diff options
Diffstat (limited to 'contrib/llvm/lib/IR/AsmWriter.cpp')
-rw-r--r-- | contrib/llvm/lib/IR/AsmWriter.cpp | 2236 |
1 files changed, 2236 insertions, 0 deletions
diff --git a/contrib/llvm/lib/IR/AsmWriter.cpp b/contrib/llvm/lib/IR/AsmWriter.cpp new file mode 100644 index 0000000..fb591a8 --- /dev/null +++ b/contrib/llvm/lib/IR/AsmWriter.cpp @@ -0,0 +1,2236 @@ +//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This library implements the functionality defined in llvm/Assembly/Writer.h +// +// Note that these routines must be extremely tolerant of various errors in the +// LLVM code, because it can be used for debugging transformations. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Assembly/Writer.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Assembly/AssemblyAnnotationWriter.h" +#include "llvm/Assembly/PrintModulePass.h" +#include "llvm/DebugInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/TypeFinder.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Dwarf.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <cctype> +using namespace llvm; + +// Make virtual table appear in this compilation unit. +AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +static const Module *getModuleFromVal(const Value *V) { + if (const Argument *MA = dyn_cast<Argument>(V)) + return MA->getParent() ? MA->getParent()->getParent() : 0; + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return BB->getParent() ? BB->getParent()->getParent() : 0; + + if (const Instruction *I = dyn_cast<Instruction>(V)) { + const Function *M = I->getParent() ? I->getParent()->getParent() : 0; + return M ? M->getParent() : 0; + } + + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) + return GV->getParent(); + return 0; +} + +static void PrintCallingConv(unsigned cc, raw_ostream &Out) { + switch (cc) { + default: Out << "cc" << cc; break; + case CallingConv::Fast: Out << "fastcc"; break; + case CallingConv::Cold: Out << "coldcc"; break; + case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; + case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; + case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; + case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; + case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; + case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; + case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; + case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; + case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; + case CallingConv::PTX_Device: Out << "ptx_device"; break; + } +} + +// PrintEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +static void PrintEscapedString(StringRef Name, raw_ostream &Out) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + unsigned char C = Name[i]; + if (isprint(C) && C != '\\' && C != '"') + Out << C; + else + Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); + } +} + +enum PrefixType { + GlobalPrefix, + LabelPrefix, + LocalPrefix, + NoPrefix +}; + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { + assert(!Name.empty() && "Cannot get empty name!"); + switch (Prefix) { + case NoPrefix: break; + case GlobalPrefix: OS << '@'; break; + case LabelPrefix: break; + case LocalPrefix: OS << '%'; break; + } + + // Scan the name to see if it needs quotes first. + bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); + if (!NeedsQuotes) { + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + // By making this unsigned, the value passed in to isalnum will always be + // in the range 0-255. This is important when building with MSVC because + // its implementation will assert. This situation can arise when dealing + // with UTF-8 multibyte characters. + unsigned char C = Name[i]; + if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && + C != '_') { + NeedsQuotes = true; + break; + } + } + } + + // If we didn't need any quotes, just write out the name in one blast. + if (!NeedsQuotes) { + OS << Name; + return; + } + + // Okay, we need quotes. Output the quotes and escape any scary characters as + // needed. + OS << '"'; + PrintEscapedString(Name, OS); + OS << '"'; +} + +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, const Value *V) { + PrintLLVMName(OS, V->getName(), + isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); +} + +//===----------------------------------------------------------------------===// +// TypePrinting Class: Type printing machinery +//===----------------------------------------------------------------------===// + +/// TypePrinting - Type printing machinery. +namespace { +class TypePrinting { + TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION; + void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION; +public: + + /// NamedTypes - The named types that are used by the current module. + TypeFinder NamedTypes; + + /// NumberedTypes - The numbered types, along with their value. + DenseMap<StructType*, unsigned> NumberedTypes; + + + TypePrinting() {} + ~TypePrinting() {} + + void incorporateTypes(const Module &M); + + void print(Type *Ty, raw_ostream &OS); + + void printStructBody(StructType *Ty, raw_ostream &OS); +}; +} // end anonymous namespace. + + +void TypePrinting::incorporateTypes(const Module &M) { + NamedTypes.run(M, false); + + // The list of struct types we got back includes all the struct types, split + // the unnamed ones out to a numbering and remove the anonymous structs. + unsigned NextNumber = 0; + + std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; + for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { + StructType *STy = *I; + + // Ignore anonymous types. + if (STy->isLiteral()) + continue; + + if (STy->getName().empty()) + NumberedTypes[STy] = NextNumber++; + else + *NextToUse++ = STy; + } + + NamedTypes.erase(NextToUse, NamedTypes.end()); +} + + +/// CalcTypeName - Write the specified type to the specified raw_ostream, making +/// use of type names or up references to shorten the type name where possible. +void TypePrinting::print(Type *Ty, raw_ostream &OS) { + switch (Ty->getTypeID()) { + case Type::VoidTyID: OS << "void"; break; + case Type::HalfTyID: OS << "half"; break; + case Type::FloatTyID: OS << "float"; break; + case Type::DoubleTyID: OS << "double"; break; + case Type::X86_FP80TyID: OS << "x86_fp80"; break; + case Type::FP128TyID: OS << "fp128"; break; + case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; + case Type::LabelTyID: OS << "label"; break; + case Type::MetadataTyID: OS << "metadata"; break; + case Type::X86_MMXTyID: OS << "x86_mmx"; break; + case Type::IntegerTyID: + OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); + return; + + case Type::FunctionTyID: { + FunctionType *FTy = cast<FunctionType>(Ty); + print(FTy->getReturnType(), OS); + OS << " ("; + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) + OS << ", "; + print(*I, OS); + } + if (FTy->isVarArg()) { + if (FTy->getNumParams()) OS << ", "; + OS << "..."; + } + OS << ')'; + return; + } + case Type::StructTyID: { + StructType *STy = cast<StructType>(Ty); + + if (STy->isLiteral()) + return printStructBody(STy, OS); + + if (!STy->getName().empty()) + return PrintLLVMName(OS, STy->getName(), LocalPrefix); + + DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy); + if (I != NumberedTypes.end()) + OS << '%' << I->second; + else // Not enumerated, print the hex address. + OS << "%\"type " << STy << '\"'; + return; + } + case Type::PointerTyID: { + PointerType *PTy = cast<PointerType>(Ty); + print(PTy->getElementType(), OS); + if (unsigned AddressSpace = PTy->getAddressSpace()) + OS << " addrspace(" << AddressSpace << ')'; + OS << '*'; + return; + } + case Type::ArrayTyID: { + ArrayType *ATy = cast<ArrayType>(Ty); + OS << '[' << ATy->getNumElements() << " x "; + print(ATy->getElementType(), OS); + OS << ']'; + return; + } + case Type::VectorTyID: { + VectorType *PTy = cast<VectorType>(Ty); + OS << "<" << PTy->getNumElements() << " x "; + print(PTy->getElementType(), OS); + OS << '>'; + return; + } + default: + OS << "<unrecognized-type>"; + return; + } +} + +void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { + if (STy->isOpaque()) { + OS << "opaque"; + return; + } + + if (STy->isPacked()) + OS << '<'; + + if (STy->getNumElements() == 0) { + OS << "{}"; + } else { + StructType::element_iterator I = STy->element_begin(); + OS << "{ "; + print(*I++, OS); + for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { + OS << ", "; + print(*I, OS); + } + + OS << " }"; + } + if (STy->isPacked()) + OS << '>'; +} + + + +//===----------------------------------------------------------------------===// +// SlotTracker Class: Enumerate slot numbers for unnamed values +//===----------------------------------------------------------------------===// + +namespace { + +/// This class provides computation of slot numbers for LLVM Assembly writing. +/// +class SlotTracker { +public: + /// ValueMap - A mapping of Values to slot numbers. + typedef DenseMap<const Value*, unsigned> ValueMap; + +private: + /// TheModule - The module for which we are holding slot numbers. + const Module* TheModule; + + /// TheFunction - The function for which we are holding slot numbers. + const Function* TheFunction; + bool FunctionProcessed; + + /// mMap - The slot map for the module level data. + ValueMap mMap; + unsigned mNext; + + /// fMap - The slot map for the function level data. + ValueMap fMap; + unsigned fNext; + + /// mdnMap - Map for MDNodes. + DenseMap<const MDNode*, unsigned> mdnMap; + unsigned mdnNext; + + /// asMap - The slot map for attribute sets. + DenseMap<AttributeSet, unsigned> asMap; + unsigned asNext; +public: + /// Construct from a module + explicit SlotTracker(const Module *M); + /// Construct from a function, starting out in incorp state. + explicit SlotTracker(const Function *F); + + /// Return the slot number of the specified value in it's type + /// plane. If something is not in the SlotTracker, return -1. + int getLocalSlot(const Value *V); + int getGlobalSlot(const GlobalValue *V); + int getMetadataSlot(const MDNode *N); + int getAttributeGroupSlot(AttributeSet AS); + + /// If you'd like to deal with a function instead of just a module, use + /// this method to get its data into the SlotTracker. + void incorporateFunction(const Function *F) { + TheFunction = F; + FunctionProcessed = false; + } + + /// After calling incorporateFunction, use this method to remove the + /// most recently incorporated function from the SlotTracker. This + /// will reset the state of the machine back to just the module contents. + void purgeFunction(); + + /// MDNode map iterators. + typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator; + mdn_iterator mdn_begin() { return mdnMap.begin(); } + mdn_iterator mdn_end() { return mdnMap.end(); } + unsigned mdn_size() const { return mdnMap.size(); } + bool mdn_empty() const { return mdnMap.empty(); } + + /// AttributeSet map iterators. + typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator; + as_iterator as_begin() { return asMap.begin(); } + as_iterator as_end() { return asMap.end(); } + unsigned as_size() const { return asMap.size(); } + bool as_empty() const { return asMap.empty(); } + + /// This function does the actual initialization. + inline void initialize(); + + // Implementation Details +private: + /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. + void CreateModuleSlot(const GlobalValue *V); + + /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. + void CreateMetadataSlot(const MDNode *N); + + /// CreateFunctionSlot - Insert the specified Value* into the slot table. + void CreateFunctionSlot(const Value *V); + + /// \brief Insert the specified AttributeSet into the slot table. + void CreateAttributeSetSlot(AttributeSet AS); + + /// Add all of the module level global variables (and their initializers) + /// and function declarations, but not the contents of those functions. + void processModule(); + + /// Add all of the functions arguments, basic blocks, and instructions. + void processFunction(); + + SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION; + void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION; +}; + +} // end anonymous namespace + + +static SlotTracker *createSlotTracker(const Value *V) { + if (const Argument *FA = dyn_cast<Argument>(V)) + return new SlotTracker(FA->getParent()); + + if (const Instruction *I = dyn_cast<Instruction>(V)) + if (I->getParent()) + return new SlotTracker(I->getParent()->getParent()); + + if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) + return new SlotTracker(BB->getParent()); + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + return new SlotTracker(GV->getParent()); + + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) + return new SlotTracker(GA->getParent()); + + if (const Function *Func = dyn_cast<Function>(V)) + return new SlotTracker(Func); + + if (const MDNode *MD = dyn_cast<MDNode>(V)) { + if (!MD->isFunctionLocal()) + return new SlotTracker(MD->getFunction()); + + return new SlotTracker((Function *)0); + } + + return 0; +} + +#if 0 +#define ST_DEBUG(X) dbgs() << X +#else +#define ST_DEBUG(X) +#endif + +// Module level constructor. Causes the contents of the Module (sans functions) +// to be added to the slot table. +SlotTracker::SlotTracker(const Module *M) + : TheModule(M), TheFunction(0), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0), asNext(0) { +} + +// Function level constructor. Causes the contents of the Module and the one +// function provided to be added to the slot table. +SlotTracker::SlotTracker(const Function *F) + : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), + mNext(0), fNext(0), mdnNext(0), asNext(0) { +} + +inline void SlotTracker::initialize() { + if (TheModule) { + processModule(); + TheModule = 0; ///< Prevent re-processing next time we're called. + } + + if (TheFunction && !FunctionProcessed) + processFunction(); +} + +// Iterate through all the global variables, functions, and global +// variable initializers and create slots for them. +void SlotTracker::processModule() { + ST_DEBUG("begin processModule!\n"); + + // Add all of the unnamed global variables to the value table. + for (Module::const_global_iterator I = TheModule->global_begin(), + E = TheModule->global_end(); I != E; ++I) { + if (!I->hasName()) + CreateModuleSlot(I); + } + + // Add metadata used by named metadata. + for (Module::const_named_metadata_iterator + I = TheModule->named_metadata_begin(), + E = TheModule->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) + CreateMetadataSlot(NMD->getOperand(i)); + } + + for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); + I != E; ++I) { + if (!I->hasName()) + // Add all the unnamed functions to the table. + CreateModuleSlot(I); + + // Add all the function attributes to the table. + // FIXME: Add attributes of other objects? + AttributeSet FnAttrs = I->getAttributes().getFnAttributes(); + if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex)) + CreateAttributeSetSlot(FnAttrs); + } + + ST_DEBUG("end processModule!\n"); +} + +// Process the arguments, basic blocks, and instructions of a function. +void SlotTracker::processFunction() { + ST_DEBUG("begin processFunction!\n"); + fNext = 0; + + // Add all the function arguments with no names. + for(Function::const_arg_iterator AI = TheFunction->arg_begin(), + AE = TheFunction->arg_end(); AI != AE; ++AI) + if (!AI->hasName()) + CreateFunctionSlot(AI); + + ST_DEBUG("Inserting Instructions:\n"); + + SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; + + // Add all of the basic blocks and instructions with no names. + for (Function::const_iterator BB = TheFunction->begin(), + E = TheFunction->end(); BB != E; ++BB) { + if (!BB->hasName()) + CreateFunctionSlot(BB); + + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { + if (!I->getType()->isVoidTy() && !I->hasName()) + CreateFunctionSlot(I); + + // Intrinsics can directly use metadata. We allow direct calls to any + // llvm.foo function here, because the target may not be linked into the + // optimizer. + if (const CallInst *CI = dyn_cast<CallInst>(I)) { + if (Function *F = CI->getCalledFunction()) + if (F->getName().startswith("llvm.")) + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i))) + CreateMetadataSlot(N); + + // Add all the call attributes to the table. + AttributeSet Attrs = CI->getAttributes().getFnAttributes(); + if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) + CreateAttributeSetSlot(Attrs); + } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) { + // Add all the call attributes to the table. + AttributeSet Attrs = II->getAttributes().getFnAttributes(); + if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) + CreateAttributeSetSlot(Attrs); + } + + // Process metadata attached with this instruction. + I->getAllMetadata(MDForInst); + for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) + CreateMetadataSlot(MDForInst[i].second); + MDForInst.clear(); + } + } + + FunctionProcessed = true; + + ST_DEBUG("end processFunction!\n"); +} + +/// Clean up after incorporating a function. This is the only way to get out of +/// the function incorporation state that affects get*Slot/Create*Slot. Function +/// incorporation state is indicated by TheFunction != 0. +void SlotTracker::purgeFunction() { + ST_DEBUG("begin purgeFunction!\n"); + fMap.clear(); // Simply discard the function level map + TheFunction = 0; + FunctionProcessed = false; + ST_DEBUG("end purgeFunction!\n"); +} + +/// getGlobalSlot - Get the slot number of a global value. +int SlotTracker::getGlobalSlot(const GlobalValue *V) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the value in the module map + ValueMap::iterator MI = mMap.find(V); + return MI == mMap.end() ? -1 : (int)MI->second; +} + +/// getMetadataSlot - Get the slot number of a MDNode. +int SlotTracker::getMetadataSlot(const MDNode *N) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the MDNode in the module map + mdn_iterator MI = mdnMap.find(N); + return MI == mdnMap.end() ? -1 : (int)MI->second; +} + + +/// getLocalSlot - Get the slot number for a value that is local to a function. +int SlotTracker::getLocalSlot(const Value *V) { + assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); + + // Check for uninitialized state and do lazy initialization. + initialize(); + + ValueMap::iterator FI = fMap.find(V); + return FI == fMap.end() ? -1 : (int)FI->second; +} + +int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the AttributeSet in the module map. + as_iterator AI = asMap.find(AS); + return AI == asMap.end() ? -1 : (int)AI->second; +} + +/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. +void SlotTracker::CreateModuleSlot(const GlobalValue *V) { + assert(V && "Can't insert a null Value into SlotTracker!"); + assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); + assert(!V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = mNext++; + mMap[V] = DestSlot; + + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " ["); + // G = Global, F = Function, A = Alias, o = other + ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : + (isa<Function>(V) ? 'F' : + (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n"); +} + +/// CreateSlot - Create a new slot for the specified value if it has no name. +void SlotTracker::CreateFunctionSlot(const Value *V) { + assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = fNext++; + fMap[V] = DestSlot; + + // G = Global, F = Function, o = other + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " [o]\n"); +} + +/// CreateModuleSlot - Insert the specified MDNode* into the slot table. +void SlotTracker::CreateMetadataSlot(const MDNode *N) { + assert(N && "Can't insert a null Value into SlotTracker!"); + + // Don't insert if N is a function-local metadata, these are always printed + // inline. + if (!N->isFunctionLocal()) { + mdn_iterator I = mdnMap.find(N); + if (I != mdnMap.end()) + return; + + unsigned DestSlot = mdnNext++; + mdnMap[N] = DestSlot; + } + + // Recursively add any MDNodes referenced by operands. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) + CreateMetadataSlot(Op); +} + +void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { + assert(AS.hasAttributes(AttributeSet::FunctionIndex) && + "Doesn't need a slot!"); + + as_iterator I = asMap.find(AS); + if (I != asMap.end()) + return; + + unsigned DestSlot = asNext++; + asMap[AS] = DestSlot; +} + +//===----------------------------------------------------------------------===// +// AsmWriter Implementation +//===----------------------------------------------------------------------===// + +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine, + const Module *Context); + + + +static const char *getPredicateText(unsigned predicate) { + const char * pred = "unknown"; + switch (predicate) { + case FCmpInst::FCMP_FALSE: pred = "false"; break; + case FCmpInst::FCMP_OEQ: pred = "oeq"; break; + case FCmpInst::FCMP_OGT: pred = "ogt"; break; + case FCmpInst::FCMP_OGE: pred = "oge"; break; + case FCmpInst::FCMP_OLT: pred = "olt"; break; + case FCmpInst::FCMP_OLE: pred = "ole"; break; + case FCmpInst::FCMP_ONE: pred = "one"; break; + case FCmpInst::FCMP_ORD: pred = "ord"; break; + case FCmpInst::FCMP_UNO: pred = "uno"; break; + case FCmpInst::FCMP_UEQ: pred = "ueq"; break; + case FCmpInst::FCMP_UGT: pred = "ugt"; break; + case FCmpInst::FCMP_UGE: pred = "uge"; break; + case FCmpInst::FCMP_ULT: pred = "ult"; break; + case FCmpInst::FCMP_ULE: pred = "ule"; break; + case FCmpInst::FCMP_UNE: pred = "une"; break; + case FCmpInst::FCMP_TRUE: pred = "true"; break; + case ICmpInst::ICMP_EQ: pred = "eq"; break; + case ICmpInst::ICMP_NE: pred = "ne"; break; + case ICmpInst::ICMP_SGT: pred = "sgt"; break; + case ICmpInst::ICMP_SGE: pred = "sge"; break; + case ICmpInst::ICMP_SLT: pred = "slt"; break; + case ICmpInst::ICMP_SLE: pred = "sle"; break; + case ICmpInst::ICMP_UGT: pred = "ugt"; break; + case ICmpInst::ICMP_UGE: pred = "uge"; break; + case ICmpInst::ICMP_ULT: pred = "ult"; break; + case ICmpInst::ICMP_ULE: pred = "ule"; break; + } + return pred; +} + +static void writeAtomicRMWOperation(raw_ostream &Out, + AtomicRMWInst::BinOp Op) { + switch (Op) { + default: Out << " <unknown operation " << Op << ">"; break; + case AtomicRMWInst::Xchg: Out << " xchg"; break; + case AtomicRMWInst::Add: Out << " add"; break; + case AtomicRMWInst::Sub: Out << " sub"; break; + case AtomicRMWInst::And: Out << " and"; break; + case AtomicRMWInst::Nand: Out << " nand"; break; + case AtomicRMWInst::Or: Out << " or"; break; + case AtomicRMWInst::Xor: Out << " xor"; break; + case AtomicRMWInst::Max: Out << " max"; break; + case AtomicRMWInst::Min: Out << " min"; break; + case AtomicRMWInst::UMax: Out << " umax"; break; + case AtomicRMWInst::UMin: Out << " umin"; break; + } +} + +static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { + if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { + // Unsafe algebra implies all the others, no need to write them all out + if (FPO->hasUnsafeAlgebra()) + Out << " fast"; + else { + if (FPO->hasNoNaNs()) + Out << " nnan"; + if (FPO->hasNoInfs()) + Out << " ninf"; + if (FPO->hasNoSignedZeros()) + Out << " nsz"; + if (FPO->hasAllowReciprocal()) + Out << " arcp"; + } + } + + if (const OverflowingBinaryOperator *OBO = + dyn_cast<OverflowingBinaryOperator>(U)) { + if (OBO->hasNoUnsignedWrap()) + Out << " nuw"; + if (OBO->hasNoSignedWrap()) + Out << " nsw"; + } else if (const PossiblyExactOperator *Div = + dyn_cast<PossiblyExactOperator>(U)) { + if (Div->isExact()) + Out << " exact"; + } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { + if (GEP->isInBounds()) + Out << " inbounds"; + } +} + +static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, + TypePrinting &TypePrinter, + SlotTracker *Machine, + const Module *Context) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { + if (CI->getType()->isIntegerTy(1)) { + Out << (CI->getZExtValue() ? "true" : "false"); + return; + } + Out << CI->getValue(); + return; + } + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { + if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle || + &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) { + // We would like to output the FP constant value in exponential notation, + // but we cannot do this if doing so will lose precision. Check here to + // make sure that we only output it in exponential format if we can parse + // the value back and get the same value. + // + bool ignored; + bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf; + bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; + bool isInf = CFP->getValueAPF().isInfinity(); + bool isNaN = CFP->getValueAPF().isNaN(); + if (!isHalf && !isInf && !isNaN) { + double Val = isDouble ? CFP->getValueAPF().convertToDouble() : + CFP->getValueAPF().convertToFloat(); + SmallString<128> StrVal; + raw_svector_ostream(StrVal) << Val; + + // Check to make sure that the stringized number is not some string like + // "Inf" or NaN, that atof will accept, but the lexer will not. Check + // that the string matches the "[-+]?[0-9]" regex. + // + if ((StrVal[0] >= '0' && StrVal[0] <= '9') || + ((StrVal[0] == '-' || StrVal[0] == '+') && + (StrVal[1] >= '0' && StrVal[1] <= '9'))) { + // Reparse stringized version! + if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) { + Out << StrVal.str(); + return; + } + } + } + // Otherwise we could not reparse it to exactly the same value, so we must + // output the string in hexadecimal format! Note that loading and storing + // floating point types changes the bits of NaNs on some hosts, notably + // x86, so we must not use these types. + assert(sizeof(double) == sizeof(uint64_t) && + "assuming that double is 64 bits!"); + char Buffer[40]; + APFloat apf = CFP->getValueAPF(); + // Halves and floats are represented in ASCII IR as double, convert. + if (!isDouble) + apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + Out << "0x" << + utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), + Buffer+40); + return; + } + + // Either half, or some form of long double. + // These appear as a magic letter identifying the type, then a + // fixed number of hex digits. + Out << "0x"; + // Bit position, in the current word, of the next nibble to print. + int shiftcount; + + if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { + Out << 'K'; + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = p[1]; + shiftcount = 12; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *p; + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) { + shiftcount = 60; + Out << 'L'; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) { + shiftcount = 60; + Out << 'M'; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) { + shiftcount = 12; + Out << 'H'; + } else + llvm_unreachable("Unsupported floating point type"); + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = *p; + int width = api.getBitWidth(); + for (int j=0; j<width; j+=4, shiftcount-=4) { + unsigned int nibble = (word>>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *(++p); + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } + + if (isa<ConstantAggregateZero>(CV)) { + Out << "zeroinitializer"; + return; + } + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { + Out << "blockaddress("; + WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, + Context); + Out << ", "; + WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, + Context); + Out << ")"; + return; + } + + if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { + Type *ETy = CA->getType()->getElementType(); + Out << '['; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(0), + &TypePrinter, Machine, + Context); + for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, + Context); + } + Out << ']'; + return; + } + + if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { + // As a special case, print the array as a string if it is an array of + // i8 with ConstantInt values. + if (CA->isString()) { + Out << "c\""; + PrintEscapedString(CA->getAsString(), Out); + Out << '"'; + return; + } + + Type *ETy = CA->getType()->getElementType(); + Out << '['; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getElementAsConstant(0), + &TypePrinter, Machine, + Context); + for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, + Machine, Context); + } + Out << ']'; + return; + } + + + if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { + if (CS->getType()->isPacked()) + Out << '<'; + Out << '{'; + unsigned N = CS->getNumOperands(); + if (N) { + Out << ' '; + TypePrinter.print(CS->getOperand(0)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, + Context); + + for (unsigned i = 1; i < N; i++) { + Out << ", "; + TypePrinter.print(CS->getOperand(i)->getType(), Out); + Out << ' '; + + WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, + Context); + } + Out << ' '; + } + + Out << '}'; + if (CS->getType()->isPacked()) + Out << '>'; + return; + } + + if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { + Type *ETy = CV->getType()->getVectorElementType(); + Out << '<'; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, + Machine, Context); + for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){ + Out << ", "; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, + Machine, Context); + } + Out << '>'; + return; + } + + if (isa<ConstantPointerNull>(CV)) { + Out << "null"; + return; + } + + if (isa<UndefValue>(CV)) { + Out << "undef"; + return; + } + + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { + Out << CE->getOpcodeName(); + WriteOptimizationInfo(Out, CE); + if (CE->isCompare()) + Out << ' ' << getPredicateText(CE->getPredicate()); + Out << " ("; + + for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { + TypePrinter.print((*OI)->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); + if (OI+1 != CE->op_end()) + Out << ", "; + } + + if (CE->hasIndices()) { + ArrayRef<unsigned> Indices = CE->getIndices(); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) + Out << ", " << Indices[i]; + } + + if (CE->isCast()) { + Out << " to "; + TypePrinter.print(CE->getType(), Out); + } + + Out << ')'; + return; + } + + Out << "<placeholder or erroneous Constant>"; +} + +static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, + TypePrinting *TypePrinter, + SlotTracker *Machine, + const Module *Context) { + Out << "!{"; + for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { + const Value *V = Node->getOperand(mi); + if (V == 0) + Out << "null"; + else { + TypePrinter->print(V->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, Node->getOperand(mi), + TypePrinter, Machine, Context); + } + if (mi + 1 != me) + Out << ", "; + } + + Out << "}"; +} + + +/// WriteAsOperand - Write the name of the specified value out to the specified +/// ostream. This can be useful when you just want to print int %reg126, not +/// the whole instruction that generated it. +/// +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine, + const Module *Context) { + if (V->hasName()) { + PrintLLVMName(Out, V); + return; + } + + const Constant *CV = dyn_cast<Constant>(V); + if (CV && !isa<GlobalValue>(CV)) { + assert(TypePrinter && "Constants require TypePrinting!"); + WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); + return; + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + Out << "asm "; + if (IA->hasSideEffects()) + Out << "sideeffect "; + if (IA->isAlignStack()) + Out << "alignstack "; + // We don't emit the AD_ATT dialect as it's the assumed default. + if (IA->getDialect() == InlineAsm::AD_Intel) + Out << "inteldialect "; + Out << '"'; + PrintEscapedString(IA->getAsmString(), Out); + Out << "\", \""; + PrintEscapedString(IA->getConstraintString(), Out); + Out << '"'; + return; + } + + if (const MDNode *N = dyn_cast<MDNode>(V)) { + if (N->isFunctionLocal()) { + // Print metadata inline, not via slot reference number. + WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context); + return; + } + + if (!Machine) { + if (N->isFunctionLocal()) + Machine = new SlotTracker(N->getFunction()); + else + Machine = new SlotTracker(Context); + } + int Slot = Machine->getMetadataSlot(N); + if (Slot == -1) + Out << "<badref>"; + else + Out << '!' << Slot; + return; + } + + if (const MDString *MDS = dyn_cast<MDString>(V)) { + Out << "!\""; + PrintEscapedString(MDS->getString(), Out); + Out << '"'; + return; + } + + if (V->getValueID() == Value::PseudoSourceValueVal || + V->getValueID() == Value::FixedStackPseudoSourceValueVal) { + V->print(Out); + return; + } + + char Prefix = '%'; + int Slot; + // If we have a SlotTracker, use it. + if (Machine) { + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; + } else { + Slot = Machine->getLocalSlot(V); + + // If the local value didn't succeed, then we may be referring to a value + // from a different function. Translate it, as this can happen when using + // address of blocks. + if (Slot == -1) + if ((Machine = createSlotTracker(V))) { + Slot = Machine->getLocalSlot(V); + delete Machine; + } + } + } else if ((Machine = createSlotTracker(V))) { + // Otherwise, create one to get the # and then destroy it. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; + } else { + Slot = Machine->getLocalSlot(V); + } + delete Machine; + Machine = 0; + } else { + Slot = -1; + } + + if (Slot != -1) + Out << Prefix << Slot; + else + Out << "<badref>"; +} + +void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, + bool PrintType, const Module *Context) { + + // Fast path: Don't construct and populate a TypePrinting object if we + // won't be needing any types printed. + if (!PrintType && + ((!isa<Constant>(V) && !isa<MDNode>(V)) || + V->hasName() || isa<GlobalValue>(V))) { + WriteAsOperandInternal(Out, V, 0, 0, Context); + return; + } + + if (Context == 0) Context = getModuleFromVal(V); + + TypePrinting TypePrinter; + if (Context) + TypePrinter.incorporateTypes(*Context); + if (PrintType) { + TypePrinter.print(V->getType(), Out); + Out << ' '; + } + + WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context); +} + +namespace { + +class AssemblyWriter { + formatted_raw_ostream &Out; + SlotTracker &Machine; + const Module *TheModule; + TypePrinting TypePrinter; + AssemblyAnnotationWriter *AnnotationWriter; + +public: + inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, + const Module *M, + AssemblyAnnotationWriter *AAW) + : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { + if (M) + TypePrinter.incorporateTypes(*M); + } + + void printMDNodeBody(const MDNode *MD); + void printNamedMDNode(const NamedMDNode *NMD); + + void printModule(const Module *M); + + void writeOperand(const Value *Op, bool PrintType); + void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx); + void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope); + + void writeAllMDNodes(); + void writeAllAttributeGroups(); + + void printTypeIdentities(); + void printGlobal(const GlobalVariable *GV); + void printAlias(const GlobalAlias *GV); + void printFunction(const Function *F); + void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx); + void printBasicBlock(const BasicBlock *BB); + void printInstruction(const Instruction &I); + +private: + // printInfoComment - Print a little comment after the instruction indicating + // which slot it occupies. + void printInfoComment(const Value &V); +}; +} // end of anonymous namespace + +void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { + if (Operand == 0) { + Out << "<null operand!>"; + return; + } + if (PrintType) { + TypePrinter.print(Operand->getType(), Out); + Out << ' '; + } + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); +} + +void AssemblyWriter::writeAtomic(AtomicOrdering Ordering, + SynchronizationScope SynchScope) { + if (Ordering == NotAtomic) + return; + + switch (SynchScope) { + case SingleThread: Out << " singlethread"; break; + case CrossThread: break; + } + + switch (Ordering) { + default: Out << " <bad ordering " << int(Ordering) << ">"; break; + case Unordered: Out << " unordered"; break; + case Monotonic: Out << " monotonic"; break; + case Acquire: Out << " acquire"; break; + case Release: Out << " release"; break; + case AcquireRelease: Out << " acq_rel"; break; + case SequentiallyConsistent: Out << " seq_cst"; break; + } +} + +void AssemblyWriter::writeParamOperand(const Value *Operand, + AttributeSet Attrs, unsigned Idx) { + if (Operand == 0) { + Out << "<null operand!>"; + return; + } + + // Print the type + TypePrinter.print(Operand->getType(), Out); + // Print parameter attributes list + if (Attrs.hasAttributes(Idx)) + Out << ' ' << Attrs.getAsString(Idx); + Out << ' '; + // Print the operand + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); +} + +void AssemblyWriter::printModule(const Module *M) { + Machine.initialize(); + + if (!M->getModuleIdentifier().empty() && + // Don't print the ID if it will start a new line (which would + // require a comment char before it). + M->getModuleIdentifier().find('\n') == std::string::npos) + Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; + + if (!M->getDataLayout().empty()) + Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; + if (!M->getTargetTriple().empty()) + Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; + + if (!M->getModuleInlineAsm().empty()) { + // Split the string into lines, to make it easier to read the .ll file. + std::string Asm = M->getModuleInlineAsm(); + size_t CurPos = 0; + size_t NewLine = Asm.find_first_of('\n', CurPos); + Out << '\n'; + while (NewLine != std::string::npos) { + // We found a newline, print the portion of the asm string from the + // last newline up to this newline. + Out << "module asm \""; + PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), + Out); + Out << "\"\n"; + CurPos = NewLine+1; + NewLine = Asm.find_first_of('\n', CurPos); + } + std::string rest(Asm.begin()+CurPos, Asm.end()); + if (!rest.empty()) { + Out << "module asm \""; + PrintEscapedString(rest, Out); + Out << "\"\n"; + } + } + + printTypeIdentities(); + + // Output all globals. + if (!M->global_empty()) Out << '\n'; + for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); + I != E; ++I) { + printGlobal(I); Out << '\n'; + } + + // Output all aliases. + if (!M->alias_empty()) Out << "\n"; + for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); + I != E; ++I) + printAlias(I); + + // Output all of the functions. + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) + printFunction(I); + + // Output all attribute groups. + if (!Machine.as_empty()) { + Out << '\n'; + writeAllAttributeGroups(); + } + + // Output named metadata. + if (!M->named_metadata_empty()) Out << '\n'; + + for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), + E = M->named_metadata_end(); I != E; ++I) + printNamedMDNode(I); + + // Output metadata. + if (!Machine.mdn_empty()) { + Out << '\n'; + writeAllMDNodes(); + } +} + +void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { + Out << '!'; + StringRef Name = NMD->getName(); + if (Name.empty()) { + Out << "<empty name> "; + } else { + if (isalpha(static_cast<unsigned char>(Name[0])) || + Name[0] == '-' || Name[0] == '$' || + Name[0] == '.' || Name[0] == '_') + Out << Name[0]; + else + Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); + for (unsigned i = 1, e = Name.size(); i != e; ++i) { + unsigned char C = Name[i]; + if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || + C == '.' || C == '_') + Out << C; + else + Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); + } + } + Out << " = !{"; + for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { + if (i) Out << ", "; + int Slot = Machine.getMetadataSlot(NMD->getOperand(i)); + if (Slot == -1) + Out << "<badref>"; + else + Out << '!' << Slot; + } + Out << "}\n"; +} + + +static void PrintLinkage(GlobalValue::LinkageTypes LT, + formatted_raw_ostream &Out) { + switch (LT) { + case GlobalValue::ExternalLinkage: break; + case GlobalValue::PrivateLinkage: Out << "private "; break; + case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; + case GlobalValue::LinkerPrivateWeakLinkage: + Out << "linker_private_weak "; + break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; + case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; + case GlobalValue::LinkOnceODRAutoHideLinkage: + Out << "linkonce_odr_auto_hide "; + break; + case GlobalValue::WeakAnyLinkage: Out << "weak "; break; + case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; + case GlobalValue::CommonLinkage: Out << "common "; break; + case GlobalValue::AppendingLinkage: Out << "appending "; break; + case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; + case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; + case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; + case GlobalValue::AvailableExternallyLinkage: + Out << "available_externally "; + break; + } +} + + +static void PrintVisibility(GlobalValue::VisibilityTypes Vis, + formatted_raw_ostream &Out) { + switch (Vis) { + case GlobalValue::DefaultVisibility: break; + case GlobalValue::HiddenVisibility: Out << "hidden "; break; + case GlobalValue::ProtectedVisibility: Out << "protected "; break; + } +} + +static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, + formatted_raw_ostream &Out) { + switch (TLM) { + case GlobalVariable::NotThreadLocal: + break; + case GlobalVariable::GeneralDynamicTLSModel: + Out << "thread_local "; + break; + case GlobalVariable::LocalDynamicTLSModel: + Out << "thread_local(localdynamic) "; + break; + case GlobalVariable::InitialExecTLSModel: + Out << "thread_local(initialexec) "; + break; + case GlobalVariable::LocalExecTLSModel: + Out << "thread_local(localexec) "; + break; + } +} + +void AssemblyWriter::printGlobal(const GlobalVariable *GV) { + if (GV->isMaterializable()) + Out << "; Materializable\n"; + + WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); + Out << " = "; + + if (!GV->hasInitializer() && GV->hasExternalLinkage()) + Out << "external "; + + PrintLinkage(GV->getLinkage(), Out); + PrintVisibility(GV->getVisibility(), Out); + PrintThreadLocalModel(GV->getThreadLocalMode(), Out); + + if (unsigned AddressSpace = GV->getType()->getAddressSpace()) + Out << "addrspace(" << AddressSpace << ") "; + if (GV->hasUnnamedAddr()) Out << "unnamed_addr "; + if (GV->isExternallyInitialized()) Out << "externally_initialized "; + Out << (GV->isConstant() ? "constant " : "global "); + TypePrinter.print(GV->getType()->getElementType(), Out); + + if (GV->hasInitializer()) { + Out << ' '; + writeOperand(GV->getInitializer(), false); + } + + if (GV->hasSection()) { + Out << ", section \""; + PrintEscapedString(GV->getSection(), Out); + Out << '"'; + } + if (GV->getAlignment()) + Out << ", align " << GV->getAlignment(); + + printInfoComment(*GV); +} + +void AssemblyWriter::printAlias(const GlobalAlias *GA) { + if (GA->isMaterializable()) + Out << "; Materializable\n"; + + // Don't crash when dumping partially built GA + if (!GA->hasName()) + Out << "<<nameless>> = "; + else { + PrintLLVMName(Out, GA); + Out << " = "; + } + PrintVisibility(GA->getVisibility(), Out); + + Out << "alias "; + + PrintLinkage(GA->getLinkage(), Out); + + const Constant *Aliasee = GA->getAliasee(); + + if (Aliasee == 0) { + TypePrinter.print(GA->getType(), Out); + Out << " <<NULL ALIASEE>>"; + } else { + writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee)); + } + + printInfoComment(*GA); + Out << '\n'; +} + +void AssemblyWriter::printTypeIdentities() { + if (TypePrinter.NumberedTypes.empty() && + TypePrinter.NamedTypes.empty()) + return; + + Out << '\n'; + + // We know all the numbers that each type is used and we know that it is a + // dense assignment. Convert the map to an index table. + std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size()); + for (DenseMap<StructType*, unsigned>::iterator I = + TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end(); + I != E; ++I) { + assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?"); + NumberedTypes[I->second] = I->first; + } + + // Emit all numbered types. + for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { + Out << '%' << i << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %2 = type %2 + TypePrinter.printStructBody(NumberedTypes[i], Out); + Out << '\n'; + } + + for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) { + PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix); + Out << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %FILE = type %FILE + TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out); + Out << '\n'; + } +} + +/// printFunction - Print all aspects of a function. +/// +void AssemblyWriter::printFunction(const Function *F) { + // Print out the return type and name. + Out << '\n'; + + if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); + + if (F->isMaterializable()) + Out << "; Materializable\n"; + + if (F->isDeclaration()) + Out << "declare "; + else + Out << "define "; + + PrintLinkage(F->getLinkage(), Out); + PrintVisibility(F->getVisibility(), Out); + + // Print the calling convention. + if (F->getCallingConv() != CallingConv::C) { + PrintCallingConv(F->getCallingConv(), Out); + Out << " "; + } + + FunctionType *FT = F->getFunctionType(); + const AttributeSet &Attrs = F->getAttributes(); + if (Attrs.hasAttributes(AttributeSet::ReturnIndex)) + Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' '; + TypePrinter.print(F->getReturnType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); + Out << '('; + Machine.incorporateFunction(F); + + // Loop over the arguments, printing them... + + unsigned Idx = 1; + if (!F->isDeclaration()) { + // If this isn't a declaration, print the argument names as well. + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) { + // Insert commas as we go... the first arg doesn't get a comma + if (I != F->arg_begin()) Out << ", "; + printArgument(I, Attrs, Idx); + Idx++; + } + } else { + // Otherwise, print the types from the function type. + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { + // Insert commas as we go... the first arg doesn't get a comma + if (i) Out << ", "; + + // Output type... + TypePrinter.print(FT->getParamType(i), Out); + + if (Attrs.hasAttributes(i+1)) + Out << ' ' << Attrs.getAsString(i+1); + } + } + + // Finish printing arguments... + if (FT->isVarArg()) { + if (FT->getNumParams()) Out << ", "; + Out << "..."; // Output varargs portion of signature! + } + Out << ')'; + if (F->hasUnnamedAddr()) + Out << " unnamed_addr"; + if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) + Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); + if (F->hasSection()) { + Out << " section \""; + PrintEscapedString(F->getSection(), Out); + Out << '"'; + } + if (F->getAlignment()) + Out << " align " << F->getAlignment(); + if (F->hasGC()) + Out << " gc \"" << F->getGC() << '"'; + if (F->isDeclaration()) { + Out << '\n'; + } else { + Out << " {"; + // Output all of the function's basic blocks. + for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) + printBasicBlock(I); + + Out << "}\n"; + } + + Machine.purgeFunction(); +} + +/// printArgument - This member is called for every argument that is passed into +/// the function. Simply print it out +/// +void AssemblyWriter::printArgument(const Argument *Arg, + AttributeSet Attrs, unsigned Idx) { + // Output type... + TypePrinter.print(Arg->getType(), Out); + + // Output parameter attributes list + if (Attrs.hasAttributes(Idx)) + Out << ' ' << Attrs.getAsString(Idx); + + // Output name, if available... + if (Arg->hasName()) { + Out << ' '; + PrintLLVMName(Out, Arg); + } +} + +/// printBasicBlock - This member is called for each basic block in a method. +/// +void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { + if (BB->hasName()) { // Print out the label if it exists... + Out << "\n"; + PrintLLVMName(Out, BB->getName(), LabelPrefix); + Out << ':'; + } else if (!BB->use_empty()) { // Don't print block # of no uses... + Out << "\n; <label>:"; + int Slot = Machine.getLocalSlot(BB); + if (Slot != -1) + Out << Slot; + else + Out << "<badref>"; + } + + if (BB->getParent() == 0) { + Out.PadToColumn(50); + Out << "; Error: Block without parent!"; + } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block? + // Output predecessors for the block. + Out.PadToColumn(50); + Out << ";"; + const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + + if (PI == PE) { + Out << " No predecessors!"; + } else { + Out << " preds = "; + writeOperand(*PI, false); + for (++PI; PI != PE; ++PI) { + Out << ", "; + writeOperand(*PI, false); + } + } + } + + Out << "\n"; + + if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); + + // Output all of the instructions in the basic block... + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + printInstruction(*I); + Out << '\n'; + } + + if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); +} + +/// printInfoComment - Print a little comment after the instruction indicating +/// which slot it occupies. +/// +void AssemblyWriter::printInfoComment(const Value &V) { + if (AnnotationWriter) { + AnnotationWriter->printInfoComment(V, Out); + return; + } +} + +// This member is called for each Instruction in a function.. +void AssemblyWriter::printInstruction(const Instruction &I) { + if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); + + // Print out indentation for an instruction. + Out << " "; + + // Print out name if it exists... + if (I.hasName()) { + PrintLLVMName(Out, &I); + Out << " = "; + } else if (!I.getType()->isVoidTy()) { + // Print out the def slot taken. + int SlotNum = Machine.getLocalSlot(&I); + if (SlotNum == -1) + Out << "<badref> = "; + else + Out << '%' << SlotNum << " = "; + } + + if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) + Out << "tail "; + + // Print out the opcode... + Out << I.getOpcodeName(); + + // If this is an atomic load or store, print out the atomic marker. + if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || + (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) + Out << " atomic"; + + // If this is a volatile operation, print out the volatile marker. + if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || + (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || + (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || + (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) + Out << " volatile"; + + // Print out optimization information. + WriteOptimizationInfo(Out, &I); + + // Print out the compare instruction predicates + if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) + Out << ' ' << getPredicateText(CI->getPredicate()); + + // Print out the atomicrmw operation + if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) + writeAtomicRMWOperation(Out, RMWI->getOperation()); + + // Print out the type of the operands... + const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0; + + // Special case conditional branches to swizzle the condition out to the front + if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { + const BranchInst &BI(cast<BranchInst>(I)); + Out << ' '; + writeOperand(BI.getCondition(), true); + Out << ", "; + writeOperand(BI.getSuccessor(0), true); + Out << ", "; + writeOperand(BI.getSuccessor(1), true); + + } else if (isa<SwitchInst>(I)) { + const SwitchInst& SI(cast<SwitchInst>(I)); + // Special case switch instruction to get formatting nice and correct. + Out << ' '; + writeOperand(SI.getCondition(), true); + Out << ", "; + writeOperand(SI.getDefaultDest(), true); + Out << " ["; + for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); + i != e; ++i) { + Out << "\n "; + writeOperand(i.getCaseValue(), true); + Out << ", "; + writeOperand(i.getCaseSuccessor(), true); + } + Out << "\n ]"; + } else if (isa<IndirectBrInst>(I)) { + // Special case indirectbr instruction to get formatting nice and correct. + Out << ' '; + writeOperand(Operand, true); + Out << ", ["; + + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { + if (i != 1) + Out << ", "; + writeOperand(I.getOperand(i), true); + } + Out << ']'; + } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { + Out << ' '; + TypePrinter.print(I.getType(), Out); + Out << ' '; + + for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { + if (op) Out << ", "; + Out << "[ "; + writeOperand(PN->getIncomingValue(op), false); Out << ", "; + writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; + } + } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { + Out << ' '; + writeOperand(I.getOperand(0), true); + for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) + Out << ", " << *i; + } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { + Out << ' '; + writeOperand(I.getOperand(0), true); Out << ", "; + writeOperand(I.getOperand(1), true); + for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) + Out << ", " << *i; + } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { + Out << ' '; + TypePrinter.print(I.getType(), Out); + Out << " personality "; + writeOperand(I.getOperand(0), true); Out << '\n'; + + if (LPI->isCleanup()) + Out << " cleanup"; + + for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { + if (i != 0 || LPI->isCleanup()) Out << "\n"; + if (LPI->isCatch(i)) + Out << " catch "; + else + Out << " filter "; + + writeOperand(LPI->getClause(i), true); + } + } else if (isa<ReturnInst>(I) && !Operand) { + Out << " void"; + } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { + // Print the calling convention being used. + if (CI->getCallingConv() != CallingConv::C) { + Out << " "; + PrintCallingConv(CI->getCallingConv(), Out); + } + + Operand = CI->getCalledValue(); + PointerType *PTy = cast<PointerType>(Operand->getType()); + FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + Type *RetTy = FTy->getReturnType(); + const AttributeSet &PAL = CI->getAttributes(); + + if (PAL.hasAttributes(AttributeSet::ReturnIndex)) + Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex); + + // If possible, print out the short form of the call instruction. We can + // only do this if the first argument is a pointer to a nonvararg function, + // and if the return type is not a pointer to a function. + // + Out << ' '; + if (!FTy->isVarArg() && + (!RetTy->isPointerTy() || + !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { + TypePrinter.print(RetTy, Out); + Out << ' '; + writeOperand(Operand, false); + } else { + writeOperand(Operand, true); + } + Out << '('; + for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { + if (op > 0) + Out << ", "; + writeParamOperand(CI->getArgOperand(op), PAL, op + 1); + } + Out << ')'; + if (PAL.hasAttributes(AttributeSet::FunctionIndex)) + Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); + } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { + Operand = II->getCalledValue(); + PointerType *PTy = cast<PointerType>(Operand->getType()); + FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + Type *RetTy = FTy->getReturnType(); + const AttributeSet &PAL = II->getAttributes(); + + // Print the calling convention being used. + if (II->getCallingConv() != CallingConv::C) { + Out << " "; + PrintCallingConv(II->getCallingConv(), Out); + } + + if (PAL.hasAttributes(AttributeSet::ReturnIndex)) + Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex); + + // If possible, print out the short form of the invoke instruction. We can + // only do this if the first argument is a pointer to a nonvararg function, + // and if the return type is not a pointer to a function. + // + Out << ' '; + if (!FTy->isVarArg() && + (!RetTy->isPointerTy() || + !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) { + TypePrinter.print(RetTy, Out); + Out << ' '; + writeOperand(Operand, false); + } else { + writeOperand(Operand, true); + } + Out << '('; + for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { + if (op) + Out << ", "; + writeParamOperand(II->getArgOperand(op), PAL, op + 1); + } + + Out << ')'; + if (PAL.hasAttributes(AttributeSet::FunctionIndex)) + Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); + + Out << "\n to "; + writeOperand(II->getNormalDest(), true); + Out << " unwind "; + writeOperand(II->getUnwindDest(), true); + + } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { + Out << ' '; + TypePrinter.print(AI->getAllocatedType(), Out); + if (!AI->getArraySize() || AI->isArrayAllocation()) { + Out << ", "; + writeOperand(AI->getArraySize(), true); + } + if (AI->getAlignment()) { + Out << ", align " << AI->getAlignment(); + } + } else if (isa<CastInst>(I)) { + if (Operand) { + Out << ' '; + writeOperand(Operand, true); // Work with broken code + } + Out << " to "; + TypePrinter.print(I.getType(), Out); + } else if (isa<VAArgInst>(I)) { + if (Operand) { + Out << ' '; + writeOperand(Operand, true); // Work with broken code + } + Out << ", "; + TypePrinter.print(I.getType(), Out); + } else if (Operand) { // Print the normal way. + + // PrintAllTypes - Instructions who have operands of all the same type + // omit the type from all but the first operand. If the instruction has + // different type operands (for example br), then they are all printed. + bool PrintAllTypes = false; + Type *TheType = Operand->getType(); + + // Select, Store and ShuffleVector always print all types. + if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) + || isa<ReturnInst>(I)) { + PrintAllTypes = true; + } else { + for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { + Operand = I.getOperand(i); + // note that Operand shouldn't be null, but the test helps make dump() + // more tolerant of malformed IR + if (Operand && Operand->getType() != TheType) { + PrintAllTypes = true; // We have differing types! Print them all! + break; + } + } + } + + if (!PrintAllTypes) { + Out << ' '; + TypePrinter.print(TheType, Out); + } + + Out << ' '; + for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { + if (i) Out << ", "; + writeOperand(I.getOperand(i), PrintAllTypes); + } + } + + // Print atomic ordering/alignment for memory operations + if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { + if (LI->isAtomic()) + writeAtomic(LI->getOrdering(), LI->getSynchScope()); + if (LI->getAlignment()) + Out << ", align " << LI->getAlignment(); + } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { + if (SI->isAtomic()) + writeAtomic(SI->getOrdering(), SI->getSynchScope()); + if (SI->getAlignment()) + Out << ", align " << SI->getAlignment(); + } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { + writeAtomic(CXI->getOrdering(), CXI->getSynchScope()); + } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { + writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope()); + } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { + writeAtomic(FI->getOrdering(), FI->getSynchScope()); + } + + // Print Metadata info. + SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD; + I.getAllMetadata(InstMD); + if (!InstMD.empty()) { + SmallVector<StringRef, 8> MDNames; + I.getType()->getContext().getMDKindNames(MDNames); + for (unsigned i = 0, e = InstMD.size(); i != e; ++i) { + unsigned Kind = InstMD[i].first; + if (Kind < MDNames.size()) { + Out << ", !" << MDNames[Kind]; + } else { + Out << ", !<unknown kind #" << Kind << ">"; + } + Out << ' '; + WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine, + TheModule); + } + } + printInfoComment(I); +} + +static void WriteMDNodeComment(const MDNode *Node, + formatted_raw_ostream &Out) { + if (Node->getNumOperands() < 1) + return; + + Value *Op = Node->getOperand(0); + if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32) + return; + + DIDescriptor Desc(Node); + if (!Desc.Verify()) + return; + + unsigned Tag = Desc.getTag(); + Out.PadToColumn(50); + if (dwarf::TagString(Tag)) { + Out << "; "; + Desc.print(Out); + } else if (Tag == dwarf::DW_TAG_user_base) { + Out << "; [ DW_TAG_user_base ]"; + } +} + +void AssemblyWriter::writeAllMDNodes() { + SmallVector<const MDNode *, 16> Nodes; + Nodes.resize(Machine.mdn_size()); + for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end(); + I != E; ++I) + Nodes[I->second] = cast<MDNode>(I->first); + + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + Out << '!' << i << " = metadata "; + printMDNodeBody(Nodes[i]); + } +} + +void AssemblyWriter::printMDNodeBody(const MDNode *Node) { + WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); + WriteMDNodeComment(Node, Out); + Out << "\n"; +} + +void AssemblyWriter::writeAllAttributeGroups() { + std::vector<std::pair<AttributeSet, unsigned> > asVec; + asVec.resize(Machine.as_size()); + + for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end(); + I != E; ++I) + asVec[I->second] = *I; + + for (std::vector<std::pair<AttributeSet, unsigned> >::iterator + I = asVec.begin(), E = asVec.end(); I != E; ++I) + Out << "attributes #" << I->second << " = { " + << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n"; +} + +//===----------------------------------------------------------------------===// +// External Interface declarations +//===----------------------------------------------------------------------===// + +void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + SlotTracker SlotTable(this); + formatted_raw_ostream OS(ROS); + AssemblyWriter W(OS, SlotTable, this, AAW); + W.printModule(this); +} + +void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + SlotTracker SlotTable(getParent()); + formatted_raw_ostream OS(ROS); + AssemblyWriter W(OS, SlotTable, getParent(), AAW); + W.printNamedMDNode(this); +} + +void Type::print(raw_ostream &OS) const { + if (this == 0) { + OS << "<null Type>"; + return; + } + TypePrinting TP; + TP.print(const_cast<Type*>(this), OS); + + // If the type is a named struct type, print the body as well. + if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) + if (!STy->isLiteral()) { + OS << " = type "; + TP.printStructBody(STy, OS); + } +} + +void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const { + if (this == 0) { + ROS << "printing a <null> value\n"; + return; + } + formatted_raw_ostream OS(ROS); + if (const Instruction *I = dyn_cast<Instruction>(this)) { + const Function *F = I->getParent() ? I->getParent()->getParent() : 0; + SlotTracker SlotTable(F); + AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW); + W.printInstruction(*I); + } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { + SlotTracker SlotTable(BB->getParent()); + AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW); + W.printBasicBlock(BB); + } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { + SlotTracker SlotTable(GV->getParent()); + AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW); + if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) + W.printGlobal(V); + else if (const Function *F = dyn_cast<Function>(GV)) + W.printFunction(F); + else + W.printAlias(cast<GlobalAlias>(GV)); + } else if (const MDNode *N = dyn_cast<MDNode>(this)) { + const Function *F = N->getFunction(); + SlotTracker SlotTable(F); + AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW); + W.printMDNodeBody(N); + } else if (const Constant *C = dyn_cast<Constant>(this)) { + TypePrinting TypePrinter; + TypePrinter.print(C->getType(), OS); + OS << ' '; + WriteConstantInternal(OS, C, TypePrinter, 0, 0); + } else if (isa<InlineAsm>(this) || isa<MDString>(this) || + isa<Argument>(this)) { + WriteAsOperand(OS, this, true, 0); + } else { + // Otherwise we don't know what it is. Call the virtual function to + // allow a subclass to print itself. + printCustom(OS); + } +} + +// Value::printCustom - subclasses should override this to implement printing. +void Value::printCustom(raw_ostream &OS) const { + llvm_unreachable("Unknown value to print out!"); +} + +// Value::dump - allow easy printing of Values from the debugger. +void Value::dump() const { print(dbgs()); dbgs() << '\n'; } + +// Type::dump - allow easy printing of Types from the debugger. +void Type::dump() const { print(dbgs()); } + +// Module::dump() - Allow printing of Modules from the debugger. +void Module::dump() const { print(dbgs(), 0); } + +// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. +void NamedMDNode::dump() const { print(dbgs(), 0); } |