diff options
Diffstat (limited to 'contrib/llvm/lib/IR/Instruction.cpp')
-rw-r--r-- | contrib/llvm/lib/IR/Instruction.cpp | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/Instruction.cpp b/contrib/llvm/lib/IR/Instruction.cpp new file mode 100644 index 0000000..45bb296 --- /dev/null +++ b/contrib/llvm/lib/IR/Instruction.cpp @@ -0,0 +1,552 @@ +//===-- Instruction.cpp - Implement the Instruction class -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the Instruction class for the IR library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Instruction.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +using namespace llvm; + +Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, + Instruction *InsertBefore) + : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { + + // If requested, insert this instruction into a basic block... + if (InsertBefore) { + assert(InsertBefore->getParent() && + "Instruction to insert before is not in a basic block!"); + InsertBefore->getParent()->getInstList().insert(InsertBefore, this); + } +} + +Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps, + BasicBlock *InsertAtEnd) + : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) { + + // append this instruction into the basic block + assert(InsertAtEnd && "Basic block to append to may not be NULL!"); + InsertAtEnd->getInstList().push_back(this); +} + + +// Out of line virtual method, so the vtable, etc has a home. +Instruction::~Instruction() { + assert(!Parent && "Instruction still linked in the program!"); + if (hasMetadataHashEntry()) + clearMetadataHashEntries(); +} + + +void Instruction::setParent(BasicBlock *P) { + Parent = P; +} + +const Module *Instruction::getModule() const { + return getParent()->getModule(); +} + +Module *Instruction::getModule() { + return getParent()->getModule(); +} + + +void Instruction::removeFromParent() { + getParent()->getInstList().remove(this); +} + +iplist<Instruction>::iterator Instruction::eraseFromParent() { + return getParent()->getInstList().erase(this); +} + +/// insertBefore - Insert an unlinked instructions into a basic block +/// immediately before the specified instruction. +void Instruction::insertBefore(Instruction *InsertPos) { + InsertPos->getParent()->getInstList().insert(InsertPos, this); +} + +/// insertAfter - Insert an unlinked instructions into a basic block +/// immediately after the specified instruction. +void Instruction::insertAfter(Instruction *InsertPos) { + InsertPos->getParent()->getInstList().insertAfter(InsertPos, this); +} + +/// moveBefore - Unlink this instruction from its current basic block and +/// insert it into the basic block that MovePos lives in, right before +/// MovePos. +void Instruction::moveBefore(Instruction *MovePos) { + MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(), + this); +} + +/// Set or clear the unsafe-algebra flag on this instruction, which must be an +/// operator which supports this flag. See LangRef.html for the meaning of this +/// flag. +void Instruction::setHasUnsafeAlgebra(bool B) { + assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); + cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B); +} + +/// Set or clear the NoNaNs flag on this instruction, which must be an operator +/// which supports this flag. See LangRef.html for the meaning of this flag. +void Instruction::setHasNoNaNs(bool B) { + assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); + cast<FPMathOperator>(this)->setHasNoNaNs(B); +} + +/// Set or clear the no-infs flag on this instruction, which must be an operator +/// which supports this flag. See LangRef.html for the meaning of this flag. +void Instruction::setHasNoInfs(bool B) { + assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); + cast<FPMathOperator>(this)->setHasNoInfs(B); +} + +/// Set or clear the no-signed-zeros flag on this instruction, which must be an +/// operator which supports this flag. See LangRef.html for the meaning of this +/// flag. +void Instruction::setHasNoSignedZeros(bool B) { + assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); + cast<FPMathOperator>(this)->setHasNoSignedZeros(B); +} + +/// Set or clear the allow-reciprocal flag on this instruction, which must be an +/// operator which supports this flag. See LangRef.html for the meaning of this +/// flag. +void Instruction::setHasAllowReciprocal(bool B) { + assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); + cast<FPMathOperator>(this)->setHasAllowReciprocal(B); +} + +/// Convenience function for setting all the fast-math flags on this +/// instruction, which must be an operator which supports these flags. See +/// LangRef.html for the meaning of these flats. +void Instruction::setFastMathFlags(FastMathFlags FMF) { + assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op"); + cast<FPMathOperator>(this)->setFastMathFlags(FMF); +} + +void Instruction::copyFastMathFlags(FastMathFlags FMF) { + assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op"); + cast<FPMathOperator>(this)->copyFastMathFlags(FMF); +} + +/// Determine whether the unsafe-algebra flag is set. +bool Instruction::hasUnsafeAlgebra() const { + assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); + return cast<FPMathOperator>(this)->hasUnsafeAlgebra(); +} + +/// Determine whether the no-NaNs flag is set. +bool Instruction::hasNoNaNs() const { + assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); + return cast<FPMathOperator>(this)->hasNoNaNs(); +} + +/// Determine whether the no-infs flag is set. +bool Instruction::hasNoInfs() const { + assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); + return cast<FPMathOperator>(this)->hasNoInfs(); +} + +/// Determine whether the no-signed-zeros flag is set. +bool Instruction::hasNoSignedZeros() const { + assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); + return cast<FPMathOperator>(this)->hasNoSignedZeros(); +} + +/// Determine whether the allow-reciprocal flag is set. +bool Instruction::hasAllowReciprocal() const { + assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); + return cast<FPMathOperator>(this)->hasAllowReciprocal(); +} + +/// Convenience function for getting all the fast-math flags, which must be an +/// operator which supports these flags. See LangRef.html for the meaning of +/// these flags. +FastMathFlags Instruction::getFastMathFlags() const { + assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op"); + return cast<FPMathOperator>(this)->getFastMathFlags(); +} + +/// Copy I's fast-math flags +void Instruction::copyFastMathFlags(const Instruction *I) { + copyFastMathFlags(I->getFastMathFlags()); +} + + +const char *Instruction::getOpcodeName(unsigned OpCode) { + switch (OpCode) { + // Terminators + case Ret: return "ret"; + case Br: return "br"; + case Switch: return "switch"; + case IndirectBr: return "indirectbr"; + case Invoke: return "invoke"; + case Resume: return "resume"; + case Unreachable: return "unreachable"; + + // Standard binary operators... + case Add: return "add"; + case FAdd: return "fadd"; + case Sub: return "sub"; + case FSub: return "fsub"; + case Mul: return "mul"; + case FMul: return "fmul"; + case UDiv: return "udiv"; + case SDiv: return "sdiv"; + case FDiv: return "fdiv"; + case URem: return "urem"; + case SRem: return "srem"; + case FRem: return "frem"; + + // Logical operators... + case And: return "and"; + case Or : return "or"; + case Xor: return "xor"; + + // Memory instructions... + case Alloca: return "alloca"; + case Load: return "load"; + case Store: return "store"; + case AtomicCmpXchg: return "cmpxchg"; + case AtomicRMW: return "atomicrmw"; + case Fence: return "fence"; + case GetElementPtr: return "getelementptr"; + + // Convert instructions... + case Trunc: return "trunc"; + case ZExt: return "zext"; + case SExt: return "sext"; + case FPTrunc: return "fptrunc"; + case FPExt: return "fpext"; + case FPToUI: return "fptoui"; + case FPToSI: return "fptosi"; + case UIToFP: return "uitofp"; + case SIToFP: return "sitofp"; + case IntToPtr: return "inttoptr"; + case PtrToInt: return "ptrtoint"; + case BitCast: return "bitcast"; + case AddrSpaceCast: return "addrspacecast"; + + // Other instructions... + case ICmp: return "icmp"; + case FCmp: return "fcmp"; + case PHI: return "phi"; + case Select: return "select"; + case Call: return "call"; + case Shl: return "shl"; + case LShr: return "lshr"; + case AShr: return "ashr"; + case VAArg: return "va_arg"; + case ExtractElement: return "extractelement"; + case InsertElement: return "insertelement"; + case ShuffleVector: return "shufflevector"; + case ExtractValue: return "extractvalue"; + case InsertValue: return "insertvalue"; + case LandingPad: return "landingpad"; + + default: return "<Invalid operator> "; + } +} + +/// Return true if both instructions have the same special state +/// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp. +static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2, + bool IgnoreAlignment = false) { + assert(I1->getOpcode() == I2->getOpcode() && + "Can not compare special state of different instructions"); + + if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) + return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && + (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() || + IgnoreAlignment) && + LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() && + LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope(); + if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) + return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && + (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() || + IgnoreAlignment) && + SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() && + SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope(); + if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) + return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); + if (const CallInst *CI = dyn_cast<CallInst>(I1)) + return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() && + CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && + CI->getAttributes() == cast<CallInst>(I2)->getAttributes(); + if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) + return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && + CI->getAttributes() == + cast<InvokeInst>(I2)->getAttributes(); + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) + return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices(); + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) + return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices(); + if (const FenceInst *FI = dyn_cast<FenceInst>(I1)) + return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() && + FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope(); + if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1)) + return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() && + CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() && + CXI->getSuccessOrdering() == + cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() && + CXI->getFailureOrdering() == + cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() && + CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope(); + if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1)) + return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() && + RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() && + RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() && + RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope(); + + return true; +} + +/// isIdenticalTo - Return true if the specified instruction is exactly +/// identical to the current one. This means that all operands match and any +/// extra information (e.g. load is volatile) agree. +bool Instruction::isIdenticalTo(const Instruction *I) const { + return isIdenticalToWhenDefined(I) && + SubclassOptionalData == I->SubclassOptionalData; +} + +/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it +/// ignores the SubclassOptionalData flags, which specify conditions +/// under which the instruction's result is undefined. +bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const { + if (getOpcode() != I->getOpcode() || + getNumOperands() != I->getNumOperands() || + getType() != I->getType()) + return false; + + // If both instructions have no operands, they are identical. + if (getNumOperands() == 0 && I->getNumOperands() == 0) + return haveSameSpecialState(this, I); + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same. + if (!std::equal(op_begin(), op_end(), I->op_begin())) + return false; + + if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) { + const PHINode *otherPHI = cast<PHINode>(I); + return std::equal(thisPHI->block_begin(), thisPHI->block_end(), + otherPHI->block_begin()); + } + + return haveSameSpecialState(this, I); +} + +// isSameOperationAs +// This should be kept in sync with isEquivalentOperation in +// lib/Transforms/IPO/MergeFunctions.cpp. +bool Instruction::isSameOperationAs(const Instruction *I, + unsigned flags) const { + bool IgnoreAlignment = flags & CompareIgnoringAlignment; + bool UseScalarTypes = flags & CompareUsingScalarTypes; + + if (getOpcode() != I->getOpcode() || + getNumOperands() != I->getNumOperands() || + (UseScalarTypes ? + getType()->getScalarType() != I->getType()->getScalarType() : + getType() != I->getType())) + return false; + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same type + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (UseScalarTypes ? + getOperand(i)->getType()->getScalarType() != + I->getOperand(i)->getType()->getScalarType() : + getOperand(i)->getType() != I->getOperand(i)->getType()) + return false; + + return haveSameSpecialState(this, I, IgnoreAlignment); +} + +/// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the +/// specified block. Note that PHI nodes are considered to evaluate their +/// operands in the corresponding predecessor block. +bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const { + for (const Use &U : uses()) { + // PHI nodes uses values in the corresponding predecessor block. For other + // instructions, just check to see whether the parent of the use matches up. + const Instruction *I = cast<Instruction>(U.getUser()); + const PHINode *PN = dyn_cast<PHINode>(I); + if (!PN) { + if (I->getParent() != BB) + return true; + continue; + } + + if (PN->getIncomingBlock(U) != BB) + return true; + } + return false; +} + +/// mayReadFromMemory - Return true if this instruction may read memory. +/// +bool Instruction::mayReadFromMemory() const { + switch (getOpcode()) { + default: return false; + case Instruction::VAArg: + case Instruction::Load: + case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory + case Instruction::AtomicCmpXchg: + case Instruction::AtomicRMW: + return true; + case Instruction::Call: + return !cast<CallInst>(this)->doesNotAccessMemory(); + case Instruction::Invoke: + return !cast<InvokeInst>(this)->doesNotAccessMemory(); + case Instruction::Store: + return !cast<StoreInst>(this)->isUnordered(); + } +} + +/// mayWriteToMemory - Return true if this instruction may modify memory. +/// +bool Instruction::mayWriteToMemory() const { + switch (getOpcode()) { + default: return false; + case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory + case Instruction::Store: + case Instruction::VAArg: + case Instruction::AtomicCmpXchg: + case Instruction::AtomicRMW: + return true; + case Instruction::Call: + return !cast<CallInst>(this)->onlyReadsMemory(); + case Instruction::Invoke: + return !cast<InvokeInst>(this)->onlyReadsMemory(); + case Instruction::Load: + return !cast<LoadInst>(this)->isUnordered(); + } +} + +bool Instruction::isAtomic() const { + switch (getOpcode()) { + default: + return false; + case Instruction::AtomicCmpXchg: + case Instruction::AtomicRMW: + case Instruction::Fence: + return true; + case Instruction::Load: + return cast<LoadInst>(this)->getOrdering() != NotAtomic; + case Instruction::Store: + return cast<StoreInst>(this)->getOrdering() != NotAtomic; + } +} + +bool Instruction::mayThrow() const { + if (const CallInst *CI = dyn_cast<CallInst>(this)) + return !CI->doesNotThrow(); + return isa<ResumeInst>(this); +} + +bool Instruction::mayReturn() const { + if (const CallInst *CI = dyn_cast<CallInst>(this)) + return !CI->doesNotReturn(); + return true; +} + +/// isAssociative - Return true if the instruction is associative: +/// +/// Associative operators satisfy: x op (y op z) === (x op y) op z +/// +/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. +/// +bool Instruction::isAssociative(unsigned Opcode) { + return Opcode == And || Opcode == Or || Opcode == Xor || + Opcode == Add || Opcode == Mul; +} + +bool Instruction::isAssociative() const { + unsigned Opcode = getOpcode(); + if (isAssociative(Opcode)) + return true; + + switch (Opcode) { + case FMul: + case FAdd: + return cast<FPMathOperator>(this)->hasUnsafeAlgebra(); + default: + return false; + } +} + +/// isCommutative - Return true if the instruction is commutative: +/// +/// Commutative operators satisfy: (x op y) === (y op x) +/// +/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when +/// applied to any type. +/// +bool Instruction::isCommutative(unsigned op) { + switch (op) { + case Add: + case FAdd: + case Mul: + case FMul: + case And: + case Or: + case Xor: + return true; + default: + return false; + } +} + +/// isIdempotent - Return true if the instruction is idempotent: +/// +/// Idempotent operators satisfy: x op x === x +/// +/// In LLVM, the And and Or operators are idempotent. +/// +bool Instruction::isIdempotent(unsigned Opcode) { + return Opcode == And || Opcode == Or; +} + +/// isNilpotent - Return true if the instruction is nilpotent: +/// +/// Nilpotent operators satisfy: x op x === Id, +/// +/// where Id is the identity for the operator, i.e. a constant such that +/// x op Id === x and Id op x === x for all x. +/// +/// In LLVM, the Xor operator is nilpotent. +/// +bool Instruction::isNilpotent(unsigned Opcode) { + return Opcode == Xor; +} + +Instruction *Instruction::clone() const { + Instruction *New = clone_impl(); + New->SubclassOptionalData = SubclassOptionalData; + if (!hasMetadata()) + return New; + + // Otherwise, enumerate and copy over metadata from the old instruction to the + // new one. + SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs; + getAllMetadataOtherThanDebugLoc(TheMDs); + for (const auto &MD : TheMDs) + New->setMetadata(MD.first, MD.second); + + New->setDebugLoc(getDebugLoc()); + return New; +} |