsesWith(UniquedNode);
+ deleteAsSubclass();
+ return UniquedNode;
+}
+
+MDNode *MDNode::replaceWithDistinctImpl() {
+ makeDistinct();
+ return this;
+}
+
+void MDTuple::recalculateHash() {
+ setHash(MDTupleInfo::KeyTy::calculateHash(this));
+}
+
+void MDNode::dropAllReferences() {
+ for (unsigned I = 0, E = NumOperands; I != E; ++I)
+ setOperand(I, nullptr);
+ if (!isResolved()) {
+ Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
+ (void)Context.takeReplaceableUses();
+ }
+}
+
+void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
+ unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
+ assert(Op < getNumOperands() && "Expected valid operand");
+
+ if (!isUniqued()) {
+ // This node is not uniqued. Just set the operand and be done with it.
+ setOperand(Op, New);
+ return;
+ }
+
+ // This node is uniqued.
+ eraseFromStore();
+
+ Metadata *Old = getOperand(Op);
+ setOperand(Op, New);
+
+ // Drop uniquing for self-reference cycles.
+ if (New == this) {
+ if (!isResolved())
+ resolve();
+ storeDistinctInContext();
+ return;
+ }
+
+ // Re-unique the node.
+ auto *Uniqued = uniquify();
+ if (Uniqued == this) {
+ if (!isResolved())
+ resolveAfterOperandChange(Old, New);
+ return;
+ }
+
+ // Collision.
+ if (!isResolved()) {
+ // Still unresolved, so RAUW.
+ //
+ // First, clear out all operands to prevent any recursion (similar to
+ // dropAllReferences(), but we still need the use-list).
+ for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
+ setOperand(O, nullptr);
+ Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
+ deleteAsSubclass();
+ return;
+ }
+
+ // Store in non-uniqued form if RAUW isn't possible.
+ storeDistinctInContext();
+}
+
+void MDNode::deleteAsSubclass() {
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid subclass of MDNode");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case CLASS##Kind: \
+ delete cast<CLASS>(this); \
+ break;
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+template <class T, class InfoT>
+static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
+ if (T *U = getUniqued(Store, N))
+ return U;
+
+ Store.insert(N);
+ return N;
+}
+
+template <class NodeTy> struct MDNode::HasCachedHash {
+ typedef char Yes[1];
+ typedef char No[2];
+ template <class U, U Val> struct SFINAE {};
+
+ template <class U>
+ static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
+ template <class U> static No &check(...);
+
+ static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
+};
+
+MDNode *MDNode::uniquify() {
+ assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
+
+ // Try to insert into uniquing store.
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid subclass of MDNode");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case CLASS##Kind: { \
+ CLASS *SubclassThis = cast<CLASS>(this); \
+ std::integral_constant<bool, HasCachedHash<CLASS>::value> \
+ ShouldRecalculateHash; \
+ dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
+ return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
+ }
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+void MDNode::eraseFromStore() {
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid subclass of MDNode");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case CLASS##Kind: \
+ getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
+ break;
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
+ StorageType Storage, bool ShouldCreate) {
+ unsigned Hash = 0;
+ if (Storage == Uniqued) {
+ MDTupleInfo::KeyTy Key(MDs);
+ if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
+ return N;
+ if (!ShouldCreate)
+ return nullptr;
+ Hash = Key.getHash();
+ } else {
+ assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
+ }
+
+ return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
+ Storage, Context.pImpl->MDTuples);
+}
+
+void MDNode::deleteTemporary(MDNode *N) {
+ assert(N->isTemporary() && "Expected temporary node");
+ N->replaceAllUsesWith(nullptr);
+ N->deleteAsSubclass();
+}
+
+void MDNode::storeDistinctInContext() {
+ assert(isResolved() && "Expected resolved nodes");
+ Storage = Distinct;
+
+ // Reset the hash.
+ switch (getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid subclass of MDNode");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case CLASS##Kind: { \
+ std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
+ dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
+ break; \
+ }
+#include "llvm/IR/Metadata.def"
+ }
+
+ getContext().pImpl->DistinctMDNodes.insert(this);
+}
+
+void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
+ if (getOperand(I) == New)
+ return;
+
+ if (!isUniqued()) {
+ setOperand(I, New);
+ return;
+ }
+
+ handleChangedOperand(mutable_begin() + I, New);
+}
+
+void MDNode::setOperand(unsigned I, Metadata *New) {
+ assert(I < NumOperands);
+ mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
+}
+
+/// \brief Get a node, or a self-reference that looks like it.
+///
+/// Special handling for finding self-references, for use by \a
+/// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
+/// when self-referencing nodes were still uniqued. If the first operand has
+/// the same operands as \c Ops, return the first operand instead.
+static MDNode *getOrSelfReference(LLVMContext &Context,
+ ArrayRef<Metadata *> Ops) {
+ if (!Ops.empty())
+ if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
+ if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
+ for (unsigned I = 1, E = Ops.size(); I != E; ++I)
+ if (Ops[I] != N->getOperand(I))
+ return MDNode::get(Context, Ops);
+ return N;
+ }
+
+ return MDNode::get(Context, Ops);
+}
+
+MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
+ if (!A)
+ return B;
+ if (!B)
+ return A;
+
+ SmallVector<Metadata *, 4> MDs;
+ MDs.reserve(A->getNumOperands() + B->getNumOperands());
+ MDs.append(A->op_begin(), A->op_end());
+ MDs.append(B->op_begin(), B->op_end());
+
+ // FIXME: This preserves long-standing behaviour, but is it really the right
+ // behaviour? Or was that an unintended side-effect of node uniquing?
+ return getOrSelfReference(A->getContext(), MDs);
+}
+
+MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
+ if (!A || !B)
+ return nullptr;
+
+ SmallVector<Metadata *, 4> MDs;
+ for (Metadata *MD : A->operands())
+ if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
+ MDs.push_back(MD);
+
+ // FIXME: This preserves long-standing behaviour, but is it really the right
+ // behaviour? Or was that an unintended side-effect of node uniquing?
+ return getOrSelfReference(A->getContext(), MDs);
+}
+
+MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
+ if (!A || !B)
+ return nullptr;
+
+ SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
+ for (Metadata *MD : A->operands())
+ if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
+ MDs.push_back(MD);
+
+ // FIXME: This preserves long-standing behaviour, but is it really the right
+ // behaviour? Or was that an unintended side-effect of node uniquing?
+ return getOrSelfReference(A->getContext(), MDs);
+}
+
+MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
+ if (!A || !B)
+ return nullptr;
+
+ APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
+ APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
+ if (AVal.compare(BVal) == APFloat::cmpLessThan)
+ return A;
+ return B;
+}
+
+static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
+ return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
+}
+
+static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
+ return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
+}
+
+static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
+ ConstantInt *Low, ConstantInt *High) {
+ ConstantRange NewRange(Low->getValue(), High->getValue());
+ unsigned Size = EndPoints.size();
+ APInt LB = EndPoints[Size - 2]->getValue();
+ APInt LE = EndPoints[Size - 1]->getValue();
+ ConstantRange LastRange(LB, LE);
+ if (canBeMerged(NewRange, LastRange)) {
+ ConstantRange Union = LastRange.unionWith(NewRange);
+ Type *Ty = High->getType();
+ EndPoints[Size - 2] =
+ cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
+ EndPoints[Size - 1] =
+ cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
+ return true;
+ }
+ return false;
+}
+
+static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
+ ConstantInt *Low, ConstantInt *High) {
+ if (!EndPoints.empty())
+ if (tryMergeRange(EndPoints, Low, High))
+ return;
+
+ EndPoints.push_back(Low);
+ EndPoints.push_back(High);
+}
+
+MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
+ // Given two ranges, we want to compute the union of the ranges. This
+ // is slightly complitade by having to combine the intervals and merge
+ // the ones that overlap.
+
+ if (!A || !B)
+ return nullptr;
+
+ if (A == B)
+ return A;
+
+ // First, walk both lists in older of the lower boundary of each interval.
+ // At each step, try to merge the new interval to the last one we adedd.
+ SmallVector<ConstantInt *, 4> EndPoints;
+ int AI = 0;
+ int BI = 0;
+ int AN = A->getNumOperands() / 2;
+ int BN = B->getNumOperands() / 2;
+ while (AI < AN && BI < BN) {
+ ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
+ ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
+
+ if (ALow->getValue().slt(BLow->getValue())) {
+ addRange(EndPoints, ALow,
+ mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
+ ++AI;
+ } else {
+ addRange(EndPoints, BLow,
+ mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
+ ++BI;
+ }
+ }
+ while (AI < AN) {
+ addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
+ mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
+ ++AI;
+ }
+ while (BI < BN) {
+ addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
+ mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
+ ++BI;
+ }
+
+ // If we have more than 2 ranges (4 endpoints) we have to try to merge
+ // the last and first ones.
+ unsigned Size = EndPoints.size();
+ if (Size > 4) {
+ ConstantInt *FB = EndPoints[0];
+ ConstantInt *FE = EndPoints[1];
+ if (tryMergeRange(EndPoints, FB, FE)) {
+ for (unsigned i = 0; i < Size - 2; ++i) {
+ EndPoints[i] = EndPoints[i + 2];
+ }
+ EndPoints.resize(Size - 2);
+ }
+ }
+
+ // If in the end we have a single range, it is possible that it is now the
+ // full range. Just drop the metadata in that case.
+ if (EndPoints.size() == 2) {
+ ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
+ if (Range.isFullSet())
+ return nullptr;
+ }
+
+ SmallVector<Metadata *, 4> MDs;
+ MDs.reserve(EndPoints.size());
+ for (auto *I : EndPoints)
+ MDs.push_back(ConstantAsMetadata::get(I));
+ return MDNode::get(A->getContext(), MDs);
+}
+
+//===----------------------------------------------------------------------===//
+// NamedMDNode implementation.
+//
+
+static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
+ return *(SmallVector<TrackingMDRef, 4> *)Operands;
+}
+
+NamedMDNode::NamedMDNode(const Twine &N)
+ : Name(N.str()), Parent(nullptr),
+ Operands(new SmallVector<TrackingMDRef, 4>()) {}
+
+NamedMDNode::~NamedMDNode() {
+ dropAllReferences();
+ delete &getNMDOps(Operands);
+}
+
+unsigned NamedMDNode::getNumOperands() const {
+ return (unsigned)getNMDOps(Operands).size();
+}
+
+MDNode *NamedMDNode::getOperand(unsigned i) const {
+ assert(i < getNumOperands() && "Invalid Operand number!");
+ auto *N = getNMDOps(Operands)[i].get();
+ return cast_or_null<MDNode>(N);
+}
+
+void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
+
+void NamedMDNode::setOperand(unsigned I, MDNode *New) {
+ assert(I < getNumOperands() && "Invalid operand number");
+ getNMDOps(Operands)[I].reset(New);
+}
+
+void NamedMDNode::eraseFromParent() {
+ getParent()->eraseNamedMetadata(this);
+}
+
+void NamedMDNode::dropAllReferences() {
+ getNMDOps(Operands).clear();
+}
+
+StringRef NamedMDNode::getName() const {
+ return StringRef(Name);
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Metadata method implementations.
+//
+void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
+ for (auto &I : Attachments)
+ if (I.first == ID) {
+ I.second.reset(&MD);
+ return;
+ }
+ Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
+ std::make_tuple(&MD));
+}
+
+void MDAttachmentMap::erase(unsigned ID) {
+ if (empty())
+ return;
+
+ // Common case is one/last value.
+ if (Attachments.back().first == ID) {
+ Attachments.pop_back();
+ return;
+ }
+
+ for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
+ ++I)
+ if (I->first == ID) {
+ *I = std::move(Attachments.back());
+ Attachments.pop_back();
+ return;
+ }
+}
+
+MDNode *MDAttachmentMap::lookup(unsigned ID) const {
+ for (const auto &I : Attachments)
+ if (I.first == ID)
+ return I.second;
+ return nullptr;
+}
+
+void MDAttachmentMap::getAll(
+ SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
+ Result.append(Attachments.begin(), Attachments.end());
+
+ // Sort the resulting array so it is stable.
+ if (Result.size() > 1)
+ array_pod_sort(Result.begin(), Result.end());
+}
+
+void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
+ if (!Node && !hasMetadata())
+ return;
+ setMetadata(getContext().getMDKindID(Kind), Node);
+}
+
+MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
+ return getMetadataImpl(getContext().getMDKindID(Kind));
+}
+
+void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
+ SmallSet<unsigned, 5> KnownSet;
+ KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
+
+ // Drop debug if needed
+ if (KnownSet.erase(LLVMContext::MD_dbg))
+ DbgLoc = DebugLoc();
+
+ if (!hasMetadataHashEntry())
+ return; // Nothing to remove!
+
+ auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
+
+ if (KnownSet.empty()) {
+ // Just drop our entry at the store.
+ InstructionMetadata.erase(this);
+ setHasMetadataHashEntry(false);
+ return;
+ }
+
+ auto &Info = InstructionMetadata[this];
+ Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
+ return !KnownSet.count(I.first);
+ });
+
+ if (Info.empty()) {
+ // Drop our entry at the store.
+ InstructionMetadata.erase(this);
+ setHasMetadataHashEntry(false);
+ }
+}
+
+/// setMetadata - Set the metadata of of the specified kind to the specified
+/// node. This updates/replaces metadata if already present, or removes it if
+/// Node is null.
+void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
+ if (!Node && !hasMetadata())
+ return;
+
+ // Handle 'dbg' as a special case since it is not stored in the hash table.
+ if (KindID == LLVMContext::MD_dbg) {
+ DbgLoc = DebugLoc(Node);
+ return;
+ }
+
+ // Handle the case when we're adding/updating metadata on an instruction.
+ if (Node) {
+ auto &Info = getContext().pImpl->InstructionMetadata[this];
+ assert(!Info.empty() == hasMetadataHashEntry() &&
+ "HasMetadata bit is wonked");
+ if (Info.empty())
+ setHasMetadataHashEntry(true);
+ Info.set(KindID, *Node);
+ return;
+ }
+
+ // Otherwise, we're removing metadata from an instruction.
+ assert((hasMetadataHashEntry() ==
+ (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
+ "HasMetadata bit out of date!");
+ if (!hasMetadataHashEntry())
+ return; // Nothing to remove!
+ auto &Info = getContext().pImpl->InstructionMetadata[this];
+
+ // Handle removal of an existing value.
+ Info.erase(KindID);
+
+ if (!Info.empty())
+ return;
+
+ getContext().pImpl->InstructionMetadata.erase(this);
+ setHasMetadataHashEntry(false);
+}
+
+void Instruction::setAAMetadata(const AAMDNodes &N) {
+ setMetadata(LLVMContext::MD_tbaa, N.TBAA);
+ setMetadata(LLVMContext::MD_alias_scope, N.Scope);
+ setMetadata(LLVMContext::MD_noalias, N.NoAlias);
+}
+
+MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
+ // Handle 'dbg' as a special case since it is not stored in the hash table.
+ if (KindID == LLVMContext::MD_dbg)
+ return DbgLoc.getAsMDNode();
+
+ if (!hasMetadataHashEntry())
+ return nullptr;
+ auto &Info = getContext().pImpl->InstructionMetadata[this];
+ assert(!Info.empty() && "bit out of sync with hash table");
+
+ return Info.lookup(KindID);
+}
+
+void Instruction::getAllMetadataImpl(
+ SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
+ Result.clear();
+
+ // Handle 'dbg' as a special case since it is not stored in the hash table.
+ if (DbgLoc) {
+ Result.push_back(
+ std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
+ if (!hasMetadataHashEntry()) return;
+ }
+
+ assert(hasMetadataHashEntry() &&
+ getContext().pImpl->InstructionMetadata.count(this) &&
+ "Shouldn't have called this");
+ const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
+ assert(!Info.empty() && "Shouldn't have called this");
+ Info.getAll(Result);
+}
+
+void Instruction::getAllMetadataOtherThanDebugLocImpl(
+ SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
+ Result.clear();
+ assert(hasMetadataHashEntry() &&
+ getContext().pImpl->InstructionMetadata.count(this) &&
+ "Shouldn't have called this");
+ const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
+ assert(!Info.empty() && "Shouldn't have called this");
+ Info.getAll(Result);
+}
+
+/// clearMetadataHashEntries - Clear all hashtable-based metadata from
+/// this instruction.
+void Instruction::clearMetadataHashEntries() {
+ assert(hasMetadataHashEntry() && "Caller should check");
+ getContext().pImpl->InstructionMetadata.erase(this);
+ setHasMetadataHashEntry(false);
+}
+
+MDNode *Function::getMetadata(unsigned KindID) const {
+ if (!hasMetadata())
+ return nullptr;
+ return getContext().pImpl->FunctionMetadata[this].lookup(KindID);
+}
+
+MDNode *Function::getMetadata(StringRef Kind) const {
+ if (!hasMetadata())
+ return nullptr;
+ return getMetadata(getContext().getMDKindID(Kind));
+}
+
+void Function::setMetadata(unsigned KindID, MDNode *MD) {
+ if (MD) {
+ if (!hasMetadata())
+ setHasMetadataHashEntry(true);
+
+ getContext().pImpl->FunctionMetadata[this].set(KindID, *MD);
+ return;
+ }
+
+ // Nothing to unset.
+ if (!hasMetadata())
+ return;
+
+ auto &Store = getContext().pImpl->FunctionMetadata[this];
+ Store.erase(KindID);
+ if (Store.empty())
+ clearMetadata();
+}
+
+void Function::setMetadata(StringRef Kind, MDNode *MD) {
+ if (!MD && !hasMetadata())
+ return;
+ setMetadata(getContext().getMDKindID(Kind), MD);
+}
+
+void Function::getAllMetadata(
+ SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
+ MDs.clear();
+
+ if (!hasMetadata())
+ return;
+
+ getContext().pImpl->FunctionMetadata[this].getAll(MDs);
+}
+
+void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
+ if (!hasMetadata())
+ return;
+ if (KnownIDs.empty()) {
+ clearMetadata();
+ return;
+ }
+
+ SmallSet<unsigned, 5> KnownSet;
+ KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
+
+ auto &Store = getContext().pImpl->FunctionMetadata[this];
+ assert(!Store.empty());
+
+ Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
+ return !KnownSet.count(I.first);
+ });
+
+ if (Store.empty())
+ clearMetadata();
+}
+
+void Function::clearMetadata() {
+ if (!hasMetadata())
+ return;
+ getContext().pImpl->FunctionMetadata.erase(this);
+ setHasMetadataHashEntry(false);
+}
OpenPOWER on IntegriCloud