summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/IR/ConstantsContext.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/IR/ConstantsContext.h')
-rw-r--r--contrib/llvm/lib/IR/ConstantsContext.h774
1 files changed, 774 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/ConstantsContext.h b/contrib/llvm/lib/IR/ConstantsContext.h
new file mode 100644
index 0000000..e995858
--- /dev/null
+++ b/contrib/llvm/lib/IR/ConstantsContext.h
@@ -0,0 +1,774 @@
+//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various helper methods and classes used by
+// LLVMContextImpl for creating and managing constants.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CONSTANTSCONTEXT_H
+#define LLVM_CONSTANTSCONTEXT_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+
+namespace llvm {
+template<class ValType>
+struct ConstantTraits;
+
+/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement unary constant exprs.
+class UnaryConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
+ : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
+ Op<0>() = C;
+ }
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement binary constant exprs.
+class BinaryConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
+ unsigned Flags)
+ : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ SubclassOptionalData = Flags;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// SelectConstantExpr - This class is private to Constants.cpp, and is used
+/// behind the scenes to implement select constant exprs.
+class SelectConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractelement constant exprs.
+class ExtractElementConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ ExtractElementConstantExpr(Constant *C1, Constant *C2)
+ : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
+ Instruction::ExtractElement, &Op<0>(), 2) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertElementConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertelement constant exprs.
+class InsertElementConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(C1->getType(), Instruction::InsertElement,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ShuffleVectorConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// shufflevector constant exprs.
+class ShuffleVectorConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly three operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 3);
+ }
+ ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
+ : ConstantExpr(VectorType::get(
+ cast<VectorType>(C1->getType())->getElementType(),
+ cast<VectorType>(C3->getType())->getNumElements()),
+ Instruction::ShuffleVector,
+ &Op<0>(), 3) {
+ Op<0>() = C1;
+ Op<1>() = C2;
+ Op<2>() = C3;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// ExtractValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// extractvalue constant exprs.
+class ExtractValueConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 1);
+ }
+ ExtractValueConstantExpr(Constant *Agg,
+ const SmallVector<unsigned, 4> &IdxList,
+ Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ }
+
+ /// Indices - These identify which value to extract.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+/// InsertValueConstantExpr - This class is private to
+/// Constants.cpp, and is used behind the scenes to implement
+/// insertvalue constant exprs.
+class InsertValueConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly one operand
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ InsertValueConstantExpr(Constant *Agg, Constant *Val,
+ const SmallVector<unsigned, 4> &IdxList,
+ Type *DestTy)
+ : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
+ Indices(IdxList) {
+ Op<0>() = Agg;
+ Op<1>() = Val;
+ }
+
+ /// Indices - These identify the position for the insertion.
+ const SmallVector<unsigned, 4> Indices;
+
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+
+/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
+/// used behind the scenes to implement getelementpr constant exprs.
+class GetElementPtrConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
+ Type *DestTy);
+public:
+ static GetElementPtrConstantExpr *Create(Constant *C,
+ ArrayRef<Constant*> IdxList,
+ Type *DestTy,
+ unsigned Flags) {
+ GetElementPtrConstantExpr *Result =
+ new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
+ Result->SubclassOptionalData = Flags;
+ return Result;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+// CompareConstantExpr - This class is private to Constants.cpp, and is used
+// behind the scenes to implement ICmp and FCmp constant expressions. This is
+// needed in order to store the predicate value for these instructions.
+class CompareConstantExpr : public ConstantExpr {
+ virtual void anchor();
+ void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
+public:
+ // allocate space for exactly two operands
+ void *operator new(size_t s) {
+ return User::operator new(s, 2);
+ }
+ unsigned short predicate;
+ CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
+ unsigned short pred, Constant* LHS, Constant* RHS)
+ : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
+ Op<0>() = LHS;
+ Op<1>() = RHS;
+ }
+ /// Transparently provide more efficient getOperand methods.
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
+};
+
+template <>
+struct OperandTraits<UnaryConstantExpr> :
+ public FixedNumOperandTraits<UnaryConstantExpr, 1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<BinaryConstantExpr> :
+ public FixedNumOperandTraits<BinaryConstantExpr, 2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
+
+template <>
+struct OperandTraits<SelectConstantExpr> :
+ public FixedNumOperandTraits<SelectConstantExpr, 3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractElementConstantExpr> :
+ public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertElementConstantExpr> :
+ public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
+
+template <>
+struct OperandTraits<ShuffleVectorConstantExpr> :
+ public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
+
+template <>
+struct OperandTraits<ExtractValueConstantExpr> :
+ public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<InsertValueConstantExpr> :
+ public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
+
+template <>
+struct OperandTraits<GetElementPtrConstantExpr> :
+ public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
+};
+
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
+
+
+template <>
+struct OperandTraits<CompareConstantExpr> :
+ public FixedNumOperandTraits<CompareConstantExpr, 2> {
+};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
+
+struct ExprMapKeyType {
+ ExprMapKeyType(unsigned opc,
+ ArrayRef<Constant*> ops,
+ unsigned short flags = 0,
+ unsigned short optionalflags = 0,
+ ArrayRef<unsigned> inds = ArrayRef<unsigned>())
+ : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
+ operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
+ uint8_t opcode;
+ uint8_t subclassoptionaldata;
+ uint16_t subclassdata;
+ std::vector<Constant*> operands;
+ SmallVector<unsigned, 4> indices;
+ bool operator==(const ExprMapKeyType& that) const {
+ return this->opcode == that.opcode &&
+ this->subclassdata == that.subclassdata &&
+ this->subclassoptionaldata == that.subclassoptionaldata &&
+ this->operands == that.operands &&
+ this->indices == that.indices;
+ }
+ bool operator<(const ExprMapKeyType & that) const {
+ if (this->opcode != that.opcode) return this->opcode < that.opcode;
+ if (this->operands != that.operands) return this->operands < that.operands;
+ if (this->subclassdata != that.subclassdata)
+ return this->subclassdata < that.subclassdata;
+ if (this->subclassoptionaldata != that.subclassoptionaldata)
+ return this->subclassoptionaldata < that.subclassoptionaldata;
+ if (this->indices != that.indices) return this->indices < that.indices;
+ return false;
+ }
+
+ bool operator!=(const ExprMapKeyType& that) const {
+ return !(*this == that);
+ }
+};
+
+struct InlineAsmKeyType {
+ InlineAsmKeyType(StringRef AsmString,
+ StringRef Constraints, bool hasSideEffects,
+ bool isAlignStack, InlineAsm::AsmDialect asmDialect)
+ : asm_string(AsmString), constraints(Constraints),
+ has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
+ asm_dialect(asmDialect) {}
+ std::string asm_string;
+ std::string constraints;
+ bool has_side_effects;
+ bool is_align_stack;
+ InlineAsm::AsmDialect asm_dialect;
+ bool operator==(const InlineAsmKeyType& that) const {
+ return this->asm_string == that.asm_string &&
+ this->constraints == that.constraints &&
+ this->has_side_effects == that.has_side_effects &&
+ this->is_align_stack == that.is_align_stack &&
+ this->asm_dialect == that.asm_dialect;
+ }
+ bool operator<(const InlineAsmKeyType& that) const {
+ if (this->asm_string != that.asm_string)
+ return this->asm_string < that.asm_string;
+ if (this->constraints != that.constraints)
+ return this->constraints < that.constraints;
+ if (this->has_side_effects != that.has_side_effects)
+ return this->has_side_effects < that.has_side_effects;
+ if (this->is_align_stack != that.is_align_stack)
+ return this->is_align_stack < that.is_align_stack;
+ if (this->asm_dialect != that.asm_dialect)
+ return this->asm_dialect < that.asm_dialect;
+ return false;
+ }
+
+ bool operator!=(const InlineAsmKeyType& that) const {
+ return !(*this == that);
+ }
+};
+
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ConstantUniqueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+template<typename T, typename Alloc>
+struct ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
+};
+
+template<>
+struct ConstantTraits<Constant *> {
+ static unsigned uses(Constant * const & v) {
+ return 1;
+ }
+};
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct ConstantCreator {
+ static ConstantClass *create(TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
+};
+
+template<class ConstantClass, class TypeClass>
+struct ConstantArrayCreator {
+ static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
+ return new(V.size()) ConstantClass(Ty, V);
+ }
+};
+
+template<class ConstantClass>
+struct ConstantKeyData {
+ typedef void ValType;
+ static ValType getValType(ConstantClass *C) {
+ llvm_unreachable("Unknown Constant type!");
+ }
+};
+
+template<>
+struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
+ static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
+ unsigned short pred = 0) {
+ if (Instruction::isCast(V.opcode))
+ return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
+ if ((V.opcode >= Instruction::BinaryOpsBegin &&
+ V.opcode < Instruction::BinaryOpsEnd))
+ return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
+ V.subclassoptionaldata);
+ if (V.opcode == Instruction::Select)
+ return new SelectConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ExtractElement)
+ return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::InsertElement)
+ return new InsertElementConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ShuffleVector)
+ return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::InsertValue)
+ return new InsertValueConstantExpr(V.operands[0], V.operands[1],
+ V.indices, Ty);
+ if (V.opcode == Instruction::ExtractValue)
+ return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
+ if (V.opcode == Instruction::GetElementPtr) {
+ std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
+ return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
+ V.subclassoptionaldata);
+ }
+
+ // The compare instructions are weird. We have to encode the predicate
+ // value and it is combined with the instruction opcode by multiplying
+ // the opcode by one hundred. We must decode this to get the predicate.
+ if (V.opcode == Instruction::ICmp)
+ return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::FCmp)
+ return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ llvm_unreachable("Invalid ConstantExpr!");
+ }
+};
+
+template<>
+struct ConstantKeyData<ConstantExpr> {
+ typedef ExprMapKeyType ValType;
+ static ValType getValType(ConstantExpr *CE) {
+ std::vector<Constant*> Operands;
+ Operands.reserve(CE->getNumOperands());
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
+ Operands.push_back(cast<Constant>(CE->getOperand(i)));
+ return ExprMapKeyType(CE->getOpcode(), Operands,
+ CE->isCompare() ? CE->getPredicate() : 0,
+ CE->getRawSubclassOptionalData(),
+ CE->hasIndices() ?
+ CE->getIndices() : ArrayRef<unsigned>());
+ }
+};
+
+template<>
+struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
+ static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
+ return new InlineAsm(Ty, Key.asm_string, Key.constraints,
+ Key.has_side_effects, Key.is_align_stack,
+ Key.asm_dialect);
+ }
+};
+
+template<>
+struct ConstantKeyData<InlineAsm> {
+ typedef InlineAsmKeyType ValType;
+ static ValType getValType(InlineAsm *Asm) {
+ return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
+ Asm->hasSideEffects(), Asm->isAlignStack(),
+ Asm->getDialect());
+ }
+};
+
+template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+class ConstantUniqueMap {
+public:
+ typedef std::pair<TypeClass*, ValType> MapKey;
+ typedef std::map<MapKey, ConstantClass *> MapTy;
+ typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+public:
+ typename MapTy::iterator map_begin() { return Map.begin(); }
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ void freeConstants() {
+ for (typename MapTy::iterator I=Map.begin(), E=Map.end();
+ I != E; ++I) {
+ // Asserts that use_empty().
+ delete I->second;
+ }
+ }
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
+ ConstantKeyData<ConstantClass>::getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+
+ ConstantClass *Create(TypeClass *Ty, ValRefType V,
+ typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
+
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ return Result;
+ }
+public:
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
+ MapKey Lookup(Ty, V);
+ ConstantClass* Result = 0;
+
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = I->second;
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+
+ void remove(ConstantClass *CP) {
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ Map.erase(I);
+ }
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void dump() const {
+ DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
+ }
+};
+
+// Unique map for aggregate constants
+template<class TypeClass, class ConstantClass>
+class ConstantAggrUniqueMap {
+public:
+ typedef ArrayRef<Constant*> Operands;
+ typedef std::pair<TypeClass*, Operands> LookupKey;
+private:
+ struct MapInfo {
+ typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
+ typedef DenseMapInfo<Constant*> ConstantInfo;
+ typedef DenseMapInfo<TypeClass*> TypeClassInfo;
+ static inline ConstantClass* getEmptyKey() {
+ return ConstantClassInfo::getEmptyKey();
+ }
+ static inline ConstantClass* getTombstoneKey() {
+ return ConstantClassInfo::getTombstoneKey();
+ }
+ static unsigned getHashValue(const ConstantClass *CP) {
+ SmallVector<Constant*, 8> CPOperands;
+ CPOperands.reserve(CP->getNumOperands());
+ for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
+ CPOperands.push_back(CP->getOperand(I));
+ return getHashValue(LookupKey(CP->getType(), CPOperands));
+ }
+ static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
+ return LHS == RHS;
+ }
+ static unsigned getHashValue(const LookupKey &Val) {
+ return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
+ Val.second.end()));
+ }
+ static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
+ if (RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return false;
+ if (LHS.first != RHS->getType()
+ || LHS.second.size() != RHS->getNumOperands())
+ return false;
+ for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
+ if (LHS.second[I] != RHS->getOperand(I))
+ return false;
+ }
+ return true;
+ }
+ };
+public:
+ typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
+
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+public:
+ typename MapTy::iterator map_begin() { return Map.begin(); }
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ void freeConstants() {
+ for (typename MapTy::iterator I=Map.begin(), E=Map.end();
+ I != E; ++I) {
+ // Asserts that use_empty().
+ delete I->first;
+ }
+ }
+
+private:
+ typename MapTy::iterator findExistingElement(ConstantClass *CP) {
+ return Map.find(CP);
+ }
+
+ ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
+
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ Map[Result] = '\0';
+
+ return Result;
+ }
+public:
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
+ LookupKey Lookup(Ty, V);
+ ConstantClass* Result = 0;
+
+ typename MapTy::iterator I = Map.find_as(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = I->first;
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+
+ /// Find the constant by lookup key.
+ typename MapTy::iterator find(LookupKey Lookup) {
+ return Map.find_as(Lookup);
+ }
+
+ /// Insert the constant into its proper slot.
+ void insert(ConstantClass *CP) {
+ Map[CP] = '\0';
+ }
+
+ /// Remove this constant from the map
+ void remove(ConstantClass *CP) {
+ typename MapTy::iterator I = findExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->first == CP && "Didn't find correct element?");
+ Map.erase(I);
+ }
+
+ void dump() const {
+ DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
+ }
+};
+
+}
+
+#endif
OpenPOWER on IntegriCloud