summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/IR/AsmWriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/IR/AsmWriter.cpp')
-rw-r--r--contrib/llvm/lib/IR/AsmWriter.cpp3378
1 files changed, 3378 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/AsmWriter.cpp b/contrib/llvm/lib/IR/AsmWriter.cpp
new file mode 100644
index 0000000..adc620d
--- /dev/null
+++ b/contrib/llvm/lib/IR/AsmWriter.cpp
@@ -0,0 +1,3378 @@
+//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This library implements the functionality defined in llvm/IR/Writer.h
+//
+// Note that these routines must be extremely tolerant of various errors in the
+// LLVM code, because it can be used for debugging transformations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSlotTracker.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/IR/UseListOrder.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cctype>
+using namespace llvm;
+
+// Make virtual table appear in this compilation unit.
+AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+namespace {
+struct OrderMap {
+ DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
+
+ unsigned size() const { return IDs.size(); }
+ std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
+ std::pair<unsigned, bool> lookup(const Value *V) const {
+ return IDs.lookup(V);
+ }
+ void index(const Value *V) {
+ // Explicitly sequence get-size and insert-value operations to avoid UB.
+ unsigned ID = IDs.size() + 1;
+ IDs[V].first = ID;
+ }
+};
+}
+
+static void orderValue(const Value *V, OrderMap &OM) {
+ if (OM.lookup(V).first)
+ return;
+
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (C->getNumOperands() && !isa<GlobalValue>(C))
+ for (const Value *Op : C->operands())
+ if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
+ orderValue(Op, OM);
+
+ // Note: we cannot cache this lookup above, since inserting into the map
+ // changes the map's size, and thus affects the other IDs.
+ OM.index(V);
+}
+
+static OrderMap orderModule(const Module *M) {
+ // This needs to match the order used by ValueEnumerator::ValueEnumerator()
+ // and ValueEnumerator::incorporateFunction().
+ OrderMap OM;
+
+ for (const GlobalVariable &G : M->globals()) {
+ if (G.hasInitializer())
+ if (!isa<GlobalValue>(G.getInitializer()))
+ orderValue(G.getInitializer(), OM);
+ orderValue(&G, OM);
+ }
+ for (const GlobalAlias &A : M->aliases()) {
+ if (!isa<GlobalValue>(A.getAliasee()))
+ orderValue(A.getAliasee(), OM);
+ orderValue(&A, OM);
+ }
+ for (const Function &F : *M) {
+ if (F.hasPrefixData())
+ if (!isa<GlobalValue>(F.getPrefixData()))
+ orderValue(F.getPrefixData(), OM);
+
+ if (F.hasPrologueData())
+ if (!isa<GlobalValue>(F.getPrologueData()))
+ orderValue(F.getPrologueData(), OM);
+
+ if (F.hasPersonalityFn())
+ if (!isa<GlobalValue>(F.getPersonalityFn()))
+ orderValue(F.getPersonalityFn(), OM);
+
+ orderValue(&F, OM);
+
+ if (F.isDeclaration())
+ continue;
+
+ for (const Argument &A : F.args())
+ orderValue(&A, OM);
+ for (const BasicBlock &BB : F) {
+ orderValue(&BB, OM);
+ for (const Instruction &I : BB) {
+ for (const Value *Op : I.operands())
+ if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
+ isa<InlineAsm>(*Op))
+ orderValue(Op, OM);
+ orderValue(&I, OM);
+ }
+ }
+ }
+ return OM;
+}
+
+static void predictValueUseListOrderImpl(const Value *V, const Function *F,
+ unsigned ID, const OrderMap &OM,
+ UseListOrderStack &Stack) {
+ // Predict use-list order for this one.
+ typedef std::pair<const Use *, unsigned> Entry;
+ SmallVector<Entry, 64> List;
+ for (const Use &U : V->uses())
+ // Check if this user will be serialized.
+ if (OM.lookup(U.getUser()).first)
+ List.push_back(std::make_pair(&U, List.size()));
+
+ if (List.size() < 2)
+ // We may have lost some users.
+ return;
+
+ bool GetsReversed =
+ !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
+ if (auto *BA = dyn_cast<BlockAddress>(V))
+ ID = OM.lookup(BA->getBasicBlock()).first;
+ std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
+ const Use *LU = L.first;
+ const Use *RU = R.first;
+ if (LU == RU)
+ return false;
+
+ auto LID = OM.lookup(LU->getUser()).first;
+ auto RID = OM.lookup(RU->getUser()).first;
+
+ // If ID is 4, then expect: 7 6 5 1 2 3.
+ if (LID < RID) {
+ if (GetsReversed)
+ if (RID <= ID)
+ return true;
+ return false;
+ }
+ if (RID < LID) {
+ if (GetsReversed)
+ if (LID <= ID)
+ return false;
+ return true;
+ }
+
+ // LID and RID are equal, so we have different operands of the same user.
+ // Assume operands are added in order for all instructions.
+ if (GetsReversed)
+ if (LID <= ID)
+ return LU->getOperandNo() < RU->getOperandNo();
+ return LU->getOperandNo() > RU->getOperandNo();
+ });
+
+ if (std::is_sorted(
+ List.begin(), List.end(),
+ [](const Entry &L, const Entry &R) { return L.second < R.second; }))
+ // Order is already correct.
+ return;
+
+ // Store the shuffle.
+ Stack.emplace_back(V, F, List.size());
+ assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
+ for (size_t I = 0, E = List.size(); I != E; ++I)
+ Stack.back().Shuffle[I] = List[I].second;
+}
+
+static void predictValueUseListOrder(const Value *V, const Function *F,
+ OrderMap &OM, UseListOrderStack &Stack) {
+ auto &IDPair = OM[V];
+ assert(IDPair.first && "Unmapped value");
+ if (IDPair.second)
+ // Already predicted.
+ return;
+
+ // Do the actual prediction.
+ IDPair.second = true;
+ if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
+ predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
+
+ // Recursive descent into constants.
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (C->getNumOperands()) // Visit GlobalValues.
+ for (const Value *Op : C->operands())
+ if (isa<Constant>(Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, F, OM, Stack);
+}
+
+static UseListOrderStack predictUseListOrder(const Module *M) {
+ OrderMap OM = orderModule(M);
+
+ // Use-list orders need to be serialized after all the users have been added
+ // to a value, or else the shuffles will be incomplete. Store them per
+ // function in a stack.
+ //
+ // Aside from function order, the order of values doesn't matter much here.
+ UseListOrderStack Stack;
+
+ // We want to visit the functions backward now so we can list function-local
+ // constants in the last Function they're used in. Module-level constants
+ // have already been visited above.
+ for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
+ const Function &F = *I;
+ if (F.isDeclaration())
+ continue;
+ for (const BasicBlock &BB : F)
+ predictValueUseListOrder(&BB, &F, OM, Stack);
+ for (const Argument &A : F.args())
+ predictValueUseListOrder(&A, &F, OM, Stack);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ for (const Value *Op : I.operands())
+ if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, &F, OM, Stack);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ predictValueUseListOrder(&I, &F, OM, Stack);
+ }
+
+ // Visit globals last.
+ for (const GlobalVariable &G : M->globals())
+ predictValueUseListOrder(&G, nullptr, OM, Stack);
+ for (const Function &F : *M)
+ predictValueUseListOrder(&F, nullptr, OM, Stack);
+ for (const GlobalAlias &A : M->aliases())
+ predictValueUseListOrder(&A, nullptr, OM, Stack);
+ for (const GlobalVariable &G : M->globals())
+ if (G.hasInitializer())
+ predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
+ for (const GlobalAlias &A : M->aliases())
+ predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
+ for (const Function &F : *M)
+ if (F.hasPrefixData())
+ predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
+
+ return Stack;
+}
+
+static const Module *getModuleFromVal(const Value *V) {
+ if (const Argument *MA = dyn_cast<Argument>(V))
+ return MA->getParent() ? MA->getParent()->getParent() : nullptr;
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return BB->getParent() ? BB->getParent()->getParent() : nullptr;
+
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
+ return M ? M->getParent() : nullptr;
+ }
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return GV->getParent();
+
+ if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
+ for (const User *U : MAV->users())
+ if (isa<Instruction>(U))
+ if (const Module *M = getModuleFromVal(U))
+ return M;
+ return nullptr;
+ }
+
+ return nullptr;
+}
+
+static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
+ switch (cc) {
+ default: Out << "cc" << cc; break;
+ case CallingConv::Fast: Out << "fastcc"; break;
+ case CallingConv::Cold: Out << "coldcc"; break;
+ case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
+ case CallingConv::AnyReg: Out << "anyregcc"; break;
+ case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
+ case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
+ case CallingConv::GHC: Out << "ghccc"; break;
+ case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
+ case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
+ case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
+ case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
+ case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
+ case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
+ case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
+ case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
+ case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
+ case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
+ case CallingConv::PTX_Device: Out << "ptx_device"; break;
+ case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
+ case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
+ case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
+ case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
+ }
+}
+
+// PrintEscapedString - Print each character of the specified string, escaping
+// it if it is not printable or if it is an escape char.
+static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ unsigned char C = Name[i];
+ if (isprint(C) && C != '\\' && C != '"')
+ Out << C;
+ else
+ Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
+ }
+}
+
+enum PrefixType {
+ GlobalPrefix,
+ ComdatPrefix,
+ LabelPrefix,
+ LocalPrefix,
+ NoPrefix
+};
+
+/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
+/// prefixed with % (if the string only contains simple characters) or is
+/// surrounded with ""'s (if it has special chars in it). Print it out.
+static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
+ assert(!Name.empty() && "Cannot get empty name!");
+ switch (Prefix) {
+ case NoPrefix: break;
+ case GlobalPrefix: OS << '@'; break;
+ case ComdatPrefix: OS << '$'; break;
+ case LabelPrefix: break;
+ case LocalPrefix: OS << '%'; break;
+ }
+
+ // Scan the name to see if it needs quotes first.
+ bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
+ if (!NeedsQuotes) {
+ for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+ // By making this unsigned, the value passed in to isalnum will always be
+ // in the range 0-255. This is important when building with MSVC because
+ // its implementation will assert. This situation can arise when dealing
+ // with UTF-8 multibyte characters.
+ unsigned char C = Name[i];
+ if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
+ C != '_') {
+ NeedsQuotes = true;
+ break;
+ }
+ }
+ }
+
+ // If we didn't need any quotes, just write out the name in one blast.
+ if (!NeedsQuotes) {
+ OS << Name;
+ return;
+ }
+
+ // Okay, we need quotes. Output the quotes and escape any scary characters as
+ // needed.
+ OS << '"';
+ PrintEscapedString(Name, OS);
+ OS << '"';
+}
+
+/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
+/// prefixed with % (if the string only contains simple characters) or is
+/// surrounded with ""'s (if it has special chars in it). Print it out.
+static void PrintLLVMName(raw_ostream &OS, const Value *V) {
+ PrintLLVMName(OS, V->getName(),
+ isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
+}
+
+
+namespace {
+class TypePrinting {
+ TypePrinting(const TypePrinting &) = delete;
+ void operator=(const TypePrinting&) = delete;
+public:
+
+ /// NamedTypes - The named types that are used by the current module.
+ TypeFinder NamedTypes;
+
+ /// NumberedTypes - The numbered types, along with their value.
+ DenseMap<StructType*, unsigned> NumberedTypes;
+
+ TypePrinting() = default;
+
+ void incorporateTypes(const Module &M);
+
+ void print(Type *Ty, raw_ostream &OS);
+
+ void printStructBody(StructType *Ty, raw_ostream &OS);
+};
+} // namespace
+
+void TypePrinting::incorporateTypes(const Module &M) {
+ NamedTypes.run(M, false);
+
+ // The list of struct types we got back includes all the struct types, split
+ // the unnamed ones out to a numbering and remove the anonymous structs.
+ unsigned NextNumber = 0;
+
+ std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
+ for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
+ StructType *STy = *I;
+
+ // Ignore anonymous types.
+ if (STy->isLiteral())
+ continue;
+
+ if (STy->getName().empty())
+ NumberedTypes[STy] = NextNumber++;
+ else
+ *NextToUse++ = STy;
+ }
+
+ NamedTypes.erase(NextToUse, NamedTypes.end());
+}
+
+
+/// CalcTypeName - Write the specified type to the specified raw_ostream, making
+/// use of type names or up references to shorten the type name where possible.
+void TypePrinting::print(Type *Ty, raw_ostream &OS) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: OS << "void"; return;
+ case Type::HalfTyID: OS << "half"; return;
+ case Type::FloatTyID: OS << "float"; return;
+ case Type::DoubleTyID: OS << "double"; return;
+ case Type::X86_FP80TyID: OS << "x86_fp80"; return;
+ case Type::FP128TyID: OS << "fp128"; return;
+ case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
+ case Type::LabelTyID: OS << "label"; return;
+ case Type::MetadataTyID: OS << "metadata"; return;
+ case Type::X86_MMXTyID: OS << "x86_mmx"; return;
+ case Type::IntegerTyID:
+ OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
+ return;
+
+ case Type::FunctionTyID: {
+ FunctionType *FTy = cast<FunctionType>(Ty);
+ print(FTy->getReturnType(), OS);
+ OS << " (";
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I) {
+ if (I != FTy->param_begin())
+ OS << ", ";
+ print(*I, OS);
+ }
+ if (FTy->isVarArg()) {
+ if (FTy->getNumParams()) OS << ", ";
+ OS << "...";
+ }
+ OS << ')';
+ return;
+ }
+ case Type::StructTyID: {
+ StructType *STy = cast<StructType>(Ty);
+
+ if (STy->isLiteral())
+ return printStructBody(STy, OS);
+
+ if (!STy->getName().empty())
+ return PrintLLVMName(OS, STy->getName(), LocalPrefix);
+
+ DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
+ if (I != NumberedTypes.end())
+ OS << '%' << I->second;
+ else // Not enumerated, print the hex address.
+ OS << "%\"type " << STy << '\"';
+ return;
+ }
+ case Type::PointerTyID: {
+ PointerType *PTy = cast<PointerType>(Ty);
+ print(PTy->getElementType(), OS);
+ if (unsigned AddressSpace = PTy->getAddressSpace())
+ OS << " addrspace(" << AddressSpace << ')';
+ OS << '*';
+ return;
+ }
+ case Type::ArrayTyID: {
+ ArrayType *ATy = cast<ArrayType>(Ty);
+ OS << '[' << ATy->getNumElements() << " x ";
+ print(ATy->getElementType(), OS);
+ OS << ']';
+ return;
+ }
+ case Type::VectorTyID: {
+ VectorType *PTy = cast<VectorType>(Ty);
+ OS << "<" << PTy->getNumElements() << " x ";
+ print(PTy->getElementType(), OS);
+ OS << '>';
+ return;
+ }
+ }
+ llvm_unreachable("Invalid TypeID");
+}
+
+void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
+ if (STy->isOpaque()) {
+ OS << "opaque";
+ return;
+ }
+
+ if (STy->isPacked())
+ OS << '<';
+
+ if (STy->getNumElements() == 0) {
+ OS << "{}";
+ } else {
+ StructType::element_iterator I = STy->element_begin();
+ OS << "{ ";
+ print(*I++, OS);
+ for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
+ OS << ", ";
+ print(*I, OS);
+ }
+
+ OS << " }";
+ }
+ if (STy->isPacked())
+ OS << '>';
+}
+
+namespace llvm {
+//===----------------------------------------------------------------------===//
+// SlotTracker Class: Enumerate slot numbers for unnamed values
+//===----------------------------------------------------------------------===//
+/// This class provides computation of slot numbers for LLVM Assembly writing.
+///
+class SlotTracker {
+public:
+ /// ValueMap - A mapping of Values to slot numbers.
+ typedef DenseMap<const Value*, unsigned> ValueMap;
+
+private:
+ /// TheModule - The module for which we are holding slot numbers.
+ const Module* TheModule;
+
+ /// TheFunction - The function for which we are holding slot numbers.
+ const Function* TheFunction;
+ bool FunctionProcessed;
+ bool ShouldInitializeAllMetadata;
+
+ /// mMap - The slot map for the module level data.
+ ValueMap mMap;
+ unsigned mNext;
+
+ /// fMap - The slot map for the function level data.
+ ValueMap fMap;
+ unsigned fNext;
+
+ /// mdnMap - Map for MDNodes.
+ DenseMap<const MDNode*, unsigned> mdnMap;
+ unsigned mdnNext;
+
+ /// asMap - The slot map for attribute sets.
+ DenseMap<AttributeSet, unsigned> asMap;
+ unsigned asNext;
+public:
+ /// Construct from a module.
+ ///
+ /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
+ /// functions, giving correct numbering for metadata referenced only from
+ /// within a function (even if no functions have been initialized).
+ explicit SlotTracker(const Module *M,
+ bool ShouldInitializeAllMetadata = false);
+ /// Construct from a function, starting out in incorp state.
+ ///
+ /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
+ /// functions, giving correct numbering for metadata referenced only from
+ /// within a function (even if no functions have been initialized).
+ explicit SlotTracker(const Function *F,
+ bool ShouldInitializeAllMetadata = false);
+
+ /// Return the slot number of the specified value in it's type
+ /// plane. If something is not in the SlotTracker, return -1.
+ int getLocalSlot(const Value *V);
+ int getGlobalSlot(const GlobalValue *V);
+ int getMetadataSlot(const MDNode *N);
+ int getAttributeGroupSlot(AttributeSet AS);
+
+ /// If you'd like to deal with a function instead of just a module, use
+ /// this method to get its data into the SlotTracker.
+ void incorporateFunction(const Function *F) {
+ TheFunction = F;
+ FunctionProcessed = false;
+ }
+
+ const Function *getFunction() const { return TheFunction; }
+
+ /// After calling incorporateFunction, use this method to remove the
+ /// most recently incorporated function from the SlotTracker. This
+ /// will reset the state of the machine back to just the module contents.
+ void purgeFunction();
+
+ /// MDNode map iterators.
+ typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
+ mdn_iterator mdn_begin() { return mdnMap.begin(); }
+ mdn_iterator mdn_end() { return mdnMap.end(); }
+ unsigned mdn_size() const { return mdnMap.size(); }
+ bool mdn_empty() const { return mdnMap.empty(); }
+
+ /// AttributeSet map iterators.
+ typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
+ as_iterator as_begin() { return asMap.begin(); }
+ as_iterator as_end() { return asMap.end(); }
+ unsigned as_size() const { return asMap.size(); }
+ bool as_empty() const { return asMap.empty(); }
+
+ /// This function does the actual initialization.
+ inline void initialize();
+
+ // Implementation Details
+private:
+ /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
+ void CreateModuleSlot(const GlobalValue *V);
+
+ /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
+ void CreateMetadataSlot(const MDNode *N);
+
+ /// CreateFunctionSlot - Insert the specified Value* into the slot table.
+ void CreateFunctionSlot(const Value *V);
+
+ /// \brief Insert the specified AttributeSet into the slot table.
+ void CreateAttributeSetSlot(AttributeSet AS);
+
+ /// Add all of the module level global variables (and their initializers)
+ /// and function declarations, but not the contents of those functions.
+ void processModule();
+
+ /// Add all of the functions arguments, basic blocks, and instructions.
+ void processFunction();
+
+ /// Add all of the metadata from a function.
+ void processFunctionMetadata(const Function &F);
+
+ /// Add all of the metadata from an instruction.
+ void processInstructionMetadata(const Instruction &I);
+
+ SlotTracker(const SlotTracker &) = delete;
+ void operator=(const SlotTracker &) = delete;
+};
+} // namespace llvm
+
+ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
+ const Function *F)
+ : M(M), F(F), Machine(&Machine) {}
+
+ModuleSlotTracker::ModuleSlotTracker(const Module *M,
+ bool ShouldInitializeAllMetadata)
+ : MachineStorage(M ? new SlotTracker(M, ShouldInitializeAllMetadata)
+ : nullptr),
+ M(M), Machine(MachineStorage.get()) {}
+
+ModuleSlotTracker::~ModuleSlotTracker() {}
+
+void ModuleSlotTracker::incorporateFunction(const Function &F) {
+ if (!Machine)
+ return;
+
+ // Nothing to do if this is the right function already.
+ if (this->F == &F)
+ return;
+ if (this->F)
+ Machine->purgeFunction();
+ Machine->incorporateFunction(&F);
+ this->F = &F;
+}
+
+static SlotTracker *createSlotTracker(const Module *M) {
+ return new SlotTracker(M);
+}
+
+static SlotTracker *createSlotTracker(const Value *V) {
+ if (const Argument *FA = dyn_cast<Argument>(V))
+ return new SlotTracker(FA->getParent());
+
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ if (I->getParent())
+ return new SlotTracker(I->getParent()->getParent());
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return new SlotTracker(BB->getParent());
+
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return new SlotTracker(GV->getParent());
+
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+ return new SlotTracker(GA->getParent());
+
+ if (const Function *Func = dyn_cast<Function>(V))
+ return new SlotTracker(Func);
+
+ return nullptr;
+}
+
+#if 0
+#define ST_DEBUG(X) dbgs() << X
+#else
+#define ST_DEBUG(X)
+#endif
+
+// Module level constructor. Causes the contents of the Module (sans functions)
+// to be added to the slot table.
+SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
+ : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
+ ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
+ fNext(0), mdnNext(0), asNext(0) {}
+
+// Function level constructor. Causes the contents of the Module and the one
+// function provided to be added to the slot table.
+SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
+ : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
+ FunctionProcessed(false),
+ ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
+ fNext(0), mdnNext(0), asNext(0) {}
+
+inline void SlotTracker::initialize() {
+ if (TheModule) {
+ processModule();
+ TheModule = nullptr; ///< Prevent re-processing next time we're called.
+ }
+
+ if (TheFunction && !FunctionProcessed)
+ processFunction();
+}
+
+// Iterate through all the global variables, functions, and global
+// variable initializers and create slots for them.
+void SlotTracker::processModule() {
+ ST_DEBUG("begin processModule!\n");
+
+ // Add all of the unnamed global variables to the value table.
+ for (const GlobalVariable &Var : TheModule->globals()) {
+ if (!Var.hasName())
+ CreateModuleSlot(&Var);
+ }
+
+ for (const GlobalAlias &A : TheModule->aliases()) {
+ if (!A.hasName())
+ CreateModuleSlot(&A);
+ }
+
+ // Add metadata used by named metadata.
+ for (const NamedMDNode &NMD : TheModule->named_metadata()) {
+ for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
+ CreateMetadataSlot(NMD.getOperand(i));
+ }
+
+ for (const Function &F : *TheModule) {
+ if (!F.hasName())
+ // Add all the unnamed functions to the table.
+ CreateModuleSlot(&F);
+
+ if (ShouldInitializeAllMetadata)
+ processFunctionMetadata(F);
+
+ // Add all the function attributes to the table.
+ // FIXME: Add attributes of other objects?
+ AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
+ if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
+ CreateAttributeSetSlot(FnAttrs);
+ }
+
+ ST_DEBUG("end processModule!\n");
+}
+
+// Process the arguments, basic blocks, and instructions of a function.
+void SlotTracker::processFunction() {
+ ST_DEBUG("begin processFunction!\n");
+ fNext = 0;
+
+ // Add all the function arguments with no names.
+ for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
+ AE = TheFunction->arg_end(); AI != AE; ++AI)
+ if (!AI->hasName())
+ CreateFunctionSlot(AI);
+
+ ST_DEBUG("Inserting Instructions:\n");
+
+ // Add all of the basic blocks and instructions with no names.
+ for (auto &BB : *TheFunction) {
+ if (!BB.hasName())
+ CreateFunctionSlot(&BB);
+
+ processFunctionMetadata(*TheFunction);
+
+ for (auto &I : BB) {
+ if (!I.getType()->isVoidTy() && !I.hasName())
+ CreateFunctionSlot(&I);
+
+ // We allow direct calls to any llvm.foo function here, because the
+ // target may not be linked into the optimizer.
+ if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Add all the call attributes to the table.
+ AttributeSet Attrs = CI->getAttributes().getFnAttributes();
+ if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
+ CreateAttributeSetSlot(Attrs);
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+ // Add all the call attributes to the table.
+ AttributeSet Attrs = II->getAttributes().getFnAttributes();
+ if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
+ CreateAttributeSetSlot(Attrs);
+ }
+ }
+ }
+
+ FunctionProcessed = true;
+
+ ST_DEBUG("end processFunction!\n");
+}
+
+void SlotTracker::processFunctionMetadata(const Function &F) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ for (auto &BB : F) {
+ F.getAllMetadata(MDs);
+ for (auto &MD : MDs)
+ CreateMetadataSlot(MD.second);
+
+ for (auto &I : BB)
+ processInstructionMetadata(I);
+ }
+}
+
+void SlotTracker::processInstructionMetadata(const Instruction &I) {
+ // Process metadata used directly by intrinsics.
+ if (const CallInst *CI = dyn_cast<CallInst>(&I))
+ if (Function *F = CI->getCalledFunction())
+ if (F->isIntrinsic())
+ for (auto &Op : I.operands())
+ if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
+ if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
+ CreateMetadataSlot(N);
+
+ // Process metadata attached to this instruction.
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ I.getAllMetadata(MDs);
+ for (auto &MD : MDs)
+ CreateMetadataSlot(MD.second);
+}
+
+/// Clean up after incorporating a function. This is the only way to get out of
+/// the function incorporation state that affects get*Slot/Create*Slot. Function
+/// incorporation state is indicated by TheFunction != 0.
+void SlotTracker::purgeFunction() {
+ ST_DEBUG("begin purgeFunction!\n");
+ fMap.clear(); // Simply discard the function level map
+ TheFunction = nullptr;
+ FunctionProcessed = false;
+ ST_DEBUG("end purgeFunction!\n");
+}
+
+/// getGlobalSlot - Get the slot number of a global value.
+int SlotTracker::getGlobalSlot(const GlobalValue *V) {
+ // Check for uninitialized state and do lazy initialization.
+ initialize();
+
+ // Find the value in the module map
+ ValueMap::iterator MI = mMap.find(V);
+ return MI == mMap.end() ? -1 : (int)MI->second;
+}
+
+/// getMetadataSlot - Get the slot number of a MDNode.
+int SlotTracker::getMetadataSlot(const MDNode *N) {
+ // Check for uninitialized state and do lazy initialization.
+ initialize();
+
+ // Find the MDNode in the module map
+ mdn_iterator MI = mdnMap.find(N);
+ return MI == mdnMap.end() ? -1 : (int)MI->second;
+}
+
+
+/// getLocalSlot - Get the slot number for a value that is local to a function.
+int SlotTracker::getLocalSlot(const Value *V) {
+ assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
+
+ // Check for uninitialized state and do lazy initialization.
+ initialize();
+
+ ValueMap::iterator FI = fMap.find(V);
+ return FI == fMap.end() ? -1 : (int)FI->second;
+}
+
+int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
+ // Check for uninitialized state and do lazy initialization.
+ initialize();
+
+ // Find the AttributeSet in the module map.
+ as_iterator AI = asMap.find(AS);
+ return AI == asMap.end() ? -1 : (int)AI->second;
+}
+
+/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
+void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
+ assert(V && "Can't insert a null Value into SlotTracker!");
+ assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
+ assert(!V->hasName() && "Doesn't need a slot!");
+
+ unsigned DestSlot = mNext++;
+ mMap[V] = DestSlot;
+
+ ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
+ DestSlot << " [");
+ // G = Global, F = Function, A = Alias, o = other
+ ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
+ (isa<Function>(V) ? 'F' :
+ (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
+}
+
+/// CreateSlot - Create a new slot for the specified value if it has no name.
+void SlotTracker::CreateFunctionSlot(const Value *V) {
+ assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
+
+ unsigned DestSlot = fNext++;
+ fMap[V] = DestSlot;
+
+ // G = Global, F = Function, o = other
+ ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
+ DestSlot << " [o]\n");
+}
+
+/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
+void SlotTracker::CreateMetadataSlot(const MDNode *N) {
+ assert(N && "Can't insert a null Value into SlotTracker!");
+
+ unsigned DestSlot = mdnNext;
+ if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
+ return;
+ ++mdnNext;
+
+ // Recursively add any MDNodes referenced by operands.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
+ CreateMetadataSlot(Op);
+}
+
+void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
+ assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
+ "Doesn't need a slot!");
+
+ as_iterator I = asMap.find(AS);
+ if (I != asMap.end())
+ return;
+
+ unsigned DestSlot = asNext++;
+ asMap[AS] = DestSlot;
+}
+
+//===----------------------------------------------------------------------===//
+// AsmWriter Implementation
+//===----------------------------------------------------------------------===//
+
+static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context);
+
+static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context,
+ bool FromValue = false);
+
+static const char *getPredicateText(unsigned predicate) {
+ const char * pred = "unknown";
+ switch (predicate) {
+ case FCmpInst::FCMP_FALSE: pred = "false"; break;
+ case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
+ case FCmpInst::FCMP_OGT: pred = "ogt"; break;
+ case FCmpInst::FCMP_OGE: pred = "oge"; break;
+ case FCmpInst::FCMP_OLT: pred = "olt"; break;
+ case FCmpInst::FCMP_OLE: pred = "ole"; break;
+ case FCmpInst::FCMP_ONE: pred = "one"; break;
+ case FCmpInst::FCMP_ORD: pred = "ord"; break;
+ case FCmpInst::FCMP_UNO: pred = "uno"; break;
+ case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
+ case FCmpInst::FCMP_UGT: pred = "ugt"; break;
+ case FCmpInst::FCMP_UGE: pred = "uge"; break;
+ case FCmpInst::FCMP_ULT: pred = "ult"; break;
+ case FCmpInst::FCMP_ULE: pred = "ule"; break;
+ case FCmpInst::FCMP_UNE: pred = "une"; break;
+ case FCmpInst::FCMP_TRUE: pred = "true"; break;
+ case ICmpInst::ICMP_EQ: pred = "eq"; break;
+ case ICmpInst::ICMP_NE: pred = "ne"; break;
+ case ICmpInst::ICMP_SGT: pred = "sgt"; break;
+ case ICmpInst::ICMP_SGE: pred = "sge"; break;
+ case ICmpInst::ICMP_SLT: pred = "slt"; break;
+ case ICmpInst::ICMP_SLE: pred = "sle"; break;
+ case ICmpInst::ICMP_UGT: pred = "ugt"; break;
+ case ICmpInst::ICMP_UGE: pred = "uge"; break;
+ case ICmpInst::ICMP_ULT: pred = "ult"; break;
+ case ICmpInst::ICMP_ULE: pred = "ule"; break;
+ }
+ return pred;
+}
+
+static void writeAtomicRMWOperation(raw_ostream &Out,
+ AtomicRMWInst::BinOp Op) {
+ switch (Op) {
+ default: Out << " <unknown operation " << Op << ">"; break;
+ case AtomicRMWInst::Xchg: Out << " xchg"; break;
+ case AtomicRMWInst::Add: Out << " add"; break;
+ case AtomicRMWInst::Sub: Out << " sub"; break;
+ case AtomicRMWInst::And: Out << " and"; break;
+ case AtomicRMWInst::Nand: Out << " nand"; break;
+ case AtomicRMWInst::Or: Out << " or"; break;
+ case AtomicRMWInst::Xor: Out << " xor"; break;
+ case AtomicRMWInst::Max: Out << " max"; break;
+ case AtomicRMWInst::Min: Out << " min"; break;
+ case AtomicRMWInst::UMax: Out << " umax"; break;
+ case AtomicRMWInst::UMin: Out << " umin"; break;
+ }
+}
+
+static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
+ if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
+ // Unsafe algebra implies all the others, no need to write them all out
+ if (FPO->hasUnsafeAlgebra())
+ Out << " fast";
+ else {
+ if (FPO->hasNoNaNs())
+ Out << " nnan";
+ if (FPO->hasNoInfs())
+ Out << " ninf";
+ if (FPO->hasNoSignedZeros())
+ Out << " nsz";
+ if (FPO->hasAllowReciprocal())
+ Out << " arcp";
+ }
+ }
+
+ if (const OverflowingBinaryOperator *OBO =
+ dyn_cast<OverflowingBinaryOperator>(U)) {
+ if (OBO->hasNoUnsignedWrap())
+ Out << " nuw";
+ if (OBO->hasNoSignedWrap())
+ Out << " nsw";
+ } else if (const PossiblyExactOperator *Div =
+ dyn_cast<PossiblyExactOperator>(U)) {
+ if (Div->isExact())
+ Out << " exact";
+ } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
+ if (GEP->isInBounds())
+ Out << " inbounds";
+ }
+}
+
+static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
+ TypePrinting &TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ if (CI->getType()->isIntegerTy(1)) {
+ Out << (CI->getZExtValue() ? "true" : "false");
+ return;
+ }
+ Out << CI->getValue();
+ return;
+ }
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
+ &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
+ // We would like to output the FP constant value in exponential notation,
+ // but we cannot do this if doing so will lose precision. Check here to
+ // make sure that we only output it in exponential format if we can parse
+ // the value back and get the same value.
+ //
+ bool ignored;
+ bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
+ bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
+ bool isInf = CFP->getValueAPF().isInfinity();
+ bool isNaN = CFP->getValueAPF().isNaN();
+ if (!isHalf && !isInf && !isNaN) {
+ double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
+ CFP->getValueAPF().convertToFloat();
+ SmallString<128> StrVal;
+ raw_svector_ostream(StrVal) << Val;
+
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN, that atof will accept, but the lexer will not. Check
+ // that the string matches the "[-+]?[0-9]" regex.
+ //
+ if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+ ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
+ // Reparse stringized version!
+ if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
+ Out << StrVal;
+ return;
+ }
+ }
+ }
+ // Otherwise we could not reparse it to exactly the same value, so we must
+ // output the string in hexadecimal format! Note that loading and storing
+ // floating point types changes the bits of NaNs on some hosts, notably
+ // x86, so we must not use these types.
+ static_assert(sizeof(double) == sizeof(uint64_t),
+ "assuming that double is 64 bits!");
+ char Buffer[40];
+ APFloat apf = CFP->getValueAPF();
+ // Halves and floats are represented in ASCII IR as double, convert.
+ if (!isDouble)
+ apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ &ignored);
+ Out << "0x" <<
+ utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
+ Buffer+40);
+ return;
+ }
+
+ // Either half, or some form of long double.
+ // These appear as a magic letter identifying the type, then a
+ // fixed number of hex digits.
+ Out << "0x";
+ // Bit position, in the current word, of the next nibble to print.
+ int shiftcount;
+
+ if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
+ Out << 'K';
+ // api needed to prevent premature destruction
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t* p = api.getRawData();
+ uint64_t word = p[1];
+ shiftcount = 12;
+ int width = api.getBitWidth();
+ for (int j=0; j<width; j+=4, shiftcount-=4) {
+ unsigned int nibble = (word>>shiftcount) & 15;
+ if (nibble < 10)
+ Out << (unsigned char)(nibble + '0');
+ else
+ Out << (unsigned char)(nibble - 10 + 'A');
+ if (shiftcount == 0 && j+4 < width) {
+ word = *p;
+ shiftcount = 64;
+ if (width-j-4 < 64)
+ shiftcount = width-j-4;
+ }
+ }
+ return;
+ } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
+ shiftcount = 60;
+ Out << 'L';
+ } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
+ shiftcount = 60;
+ Out << 'M';
+ } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
+ shiftcount = 12;
+ Out << 'H';
+ } else
+ llvm_unreachable("Unsupported floating point type");
+ // api needed to prevent premature destruction
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t* p = api.getRawData();
+ uint64_t word = *p;
+ int width = api.getBitWidth();
+ for (int j=0; j<width; j+=4, shiftcount-=4) {
+ unsigned int nibble = (word>>shiftcount) & 15;
+ if (nibble < 10)
+ Out << (unsigned char)(nibble + '0');
+ else
+ Out << (unsigned char)(nibble - 10 + 'A');
+ if (shiftcount == 0 && j+4 < width) {
+ word = *(++p);
+ shiftcount = 64;
+ if (width-j-4 < 64)
+ shiftcount = width-j-4;
+ }
+ }
+ return;
+ }
+
+ if (isa<ConstantAggregateZero>(CV)) {
+ Out << "zeroinitializer";
+ return;
+ }
+
+ if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
+ Out << "blockaddress(";
+ WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
+ Context);
+ Out << ", ";
+ WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
+ Context);
+ Out << ")";
+ return;
+ }
+
+ if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ Type *ETy = CA->getType()->getElementType();
+ Out << '[';
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getOperand(0),
+ &TypePrinter, Machine,
+ Context);
+ for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
+ Context);
+ }
+ Out << ']';
+ return;
+ }
+
+ if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
+ // As a special case, print the array as a string if it is an array of
+ // i8 with ConstantInt values.
+ if (CA->isString()) {
+ Out << "c\"";
+ PrintEscapedString(CA->getAsString(), Out);
+ Out << '"';
+ return;
+ }
+
+ Type *ETy = CA->getType()->getElementType();
+ Out << '[';
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
+ &TypePrinter, Machine,
+ Context);
+ for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
+ Out << ", ";
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
+ Machine, Context);
+ }
+ Out << ']';
+ return;
+ }
+
+
+ if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ if (CS->getType()->isPacked())
+ Out << '<';
+ Out << '{';
+ unsigned N = CS->getNumOperands();
+ if (N) {
+ Out << ' ';
+ TypePrinter.print(CS->getOperand(0)->getType(), Out);
+ Out << ' ';
+
+ WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
+ Context);
+
+ for (unsigned i = 1; i < N; i++) {
+ Out << ", ";
+ TypePrinter.print(CS->getOperand(i)->getType(), Out);
+ Out << ' ';
+
+ WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
+ Context);
+ }
+ Out << ' ';
+ }
+
+ Out << '}';
+ if (CS->getType()->isPacked())
+ Out << '>';
+ return;
+ }
+
+ if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
+ Type *ETy = CV->getType()->getVectorElementType();
+ Out << '<';
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
+ Machine, Context);
+ for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
+ Out << ", ";
+ TypePrinter.print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
+ Machine, Context);
+ }
+ Out << '>';
+ return;
+ }
+
+ if (isa<ConstantPointerNull>(CV)) {
+ Out << "null";
+ return;
+ }
+
+ if (isa<UndefValue>(CV)) {
+ Out << "undef";
+ return;
+ }
+
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ Out << CE->getOpcodeName();
+ WriteOptimizationInfo(Out, CE);
+ if (CE->isCompare())
+ Out << ' ' << getPredicateText(CE->getPredicate());
+ Out << " (";
+
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
+ TypePrinter.print(
+ cast<PointerType>(GEP->getPointerOperandType()->getScalarType())
+ ->getElementType(),
+ Out);
+ Out << ", ";
+ }
+
+ for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+ TypePrinter.print((*OI)->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
+ if (OI+1 != CE->op_end())
+ Out << ", ";
+ }
+
+ if (CE->hasIndices()) {
+ ArrayRef<unsigned> Indices = CE->getIndices();
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i)
+ Out << ", " << Indices[i];
+ }
+
+ if (CE->isCast()) {
+ Out << " to ";
+ TypePrinter.print(CE->getType(), Out);
+ }
+
+ Out << ')';
+ return;
+ }
+
+ Out << "<placeholder or erroneous Constant>";
+}
+
+static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!{";
+ for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
+ const Metadata *MD = Node->getOperand(mi);
+ if (!MD)
+ Out << "null";
+ else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
+ Value *V = MDV->getValue();
+ TypePrinter->print(V->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
+ } else {
+ WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
+ }
+ if (mi + 1 != me)
+ Out << ", ";
+ }
+
+ Out << "}";
+}
+
+namespace {
+struct FieldSeparator {
+ bool Skip;
+ const char *Sep;
+ FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
+};
+raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
+ if (FS.Skip) {
+ FS.Skip = false;
+ return OS;
+ }
+ return OS << FS.Sep;
+}
+struct MDFieldPrinter {
+ raw_ostream &Out;
+ FieldSeparator FS;
+ TypePrinting *TypePrinter;
+ SlotTracker *Machine;
+ const Module *Context;
+
+ explicit MDFieldPrinter(raw_ostream &Out)
+ : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
+ MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context)
+ : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
+ }
+ void printTag(const DINode *N);
+ void printString(StringRef Name, StringRef Value,
+ bool ShouldSkipEmpty = true);
+ void printMetadata(StringRef Name, const Metadata *MD,
+ bool ShouldSkipNull = true);
+ template <class IntTy>
+ void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
+ void printBool(StringRef Name, bool Value);
+ void printDIFlags(StringRef Name, unsigned Flags);
+ template <class IntTy, class Stringifier>
+ void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
+ bool ShouldSkipZero = true);
+};
+} // end namespace
+
+void MDFieldPrinter::printTag(const DINode *N) {
+ Out << FS << "tag: ";
+ if (const char *Tag = dwarf::TagString(N->getTag()))
+ Out << Tag;
+ else
+ Out << N->getTag();
+}
+
+void MDFieldPrinter::printString(StringRef Name, StringRef Value,
+ bool ShouldSkipEmpty) {
+ if (ShouldSkipEmpty && Value.empty())
+ return;
+
+ Out << FS << Name << ": \"";
+ PrintEscapedString(Value, Out);
+ Out << "\"";
+}
+
+static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ if (!MD) {
+ Out << "null";
+ return;
+ }
+ WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
+}
+
+void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
+ bool ShouldSkipNull) {
+ if (ShouldSkipNull && !MD)
+ return;
+
+ Out << FS << Name << ": ";
+ writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
+}
+
+template <class IntTy>
+void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
+ if (ShouldSkipZero && !Int)
+ return;
+
+ Out << FS << Name << ": " << Int;
+}
+
+void MDFieldPrinter::printBool(StringRef Name, bool Value) {
+ Out << FS << Name << ": " << (Value ? "true" : "false");
+}
+
+void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
+ if (!Flags)
+ return;
+
+ Out << FS << Name << ": ";
+
+ SmallVector<unsigned, 8> SplitFlags;
+ unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
+
+ FieldSeparator FlagsFS(" | ");
+ for (unsigned F : SplitFlags) {
+ const char *StringF = DINode::getFlagString(F);
+ assert(StringF && "Expected valid flag");
+ Out << FlagsFS << StringF;
+ }
+ if (Extra || SplitFlags.empty())
+ Out << FlagsFS << Extra;
+}
+
+template <class IntTy, class Stringifier>
+void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
+ Stringifier toString, bool ShouldSkipZero) {
+ if (!Value)
+ return;
+
+ Out << FS << Name << ": ";
+ if (const char *S = toString(Value))
+ Out << S;
+ else
+ Out << Value;
+}
+
+static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!GenericDINode(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printTag(N);
+ Printer.printString("header", N->getHeader());
+ if (N->getNumDwarfOperands()) {
+ Out << Printer.FS << "operands: {";
+ FieldSeparator IFS;
+ for (auto &I : N->dwarf_operands()) {
+ Out << IFS;
+ writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
+ }
+ Out << "}";
+ }
+ Out << ")";
+}
+
+static void writeDILocation(raw_ostream &Out, const DILocation *DL,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DILocation(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ // Always output the line, since 0 is a relevant and important value for it.
+ Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
+ Printer.printInt("column", DL->getColumn());
+ Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
+ Out << ")";
+}
+
+static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
+ TypePrinting *, SlotTracker *, const Module *) {
+ Out << "!DISubrange(";
+ MDFieldPrinter Printer(Out);
+ Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
+ Printer.printInt("lowerBound", N->getLowerBound());
+ Out << ")";
+}
+
+static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
+ TypePrinting *, SlotTracker *, const Module *) {
+ Out << "!DIEnumerator(";
+ MDFieldPrinter Printer(Out);
+ Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
+ Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
+ Out << ")";
+}
+
+static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
+ TypePrinting *, SlotTracker *, const Module *) {
+ Out << "!DIBasicType(";
+ MDFieldPrinter Printer(Out);
+ if (N->getTag() != dwarf::DW_TAG_base_type)
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printInt("size", N->getSizeInBits());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printDwarfEnum("encoding", N->getEncoding(),
+ dwarf::AttributeEncodingString);
+ Out << ")";
+}
+
+static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DIDerivedType(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("baseType", N->getRawBaseType(),
+ /* ShouldSkipNull */ false);
+ Printer.printInt("size", N->getSizeInBits());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printInt("offset", N->getOffsetInBits());
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printMetadata("extraData", N->getRawExtraData());
+ Out << ")";
+}
+
+static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context) {
+ Out << "!DICompositeType(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("baseType", N->getRawBaseType());
+ Printer.printInt("size", N->getSizeInBits());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printInt("offset", N->getOffsetInBits());
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printMetadata("elements", N->getRawElements());
+ Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
+ dwarf::LanguageString);
+ Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
+ Printer.printMetadata("templateParams", N->getRawTemplateParams());
+ Printer.printString("identifier", N->getIdentifier());
+ Out << ")";
+}
+
+static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context) {
+ Out << "!DISubroutineType(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printMetadata("types", N->getRawTypeArray(),
+ /* ShouldSkipNull */ false);
+ Out << ")";
+}
+
+static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
+ SlotTracker *, const Module *) {
+ Out << "!DIFile(";
+ MDFieldPrinter Printer(Out);
+ Printer.printString("filename", N->getFilename(),
+ /* ShouldSkipEmpty */ false);
+ Printer.printString("directory", N->getDirectory(),
+ /* ShouldSkipEmpty */ false);
+ Out << ")";
+}
+
+static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DICompileUnit(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printDwarfEnum("language", N->getSourceLanguage(),
+ dwarf::LanguageString, /* ShouldSkipZero */ false);
+ Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
+ Printer.printString("producer", N->getProducer());
+ Printer.printBool("isOptimized", N->isOptimized());
+ Printer.printString("flags", N->getFlags());
+ Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
+ /* ShouldSkipZero */ false);
+ Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
+ Printer.printInt("emissionKind", N->getEmissionKind(),
+ /* ShouldSkipZero */ false);
+ Printer.printMetadata("enums", N->getRawEnumTypes());
+ Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
+ Printer.printMetadata("subprograms", N->getRawSubprograms());
+ Printer.printMetadata("globals", N->getRawGlobalVariables());
+ Printer.printMetadata("imports", N->getRawImportedEntities());
+ Printer.printInt("dwoId", N->getDWOId());
+ Out << ")";
+}
+
+static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DISubprogram(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printString("name", N->getName());
+ Printer.printString("linkageName", N->getLinkageName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printBool("isLocal", N->isLocalToUnit());
+ Printer.printBool("isDefinition", N->isDefinition());
+ Printer.printInt("scopeLine", N->getScopeLine());
+ Printer.printMetadata("containingType", N->getRawContainingType());
+ Printer.printDwarfEnum("virtuality", N->getVirtuality(),
+ dwarf::VirtualityString);
+ Printer.printInt("virtualIndex", N->getVirtualIndex());
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printBool("isOptimized", N->isOptimized());
+ Printer.printMetadata("function", N->getRawFunction());
+ Printer.printMetadata("templateParams", N->getRawTemplateParams());
+ Printer.printMetadata("declaration", N->getRawDeclaration());
+ Printer.printMetadata("variables", N->getRawVariables());
+ Out << ")";
+}
+
+static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DILexicalBlock(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printInt("column", N->getColumn());
+ Out << ")";
+}
+
+static void writeDILexicalBlockFile(raw_ostream &Out,
+ const DILexicalBlockFile *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DILexicalBlockFile(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("discriminator", N->getDiscriminator(),
+ /* ShouldSkipZero */ false);
+ Out << ")";
+}
+
+static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DINamespace(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Out << ")";
+}
+
+static void writeDIModule(raw_ostream &Out, const DIModule *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DIModule(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printString("name", N->getName());
+ Printer.printString("configMacros", N->getConfigurationMacros());
+ Printer.printString("includePath", N->getIncludePath());
+ Printer.printString("isysroot", N->getISysRoot());
+ Out << ")";
+}
+
+
+static void writeDITemplateTypeParameter(raw_ostream &Out,
+ const DITemplateTypeParameter *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DITemplateTypeParameter(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
+ Out << ")";
+}
+
+static void writeDITemplateValueParameter(raw_ostream &Out,
+ const DITemplateValueParameter *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DITemplateValueParameter(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
+ Out << ")";
+}
+
+static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context) {
+ Out << "!DIGlobalVariable(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printString("name", N->getName());
+ Printer.printString("linkageName", N->getLinkageName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printBool("isLocal", N->isLocalToUnit());
+ Printer.printBool("isDefinition", N->isDefinition());
+ Printer.printMetadata("variable", N->getRawVariable());
+ Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
+ Out << ")";
+}
+
+static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context) {
+ Out << "!DILocalVariable(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printInt("arg", N->getArg(),
+ /* ShouldSkipZero */
+ N->getTag() == dwarf::DW_TAG_auto_variable);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printDIFlags("flags", N->getFlags());
+ Out << ")";
+}
+
+static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DIExpression(";
+ FieldSeparator FS;
+ if (N->isValid()) {
+ for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
+ const char *OpStr = dwarf::OperationEncodingString(I->getOp());
+ assert(OpStr && "Expected valid opcode");
+
+ Out << FS << OpStr;
+ for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
+ Out << FS << I->getArg(A);
+ }
+ } else {
+ for (const auto &I : N->getElements())
+ Out << FS << I;
+ }
+ Out << ")";
+}
+
+static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
+ TypePrinting *TypePrinter, SlotTracker *Machine,
+ const Module *Context) {
+ Out << "!DIObjCProperty(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printString("setter", N->getSetterName());
+ Printer.printString("getter", N->getGetterName());
+ Printer.printInt("attributes", N->getAttributes());
+ Printer.printMetadata("type", N->getRawType());
+ Out << ")";
+}
+
+static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context) {
+ Out << "!DIImportedEntity(";
+ MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("entity", N->getRawEntity());
+ Printer.printInt("line", N->getLine());
+ Out << ")";
+}
+
+
+static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ if (Node->isDistinct())
+ Out << "distinct ";
+ else if (Node->isTemporary())
+ Out << "<temporary!> "; // Handle broken code.
+
+ switch (Node->getMetadataID()) {
+ default:
+ llvm_unreachable("Expected uniquable MDNode");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
+ break;
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+// Full implementation of printing a Value as an operand with support for
+// TypePrinting, etc.
+static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine,
+ const Module *Context) {
+ if (V->hasName()) {
+ PrintLLVMName(Out, V);
+ return;
+ }
+
+ const Constant *CV = dyn_cast<Constant>(V);
+ if (CV && !isa<GlobalValue>(CV)) {
+ assert(TypePrinter && "Constants require TypePrinting!");
+ WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
+ return;
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Out << "asm ";
+ if (IA->hasSideEffects())
+ Out << "sideeffect ";
+ if (IA->isAlignStack())
+ Out << "alignstack ";
+ // We don't emit the AD_ATT dialect as it's the assumed default.
+ if (IA->getDialect() == InlineAsm::AD_Intel)
+ Out << "inteldialect ";
+ Out << '"';
+ PrintEscapedString(IA->getAsmString(), Out);
+ Out << "\", \"";
+ PrintEscapedString(IA->getConstraintString(), Out);
+ Out << '"';
+ return;
+ }
+
+ if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
+ WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
+ Context, /* FromValue */ true);
+ return;
+ }
+
+ char Prefix = '%';
+ int Slot;
+ // If we have a SlotTracker, use it.
+ if (Machine) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Slot = Machine->getGlobalSlot(GV);
+ Prefix = '@';
+ } else {
+ Slot = Machine->getLocalSlot(V);
+
+ // If the local value didn't succeed, then we may be referring to a value
+ // from a different function. Translate it, as this can happen when using
+ // address of blocks.
+ if (Slot == -1)
+ if ((Machine = createSlotTracker(V))) {
+ Slot = Machine->getLocalSlot(V);
+ delete Machine;
+ }
+ }
+ } else if ((Machine = createSlotTracker(V))) {
+ // Otherwise, create one to get the # and then destroy it.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Slot = Machine->getGlobalSlot(GV);
+ Prefix = '@';
+ } else {
+ Slot = Machine->getLocalSlot(V);
+ }
+ delete Machine;
+ Machine = nullptr;
+ } else {
+ Slot = -1;
+ }
+
+ if (Slot != -1)
+ Out << Prefix << Slot;
+ else
+ Out << "<badref>";
+}
+
+static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
+ TypePrinting *TypePrinter,
+ SlotTracker *Machine, const Module *Context,
+ bool FromValue) {
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ std::unique_ptr<SlotTracker> MachineStorage;
+ if (!Machine) {
+ MachineStorage = make_unique<SlotTracker>(Context);
+ Machine = MachineStorage.get();
+ }
+ int Slot = Machine->getMetadataSlot(N);
+ if (Slot == -1)
+ // Give the pointer value instead of "badref", since this comes up all
+ // the time when debugging.
+ Out << "<" << N << ">";
+ else
+ Out << '!' << Slot;
+ return;
+ }
+
+ if (const MDString *MDS = dyn_cast<MDString>(MD)) {
+ Out << "!\"";
+ PrintEscapedString(MDS->getString(), Out);
+ Out << '"';
+ return;
+ }
+
+ auto *V = cast<ValueAsMetadata>(MD);
+ assert(TypePrinter && "TypePrinter required for metadata values");
+ assert((FromValue || !isa<LocalAsMetadata>(V)) &&
+ "Unexpected function-local metadata outside of value argument");
+
+ TypePrinter->print(V->getValue()->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
+}
+
+namespace {
+class AssemblyWriter {
+ formatted_raw_ostream &Out;
+ const Module *TheModule;
+ std::unique_ptr<SlotTracker> SlotTrackerStorage;
+ SlotTracker &Machine;
+ TypePrinting TypePrinter;
+ AssemblyAnnotationWriter *AnnotationWriter;
+ SetVector<const Comdat *> Comdats;
+ bool ShouldPreserveUseListOrder;
+ UseListOrderStack UseListOrders;
+ SmallVector<StringRef, 8> MDNames;
+
+public:
+ /// Construct an AssemblyWriter with an external SlotTracker
+ AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
+ AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder = false);
+
+ /// Construct an AssemblyWriter with an internally allocated SlotTracker
+ AssemblyWriter(formatted_raw_ostream &o, const Module *M,
+ AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder = false);
+
+ void printMDNodeBody(const MDNode *MD);
+ void printNamedMDNode(const NamedMDNode *NMD);
+
+ void printModule(const Module *M);
+
+ void writeOperand(const Value *Op, bool PrintType);
+ void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
+ void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
+ void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
+ AtomicOrdering FailureOrdering,
+ SynchronizationScope SynchScope);
+
+ void writeAllMDNodes();
+ void writeMDNode(unsigned Slot, const MDNode *Node);
+ void writeAllAttributeGroups();
+
+ void printTypeIdentities();
+ void printGlobal(const GlobalVariable *GV);
+ void printAlias(const GlobalAlias *GV);
+ void printComdat(const Comdat *C);
+ void printFunction(const Function *F);
+ void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
+ void printBasicBlock(const BasicBlock *BB);
+ void printInstructionLine(const Instruction &I);
+ void printInstruction(const Instruction &I);
+
+ void printUseListOrder(const UseListOrder &Order);
+ void printUseLists(const Function *F);
+
+private:
+ void init();
+
+ /// \brief Print out metadata attachments.
+ void printMetadataAttachments(
+ const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
+ StringRef Separator);
+
+ // printInfoComment - Print a little comment after the instruction indicating
+ // which slot it occupies.
+ void printInfoComment(const Value &V);
+
+ // printGCRelocateComment - print comment after call to the gc.relocate
+ // intrinsic indicating base and derived pointer names.
+ void printGCRelocateComment(const Value &V);
+};
+} // namespace
+
+void AssemblyWriter::init() {
+ if (!TheModule)
+ return;
+ TypePrinter.incorporateTypes(*TheModule);
+ for (const Function &F : *TheModule)
+ if (const Comdat *C = F.getComdat())
+ Comdats.insert(C);
+ for (const GlobalVariable &GV : TheModule->globals())
+ if (const Comdat *C = GV.getComdat())
+ Comdats.insert(C);
+}
+
+AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
+ const Module *M, AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder)
+ : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
+ ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
+ init();
+}
+
+AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
+ AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder)
+ : Out(o), TheModule(M), SlotTrackerStorage(createSlotTracker(M)),
+ Machine(*SlotTrackerStorage), AnnotationWriter(AAW),
+ ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
+ init();
+}
+
+void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
+ if (!Operand) {
+ Out << "<null operand!>";
+ return;
+ }
+ if (PrintType) {
+ TypePrinter.print(Operand->getType(), Out);
+ Out << ' ';
+ }
+ WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
+}
+
+void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
+ SynchronizationScope SynchScope) {
+ if (Ordering == NotAtomic)
+ return;
+
+ switch (SynchScope) {
+ case SingleThread: Out << " singlethread"; break;
+ case CrossThread: break;
+ }
+
+ switch (Ordering) {
+ default: Out << " <bad ordering " << int(Ordering) << ">"; break;
+ case Unordered: Out << " unordered"; break;
+ case Monotonic: Out << " monotonic"; break;
+ case Acquire: Out << " acquire"; break;
+ case Release: Out << " release"; break;
+ case AcquireRelease: Out << " acq_rel"; break;
+ case SequentiallyConsistent: Out << " seq_cst"; break;
+ }
+}
+
+void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
+ AtomicOrdering FailureOrdering,
+ SynchronizationScope SynchScope) {
+ assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
+
+ switch (SynchScope) {
+ case SingleThread: Out << " singlethread"; break;
+ case CrossThread: break;
+ }
+
+ switch (SuccessOrdering) {
+ default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
+ case Unordered: Out << " unordered"; break;
+ case Monotonic: Out << " monotonic"; break;
+ case Acquire: Out << " acquire"; break;
+ case Release: Out << " release"; break;
+ case AcquireRelease: Out << " acq_rel"; break;
+ case SequentiallyConsistent: Out << " seq_cst"; break;
+ }
+
+ switch (FailureOrdering) {
+ default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
+ case Unordered: Out << " unordered"; break;
+ case Monotonic: Out << " monotonic"; break;
+ case Acquire: Out << " acquire"; break;
+ case Release: Out << " release"; break;
+ case AcquireRelease: Out << " acq_rel"; break;
+ case SequentiallyConsistent: Out << " seq_cst"; break;
+ }
+}
+
+void AssemblyWriter::writeParamOperand(const Value *Operand,
+ AttributeSet Attrs, unsigned Idx) {
+ if (!Operand) {
+ Out << "<null operand!>";
+ return;
+ }
+
+ // Print the type
+ TypePrinter.print(Operand->getType(), Out);
+ // Print parameter attributes list
+ if (Attrs.hasAttributes(Idx))
+ Out << ' ' << Attrs.getAsString(Idx);
+ Out << ' ';
+ // Print the operand
+ WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
+}
+
+void AssemblyWriter::printModule(const Module *M) {
+ Machine.initialize();
+
+ if (ShouldPreserveUseListOrder)
+ UseListOrders = predictUseListOrder(M);
+
+ if (!M->getModuleIdentifier().empty() &&
+ // Don't print the ID if it will start a new line (which would
+ // require a comment char before it).
+ M->getModuleIdentifier().find('\n') == std::string::npos)
+ Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
+
+ const std::string &DL = M->getDataLayoutStr();
+ if (!DL.empty())
+ Out << "target datalayout = \"" << DL << "\"\n";
+ if (!M->getTargetTriple().empty())
+ Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
+
+ if (!M->getModuleInlineAsm().empty()) {
+ Out << '\n';
+
+ // Split the string into lines, to make it easier to read the .ll file.
+ StringRef Asm = M->getModuleInlineAsm();
+ do {
+ StringRef Front;
+ std::tie(Front, Asm) = Asm.split('\n');
+
+ // We found a newline, print the portion of the asm string from the
+ // last newline up to this newline.
+ Out << "module asm \"";
+ PrintEscapedString(Front, Out);
+ Out << "\"\n";
+ } while (!Asm.empty());
+ }
+
+ printTypeIdentities();
+
+ // Output all comdats.
+ if (!Comdats.empty())
+ Out << '\n';
+ for (const Comdat *C : Comdats) {
+ printComdat(C);
+ if (C != Comdats.back())
+ Out << '\n';
+ }
+
+ // Output all globals.
+ if (!M->global_empty()) Out << '\n';
+ for (const GlobalVariable &GV : M->globals()) {
+ printGlobal(&GV); Out << '\n';
+ }
+
+ // Output all aliases.
+ if (!M->alias_empty()) Out << "\n";
+ for (const GlobalAlias &GA : M->aliases())
+ printAlias(&GA);
+
+ // Output global use-lists.
+ printUseLists(nullptr);
+
+ // Output all of the functions.
+ for (const Function &F : *M)
+ printFunction(&F);
+ assert(UseListOrders.empty() && "All use-lists should have been consumed");
+
+ // Output all attribute groups.
+ if (!Machine.as_empty()) {
+ Out << '\n';
+ writeAllAttributeGroups();
+ }
+
+ // Output named metadata.
+ if (!M->named_metadata_empty()) Out << '\n';
+
+ for (const NamedMDNode &Node : M->named_metadata())
+ printNamedMDNode(&Node);
+
+ // Output metadata.
+ if (!Machine.mdn_empty()) {
+ Out << '\n';
+ writeAllMDNodes();
+ }
+}
+
+static void printMetadataIdentifier(StringRef Name,
+ formatted_raw_ostream &Out) {
+ if (Name.empty()) {
+ Out << "<empty name> ";
+ } else {
+ if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
+ Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
+ Out << Name[0];
+ else
+ Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
+ for (unsigned i = 1, e = Name.size(); i != e; ++i) {
+ unsigned char C = Name[i];
+ if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
+ C == '.' || C == '_')
+ Out << C;
+ else
+ Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
+ }
+ }
+}
+
+void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
+ Out << '!';
+ printMetadataIdentifier(NMD->getName(), Out);
+ Out << " = !{";
+ for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
+ if (i)
+ Out << ", ";
+ int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
+ if (Slot == -1)
+ Out << "<badref>";
+ else
+ Out << '!' << Slot;
+ }
+ Out << "}\n";
+}
+
+static void PrintLinkage(GlobalValue::LinkageTypes LT,
+ formatted_raw_ostream &Out) {
+ switch (LT) {
+ case GlobalValue::ExternalLinkage: break;
+ case GlobalValue::PrivateLinkage: Out << "private "; break;
+ case GlobalValue::InternalLinkage: Out << "internal "; break;
+ case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
+ case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
+ case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
+ case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
+ case GlobalValue::CommonLinkage: Out << "common "; break;
+ case GlobalValue::AppendingLinkage: Out << "appending "; break;
+ case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
+ case GlobalValue::AvailableExternallyLinkage:
+ Out << "available_externally ";
+ break;
+ }
+}
+
+static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
+ formatted_raw_ostream &Out) {
+ switch (Vis) {
+ case GlobalValue::DefaultVisibility: break;
+ case GlobalValue::HiddenVisibility: Out << "hidden "; break;
+ case GlobalValue::ProtectedVisibility: Out << "protected "; break;
+ }
+}
+
+static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
+ formatted_raw_ostream &Out) {
+ switch (SCT) {
+ case GlobalValue::DefaultStorageClass: break;
+ case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
+ case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
+ }
+}
+
+static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
+ formatted_raw_ostream &Out) {
+ switch (TLM) {
+ case GlobalVariable::NotThreadLocal:
+ break;
+ case GlobalVariable::GeneralDynamicTLSModel:
+ Out << "thread_local ";
+ break;
+ case GlobalVariable::LocalDynamicTLSModel:
+ Out << "thread_local(localdynamic) ";
+ break;
+ case GlobalVariable::InitialExecTLSModel:
+ Out << "thread_local(initialexec) ";
+ break;
+ case GlobalVariable::LocalExecTLSModel:
+ Out << "thread_local(localexec) ";
+ break;
+ }
+}
+
+static void maybePrintComdat(formatted_raw_ostream &Out,
+ const GlobalObject &GO) {
+ const Comdat *C = GO.getComdat();
+ if (!C)
+ return;
+
+ if (isa<GlobalVariable>(GO))
+ Out << ',';
+ Out << " comdat";
+
+ if (GO.getName() == C->getName())
+ return;
+
+ Out << '(';
+ PrintLLVMName(Out, C->getName(), ComdatPrefix);
+ Out << ')';
+}
+
+void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
+ if (GV->isMaterializable())
+ Out << "; Materializable\n";
+
+ WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
+ Out << " = ";
+
+ if (!GV->hasInitializer() && GV->hasExternalLinkage())
+ Out << "external ";
+
+ PrintLinkage(GV->getLinkage(), Out);
+ PrintVisibility(GV->getVisibility(), Out);
+ PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
+ PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
+ if (GV->hasUnnamedAddr())
+ Out << "unnamed_addr ";
+
+ if (unsigned AddressSpace = GV->getType()->getAddressSpace())
+ Out << "addrspace(" << AddressSpace << ") ";
+ if (GV->isExternallyInitialized()) Out << "externally_initialized ";
+ Out << (GV->isConstant() ? "constant " : "global ");
+ TypePrinter.print(GV->getType()->getElementType(), Out);
+
+ if (GV->hasInitializer()) {
+ Out << ' ';
+ writeOperand(GV->getInitializer(), false);
+ }
+
+ if (GV->hasSection()) {
+ Out << ", section \"";
+ PrintEscapedString(GV->getSection(), Out);
+ Out << '"';
+ }
+ maybePrintComdat(Out, *GV);
+ if (GV->getAlignment())
+ Out << ", align " << GV->getAlignment();
+
+ printInfoComment(*GV);
+}
+
+void AssemblyWriter::printAlias(const GlobalAlias *GA) {
+ if (GA->isMaterializable())
+ Out << "; Materializable\n";
+
+ WriteAsOperandInternal(Out, GA, &TypePrinter, &Machine, GA->getParent());
+ Out << " = ";
+
+ PrintLinkage(GA->getLinkage(), Out);
+ PrintVisibility(GA->getVisibility(), Out);
+ PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
+ PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
+ if (GA->hasUnnamedAddr())
+ Out << "unnamed_addr ";
+
+ Out << "alias ";
+
+ const Constant *Aliasee = GA->getAliasee();
+
+ if (!Aliasee) {
+ TypePrinter.print(GA->getType(), Out);
+ Out << " <<NULL ALIASEE>>";
+ } else {
+ writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
+ }
+
+ printInfoComment(*GA);
+ Out << '\n';
+}
+
+void AssemblyWriter::printComdat(const Comdat *C) {
+ C->print(Out);
+}
+
+void AssemblyWriter::printTypeIdentities() {
+ if (TypePrinter.NumberedTypes.empty() &&
+ TypePrinter.NamedTypes.empty())
+ return;
+
+ Out << '\n';
+
+ // We know all the numbers that each type is used and we know that it is a
+ // dense assignment. Convert the map to an index table.
+ std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
+ for (DenseMap<StructType*, unsigned>::iterator I =
+ TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
+ I != E; ++I) {
+ assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
+ NumberedTypes[I->second] = I->first;
+ }
+
+ // Emit all numbered types.
+ for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
+ Out << '%' << i << " = type ";
+
+ // Make sure we print out at least one level of the type structure, so
+ // that we do not get %2 = type %2
+ TypePrinter.printStructBody(NumberedTypes[i], Out);
+ Out << '\n';
+ }
+
+ for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
+ PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
+ Out << " = type ";
+
+ // Make sure we print out at least one level of the type structure, so
+ // that we do not get %FILE = type %FILE
+ TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
+ Out << '\n';
+ }
+}
+
+/// printFunction - Print all aspects of a function.
+///
+void AssemblyWriter::printFunction(const Function *F) {
+ // Print out the return type and name.
+ Out << '\n';
+
+ if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
+
+ if (F->isMaterializable())
+ Out << "; Materializable\n";
+
+ const AttributeSet &Attrs = F->getAttributes();
+ if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
+ AttributeSet AS = Attrs.getFnAttributes();
+ std::string AttrStr;
+
+ unsigned Idx = 0;
+ for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
+ if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
+ break;
+
+ for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
+ I != E; ++I) {
+ Attribute Attr = *I;
+ if (!Attr.isStringAttribute()) {
+ if (!AttrStr.empty()) AttrStr += ' ';
+ AttrStr += Attr.getAsString();
+ }
+ }
+
+ if (!AttrStr.empty())
+ Out << "; Function Attrs: " << AttrStr << '\n';
+ }
+
+ if (F->isDeclaration())
+ Out << "declare ";
+ else
+ Out << "define ";
+
+ PrintLinkage(F->getLinkage(), Out);
+ PrintVisibility(F->getVisibility(), Out);
+ PrintDLLStorageClass(F->getDLLStorageClass(), Out);
+
+ // Print the calling convention.
+ if (F->getCallingConv() != CallingConv::C) {
+ PrintCallingConv(F->getCallingConv(), Out);
+ Out << " ";
+ }
+
+ FunctionType *FT = F->getFunctionType();
+ if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
+ Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
+ TypePrinter.print(F->getReturnType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
+ Out << '(';
+ Machine.incorporateFunction(F);
+
+ // Loop over the arguments, printing them...
+
+ unsigned Idx = 1;
+ if (!F->isDeclaration()) {
+ // If this isn't a declaration, print the argument names as well.
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I) {
+ // Insert commas as we go... the first arg doesn't get a comma
+ if (I != F->arg_begin()) Out << ", ";
+ printArgument(I, Attrs, Idx);
+ Idx++;
+ }
+ } else {
+ // Otherwise, print the types from the function type.
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ // Insert commas as we go... the first arg doesn't get a comma
+ if (i) Out << ", ";
+
+ // Output type...
+ TypePrinter.print(FT->getParamType(i), Out);
+
+ if (Attrs.hasAttributes(i+1))
+ Out << ' ' << Attrs.getAsString(i+1);
+ }
+ }
+
+ // Finish printing arguments...
+ if (FT->isVarArg()) {
+ if (FT->getNumParams()) Out << ", ";
+ Out << "..."; // Output varargs portion of signature!
+ }
+ Out << ')';
+ if (F->hasUnnamedAddr())
+ Out << " unnamed_addr";
+ if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
+ Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
+ if (F->hasSection()) {
+ Out << " section \"";
+ PrintEscapedString(F->getSection(), Out);
+ Out << '"';
+ }
+ maybePrintComdat(Out, *F);
+ if (F->getAlignment())
+ Out << " align " << F->getAlignment();
+ if (F->hasGC())
+ Out << " gc \"" << F->getGC() << '"';
+ if (F->hasPrefixData()) {
+ Out << " prefix ";
+ writeOperand(F->getPrefixData(), true);
+ }
+ if (F->hasPrologueData()) {
+ Out << " prologue ";
+ writeOperand(F->getPrologueData(), true);
+ }
+ if (F->hasPersonalityFn()) {
+ Out << " personality ";
+ writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
+ }
+
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ F->getAllMetadata(MDs);
+ printMetadataAttachments(MDs, " ");
+
+ if (F->isDeclaration()) {
+ Out << '\n';
+ } else {
+ Out << " {";
+ // Output all of the function's basic blocks.
+ for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
+ printBasicBlock(I);
+
+ // Output the function's use-lists.
+ printUseLists(F);
+
+ Out << "}\n";
+ }
+
+ Machine.purgeFunction();
+}
+
+/// printArgument - This member is called for every argument that is passed into
+/// the function. Simply print it out
+///
+void AssemblyWriter::printArgument(const Argument *Arg,
+ AttributeSet Attrs, unsigned Idx) {
+ // Output type...
+ TypePrinter.print(Arg->getType(), Out);
+
+ // Output parameter attributes list
+ if (Attrs.hasAttributes(Idx))
+ Out << ' ' << Attrs.getAsString(Idx);
+
+ // Output name, if available...
+ if (Arg->hasName()) {
+ Out << ' ';
+ PrintLLVMName(Out, Arg);
+ }
+}
+
+/// printBasicBlock - This member is called for each basic block in a method.
+///
+void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
+ if (BB->hasName()) { // Print out the label if it exists...
+ Out << "\n";
+ PrintLLVMName(Out, BB->getName(), LabelPrefix);
+ Out << ':';
+ } else if (!BB->use_empty()) { // Don't print block # of no uses...
+ Out << "\n; <label>:";
+ int Slot = Machine.getLocalSlot(BB);
+ if (Slot != -1)
+ Out << Slot;
+ else
+ Out << "<badref>";
+ }
+
+ if (!BB->getParent()) {
+ Out.PadToColumn(50);
+ Out << "; Error: Block without parent!";
+ } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
+ // Output predecessors for the block.
+ Out.PadToColumn(50);
+ Out << ";";
+ const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+ if (PI == PE) {
+ Out << " No predecessors!";
+ } else {
+ Out << " preds = ";
+ writeOperand(*PI, false);
+ for (++PI; PI != PE; ++PI) {
+ Out << ", ";
+ writeOperand(*PI, false);
+ }
+ }
+ }
+
+ Out << "\n";
+
+ if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
+
+ // Output all of the instructions in the basic block...
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ printInstructionLine(*I);
+ }
+
+ if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
+}
+
+/// printInstructionLine - Print an instruction and a newline character.
+void AssemblyWriter::printInstructionLine(const Instruction &I) {
+ printInstruction(I);
+ Out << '\n';
+}
+
+/// printGCRelocateComment - print comment after call to the gc.relocate
+/// intrinsic indicating base and derived pointer names.
+void AssemblyWriter::printGCRelocateComment(const Value &V) {
+ assert(isGCRelocate(&V));
+ GCRelocateOperands GCOps(cast<Instruction>(&V));
+
+ Out << " ; (";
+ writeOperand(GCOps.getBasePtr(), false);
+ Out << ", ";
+ writeOperand(GCOps.getDerivedPtr(), false);
+ Out << ")";
+}
+
+/// printInfoComment - Print a little comment after the instruction indicating
+/// which slot it occupies.
+///
+void AssemblyWriter::printInfoComment(const Value &V) {
+ if (isGCRelocate(&V))
+ printGCRelocateComment(V);
+
+ if (AnnotationWriter)
+ AnnotationWriter->printInfoComment(V, Out);
+}
+
+// This member is called for each Instruction in a function..
+void AssemblyWriter::printInstruction(const Instruction &I) {
+ if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
+
+ // Print out indentation for an instruction.
+ Out << " ";
+
+ // Print out name if it exists...
+ if (I.hasName()) {
+ PrintLLVMName(Out, &I);
+ Out << " = ";
+ } else if (!I.getType()->isVoidTy()) {
+ // Print out the def slot taken.
+ int SlotNum = Machine.getLocalSlot(&I);
+ if (SlotNum == -1)
+ Out << "<badref> = ";
+ else
+ Out << '%' << SlotNum << " = ";
+ }
+
+ if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+ if (CI->isMustTailCall())
+ Out << "musttail ";
+ else if (CI->isTailCall())
+ Out << "tail ";
+ }
+
+ // Print out the opcode...
+ Out << I.getOpcodeName();
+
+ // If this is an atomic load or store, print out the atomic marker.
+ if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
+ (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
+ Out << " atomic";
+
+ if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
+ Out << " weak";
+
+ // If this is a volatile operation, print out the volatile marker.
+ if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
+ (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
+ (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
+ (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
+ Out << " volatile";
+
+ // Print out optimization information.
+ WriteOptimizationInfo(Out, &I);
+
+ // Print out the compare instruction predicates
+ if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
+ Out << ' ' << getPredicateText(CI->getPredicate());
+
+ // Print out the atomicrmw operation
+ if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
+ writeAtomicRMWOperation(Out, RMWI->getOperation());
+
+ // Print out the type of the operands...
+ const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
+
+ // Special case conditional branches to swizzle the condition out to the front
+ if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
+ const BranchInst &BI(cast<BranchInst>(I));
+ Out << ' ';
+ writeOperand(BI.getCondition(), true);
+ Out << ", ";
+ writeOperand(BI.getSuccessor(0), true);
+ Out << ", ";
+ writeOperand(BI.getSuccessor(1), true);
+
+ } else if (isa<SwitchInst>(I)) {
+ const SwitchInst& SI(cast<SwitchInst>(I));
+ // Special case switch instruction to get formatting nice and correct.
+ Out << ' ';
+ writeOperand(SI.getCondition(), true);
+ Out << ", ";
+ writeOperand(SI.getDefaultDest(), true);
+ Out << " [";
+ for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
+ i != e; ++i) {
+ Out << "\n ";
+ writeOperand(i.getCaseValue(), true);
+ Out << ", ";
+ writeOperand(i.getCaseSuccessor(), true);
+ }
+ Out << "\n ]";
+ } else if (isa<IndirectBrInst>(I)) {
+ // Special case indirectbr instruction to get formatting nice and correct.
+ Out << ' ';
+ writeOperand(Operand, true);
+ Out << ", [";
+
+ for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
+ if (i != 1)
+ Out << ", ";
+ writeOperand(I.getOperand(i), true);
+ }
+ Out << ']';
+ } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
+ Out << ' ';
+ TypePrinter.print(I.getType(), Out);
+ Out << ' ';
+
+ for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
+ if (op) Out << ", ";
+ Out << "[ ";
+ writeOperand(PN->getIncomingValue(op), false); Out << ", ";
+ writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
+ }
+ } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
+ Out << ' ';
+ writeOperand(I.getOperand(0), true);
+ for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
+ Out << ", " << *i;
+ } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
+ Out << ' ';
+ writeOperand(I.getOperand(0), true); Out << ", ";
+ writeOperand(I.getOperand(1), true);
+ for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
+ Out << ", " << *i;
+ } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
+ Out << ' ';
+ TypePrinter.print(I.getType(), Out);
+ if (LPI->isCleanup() || LPI->getNumClauses() != 0)
+ Out << '\n';
+
+ if (LPI->isCleanup())
+ Out << " cleanup";
+
+ for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
+ if (i != 0 || LPI->isCleanup()) Out << "\n";
+ if (LPI->isCatch(i))
+ Out << " catch ";
+ else
+ Out << " filter ";
+
+ writeOperand(LPI->getClause(i), true);
+ }
+ } else if (isa<ReturnInst>(I) && !Operand) {
+ Out << " void";
+ } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Print the calling convention being used.
+ if (CI->getCallingConv() != CallingConv::C) {
+ Out << " ";
+ PrintCallingConv(CI->getCallingConv(), Out);
+ }
+
+ Operand = CI->getCalledValue();
+ FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
+ Type *RetTy = FTy->getReturnType();
+ const AttributeSet &PAL = CI->getAttributes();
+
+ if (PAL.hasAttributes(AttributeSet::ReturnIndex))
+ Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
+
+ // If possible, print out the short form of the call instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ Out << ' ';
+ TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
+ Out << ' ';
+ writeOperand(Operand, false);
+ Out << '(';
+ for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
+ if (op > 0)
+ Out << ", ";
+ writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
+ }
+
+ // Emit an ellipsis if this is a musttail call in a vararg function. This
+ // is only to aid readability, musttail calls forward varargs by default.
+ if (CI->isMustTailCall() && CI->getParent() &&
+ CI->getParent()->getParent() &&
+ CI->getParent()->getParent()->isVarArg())
+ Out << ", ...";
+
+ Out << ')';
+ if (PAL.hasAttributes(AttributeSet::FunctionIndex))
+ Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+ Operand = II->getCalledValue();
+ FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
+ Type *RetTy = FTy->getReturnType();
+ const AttributeSet &PAL = II->getAttributes();
+
+ // Print the calling convention being used.
+ if (II->getCallingConv() != CallingConv::C) {
+ Out << " ";
+ PrintCallingConv(II->getCallingConv(), Out);
+ }
+
+ if (PAL.hasAttributes(AttributeSet::ReturnIndex))
+ Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
+
+ // If possible, print out the short form of the invoke instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ Out << ' ';
+ TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
+ Out << ' ';
+ writeOperand(Operand, false);
+ Out << '(';
+ for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
+ if (op)
+ Out << ", ";
+ writeParamOperand(II->getArgOperand(op), PAL, op + 1);
+ }
+
+ Out << ')';
+ if (PAL.hasAttributes(AttributeSet::FunctionIndex))
+ Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
+
+ Out << "\n to ";
+ writeOperand(II->getNormalDest(), true);
+ Out << " unwind ";
+ writeOperand(II->getUnwindDest(), true);
+
+ } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
+ Out << ' ';
+ if (AI->isUsedWithInAlloca())
+ Out << "inalloca ";
+ TypePrinter.print(AI->getAllocatedType(), Out);
+
+ // Explicitly write the array size if the code is broken, if it's an array
+ // allocation, or if the type is not canonical for scalar allocations. The
+ // latter case prevents the type from mutating when round-tripping through
+ // assembly.
+ if (!AI->getArraySize() || AI->isArrayAllocation() ||
+ !AI->getArraySize()->getType()->isIntegerTy(32)) {
+ Out << ", ";
+ writeOperand(AI->getArraySize(), true);
+ }
+ if (AI->getAlignment()) {
+ Out << ", align " << AI->getAlignment();
+ }
+ } else if (isa<CastInst>(I)) {
+ if (Operand) {
+ Out << ' ';
+ writeOperand(Operand, true); // Work with broken code
+ }
+ Out << " to ";
+ TypePrinter.print(I.getType(), Out);
+ } else if (isa<VAArgInst>(I)) {
+ if (Operand) {
+ Out << ' ';
+ writeOperand(Operand, true); // Work with broken code
+ }
+ Out << ", ";
+ TypePrinter.print(I.getType(), Out);
+ } else if (Operand) { // Print the normal way.
+ if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ Out << ' ';
+ TypePrinter.print(GEP->getSourceElementType(), Out);
+ Out << ',';
+ } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
+ Out << ' ';
+ TypePrinter.print(LI->getType(), Out);
+ Out << ',';
+ }
+
+ // PrintAllTypes - Instructions who have operands of all the same type
+ // omit the type from all but the first operand. If the instruction has
+ // different type operands (for example br), then they are all printed.
+ bool PrintAllTypes = false;
+ Type *TheType = Operand->getType();
+
+ // Select, Store and ShuffleVector always print all types.
+ if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
+ || isa<ReturnInst>(I)) {
+ PrintAllTypes = true;
+ } else {
+ for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
+ Operand = I.getOperand(i);
+ // note that Operand shouldn't be null, but the test helps make dump()
+ // more tolerant of malformed IR
+ if (Operand && Operand->getType() != TheType) {
+ PrintAllTypes = true; // We have differing types! Print them all!
+ break;
+ }
+ }
+ }
+
+ if (!PrintAllTypes) {
+ Out << ' ';
+ TypePrinter.print(TheType, Out);
+ }
+
+ Out << ' ';
+ for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
+ if (i) Out << ", ";
+ writeOperand(I.getOperand(i), PrintAllTypes);
+ }
+ }
+
+ // Print atomic ordering/alignment for memory operations
+ if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (LI->isAtomic())
+ writeAtomic(LI->getOrdering(), LI->getSynchScope());
+ if (LI->getAlignment())
+ Out << ", align " << LI->getAlignment();
+ } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ if (SI->isAtomic())
+ writeAtomic(SI->getOrdering(), SI->getSynchScope());
+ if (SI->getAlignment())
+ Out << ", align " << SI->getAlignment();
+ } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
+ writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
+ CXI->getSynchScope());
+ } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
+ writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
+ } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
+ writeAtomic(FI->getOrdering(), FI->getSynchScope());
+ }
+
+ // Print Metadata info.
+ SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
+ I.getAllMetadata(InstMD);
+ printMetadataAttachments(InstMD, ", ");
+
+ // Print a nice comment.
+ printInfoComment(I);
+}
+
+void AssemblyWriter::printMetadataAttachments(
+ const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
+ StringRef Separator) {
+ if (MDs.empty())
+ return;
+
+ if (MDNames.empty())
+ TheModule->getMDKindNames(MDNames);
+
+ for (const auto &I : MDs) {
+ unsigned Kind = I.first;
+ Out << Separator;
+ if (Kind < MDNames.size()) {
+ Out << "!";
+ printMetadataIdentifier(MDNames[Kind], Out);
+ } else
+ Out << "!<unknown kind #" << Kind << ">";
+ Out << ' ';
+ WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
+ }
+}
+
+void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
+ Out << '!' << Slot << " = ";
+ printMDNodeBody(Node);
+ Out << "\n";
+}
+
+void AssemblyWriter::writeAllMDNodes() {
+ SmallVector<const MDNode *, 16> Nodes;
+ Nodes.resize(Machine.mdn_size());
+ for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
+ I != E; ++I)
+ Nodes[I->second] = cast<MDNode>(I->first);
+
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
+ writeMDNode(i, Nodes[i]);
+ }
+}
+
+void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
+ WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
+}
+
+void AssemblyWriter::writeAllAttributeGroups() {
+ std::vector<std::pair<AttributeSet, unsigned> > asVec;
+ asVec.resize(Machine.as_size());
+
+ for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
+ I != E; ++I)
+ asVec[I->second] = *I;
+
+ for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
+ I = asVec.begin(), E = asVec.end(); I != E; ++I)
+ Out << "attributes #" << I->second << " = { "
+ << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
+}
+
+void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
+ bool IsInFunction = Machine.getFunction();
+ if (IsInFunction)
+ Out << " ";
+
+ Out << "uselistorder";
+ if (const BasicBlock *BB =
+ IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
+ Out << "_bb ";
+ writeOperand(BB->getParent(), false);
+ Out << ", ";
+ writeOperand(BB, false);
+ } else {
+ Out << " ";
+ writeOperand(Order.V, true);
+ }
+ Out << ", { ";
+
+ assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
+ Out << Order.Shuffle[0];
+ for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
+ Out << ", " << Order.Shuffle[I];
+ Out << " }\n";
+}
+
+void AssemblyWriter::printUseLists(const Function *F) {
+ auto hasMore =
+ [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
+ if (!hasMore())
+ // Nothing to do.
+ return;
+
+ Out << "\n; uselistorder directives\n";
+ while (hasMore()) {
+ printUseListOrder(UseListOrders.back());
+ UseListOrders.pop_back();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// External Interface declarations
+//===----------------------------------------------------------------------===//
+
+void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
+ SlotTracker SlotTable(this->getParent());
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, this->getParent(), AAW);
+ W.printFunction(this);
+}
+
+void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder) const {
+ SlotTracker SlotTable(this);
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, this, AAW, ShouldPreserveUseListOrder);
+ W.printModule(this);
+}
+
+void NamedMDNode::print(raw_ostream &ROS) const {
+ SlotTracker SlotTable(getParent());
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
+ W.printNamedMDNode(this);
+}
+
+void Comdat::print(raw_ostream &ROS) const {
+ PrintLLVMName(ROS, getName(), ComdatPrefix);
+ ROS << " = comdat ";
+
+ switch (getSelectionKind()) {
+ case Comdat::Any:
+ ROS << "any";
+ break;
+ case Comdat::ExactMatch:
+ ROS << "exactmatch";
+ break;
+ case Comdat::Largest:
+ ROS << "largest";
+ break;
+ case Comdat::NoDuplicates:
+ ROS << "noduplicates";
+ break;
+ case Comdat::SameSize:
+ ROS << "samesize";
+ break;
+ }
+
+ ROS << '\n';
+}
+
+void Type::print(raw_ostream &OS) const {
+ TypePrinting TP;
+ TP.print(const_cast<Type*>(this), OS);
+
+ // If the type is a named struct type, print the body as well.
+ if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
+ if (!STy->isLiteral()) {
+ OS << " = type ";
+ TP.printStructBody(STy, OS);
+ }
+}
+
+static bool isReferencingMDNode(const Instruction &I) {
+ if (const auto *CI = dyn_cast<CallInst>(&I))
+ if (Function *F = CI->getCalledFunction())
+ if (F->isIntrinsic())
+ for (auto &Op : I.operands())
+ if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
+ if (isa<MDNode>(V->getMetadata()))
+ return true;
+ return false;
+}
+
+void Value::print(raw_ostream &ROS) const {
+ bool ShouldInitializeAllMetadata = false;
+ if (auto *I = dyn_cast<Instruction>(this))
+ ShouldInitializeAllMetadata = isReferencingMDNode(*I);
+ else if (isa<Function>(this) || isa<MetadataAsValue>(this))
+ ShouldInitializeAllMetadata = true;
+
+ ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
+ print(ROS, MST);
+}
+
+void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST) const {
+ formatted_raw_ostream OS(ROS);
+ SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
+ SlotTracker &SlotTable =
+ MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
+ auto incorporateFunction = [&](const Function *F) {
+ if (F)
+ MST.incorporateFunction(*F);
+ };
+
+ if (const Instruction *I = dyn_cast<Instruction>(this)) {
+ incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
+ AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
+ W.printInstruction(*I);
+ } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
+ incorporateFunction(BB->getParent());
+ AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
+ W.printBasicBlock(BB);
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
+ AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
+ if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
+ W.printGlobal(V);
+ else if (const Function *F = dyn_cast<Function>(GV))
+ W.printFunction(F);
+ else
+ W.printAlias(cast<GlobalAlias>(GV));
+ } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
+ V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
+ } else if (const Constant *C = dyn_cast<Constant>(this)) {
+ TypePrinting TypePrinter;
+ TypePrinter.print(C->getType(), OS);
+ OS << ' ';
+ WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
+ } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
+ this->printAsOperand(OS, /* PrintType */ true, MST);
+ } else {
+ llvm_unreachable("Unknown value to print out!");
+ }
+}
+
+/// Print without a type, skipping the TypePrinting object.
+///
+/// \return \c true iff printing was succesful.
+static bool printWithoutType(const Value &V, raw_ostream &O,
+ SlotTracker *Machine, const Module *M) {
+ if (V.hasName() || isa<GlobalValue>(V) ||
+ (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
+ WriteAsOperandInternal(O, &V, nullptr, Machine, M);
+ return true;
+ }
+ return false;
+}
+
+static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
+ ModuleSlotTracker &MST) {
+ TypePrinting TypePrinter;
+ if (const Module *M = MST.getModule())
+ TypePrinter.incorporateTypes(*M);
+ if (PrintType) {
+ TypePrinter.print(V.getType(), O);
+ O << ' ';
+ }
+
+ WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
+ MST.getModule());
+}
+
+void Value::printAsOperand(raw_ostream &O, bool PrintType,
+ const Module *M) const {
+ if (!M)
+ M = getModuleFromVal(this);
+
+ if (!PrintType)
+ if (printWithoutType(*this, O, nullptr, M))
+ return;
+
+ SlotTracker Machine(
+ M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
+ ModuleSlotTracker MST(Machine, M);
+ printAsOperandImpl(*this, O, PrintType, MST);
+}
+
+void Value::printAsOperand(raw_ostream &O, bool PrintType,
+ ModuleSlotTracker &MST) const {
+ if (!PrintType)
+ if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
+ return;
+
+ printAsOperandImpl(*this, O, PrintType, MST);
+}
+
+static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
+ ModuleSlotTracker &MST, const Module *M,
+ bool OnlyAsOperand) {
+ formatted_raw_ostream OS(ROS);
+
+ TypePrinting TypePrinter;
+ if (M)
+ TypePrinter.incorporateTypes(*M);
+
+ WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
+ /* FromValue */ true);
+
+ auto *N = dyn_cast<MDNode>(&MD);
+ if (OnlyAsOperand || !N)
+ return;
+
+ OS << " = ";
+ WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
+}
+
+void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
+ ModuleSlotTracker MST(M, isa<MDNode>(this));
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
+}
+
+void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
+ const Module *M) const {
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
+}
+
+void Metadata::print(raw_ostream &OS, const Module *M) const {
+ ModuleSlotTracker MST(M, isa<MDNode>(this));
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
+}
+
+void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
+ const Module *M) const {
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
+}
+
+// Value::dump - allow easy printing of Values from the debugger.
+LLVM_DUMP_METHOD
+void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
+
+// Type::dump - allow easy printing of Types from the debugger.
+LLVM_DUMP_METHOD
+void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
+
+// Module::dump() - Allow printing of Modules from the debugger.
+LLVM_DUMP_METHOD
+void Module::dump() const { print(dbgs(), nullptr); }
+
+// \brief Allow printing of Comdats from the debugger.
+LLVM_DUMP_METHOD
+void Comdat::dump() const { print(dbgs()); }
+
+// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
+LLVM_DUMP_METHOD
+void NamedMDNode::dump() const { print(dbgs()); }
+
+LLVM_DUMP_METHOD
+void Metadata::dump() const { dump(nullptr); }
+
+LLVM_DUMP_METHOD
+void Metadata::dump(const Module *M) const {
+ print(dbgs(), M);
+ dbgs() << '\n';
+}
OpenPOWER on IntegriCloud