summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/ExecutionEngine
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp1348
-rw-r--r--contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp450
-rw-r--r--contrib/llvm/lib/ExecutionEngine/GDBRegistrationListener.cpp247
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp231
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h96
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h454
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h70
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c482
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h259
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp2147
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp498
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp100
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h256
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp633
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h340
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h48
-rw-r--r--contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp153
-rw-r--r--contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp268
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Orc/ExecutionUtils.cpp102
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Orc/IndirectionUtils.cpp181
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Orc/NullResolver.cpp27
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.cpp128
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.h355
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Orc/OrcTargetSupport.cpp138
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RTDyldMemoryManager.cpp294
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp953
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.cpp73
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.h50
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp934
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h77
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp1694
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h167
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h452
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp315
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h161
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldCOFFX86_64.h216
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h407
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h278
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h260
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h138
-rw-r--r--contrib/llvm/lib/ExecutionEngine/SectionMemoryManager.cpp178
-rw-r--r--contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp104
42 files changed, 15762 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
new file mode 100644
index 0000000..c2ff8e2
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -0,0 +1,1348 @@
+//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common interface used by the various execution engine
+// subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Object/Archive.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cmath>
+#include <cstring>
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
+STATISTIC(NumGlobals , "Number of global vars initialized");
+
+ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
+ std::unique_ptr<Module> M, std::string *ErrorStr,
+ std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
+ std::unique_ptr<TargetMachine> TM) = nullptr;
+
+ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)(
+ std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
+ std::unique_ptr<TargetMachine> TM) = nullptr;
+
+ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
+ std::string *ErrorStr) =nullptr;
+
+void JITEventListener::anchor() {}
+
+ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
+ : LazyFunctionCreator(nullptr) {
+ CompilingLazily = false;
+ GVCompilationDisabled = false;
+ SymbolSearchingDisabled = false;
+
+ // IR module verification is enabled by default in debug builds, and disabled
+ // by default in release builds.
+#ifndef NDEBUG
+ VerifyModules = true;
+#else
+ VerifyModules = false;
+#endif
+
+ assert(M && "Module is null?");
+ Modules.push_back(std::move(M));
+}
+
+ExecutionEngine::~ExecutionEngine() {
+ clearAllGlobalMappings();
+}
+
+namespace {
+/// \brief Helper class which uses a value handler to automatically deletes the
+/// memory block when the GlobalVariable is destroyed.
+class GVMemoryBlock : public CallbackVH {
+ GVMemoryBlock(const GlobalVariable *GV)
+ : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
+
+public:
+ /// \brief Returns the address the GlobalVariable should be written into. The
+ /// GVMemoryBlock object prefixes that.
+ static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
+ Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
+ void *RawMemory = ::operator new(
+ RoundUpToAlignment(sizeof(GVMemoryBlock),
+ TD.getPreferredAlignment(GV))
+ + GVSize);
+ new(RawMemory) GVMemoryBlock(GV);
+ return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
+ }
+
+ void deleted() override {
+ // We allocated with operator new and with some extra memory hanging off the
+ // end, so don't just delete this. I'm not sure if this is actually
+ // required.
+ this->~GVMemoryBlock();
+ ::operator delete(this);
+ }
+};
+} // anonymous namespace
+
+char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
+ return GVMemoryBlock::Create(GV, *getDataLayout());
+}
+
+void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
+ llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
+}
+
+void
+ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
+ llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
+}
+
+void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
+ llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
+}
+
+bool ExecutionEngine::removeModule(Module *M) {
+ for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
+ Module *Found = I->get();
+ if (Found == M) {
+ I->release();
+ Modules.erase(I);
+ clearGlobalMappingsFromModule(M);
+ return true;
+ }
+ }
+ return false;
+}
+
+Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ Function *F = Modules[i]->getFunction(FnName);
+ if (F && !F->isDeclaration())
+ return F;
+ }
+ return nullptr;
+}
+
+GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) {
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
+ if (GV && !GV->isDeclaration())
+ return GV;
+ }
+ return nullptr;
+}
+
+uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
+ GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
+ uint64_t OldVal;
+
+ // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
+ // GlobalAddressMap.
+ if (I == GlobalAddressMap.end())
+ OldVal = 0;
+ else {
+ GlobalAddressReverseMap.erase(I->second);
+ OldVal = I->second;
+ GlobalAddressMap.erase(I);
+ }
+
+ return OldVal;
+}
+
+std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
+ MutexGuard locked(lock);
+ Mangler Mang;
+ SmallString<128> FullName;
+ Mang.getNameWithPrefix(FullName, GV, false);
+ return FullName.str();
+}
+
+void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+ addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
+}
+
+void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
+ MutexGuard locked(lock);
+
+ assert(!Name.empty() && "Empty GlobalMapping symbol name!");
+
+ DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
+ uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
+ assert((!CurVal || !Addr) && "GlobalMapping already established!");
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too.
+ if (!EEState.getGlobalAddressReverseMap().empty()) {
+ std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
+ assert((!V.empty() || !Name.empty()) &&
+ "GlobalMapping already established!");
+ V = Name;
+ }
+}
+
+void ExecutionEngine::clearAllGlobalMappings() {
+ MutexGuard locked(lock);
+
+ EEState.getGlobalAddressMap().clear();
+ EEState.getGlobalAddressReverseMap().clear();
+}
+
+void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
+ MutexGuard locked(lock);
+
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
+ EEState.RemoveMapping(getMangledName(FI));
+ for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
+ GI != GE; ++GI)
+ EEState.RemoveMapping(getMangledName(GI));
+}
+
+uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
+ void *Addr) {
+ MutexGuard locked(lock);
+ return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
+}
+
+uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
+ MutexGuard locked(lock);
+
+ ExecutionEngineState::GlobalAddressMapTy &Map =
+ EEState.getGlobalAddressMap();
+
+ // Deleting from the mapping?
+ if (!Addr)
+ return EEState.RemoveMapping(Name);
+
+ uint64_t &CurVal = Map[Name];
+ uint64_t OldVal = CurVal;
+
+ if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
+ EEState.getGlobalAddressReverseMap().erase(CurVal);
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too.
+ if (!EEState.getGlobalAddressReverseMap().empty()) {
+ std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
+ assert((!V.empty() || !Name.empty()) &&
+ "GlobalMapping already established!");
+ V = Name;
+ }
+ return OldVal;
+}
+
+uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
+ MutexGuard locked(lock);
+ uint64_t Address = 0;
+ ExecutionEngineState::GlobalAddressMapTy::iterator I =
+ EEState.getGlobalAddressMap().find(S);
+ if (I != EEState.getGlobalAddressMap().end())
+ Address = I->second;
+ return Address;
+}
+
+
+void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
+ MutexGuard locked(lock);
+ if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
+ return Address;
+ return nullptr;
+}
+
+void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
+ MutexGuard locked(lock);
+ return getPointerToGlobalIfAvailable(getMangledName(GV));
+}
+
+const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
+ MutexGuard locked(lock);
+
+ // If we haven't computed the reverse mapping yet, do so first.
+ if (EEState.getGlobalAddressReverseMap().empty()) {
+ for (ExecutionEngineState::GlobalAddressMapTy::iterator
+ I = EEState.getGlobalAddressMap().begin(),
+ E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
+ StringRef Name = I->first();
+ uint64_t Addr = I->second;
+ EEState.getGlobalAddressReverseMap().insert(std::make_pair(
+ Addr, Name));
+ }
+ }
+
+ std::map<uint64_t, std::string>::iterator I =
+ EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
+
+ if (I != EEState.getGlobalAddressReverseMap().end()) {
+ StringRef Name = I->second;
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
+ return GV;
+ }
+ return nullptr;
+}
+
+namespace {
+class ArgvArray {
+ std::unique_ptr<char[]> Array;
+ std::vector<std::unique_ptr<char[]>> Values;
+public:
+ /// Turn a vector of strings into a nice argv style array of pointers to null
+ /// terminated strings.
+ void *reset(LLVMContext &C, ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv);
+};
+} // anonymous namespace
+void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv) {
+ Values.clear(); // Free the old contents.
+ Values.reserve(InputArgv.size());
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
+ Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize);
+
+ DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n");
+ Type *SBytePtr = Type::getInt8PtrTy(C);
+
+ for (unsigned i = 0; i != InputArgv.size(); ++i) {
+ unsigned Size = InputArgv[i].size()+1;
+ auto Dest = make_unique<char[]>(Size);
+ DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n");
+
+ std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
+ Dest[Size-1] = 0;
+
+ // Endian safe: Array[i] = (PointerTy)Dest;
+ EE->StoreValueToMemory(PTOGV(Dest.get()),
+ (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
+ Values.push_back(std::move(Dest));
+ }
+
+ // Null terminate it
+ EE->StoreValueToMemory(PTOGV(nullptr),
+ (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
+ SBytePtr);
+ return Array.get();
+}
+
+void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
+ bool isDtors) {
+ const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
+ GlobalVariable *GV = module.getNamedGlobal(Name);
+
+ // If this global has internal linkage, or if it has a use, then it must be
+ // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
+ // this is the case, don't execute any of the global ctors, __main will do
+ // it.
+ if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
+
+ // Should be an array of '{ i32, void ()* }' structs. The first value is
+ // the init priority, which we ignore.
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!InitList)
+ return;
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
+ ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
+ if (!CS) continue;
+
+ Constant *FP = CS->getOperand(1);
+ if (FP->isNullValue())
+ continue; // Found a sentinal value, ignore.
+
+ // Strip off constant expression casts.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+
+ // Execute the ctor/dtor function!
+ if (Function *F = dyn_cast<Function>(FP))
+ runFunction(F, None);
+
+ // FIXME: It is marginally lame that we just do nothing here if we see an
+ // entry we don't recognize. It might not be unreasonable for the verifier
+ // to not even allow this and just assert here.
+ }
+}
+
+void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
+ // Execute global ctors/dtors for each module in the program.
+ for (std::unique_ptr<Module> &M : Modules)
+ runStaticConstructorsDestructors(*M, isDtors);
+}
+
+#ifndef NDEBUG
+/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
+static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
+ for (unsigned i = 0; i < PtrSize; ++i)
+ if (*(i + (uint8_t*)Loc))
+ return false;
+ return true;
+}
+#endif
+
+int ExecutionEngine::runFunctionAsMain(Function *Fn,
+ const std::vector<std::string> &argv,
+ const char * const * envp) {
+ std::vector<GenericValue> GVArgs;
+ GenericValue GVArgc;
+ GVArgc.IntVal = APInt(32, argv.size());
+
+ // Check main() type
+ unsigned NumArgs = Fn->getFunctionType()->getNumParams();
+ FunctionType *FTy = Fn->getFunctionType();
+ Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
+
+ // Check the argument types.
+ if (NumArgs > 3)
+ report_fatal_error("Invalid number of arguments of main() supplied");
+ if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
+ report_fatal_error("Invalid type for third argument of main() supplied");
+ if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
+ report_fatal_error("Invalid type for second argument of main() supplied");
+ if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
+ report_fatal_error("Invalid type for first argument of main() supplied");
+ if (!FTy->getReturnType()->isIntegerTy() &&
+ !FTy->getReturnType()->isVoidTy())
+ report_fatal_error("Invalid return type of main() supplied");
+
+ ArgvArray CArgv;
+ ArgvArray CEnv;
+ if (NumArgs) {
+ GVArgs.push_back(GVArgc); // Arg #0 = argc.
+ if (NumArgs > 1) {
+ // Arg #1 = argv.
+ GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
+ assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
+ "argv[0] was null after CreateArgv");
+ if (NumArgs > 2) {
+ std::vector<std::string> EnvVars;
+ for (unsigned i = 0; envp[i]; ++i)
+ EnvVars.emplace_back(envp[i]);
+ // Arg #2 = envp.
+ GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
+ }
+ }
+ }
+
+ return runFunction(Fn, GVArgs).IntVal.getZExtValue();
+}
+
+EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
+
+EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
+ : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
+ OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr),
+ RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault),
+ UseOrcMCJITReplacement(false) {
+// IR module verification is enabled by default in debug builds, and disabled
+// by default in release builds.
+#ifndef NDEBUG
+ VerifyModules = true;
+#else
+ VerifyModules = false;
+#endif
+}
+
+EngineBuilder::~EngineBuilder() = default;
+
+EngineBuilder &EngineBuilder::setMCJITMemoryManager(
+ std::unique_ptr<RTDyldMemoryManager> mcjmm) {
+ auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
+ MemMgr = SharedMM;
+ Resolver = SharedMM;
+ return *this;
+}
+
+EngineBuilder&
+EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
+ MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
+ return *this;
+}
+
+EngineBuilder&
+EngineBuilder::setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR) {
+ Resolver = std::shared_ptr<RuntimeDyld::SymbolResolver>(std::move(SR));
+ return *this;
+}
+
+ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
+ std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
+
+ // Make sure we can resolve symbols in the program as well. The zero arg
+ // to the function tells DynamicLibrary to load the program, not a library.
+ if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
+ return nullptr;
+
+ // If the user specified a memory manager but didn't specify which engine to
+ // create, we assume they only want the JIT, and we fail if they only want
+ // the interpreter.
+ if (MemMgr) {
+ if (WhichEngine & EngineKind::JIT)
+ WhichEngine = EngineKind::JIT;
+ else {
+ if (ErrorStr)
+ *ErrorStr = "Cannot create an interpreter with a memory manager.";
+ return nullptr;
+ }
+ }
+
+ // Unless the interpreter was explicitly selected or the JIT is not linked,
+ // try making a JIT.
+ if ((WhichEngine & EngineKind::JIT) && TheTM) {
+ Triple TT(M->getTargetTriple());
+ if (!TM->getTarget().hasJIT()) {
+ errs() << "WARNING: This target JIT is not designed for the host"
+ << " you are running. If bad things happen, please choose"
+ << " a different -march switch.\n";
+ }
+
+ ExecutionEngine *EE = nullptr;
+ if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) {
+ EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr),
+ std::move(Resolver),
+ std::move(TheTM));
+ EE->addModule(std::move(M));
+ } else if (ExecutionEngine::MCJITCtor)
+ EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
+ std::move(Resolver), std::move(TheTM));
+
+ if (EE) {
+ EE->setVerifyModules(VerifyModules);
+ return EE;
+ }
+ }
+
+ // If we can't make a JIT and we didn't request one specifically, try making
+ // an interpreter instead.
+ if (WhichEngine & EngineKind::Interpreter) {
+ if (ExecutionEngine::InterpCtor)
+ return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
+ if (ErrorStr)
+ *ErrorStr = "Interpreter has not been linked in.";
+ return nullptr;
+ }
+
+ if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
+ if (ErrorStr)
+ *ErrorStr = "JIT has not been linked in.";
+ }
+
+ return nullptr;
+}
+
+void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
+ if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
+ return getPointerToFunction(F);
+
+ MutexGuard locked(lock);
+ if (void* P = getPointerToGlobalIfAvailable(GV))
+ return P;
+
+ // Global variable might have been added since interpreter started.
+ if (GlobalVariable *GVar =
+ const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
+ EmitGlobalVariable(GVar);
+ else
+ llvm_unreachable("Global hasn't had an address allocated yet!");
+
+ return getPointerToGlobalIfAvailable(GV);
+}
+
+/// \brief Converts a Constant* into a GenericValue, including handling of
+/// ConstantExpr values.
+GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
+ // If its undefined, return the garbage.
+ if (isa<UndefValue>(C)) {
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ default:
+ break;
+ case Type::IntegerTyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ // Although the value is undefined, we still have to construct an APInt
+ // with the correct bit width.
+ Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
+ break;
+ case Type::StructTyID: {
+ // if the whole struct is 'undef' just reserve memory for the value.
+ if(StructType *STy = dyn_cast<StructType>(C->getType())) {
+ unsigned int elemNum = STy->getNumElements();
+ Result.AggregateVal.resize(elemNum);
+ for (unsigned int i = 0; i < elemNum; ++i) {
+ Type *ElemTy = STy->getElementType(i);
+ if (ElemTy->isIntegerTy())
+ Result.AggregateVal[i].IntVal =
+ APInt(ElemTy->getPrimitiveSizeInBits(), 0);
+ else if (ElemTy->isAggregateType()) {
+ const Constant *ElemUndef = UndefValue::get(ElemTy);
+ Result.AggregateVal[i] = getConstantValue(ElemUndef);
+ }
+ }
+ }
+ }
+ break;
+ case Type::VectorTyID:
+ // if the whole vector is 'undef' just reserve memory for the value.
+ const VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ const Type *ElemTy = VTy->getElementType();
+ unsigned int elemNum = VTy->getNumElements();
+ Result.AggregateVal.resize(elemNum);
+ if (ElemTy->isIntegerTy())
+ for (unsigned int i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal =
+ APInt(ElemTy->getPrimitiveSizeInBits(), 0);
+ break;
+ }
+ return Result;
+ }
+
+ // Otherwise, if the value is a ConstantExpr...
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ Constant *Op0 = CE->getOperand(0);
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ // Compute the index
+ GenericValue Result = getConstantValue(Op0);
+ APInt Offset(DL->getPointerSizeInBits(), 0);
+ cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset);
+
+ char* tmp = (char*) Result.PointerVal;
+ Result = PTOGV(tmp + Offset.getSExtValue());
+ return Result;
+ }
+ case Instruction::Trunc: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.trunc(BitWidth);
+ return GV;
+ }
+ case Instruction::ZExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.zext(BitWidth);
+ return GV;
+ }
+ case Instruction::SExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.sext(BitWidth);
+ return GV;
+ }
+ case Instruction::FPTrunc: {
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.FloatVal = float(GV.DoubleVal);
+ return GV;
+ }
+ case Instruction::FPExt:{
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.DoubleVal = double(GV.FloatVal);
+ return GV;
+ }
+ case Instruction::UIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType()->isFloatTy())
+ GV.FloatVal = float(GV.IntVal.roundToDouble());
+ else if (CE->getType()->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.roundToDouble();
+ else if (CE->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ (void)apf.convertFromAPInt(GV.IntVal,
+ false,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::SIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType()->isFloatTy())
+ GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
+ else if (CE->getType()->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.signedRoundToDouble();
+ else if (CE->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ (void)apf.convertFromAPInt(GV.IntVal,
+ true,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::FPToUI: // double->APInt conversion handles sign
+ case Instruction::FPToSI: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ if (Op0->getType()->isFloatTy())
+ GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
+ else if (Op0->getType()->isDoubleTy())
+ GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
+ else if (Op0->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
+ uint64_t v;
+ bool ignored;
+ (void)apf.convertToInteger(&v, BitWidth,
+ CE->getOpcode()==Instruction::FPToSI,
+ APFloat::rmTowardZero, &ignored);
+ GV.IntVal = v; // endian?
+ }
+ return GV;
+ }
+ case Instruction::PtrToInt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType());
+ assert(PtrWidth <= 64 && "Bad pointer width");
+ GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
+ uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType());
+ GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
+ return GV;
+ }
+ case Instruction::IntToPtr: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType());
+ GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
+ assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
+ GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
+ return GV;
+ }
+ case Instruction::BitCast: {
+ GenericValue GV = getConstantValue(Op0);
+ Type* DestTy = CE->getType();
+ switch (Op0->getType()->getTypeID()) {
+ default: llvm_unreachable("Invalid bitcast operand");
+ case Type::IntegerTyID:
+ assert(DestTy->isFloatingPointTy() && "invalid bitcast");
+ if (DestTy->isFloatTy())
+ GV.FloatVal = GV.IntVal.bitsToFloat();
+ else if (DestTy->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.bitsToDouble();
+ break;
+ case Type::FloatTyID:
+ assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
+ GV.IntVal = APInt::floatToBits(GV.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
+ GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
+ break;
+ case Type::PointerTyID:
+ assert(DestTy->isPointerTy() && "Invalid bitcast");
+ break; // getConstantValue(Op0) above already converted it
+ }
+ return GV;
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ GenericValue LHS = getConstantValue(Op0);
+ GenericValue RHS = getConstantValue(CE->getOperand(1));
+ GenericValue GV;
+ switch (CE->getOperand(0)->getType()->getTypeID()) {
+ default: llvm_unreachable("Bad add type!");
+ case Type::IntegerTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid integer opcode");
+ case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
+ case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
+ case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
+ case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
+ case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
+ case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
+ case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
+ case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
+ case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
+ case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
+ }
+ break;
+ case Type::FloatTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid float opcode");
+ case Instruction::FAdd:
+ GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
+ case Instruction::FSub:
+ GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
+ case Instruction::FMul:
+ GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
+ case Instruction::FDiv:
+ GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
+ case Instruction::FRem:
+ GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
+ }
+ break;
+ case Type::DoubleTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid double opcode");
+ case Instruction::FAdd:
+ GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
+ case Instruction::FSub:
+ GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
+ case Instruction::FMul:
+ GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
+ case Instruction::FDiv:
+ GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
+ case Instruction::FRem:
+ GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
+ }
+ break;
+ case Type::X86_FP80TyID:
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID: {
+ const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
+ APFloat apfLHS = APFloat(Sem, LHS.IntVal);
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid long double opcode");
+ case Instruction::FAdd:
+ apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FSub:
+ apfLHS.subtract(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FMul:
+ apfLHS.multiply(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FDiv:
+ apfLHS.divide(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FRem:
+ apfLHS.mod(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ }
+ }
+ break;
+ }
+ return GV;
+ }
+ default:
+ break;
+ }
+
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ConstantExpr not handled: " << *CE;
+ report_fatal_error(OS.str());
+ }
+
+ // Otherwise, we have a simple constant.
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ case Type::FloatTyID:
+ Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
+ break;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
+ break;
+ case Type::IntegerTyID:
+ Result.IntVal = cast<ConstantInt>(C)->getValue();
+ break;
+ case Type::PointerTyID:
+ if (isa<ConstantPointerNull>(C))
+ Result.PointerVal = nullptr;
+ else if (const Function *F = dyn_cast<Function>(C))
+ Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
+ else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
+ Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+ else
+ llvm_unreachable("Unknown constant pointer type!");
+ break;
+ case Type::VectorTyID: {
+ unsigned elemNum;
+ Type* ElemTy;
+ const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
+ const ConstantVector *CV = dyn_cast<ConstantVector>(C);
+ const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
+
+ if (CDV) {
+ elemNum = CDV->getNumElements();
+ ElemTy = CDV->getElementType();
+ } else if (CV || CAZ) {
+ VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ elemNum = VTy->getNumElements();
+ ElemTy = VTy->getElementType();
+ } else {
+ llvm_unreachable("Unknown constant vector type!");
+ }
+
+ Result.AggregateVal.resize(elemNum);
+ // Check if vector holds floats.
+ if(ElemTy->isFloatTy()) {
+ if (CAZ) {
+ GenericValue floatZero;
+ floatZero.FloatVal = 0.f;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ floatZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToFloat();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
+
+ break;
+ }
+ // Check if vector holds doubles.
+ if (ElemTy->isDoubleTy()) {
+ if (CAZ) {
+ GenericValue doubleZero;
+ doubleZero.DoubleVal = 0.0;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ doubleZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToDouble();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
+
+ break;
+ }
+ // Check if vector holds integers.
+ if (ElemTy->isIntegerTy()) {
+ if (CAZ) {
+ GenericValue intZero;
+ intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ intZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].IntVal = cast<ConstantInt>(
+ CV->getOperand(i))->getValue();
+ else {
+ Result.AggregateVal[i].IntVal =
+ APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
+ }
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal = APInt(
+ CDV->getElementType()->getPrimitiveSizeInBits(),
+ CDV->getElementAsInteger(i));
+
+ break;
+ }
+ llvm_unreachable("Unknown constant pointer type!");
+ }
+ break;
+
+ default:
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ERROR: Constant unimplemented for type: " << *C->getType();
+ report_fatal_error(OS.str());
+ }
+
+ return Result;
+}
+
+/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
+/// with the integer held in IntVal.
+static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
+ unsigned StoreBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
+ const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
+
+ if (sys::IsLittleEndianHost) {
+ // Little-endian host - the source is ordered from LSB to MSB. Order the
+ // destination from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, StoreBytes);
+ } else {
+ // Big-endian host - the source is an array of 64 bit words ordered from
+ // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
+ // from MSB to LSB: Reverse the word order, but not the bytes in a word.
+ while (StoreBytes > sizeof(uint64_t)) {
+ StoreBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
+ Src += sizeof(uint64_t);
+ }
+
+ memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
+ }
+}
+
+void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
+ GenericValue *Ptr, Type *Ty) {
+ const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
+
+ switch (Ty->getTypeID()) {
+ default:
+ dbgs() << "Cannot store value of type " << *Ty << "!\n";
+ break;
+ case Type::IntegerTyID:
+ StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
+ break;
+ case Type::FloatTyID:
+ *((float*)Ptr) = Val.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ *((double*)Ptr) = Val.DoubleVal;
+ break;
+ case Type::X86_FP80TyID:
+ memcpy(Ptr, Val.IntVal.getRawData(), 10);
+ break;
+ case Type::PointerTyID:
+ // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
+ if (StoreBytes != sizeof(PointerTy))
+ memset(&(Ptr->PointerVal), 0, StoreBytes);
+
+ *((PointerTy*)Ptr) = Val.PointerVal;
+ break;
+ case Type::VectorTyID:
+ for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
+ if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
+ *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
+ *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
+ if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
+ unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
+ StoreIntToMemory(Val.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
+ }
+ }
+ break;
+ }
+
+ if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian())
+ // Host and target are different endian - reverse the stored bytes.
+ std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
+}
+
+/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
+/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
+static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
+ uint8_t *Dst = reinterpret_cast<uint8_t *>(
+ const_cast<uint64_t *>(IntVal.getRawData()));
+
+ if (sys::IsLittleEndianHost)
+ // Little-endian host - the destination must be ordered from LSB to MSB.
+ // The source is ordered from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, LoadBytes);
+ else {
+ // Big-endian - the destination is an array of 64 bit words ordered from
+ // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
+ // ordered from MSB to LSB: Reverse the word order, but not the bytes in
+ // a word.
+ while (LoadBytes > sizeof(uint64_t)) {
+ LoadBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
+ Dst += sizeof(uint64_t);
+ }
+
+ memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
+ }
+}
+
+/// FIXME: document
+///
+void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
+ GenericValue *Ptr,
+ Type *Ty) {
+ const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
+
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ // An APInt with all words initially zero.
+ Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
+ LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
+ break;
+ case Type::FloatTyID:
+ Result.FloatVal = *((float*)Ptr);
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = *((double*)Ptr);
+ break;
+ case Type::PointerTyID:
+ Result.PointerVal = *((PointerTy*)Ptr);
+ break;
+ case Type::X86_FP80TyID: {
+ // This is endian dependent, but it will only work on x86 anyway.
+ // FIXME: Will not trap if loading a signaling NaN.
+ uint64_t y[2];
+ memcpy(y, Ptr, 10);
+ Result.IntVal = APInt(80, y);
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType *VT = cast<VectorType>(Ty);
+ const Type *ElemT = VT->getElementType();
+ const unsigned numElems = VT->getNumElements();
+ if (ElemT->isFloatTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
+ }
+ if (ElemT->isDoubleTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
+ }
+ if (ElemT->isIntegerTy()) {
+ GenericValue intZero;
+ const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
+ intZero.IntVal = APInt(elemBitWidth, 0);
+ Result.AggregateVal.resize(numElems, intZero);
+ for (unsigned i = 0; i < numElems; ++i)
+ LoadIntFromMemory(Result.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
+ }
+ break;
+ }
+ default:
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "Cannot load value of type " << *Ty << "!";
+ report_fatal_error(OS.str());
+ }
+}
+
+void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
+ DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
+ DEBUG(Init->dump());
+ if (isa<UndefValue>(Init))
+ return;
+
+ if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
+ unsigned ElementSize =
+ getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ if (isa<ConstantAggregateZero>(Init)) {
+ memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
+ return;
+ }
+
+ if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
+ unsigned ElementSize =
+ getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
+ for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
+ const StructLayout *SL =
+ getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
+ for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
+ return;
+ }
+
+ if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(Init)) {
+ // CDS is already laid out in host memory order.
+ StringRef Data = CDS->getRawDataValues();
+ memcpy(Addr, Data.data(), Data.size());
+ return;
+ }
+
+ if (Init->getType()->isFirstClassType()) {
+ GenericValue Val = getConstantValue(Init);
+ StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
+ return;
+ }
+
+ DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
+ llvm_unreachable("Unknown constant type to initialize memory with!");
+}
+
+/// EmitGlobals - Emit all of the global variables to memory, storing their
+/// addresses into GlobalAddress. This must make sure to copy the contents of
+/// their initializers into the memory.
+void ExecutionEngine::emitGlobals() {
+ // Loop over all of the global variables in the program, allocating the memory
+ // to hold them. If there is more than one module, do a prepass over globals
+ // to figure out how the different modules should link together.
+ std::map<std::pair<std::string, Type*>,
+ const GlobalValue*> LinkedGlobalsMap;
+
+ if (Modules.size() != 1) {
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m];
+ for (const auto &GV : M.globals()) {
+ if (GV.hasLocalLinkage() || GV.isDeclaration() ||
+ GV.hasAppendingLinkage() || !GV.hasName())
+ continue;// Ignore external globals and globals with internal linkage.
+
+ const GlobalValue *&GVEntry =
+ LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())];
+
+ // If this is the first time we've seen this global, it is the canonical
+ // version.
+ if (!GVEntry) {
+ GVEntry = &GV;
+ continue;
+ }
+
+ // If the existing global is strong, never replace it.
+ if (GVEntry->hasExternalLinkage())
+ continue;
+
+ // Otherwise, we know it's linkonce/weak, replace it if this is a strong
+ // symbol. FIXME is this right for common?
+ if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
+ GVEntry = &GV;
+ }
+ }
+ }
+
+ std::vector<const GlobalValue*> NonCanonicalGlobals;
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m];
+ for (const auto &GV : M.globals()) {
+ // In the multi-module case, see what this global maps to.
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) {
+ // If something else is the canonical global, ignore this one.
+ if (GVEntry != &GV) {
+ NonCanonicalGlobals.push_back(&GV);
+ continue;
+ }
+ }
+ }
+
+ if (!GV.isDeclaration()) {
+ addGlobalMapping(&GV, getMemoryForGV(&GV));
+ } else {
+ // External variable reference. Try to use the dynamic loader to
+ // get a pointer to it.
+ if (void *SymAddr =
+ sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName()))
+ addGlobalMapping(&GV, SymAddr);
+ else {
+ report_fatal_error("Could not resolve external global address: "
+ +GV.getName());
+ }
+ }
+ }
+
+ // If there are multiple modules, map the non-canonical globals to their
+ // canonical location.
+ if (!NonCanonicalGlobals.empty()) {
+ for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
+ const GlobalValue *GV = NonCanonicalGlobals[i];
+ const GlobalValue *CGV =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+ void *Ptr = getPointerToGlobalIfAvailable(CGV);
+ assert(Ptr && "Canonical global wasn't codegen'd!");
+ addGlobalMapping(GV, Ptr);
+ }
+ }
+
+ // Now that all of the globals are set up in memory, loop through them all
+ // and initialize their contents.
+ for (const auto &GV : M.globals()) {
+ if (!GV.isDeclaration()) {
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())])
+ if (GVEntry != &GV) // Not the canonical variable.
+ continue;
+ }
+ EmitGlobalVariable(&GV);
+ }
+ }
+ }
+}
+
+// EmitGlobalVariable - This method emits the specified global variable to the
+// address specified in GlobalAddresses, or allocates new memory if it's not
+// already in the map.
+void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
+ void *GA = getPointerToGlobalIfAvailable(GV);
+
+ if (!GA) {
+ // If it's not already specified, allocate memory for the global.
+ GA = getMemoryForGV(GV);
+
+ // If we failed to allocate memory for this global, return.
+ if (!GA) return;
+
+ addGlobalMapping(GV, GA);
+ }
+
+ // Don't initialize if it's thread local, let the client do it.
+ if (!GV->isThreadLocal())
+ InitializeMemory(GV->getInitializer(), GA);
+
+ Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
+ NumInitBytes += (unsigned)GVSize;
+ ++NumGlobals;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
new file mode 100644
index 0000000..55ab5af
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
@@ -0,0 +1,450 @@
+//===-- ExecutionEngineBindings.cpp - C bindings for EEs ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the C bindings for the ExecutionEngine library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-c/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetOptions.h"
+#include <cstring>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "jit"
+
+// Wrapping the C bindings types.
+DEFINE_SIMPLE_CONVERSION_FUNCTIONS(GenericValue, LLVMGenericValueRef)
+
+
+inline LLVMTargetMachineRef wrap(const TargetMachine *P) {
+ return
+ reinterpret_cast<LLVMTargetMachineRef>(const_cast<TargetMachine*>(P));
+}
+
+/*===-- Operations on generic values --------------------------------------===*/
+
+LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty,
+ unsigned long long N,
+ LLVMBool IsSigned) {
+ GenericValue *GenVal = new GenericValue();
+ GenVal->IntVal = APInt(unwrap<IntegerType>(Ty)->getBitWidth(), N, IsSigned);
+ return wrap(GenVal);
+}
+
+LLVMGenericValueRef LLVMCreateGenericValueOfPointer(void *P) {
+ GenericValue *GenVal = new GenericValue();
+ GenVal->PointerVal = P;
+ return wrap(GenVal);
+}
+
+LLVMGenericValueRef LLVMCreateGenericValueOfFloat(LLVMTypeRef TyRef, double N) {
+ GenericValue *GenVal = new GenericValue();
+ switch (unwrap(TyRef)->getTypeID()) {
+ case Type::FloatTyID:
+ GenVal->FloatVal = N;
+ break;
+ case Type::DoubleTyID:
+ GenVal->DoubleVal = N;
+ break;
+ default:
+ llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
+ }
+ return wrap(GenVal);
+}
+
+unsigned LLVMGenericValueIntWidth(LLVMGenericValueRef GenValRef) {
+ return unwrap(GenValRef)->IntVal.getBitWidth();
+}
+
+unsigned long long LLVMGenericValueToInt(LLVMGenericValueRef GenValRef,
+ LLVMBool IsSigned) {
+ GenericValue *GenVal = unwrap(GenValRef);
+ if (IsSigned)
+ return GenVal->IntVal.getSExtValue();
+ else
+ return GenVal->IntVal.getZExtValue();
+}
+
+void *LLVMGenericValueToPointer(LLVMGenericValueRef GenVal) {
+ return unwrap(GenVal)->PointerVal;
+}
+
+double LLVMGenericValueToFloat(LLVMTypeRef TyRef, LLVMGenericValueRef GenVal) {
+ switch (unwrap(TyRef)->getTypeID()) {
+ case Type::FloatTyID:
+ return unwrap(GenVal)->FloatVal;
+ case Type::DoubleTyID:
+ return unwrap(GenVal)->DoubleVal;
+ default:
+ llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
+ }
+}
+
+void LLVMDisposeGenericValue(LLVMGenericValueRef GenVal) {
+ delete unwrap(GenVal);
+}
+
+/*===-- Operations on execution engines -----------------------------------===*/
+
+LLVMBool LLVMCreateExecutionEngineForModule(LLVMExecutionEngineRef *OutEE,
+ LLVMModuleRef M,
+ char **OutError) {
+ std::string Error;
+ EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
+ builder.setEngineKind(EngineKind::Either)
+ .setErrorStr(&Error);
+ if (ExecutionEngine *EE = builder.create()){
+ *OutEE = wrap(EE);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
+LLVMBool LLVMCreateInterpreterForModule(LLVMExecutionEngineRef *OutInterp,
+ LLVMModuleRef M,
+ char **OutError) {
+ std::string Error;
+ EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
+ builder.setEngineKind(EngineKind::Interpreter)
+ .setErrorStr(&Error);
+ if (ExecutionEngine *Interp = builder.create()) {
+ *OutInterp = wrap(Interp);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
+LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT,
+ LLVMModuleRef M,
+ unsigned OptLevel,
+ char **OutError) {
+ std::string Error;
+ EngineBuilder builder(std::unique_ptr<Module>(unwrap(M)));
+ builder.setEngineKind(EngineKind::JIT)
+ .setErrorStr(&Error)
+ .setOptLevel((CodeGenOpt::Level)OptLevel);
+ if (ExecutionEngine *JIT = builder.create()) {
+ *OutJIT = wrap(JIT);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
+void LLVMInitializeMCJITCompilerOptions(LLVMMCJITCompilerOptions *PassedOptions,
+ size_t SizeOfPassedOptions) {
+ LLVMMCJITCompilerOptions options;
+ memset(&options, 0, sizeof(options)); // Most fields are zero by default.
+ options.CodeModel = LLVMCodeModelJITDefault;
+
+ memcpy(PassedOptions, &options,
+ std::min(sizeof(options), SizeOfPassedOptions));
+}
+
+LLVMBool LLVMCreateMCJITCompilerForModule(
+ LLVMExecutionEngineRef *OutJIT, LLVMModuleRef M,
+ LLVMMCJITCompilerOptions *PassedOptions, size_t SizeOfPassedOptions,
+ char **OutError) {
+ LLVMMCJITCompilerOptions options;
+ // If the user passed a larger sized options struct, then they were compiled
+ // against a newer LLVM. Tell them that something is wrong.
+ if (SizeOfPassedOptions > sizeof(options)) {
+ *OutError = strdup(
+ "Refusing to use options struct that is larger than my own; assuming "
+ "LLVM library mismatch.");
+ return 1;
+ }
+
+ // Defend against the user having an old version of the API by ensuring that
+ // any fields they didn't see are cleared. We must defend against fields being
+ // set to the bitwise equivalent of zero, and assume that this means "do the
+ // default" as if that option hadn't been available.
+ LLVMInitializeMCJITCompilerOptions(&options, sizeof(options));
+ memcpy(&options, PassedOptions, SizeOfPassedOptions);
+
+ TargetOptions targetOptions;
+ targetOptions.EnableFastISel = options.EnableFastISel;
+ std::unique_ptr<Module> Mod(unwrap(M));
+
+ if (Mod)
+ // Set function attribute "no-frame-pointer-elim" based on
+ // NoFramePointerElim.
+ for (auto &F : *Mod) {
+ auto Attrs = F.getAttributes();
+ auto Value = options.NoFramePointerElim ? "true" : "false";
+ Attrs = Attrs.addAttribute(F.getContext(), AttributeSet::FunctionIndex,
+ "no-frame-pointer-elim", Value);
+ F.setAttributes(Attrs);
+ }
+
+ std::string Error;
+ EngineBuilder builder(std::move(Mod));
+ builder.setEngineKind(EngineKind::JIT)
+ .setErrorStr(&Error)
+ .setOptLevel((CodeGenOpt::Level)options.OptLevel)
+ .setCodeModel(unwrap(options.CodeModel))
+ .setTargetOptions(targetOptions);
+ if (options.MCJMM)
+ builder.setMCJITMemoryManager(
+ std::unique_ptr<RTDyldMemoryManager>(unwrap(options.MCJMM)));
+ if (ExecutionEngine *JIT = builder.create()) {
+ *OutJIT = wrap(JIT);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
+LLVMBool LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
+ LLVMModuleProviderRef MP,
+ char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMCreateExecutionEngineForModule(OutEE,
+ reinterpret_cast<LLVMModuleRef>(MP),
+ OutError);
+}
+
+LLVMBool LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp,
+ LLVMModuleProviderRef MP,
+ char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMCreateInterpreterForModule(OutInterp,
+ reinterpret_cast<LLVMModuleRef>(MP),
+ OutError);
+}
+
+LLVMBool LLVMCreateJITCompiler(LLVMExecutionEngineRef *OutJIT,
+ LLVMModuleProviderRef MP,
+ unsigned OptLevel,
+ char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMCreateJITCompilerForModule(OutJIT,
+ reinterpret_cast<LLVMModuleRef>(MP),
+ OptLevel, OutError);
+}
+
+
+void LLVMDisposeExecutionEngine(LLVMExecutionEngineRef EE) {
+ delete unwrap(EE);
+}
+
+void LLVMRunStaticConstructors(LLVMExecutionEngineRef EE) {
+ unwrap(EE)->runStaticConstructorsDestructors(false);
+}
+
+void LLVMRunStaticDestructors(LLVMExecutionEngineRef EE) {
+ unwrap(EE)->runStaticConstructorsDestructors(true);
+}
+
+int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F,
+ unsigned ArgC, const char * const *ArgV,
+ const char * const *EnvP) {
+ unwrap(EE)->finalizeObject();
+
+ std::vector<std::string> ArgVec(ArgV, ArgV + ArgC);
+ return unwrap(EE)->runFunctionAsMain(unwrap<Function>(F), ArgVec, EnvP);
+}
+
+LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F,
+ unsigned NumArgs,
+ LLVMGenericValueRef *Args) {
+ unwrap(EE)->finalizeObject();
+
+ std::vector<GenericValue> ArgVec;
+ ArgVec.reserve(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I)
+ ArgVec.push_back(*unwrap(Args[I]));
+
+ GenericValue *Result = new GenericValue();
+ *Result = unwrap(EE)->runFunction(unwrap<Function>(F), ArgVec);
+ return wrap(Result);
+}
+
+void LLVMFreeMachineCodeForFunction(LLVMExecutionEngineRef EE, LLVMValueRef F) {
+}
+
+void LLVMAddModule(LLVMExecutionEngineRef EE, LLVMModuleRef M){
+ unwrap(EE)->addModule(std::unique_ptr<Module>(unwrap(M)));
+}
+
+void LLVMAddModuleProvider(LLVMExecutionEngineRef EE, LLVMModuleProviderRef MP){
+ /* The module provider is now actually a module. */
+ LLVMAddModule(EE, reinterpret_cast<LLVMModuleRef>(MP));
+}
+
+LLVMBool LLVMRemoveModule(LLVMExecutionEngineRef EE, LLVMModuleRef M,
+ LLVMModuleRef *OutMod, char **OutError) {
+ Module *Mod = unwrap(M);
+ unwrap(EE)->removeModule(Mod);
+ *OutMod = wrap(Mod);
+ return 0;
+}
+
+LLVMBool LLVMRemoveModuleProvider(LLVMExecutionEngineRef EE,
+ LLVMModuleProviderRef MP,
+ LLVMModuleRef *OutMod, char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMRemoveModule(EE, reinterpret_cast<LLVMModuleRef>(MP), OutMod,
+ OutError);
+}
+
+LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
+ LLVMValueRef *OutFn) {
+ if (Function *F = unwrap(EE)->FindFunctionNamed(Name)) {
+ *OutFn = wrap(F);
+ return 0;
+ }
+ return 1;
+}
+
+void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE,
+ LLVMValueRef Fn) {
+ return nullptr;
+}
+
+LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) {
+ return wrap(unwrap(EE)->getDataLayout());
+}
+
+LLVMTargetMachineRef
+LLVMGetExecutionEngineTargetMachine(LLVMExecutionEngineRef EE) {
+ return wrap(unwrap(EE)->getTargetMachine());
+}
+
+void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global,
+ void* Addr) {
+ unwrap(EE)->addGlobalMapping(unwrap<GlobalValue>(Global), Addr);
+}
+
+void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) {
+ unwrap(EE)->finalizeObject();
+
+ return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global));
+}
+
+uint64_t LLVMGetGlobalValueAddress(LLVMExecutionEngineRef EE, const char *Name) {
+ return unwrap(EE)->getGlobalValueAddress(Name);
+}
+
+uint64_t LLVMGetFunctionAddress(LLVMExecutionEngineRef EE, const char *Name) {
+ return unwrap(EE)->getFunctionAddress(Name);
+}
+
+/*===-- Operations on memory managers -------------------------------------===*/
+
+namespace {
+
+struct SimpleBindingMMFunctions {
+ LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection;
+ LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection;
+ LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory;
+ LLVMMemoryManagerDestroyCallback Destroy;
+};
+
+class SimpleBindingMemoryManager : public RTDyldMemoryManager {
+public:
+ SimpleBindingMemoryManager(const SimpleBindingMMFunctions& Functions,
+ void *Opaque);
+ ~SimpleBindingMemoryManager() override;
+
+ uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID,
+ StringRef SectionName) override;
+
+ uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID, StringRef SectionName,
+ bool isReadOnly) override;
+
+ bool finalizeMemory(std::string *ErrMsg) override;
+
+private:
+ SimpleBindingMMFunctions Functions;
+ void *Opaque;
+};
+
+SimpleBindingMemoryManager::SimpleBindingMemoryManager(
+ const SimpleBindingMMFunctions& Functions,
+ void *Opaque)
+ : Functions(Functions), Opaque(Opaque) {
+ assert(Functions.AllocateCodeSection &&
+ "No AllocateCodeSection function provided!");
+ assert(Functions.AllocateDataSection &&
+ "No AllocateDataSection function provided!");
+ assert(Functions.FinalizeMemory &&
+ "No FinalizeMemory function provided!");
+ assert(Functions.Destroy &&
+ "No Destroy function provided!");
+}
+
+SimpleBindingMemoryManager::~SimpleBindingMemoryManager() {
+ Functions.Destroy(Opaque);
+}
+
+uint8_t *SimpleBindingMemoryManager::allocateCodeSection(
+ uintptr_t Size, unsigned Alignment, unsigned SectionID,
+ StringRef SectionName) {
+ return Functions.AllocateCodeSection(Opaque, Size, Alignment, SectionID,
+ SectionName.str().c_str());
+}
+
+uint8_t *SimpleBindingMemoryManager::allocateDataSection(
+ uintptr_t Size, unsigned Alignment, unsigned SectionID,
+ StringRef SectionName, bool isReadOnly) {
+ return Functions.AllocateDataSection(Opaque, Size, Alignment, SectionID,
+ SectionName.str().c_str(),
+ isReadOnly);
+}
+
+bool SimpleBindingMemoryManager::finalizeMemory(std::string *ErrMsg) {
+ char *errMsgCString = nullptr;
+ bool result = Functions.FinalizeMemory(Opaque, &errMsgCString);
+ assert((result || !errMsgCString) &&
+ "Did not expect an error message if FinalizeMemory succeeded");
+ if (errMsgCString) {
+ if (ErrMsg)
+ *ErrMsg = errMsgCString;
+ free(errMsgCString);
+ }
+ return result;
+}
+
+} // anonymous namespace
+
+LLVMMCJITMemoryManagerRef LLVMCreateSimpleMCJITMemoryManager(
+ void *Opaque,
+ LLVMMemoryManagerAllocateCodeSectionCallback AllocateCodeSection,
+ LLVMMemoryManagerAllocateDataSectionCallback AllocateDataSection,
+ LLVMMemoryManagerFinalizeMemoryCallback FinalizeMemory,
+ LLVMMemoryManagerDestroyCallback Destroy) {
+
+ if (!AllocateCodeSection || !AllocateDataSection || !FinalizeMemory ||
+ !Destroy)
+ return nullptr;
+
+ SimpleBindingMMFunctions functions;
+ functions.AllocateCodeSection = AllocateCodeSection;
+ functions.AllocateDataSection = AllocateDataSection;
+ functions.FinalizeMemory = FinalizeMemory;
+ functions.Destroy = Destroy;
+ return wrap(new SimpleBindingMemoryManager(functions, Opaque));
+}
+
+void LLVMDisposeMCJITMemoryManager(LLVMMCJITMemoryManagerRef MM) {
+ delete unwrap(MM);
+}
+
diff --git a/contrib/llvm/lib/ExecutionEngine/GDBRegistrationListener.cpp b/contrib/llvm/lib/ExecutionEngine/GDBRegistrationListener.cpp
new file mode 100644
index 0000000..1ab6203
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/GDBRegistrationListener.cpp
@@ -0,0 +1,247 @@
+//===----- GDBRegistrationListener.cpp - Registers objects with GDB -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/MutexGuard.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+// This must be kept in sync with gdb/gdb/jit.h .
+extern "C" {
+
+ typedef enum {
+ JIT_NOACTION = 0,
+ JIT_REGISTER_FN,
+ JIT_UNREGISTER_FN
+ } jit_actions_t;
+
+ struct jit_code_entry {
+ struct jit_code_entry *next_entry;
+ struct jit_code_entry *prev_entry;
+ const char *symfile_addr;
+ uint64_t symfile_size;
+ };
+
+ struct jit_descriptor {
+ uint32_t version;
+ // This should be jit_actions_t, but we want to be specific about the
+ // bit-width.
+ uint32_t action_flag;
+ struct jit_code_entry *relevant_entry;
+ struct jit_code_entry *first_entry;
+ };
+
+ // We put information about the JITed function in this global, which the
+ // debugger reads. Make sure to specify the version statically, because the
+ // debugger checks the version before we can set it during runtime.
+ struct jit_descriptor __jit_debug_descriptor = { 1, 0, nullptr, nullptr };
+
+ // Debuggers puts a breakpoint in this function.
+ LLVM_ATTRIBUTE_NOINLINE void __jit_debug_register_code() {
+ // The noinline and the asm prevent calls to this function from being
+ // optimized out.
+#if !defined(_MSC_VER)
+ asm volatile("":::"memory");
+#endif
+ }
+
+}
+
+namespace {
+
+struct RegisteredObjectInfo {
+ RegisteredObjectInfo() {}
+
+ RegisteredObjectInfo(std::size_t Size, jit_code_entry *Entry,
+ OwningBinary<ObjectFile> Obj)
+ : Size(Size), Entry(Entry), Obj(std::move(Obj)) {}
+
+ RegisteredObjectInfo(RegisteredObjectInfo &&Other)
+ : Size(Other.Size), Entry(Other.Entry), Obj(std::move(Other.Obj)) {}
+
+ RegisteredObjectInfo& operator=(RegisteredObjectInfo &&Other) {
+ Size = Other.Size;
+ Entry = Other.Entry;
+ Obj = std::move(Other.Obj);
+ return *this;
+ }
+
+ std::size_t Size;
+ jit_code_entry *Entry;
+ OwningBinary<ObjectFile> Obj;
+};
+
+// Buffer for an in-memory object file in executable memory
+typedef llvm::DenseMap< const char*, RegisteredObjectInfo>
+ RegisteredObjectBufferMap;
+
+/// Global access point for the JIT debugging interface designed for use with a
+/// singleton toolbox. Handles thread-safe registration and deregistration of
+/// object files that are in executable memory managed by the client of this
+/// class.
+class GDBJITRegistrationListener : public JITEventListener {
+ /// A map of in-memory object files that have been registered with the
+ /// JIT interface.
+ RegisteredObjectBufferMap ObjectBufferMap;
+
+public:
+ /// Instantiates the JIT service.
+ GDBJITRegistrationListener() : ObjectBufferMap() {}
+
+ /// Unregisters each object that was previously registered and releases all
+ /// internal resources.
+ ~GDBJITRegistrationListener() override;
+
+ /// Creates an entry in the JIT registry for the buffer @p Object,
+ /// which must contain an object file in executable memory with any
+ /// debug information for the debugger.
+ void NotifyObjectEmitted(const ObjectFile &Object,
+ const RuntimeDyld::LoadedObjectInfo &L) override;
+
+ /// Removes the internal registration of @p Object, and
+ /// frees associated resources.
+ /// Returns true if @p Object was found in ObjectBufferMap.
+ void NotifyFreeingObject(const ObjectFile &Object) override;
+
+private:
+ /// Deregister the debug info for the given object file from the debugger
+ /// and delete any temporary copies. This private method does not remove
+ /// the function from Map so that it can be called while iterating over Map.
+ void deregisterObjectInternal(RegisteredObjectBufferMap::iterator I);
+};
+
+/// Lock used to serialize all jit registration events, since they
+/// modify global variables.
+ManagedStatic<sys::Mutex> JITDebugLock;
+
+/// Do the registration.
+void NotifyDebugger(jit_code_entry* JITCodeEntry) {
+ __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
+
+ // Insert this entry at the head of the list.
+ JITCodeEntry->prev_entry = nullptr;
+ jit_code_entry* NextEntry = __jit_debug_descriptor.first_entry;
+ JITCodeEntry->next_entry = NextEntry;
+ if (NextEntry) {
+ NextEntry->prev_entry = JITCodeEntry;
+ }
+ __jit_debug_descriptor.first_entry = JITCodeEntry;
+ __jit_debug_descriptor.relevant_entry = JITCodeEntry;
+ __jit_debug_register_code();
+}
+
+GDBJITRegistrationListener::~GDBJITRegistrationListener() {
+ // Free all registered object files.
+ llvm::MutexGuard locked(*JITDebugLock);
+ for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(),
+ E = ObjectBufferMap.end();
+ I != E; ++I) {
+ // Call the private method that doesn't update the map so our iterator
+ // doesn't break.
+ deregisterObjectInternal(I);
+ }
+ ObjectBufferMap.clear();
+}
+
+void GDBJITRegistrationListener::NotifyObjectEmitted(
+ const ObjectFile &Object,
+ const RuntimeDyld::LoadedObjectInfo &L) {
+
+ OwningBinary<ObjectFile> DebugObj = L.getObjectForDebug(Object);
+
+ // Bail out if debug objects aren't supported.
+ if (!DebugObj.getBinary())
+ return;
+
+ const char *Buffer = DebugObj.getBinary()->getMemoryBufferRef().getBufferStart();
+ size_t Size = DebugObj.getBinary()->getMemoryBufferRef().getBufferSize();
+
+ const char *Key = Object.getMemoryBufferRef().getBufferStart();
+
+ assert(Key && "Attempt to register a null object with a debugger.");
+ llvm::MutexGuard locked(*JITDebugLock);
+ assert(ObjectBufferMap.find(Key) == ObjectBufferMap.end() &&
+ "Second attempt to perform debug registration.");
+ jit_code_entry* JITCodeEntry = new jit_code_entry();
+
+ if (!JITCodeEntry) {
+ llvm::report_fatal_error(
+ "Allocation failed when registering a JIT entry!\n");
+ } else {
+ JITCodeEntry->symfile_addr = Buffer;
+ JITCodeEntry->symfile_size = Size;
+
+ ObjectBufferMap[Key] = RegisteredObjectInfo(Size, JITCodeEntry,
+ std::move(DebugObj));
+ NotifyDebugger(JITCodeEntry);
+ }
+}
+
+void GDBJITRegistrationListener::NotifyFreeingObject(const ObjectFile& Object) {
+ const char *Key = Object.getMemoryBufferRef().getBufferStart();
+ llvm::MutexGuard locked(*JITDebugLock);
+ RegisteredObjectBufferMap::iterator I = ObjectBufferMap.find(Key);
+
+ if (I != ObjectBufferMap.end()) {
+ deregisterObjectInternal(I);
+ ObjectBufferMap.erase(I);
+ }
+}
+
+void GDBJITRegistrationListener::deregisterObjectInternal(
+ RegisteredObjectBufferMap::iterator I) {
+
+ jit_code_entry*& JITCodeEntry = I->second.Entry;
+
+ // Do the unregistration.
+ {
+ __jit_debug_descriptor.action_flag = JIT_UNREGISTER_FN;
+
+ // Remove the jit_code_entry from the linked list.
+ jit_code_entry* PrevEntry = JITCodeEntry->prev_entry;
+ jit_code_entry* NextEntry = JITCodeEntry->next_entry;
+
+ if (NextEntry) {
+ NextEntry->prev_entry = PrevEntry;
+ }
+ if (PrevEntry) {
+ PrevEntry->next_entry = NextEntry;
+ }
+ else {
+ assert(__jit_debug_descriptor.first_entry == JITCodeEntry);
+ __jit_debug_descriptor.first_entry = NextEntry;
+ }
+
+ // Tell the debugger which entry we removed, and unregister the code.
+ __jit_debug_descriptor.relevant_entry = JITCodeEntry;
+ __jit_debug_register_code();
+ }
+
+ delete JITCodeEntry;
+ JITCodeEntry = nullptr;
+}
+
+llvm::ManagedStatic<GDBJITRegistrationListener> GDBRegListener;
+
+} // end namespace
+
+namespace llvm {
+
+JITEventListener* JITEventListener::createGDBRegistrationListener() {
+ return &*GDBRegListener;
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp
new file mode 100644
index 0000000..9071440
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp
@@ -0,0 +1,231 @@
+//===-- IntelJITEventListener.cpp - Tell Intel profiler about JITed code --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITEventListener object to tell Intel(R) VTune(TM)
+// Amplifier XE 2011 about JITted functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "IntelJITEventsWrapper.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/DebugInfo/DIContext.h"
+#include "llvm/DebugInfo/DWARF/DWARFContext.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/SymbolSize.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Errno.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+#define DEBUG_TYPE "amplifier-jit-event-listener"
+
+namespace {
+
+class IntelJITEventListener : public JITEventListener {
+ typedef DenseMap<void*, unsigned int> MethodIDMap;
+
+ std::unique_ptr<IntelJITEventsWrapper> Wrapper;
+ MethodIDMap MethodIDs;
+
+ typedef SmallVector<const void *, 64> MethodAddressVector;
+ typedef DenseMap<const void *, MethodAddressVector> ObjectMap;
+
+ ObjectMap LoadedObjectMap;
+ std::map<const char*, OwningBinary<ObjectFile>> DebugObjects;
+
+public:
+ IntelJITEventListener(IntelJITEventsWrapper* libraryWrapper) {
+ Wrapper.reset(libraryWrapper);
+ }
+
+ ~IntelJITEventListener() {
+ }
+
+ void NotifyObjectEmitted(const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) override;
+
+ void NotifyFreeingObject(const ObjectFile &Obj) override;
+};
+
+static LineNumberInfo DILineInfoToIntelJITFormat(uintptr_t StartAddress,
+ uintptr_t Address,
+ DILineInfo Line) {
+ LineNumberInfo Result;
+
+ Result.Offset = Address - StartAddress;
+ Result.LineNumber = Line.Line;
+
+ return Result;
+}
+
+static iJIT_Method_Load FunctionDescToIntelJITFormat(
+ IntelJITEventsWrapper& Wrapper,
+ const char* FnName,
+ uintptr_t FnStart,
+ size_t FnSize) {
+ iJIT_Method_Load Result;
+ memset(&Result, 0, sizeof(iJIT_Method_Load));
+
+ Result.method_id = Wrapper.iJIT_GetNewMethodID();
+ Result.method_name = const_cast<char*>(FnName);
+ Result.method_load_address = reinterpret_cast<void*>(FnStart);
+ Result.method_size = FnSize;
+
+ Result.class_id = 0;
+ Result.class_file_name = NULL;
+ Result.user_data = NULL;
+ Result.user_data_size = 0;
+ Result.env = iJDE_JittingAPI;
+
+ return Result;
+}
+
+void IntelJITEventListener::NotifyObjectEmitted(
+ const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) {
+
+ OwningBinary<ObjectFile> DebugObjOwner = L.getObjectForDebug(Obj);
+ const ObjectFile &DebugObj = *DebugObjOwner.getBinary();
+
+ // Get the address of the object image for use as a unique identifier
+ const void* ObjData = DebugObj.getData().data();
+ DIContext* Context = new DWARFContextInMemory(DebugObj);
+ MethodAddressVector Functions;
+
+ // Use symbol info to iterate functions in the object.
+ for (const std::pair<SymbolRef, uint64_t> &P : computeSymbolSizes(DebugObj)) {
+ SymbolRef Sym = P.first;
+ std::vector<LineNumberInfo> LineInfo;
+ std::string SourceFileName;
+
+ if (Sym.getType() == SymbolRef::ST_Function) {
+ ErrorOr<StringRef> Name = Sym.getName();
+ if (!Name)
+ continue;
+
+ uint64_t Addr;
+ if (Sym.getAddress(Addr))
+ continue;
+ uint64_t Size = P.second;
+
+ // Record this address in a local vector
+ Functions.push_back((void*)Addr);
+
+ // Build the function loaded notification message
+ iJIT_Method_Load FunctionMessage =
+ FunctionDescToIntelJITFormat(*Wrapper, Name->data(), Addr, Size);
+ if (Context) {
+ DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size);
+ DILineInfoTable::iterator Begin = Lines.begin();
+ DILineInfoTable::iterator End = Lines.end();
+ for (DILineInfoTable::iterator It = Begin; It != End; ++It) {
+ LineInfo.push_back(DILineInfoToIntelJITFormat((uintptr_t)Addr,
+ It->first,
+ It->second));
+ }
+ if (LineInfo.size() == 0) {
+ FunctionMessage.source_file_name = 0;
+ FunctionMessage.line_number_size = 0;
+ FunctionMessage.line_number_table = 0;
+ } else {
+ // Source line information for the address range is provided as
+ // a code offset for the start of the corresponding sub-range and
+ // a source line. JIT API treats offsets in LineNumberInfo structures
+ // as the end of the corresponding code region. The start of the code
+ // is taken from the previous element. Need to shift the elements.
+
+ LineNumberInfo last = LineInfo.back();
+ last.Offset = FunctionMessage.method_size;
+ LineInfo.push_back(last);
+ for (size_t i = LineInfo.size() - 2; i > 0; --i)
+ LineInfo[i].LineNumber = LineInfo[i - 1].LineNumber;
+
+ SourceFileName = Lines.front().second.FileName;
+ FunctionMessage.source_file_name = const_cast<char *>(SourceFileName.c_str());
+ FunctionMessage.line_number_size = LineInfo.size();
+ FunctionMessage.line_number_table = &*LineInfo.begin();
+ }
+ } else {
+ FunctionMessage.source_file_name = 0;
+ FunctionMessage.line_number_size = 0;
+ FunctionMessage.line_number_table = 0;
+ }
+
+ Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED,
+ &FunctionMessage);
+ MethodIDs[(void*)Addr] = FunctionMessage.method_id;
+ }
+ }
+
+ // To support object unload notification, we need to keep a list of
+ // registered function addresses for each loaded object. We will
+ // use the MethodIDs map to get the registered ID for each function.
+ LoadedObjectMap[ObjData] = Functions;
+ DebugObjects[Obj.getData().data()] = std::move(DebugObjOwner);
+}
+
+void IntelJITEventListener::NotifyFreeingObject(const ObjectFile &Obj) {
+ // This object may not have been registered with the listener. If it wasn't,
+ // bail out.
+ if (DebugObjects.find(Obj.getData().data()) == DebugObjects.end())
+ return;
+
+ // Get the address of the object image for use as a unique identifier
+ const ObjectFile &DebugObj = *DebugObjects[Obj.getData().data()].getBinary();
+ const void* ObjData = DebugObj.getData().data();
+
+ // Get the object's function list from LoadedObjectMap
+ ObjectMap::iterator OI = LoadedObjectMap.find(ObjData);
+ if (OI == LoadedObjectMap.end())
+ return;
+ MethodAddressVector& Functions = OI->second;
+
+ // Walk the function list, unregistering each function
+ for (MethodAddressVector::iterator FI = Functions.begin(),
+ FE = Functions.end();
+ FI != FE;
+ ++FI) {
+ void* FnStart = const_cast<void*>(*FI);
+ MethodIDMap::iterator MI = MethodIDs.find(FnStart);
+ if (MI != MethodIDs.end()) {
+ Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_UNLOAD_START,
+ &MI->second);
+ MethodIDs.erase(MI);
+ }
+ }
+
+ // Erase the object from LoadedObjectMap
+ LoadedObjectMap.erase(OI);
+ DebugObjects.erase(Obj.getData().data());
+}
+
+} // anonymous namespace.
+
+namespace llvm {
+JITEventListener *JITEventListener::createIntelJITEventListener() {
+ return new IntelJITEventListener(new IntelJITEventsWrapper);
+}
+
+// for testing
+JITEventListener *JITEventListener::createIntelJITEventListener(
+ IntelJITEventsWrapper* TestImpl) {
+ return new IntelJITEventListener(TestImpl);
+}
+
+} // namespace llvm
+
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h
new file mode 100644
index 0000000..777d0f1
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h
@@ -0,0 +1,96 @@
+//===-- IntelJITEventsWrapper.h - Intel JIT Events API Wrapper --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a wrapper for the Intel JIT Events API. It allows for the
+// implementation of the jitprofiling library to be swapped with an alternative
+// implementation (for testing). To include this file, you must have the
+// jitprofiling.h header available; it is available in Intel(R) VTune(TM)
+// Amplifier XE 2011.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef INTEL_JIT_EVENTS_WRAPPER_H
+#define INTEL_JIT_EVENTS_WRAPPER_H
+
+#include "jitprofiling.h"
+
+namespace llvm {
+
+class IntelJITEventsWrapper {
+ // Function pointer types for testing implementation of Intel jitprofiling
+ // library
+ typedef int (*NotifyEventPtr)(iJIT_JVM_EVENT, void*);
+ typedef void (*RegisterCallbackExPtr)(void *, iJIT_ModeChangedEx );
+ typedef iJIT_IsProfilingActiveFlags (*IsProfilingActivePtr)(void);
+ typedef void (*FinalizeThreadPtr)(void);
+ typedef void (*FinalizeProcessPtr)(void);
+ typedef unsigned int (*GetNewMethodIDPtr)(void);
+
+ NotifyEventPtr NotifyEventFunc;
+ RegisterCallbackExPtr RegisterCallbackExFunc;
+ IsProfilingActivePtr IsProfilingActiveFunc;
+ GetNewMethodIDPtr GetNewMethodIDFunc;
+
+public:
+ bool isAmplifierRunning() {
+ return iJIT_IsProfilingActive() == iJIT_SAMPLING_ON;
+ }
+
+ IntelJITEventsWrapper()
+ : NotifyEventFunc(::iJIT_NotifyEvent),
+ RegisterCallbackExFunc(::iJIT_RegisterCallbackEx),
+ IsProfilingActiveFunc(::iJIT_IsProfilingActive),
+ GetNewMethodIDFunc(::iJIT_GetNewMethodID) {
+ }
+
+ IntelJITEventsWrapper(NotifyEventPtr NotifyEventImpl,
+ RegisterCallbackExPtr RegisterCallbackExImpl,
+ IsProfilingActivePtr IsProfilingActiveImpl,
+ FinalizeThreadPtr FinalizeThreadImpl,
+ FinalizeProcessPtr FinalizeProcessImpl,
+ GetNewMethodIDPtr GetNewMethodIDImpl)
+ : NotifyEventFunc(NotifyEventImpl),
+ RegisterCallbackExFunc(RegisterCallbackExImpl),
+ IsProfilingActiveFunc(IsProfilingActiveImpl),
+ GetNewMethodIDFunc(GetNewMethodIDImpl) {
+ }
+
+ // Sends an event announcing that a function has been emitted
+ // return values are event-specific. See Intel documentation for details.
+ int iJIT_NotifyEvent(iJIT_JVM_EVENT EventType, void *EventSpecificData) {
+ if (!NotifyEventFunc)
+ return -1;
+ return NotifyEventFunc(EventType, EventSpecificData);
+ }
+
+ // Registers a callback function to receive notice of profiling state changes
+ void iJIT_RegisterCallbackEx(void *UserData,
+ iJIT_ModeChangedEx NewModeCallBackFuncEx) {
+ if (RegisterCallbackExFunc)
+ RegisterCallbackExFunc(UserData, NewModeCallBackFuncEx);
+ }
+
+ // Returns the current profiler mode
+ iJIT_IsProfilingActiveFlags iJIT_IsProfilingActive(void) {
+ if (!IsProfilingActiveFunc)
+ return iJIT_NOTHING_RUNNING;
+ return IsProfilingActiveFunc();
+ }
+
+ // Generates a locally unique method ID for use in code registration
+ unsigned int iJIT_GetNewMethodID(void) {
+ if (!GetNewMethodIDFunc)
+ return -1;
+ return GetNewMethodIDFunc();
+ }
+};
+
+} //namespace llvm
+
+#endif //INTEL_JIT_EVENTS_WRAPPER_H
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h
new file mode 100644
index 0000000..1f029fb
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h
@@ -0,0 +1,454 @@
+/*===-- ittnotify_config.h - JIT Profiling API internal config-----*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file provides Intel(R) Performance Analyzer JIT (Just-In-Time)
+ * Profiling API internal config.
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#ifndef _ITTNOTIFY_CONFIG_H_
+#define _ITTNOTIFY_CONFIG_H_
+
+/** @cond exclude_from_documentation */
+#ifndef ITT_OS_WIN
+# define ITT_OS_WIN 1
+#endif /* ITT_OS_WIN */
+
+#ifndef ITT_OS_LINUX
+# define ITT_OS_LINUX 2
+#endif /* ITT_OS_LINUX */
+
+#ifndef ITT_OS_MAC
+# define ITT_OS_MAC 3
+#endif /* ITT_OS_MAC */
+
+#ifndef ITT_OS
+# if defined WIN32 || defined _WIN32
+# define ITT_OS ITT_OS_WIN
+# elif defined( __APPLE__ ) && defined( __MACH__ )
+# define ITT_OS ITT_OS_MAC
+# else
+# define ITT_OS ITT_OS_LINUX
+# endif
+#endif /* ITT_OS */
+
+#ifndef ITT_PLATFORM_WIN
+# define ITT_PLATFORM_WIN 1
+#endif /* ITT_PLATFORM_WIN */
+
+#ifndef ITT_PLATFORM_POSIX
+# define ITT_PLATFORM_POSIX 2
+#endif /* ITT_PLATFORM_POSIX */
+
+#ifndef ITT_PLATFORM
+# if ITT_OS==ITT_OS_WIN
+# define ITT_PLATFORM ITT_PLATFORM_WIN
+# else
+# define ITT_PLATFORM ITT_PLATFORM_POSIX
+# endif /* _WIN32 */
+#endif /* ITT_PLATFORM */
+
+#if defined(_UNICODE) && !defined(UNICODE)
+#define UNICODE
+#endif
+
+#include <stddef.h>
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#include <tchar.h>
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <stdint.h>
+#if defined(UNICODE) || defined(_UNICODE)
+#include <wchar.h>
+#endif /* UNICODE || _UNICODE */
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+#ifndef CDECL
+# if ITT_PLATFORM==ITT_PLATFORM_WIN
+# define CDECL __cdecl
+# else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define CDECL /* not actual on x86_64 platform */
+# else /* _M_X64 || _M_AMD64 || __x86_64__ */
+# define CDECL __attribute__ ((cdecl))
+# endif /* _M_X64 || _M_AMD64 || __x86_64__ */
+# endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#endif /* CDECL */
+
+#ifndef STDCALL
+# if ITT_PLATFORM==ITT_PLATFORM_WIN
+# define STDCALL __stdcall
+# else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define STDCALL /* not supported on x86_64 platform */
+# else /* _M_X64 || _M_AMD64 || __x86_64__ */
+# define STDCALL __attribute__ ((stdcall))
+# endif /* _M_X64 || _M_AMD64 || __x86_64__ */
+# endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#endif /* STDCALL */
+
+#define ITTAPI CDECL
+#define LIBITTAPI CDECL
+
+/* TODO: Temporary for compatibility! */
+#define ITTAPI_CALL CDECL
+#define LIBITTAPI_CALL CDECL
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+/* use __forceinline (VC++ specific) */
+#define ITT_INLINE __forceinline
+#define ITT_INLINE_ATTRIBUTE /* nothing */
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+/*
+ * Generally, functions are not inlined unless optimization is specified.
+ * For functions declared inline, this attribute inlines the function even
+ * if no optimization level was specified.
+ */
+#ifdef __STRICT_ANSI__
+#define ITT_INLINE static
+#else /* __STRICT_ANSI__ */
+#define ITT_INLINE static inline
+#endif /* __STRICT_ANSI__ */
+#define ITT_INLINE_ATTRIBUTE __attribute__ ((always_inline))
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+/** @endcond */
+
+#ifndef ITT_ARCH_IA32
+# define ITT_ARCH_IA32 1
+#endif /* ITT_ARCH_IA32 */
+
+#ifndef ITT_ARCH_IA32E
+# define ITT_ARCH_IA32E 2
+#endif /* ITT_ARCH_IA32E */
+
+#ifndef ITT_ARCH_IA64
+# define ITT_ARCH_IA64 3
+#endif /* ITT_ARCH_IA64 */
+
+#ifndef ITT_ARCH
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define ITT_ARCH ITT_ARCH_IA32E
+# elif defined _M_IA64 || defined __ia64
+# define ITT_ARCH ITT_ARCH_IA64
+# else
+# define ITT_ARCH ITT_ARCH_IA32
+# endif
+#endif
+
+#ifdef __cplusplus
+# define ITT_EXTERN_C extern "C"
+#else
+# define ITT_EXTERN_C /* nothing */
+#endif /* __cplusplus */
+
+#define ITT_TO_STR_AUX(x) #x
+#define ITT_TO_STR(x) ITT_TO_STR_AUX(x)
+
+#define __ITT_BUILD_ASSERT(expr, suffix) do { \
+ static char __itt_build_check_##suffix[(expr) ? 1 : -1]; \
+ __itt_build_check_##suffix[0] = 0; \
+} while(0)
+#define _ITT_BUILD_ASSERT(expr, suffix) __ITT_BUILD_ASSERT((expr), suffix)
+#define ITT_BUILD_ASSERT(expr) _ITT_BUILD_ASSERT((expr), __LINE__)
+
+#define ITT_MAGIC { 0xED, 0xAB, 0xAB, 0xEC, 0x0D, 0xEE, 0xDA, 0x30 }
+
+/* Replace with snapshot date YYYYMMDD for promotion build. */
+#define API_VERSION_BUILD 20111111
+
+#ifndef API_VERSION_NUM
+#define API_VERSION_NUM 0.0.0
+#endif /* API_VERSION_NUM */
+
+#define API_VERSION "ITT-API-Version " ITT_TO_STR(API_VERSION_NUM) \
+ " (" ITT_TO_STR(API_VERSION_BUILD) ")"
+
+/* OS communication functions */
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#include <windows.h>
+typedef HMODULE lib_t;
+typedef DWORD TIDT;
+typedef CRITICAL_SECTION mutex_t;
+#define MUTEX_INITIALIZER { 0 }
+#define strong_alias(name, aliasname) /* empty for Windows */
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <dlfcn.h>
+#if defined(UNICODE) || defined(_UNICODE)
+#include <wchar.h>
+#endif /* UNICODE */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE 1 /* need for PTHREAD_MUTEX_RECURSIVE */
+#endif /* _GNU_SOURCE */
+#include <pthread.h>
+typedef void* lib_t;
+typedef pthread_t TIDT;
+typedef pthread_mutex_t mutex_t;
+#define MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER
+#define _strong_alias(name, aliasname) \
+ extern __typeof (name) aliasname __attribute__ ((alias (#name)));
+#define strong_alias(name, aliasname) _strong_alias(name, aliasname)
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#define __itt_get_proc(lib, name) GetProcAddress(lib, name)
+#define __itt_mutex_init(mutex) InitializeCriticalSection(mutex)
+#define __itt_mutex_lock(mutex) EnterCriticalSection(mutex)
+#define __itt_mutex_unlock(mutex) LeaveCriticalSection(mutex)
+#define __itt_load_lib(name) LoadLibraryA(name)
+#define __itt_unload_lib(handle) FreeLibrary(handle)
+#define __itt_system_error() (int)GetLastError()
+#define __itt_fstrcmp(s1, s2) lstrcmpA(s1, s2)
+#define __itt_fstrlen(s) lstrlenA(s)
+#define __itt_fstrcpyn(s1, s2, l) lstrcpynA(s1, s2, l)
+#define __itt_fstrdup(s) _strdup(s)
+#define __itt_thread_id() GetCurrentThreadId()
+#define __itt_thread_yield() SwitchToThread()
+#ifndef ITT_SIMPLE_INIT
+ITT_INLINE long
+__itt_interlocked_increment(volatile long* ptr) ITT_INLINE_ATTRIBUTE;
+ITT_INLINE long __itt_interlocked_increment(volatile long* ptr)
+{
+ return InterlockedIncrement(ptr);
+}
+#endif /* ITT_SIMPLE_INIT */
+#else /* ITT_PLATFORM!=ITT_PLATFORM_WIN */
+#define __itt_get_proc(lib, name) dlsym(lib, name)
+#define __itt_mutex_init(mutex) {\
+ pthread_mutexattr_t mutex_attr; \
+ int error_code = pthread_mutexattr_init(&mutex_attr); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutexattr_init", \
+ error_code); \
+ error_code = pthread_mutexattr_settype(&mutex_attr, \
+ PTHREAD_MUTEX_RECURSIVE); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutexattr_settype", \
+ error_code); \
+ error_code = pthread_mutex_init(mutex, &mutex_attr); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutex_init", \
+ error_code); \
+ error_code = pthread_mutexattr_destroy(&mutex_attr); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutexattr_destroy", \
+ error_code); \
+}
+#define __itt_mutex_lock(mutex) pthread_mutex_lock(mutex)
+#define __itt_mutex_unlock(mutex) pthread_mutex_unlock(mutex)
+#define __itt_load_lib(name) dlopen(name, RTLD_LAZY)
+#define __itt_unload_lib(handle) dlclose(handle)
+#define __itt_system_error() errno
+#define __itt_fstrcmp(s1, s2) strcmp(s1, s2)
+#define __itt_fstrlen(s) strlen(s)
+#define __itt_fstrcpyn(s1, s2, l) strncpy(s1, s2, l)
+#define __itt_fstrdup(s) strdup(s)
+#define __itt_thread_id() pthread_self()
+#define __itt_thread_yield() sched_yield()
+#if ITT_ARCH==ITT_ARCH_IA64
+#ifdef __INTEL_COMPILER
+#define __TBB_machine_fetchadd4(addr, val) __fetchadd4_acq((void *)addr, val)
+#else /* __INTEL_COMPILER */
+/* TODO: Add Support for not Intel compilers for IA64 */
+#endif /* __INTEL_COMPILER */
+#else /* ITT_ARCH!=ITT_ARCH_IA64 */
+ITT_INLINE long
+__TBB_machine_fetchadd4(volatile void* ptr, long addend) ITT_INLINE_ATTRIBUTE;
+ITT_INLINE long __TBB_machine_fetchadd4(volatile void* ptr, long addend)
+{
+ long result;
+ __asm__ __volatile__("lock\nxadd %0,%1"
+ : "=r"(result),"=m"(*(long*)ptr)
+ : "0"(addend), "m"(*(long*)ptr)
+ : "memory");
+ return result;
+}
+#endif /* ITT_ARCH==ITT_ARCH_IA64 */
+#ifndef ITT_SIMPLE_INIT
+ITT_INLINE long
+__itt_interlocked_increment(volatile long* ptr) ITT_INLINE_ATTRIBUTE;
+ITT_INLINE long __itt_interlocked_increment(volatile long* ptr)
+{
+ return __TBB_machine_fetchadd4(ptr, 1) + 1L;
+}
+#endif /* ITT_SIMPLE_INIT */
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+typedef enum {
+ __itt_collection_normal = 0,
+ __itt_collection_paused = 1
+} __itt_collection_state;
+
+typedef enum {
+ __itt_thread_normal = 0,
+ __itt_thread_ignored = 1
+} __itt_thread_state;
+
+#pragma pack(push, 8)
+
+typedef struct ___itt_thread_info
+{
+ const char* nameA; /*!< Copy of original name in ASCII. */
+#if defined(UNICODE) || defined(_UNICODE)
+ const wchar_t* nameW; /*!< Copy of original name in UNICODE. */
+#else /* UNICODE || _UNICODE */
+ void* nameW;
+#endif /* UNICODE || _UNICODE */
+ TIDT tid;
+ __itt_thread_state state; /*!< Thread state (paused or normal) */
+ int extra1; /*!< Reserved to the runtime */
+ void* extra2; /*!< Reserved to the runtime */
+ struct ___itt_thread_info* next;
+} __itt_thread_info;
+
+#include "ittnotify_types.h" /* For __itt_group_id definition */
+
+typedef struct ___itt_api_info_20101001
+{
+ const char* name;
+ void** func_ptr;
+ void* init_func;
+ __itt_group_id group;
+} __itt_api_info_20101001;
+
+typedef struct ___itt_api_info
+{
+ const char* name;
+ void** func_ptr;
+ void* init_func;
+ void* null_func;
+ __itt_group_id group;
+} __itt_api_info;
+
+struct ___itt_domain;
+struct ___itt_string_handle;
+
+typedef struct ___itt_global
+{
+ unsigned char magic[8];
+ unsigned long version_major;
+ unsigned long version_minor;
+ unsigned long version_build;
+ volatile long api_initialized;
+ volatile long mutex_initialized;
+ volatile long atomic_counter;
+ mutex_t mutex;
+ lib_t lib;
+ void* error_handler;
+ const char** dll_path_ptr;
+ __itt_api_info* api_list_ptr;
+ struct ___itt_global* next;
+ /* Joinable structures below */
+ __itt_thread_info* thread_list;
+ struct ___itt_domain* domain_list;
+ struct ___itt_string_handle* string_list;
+ __itt_collection_state state;
+} __itt_global;
+
+#pragma pack(pop)
+
+#define NEW_THREAD_INFO_W(gptr,h,h_tail,t,s,n) { \
+ h = (__itt_thread_info*)malloc(sizeof(__itt_thread_info)); \
+ if (h != NULL) { \
+ h->tid = t; \
+ h->nameA = NULL; \
+ h->nameW = n ? _wcsdup(n) : NULL; \
+ h->state = s; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->thread_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_THREAD_INFO_A(gptr,h,h_tail,t,s,n) { \
+ h = (__itt_thread_info*)malloc(sizeof(__itt_thread_info)); \
+ if (h != NULL) { \
+ h->tid = t; \
+ h->nameA = n ? __itt_fstrdup(n) : NULL; \
+ h->nameW = NULL; \
+ h->state = s; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->thread_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_DOMAIN_W(gptr,h,h_tail,name) { \
+ h = (__itt_domain*)malloc(sizeof(__itt_domain)); \
+ if (h != NULL) { \
+ h->flags = 0; /* domain is disabled by default */ \
+ h->nameA = NULL; \
+ h->nameW = name ? _wcsdup(name) : NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->domain_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_DOMAIN_A(gptr,h,h_tail,name) { \
+ h = (__itt_domain*)malloc(sizeof(__itt_domain)); \
+ if (h != NULL) { \
+ h->flags = 0; /* domain is disabled by default */ \
+ h->nameA = name ? __itt_fstrdup(name) : NULL; \
+ h->nameW = NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->domain_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_STRING_HANDLE_W(gptr,h,h_tail,name) { \
+ h = (__itt_string_handle*)malloc(sizeof(__itt_string_handle)); \
+ if (h != NULL) { \
+ h->strA = NULL; \
+ h->strW = name ? _wcsdup(name) : NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->string_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_STRING_HANDLE_A(gptr,h,h_tail,name) { \
+ h = (__itt_string_handle*)malloc(sizeof(__itt_string_handle)); \
+ if (h != NULL) { \
+ h->strA = name ? __itt_fstrdup(name) : NULL; \
+ h->strW = NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->string_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#endif /* _ITTNOTIFY_CONFIG_H_ */
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h
new file mode 100644
index 0000000..5df752f
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h
@@ -0,0 +1,70 @@
+/*===-- ittnotify_types.h - JIT Profiling API internal types--------*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#ifndef _ITTNOTIFY_TYPES_H_
+#define _ITTNOTIFY_TYPES_H_
+
+typedef enum ___itt_group_id
+{
+ __itt_group_none = 0,
+ __itt_group_legacy = 1<<0,
+ __itt_group_control = 1<<1,
+ __itt_group_thread = 1<<2,
+ __itt_group_mark = 1<<3,
+ __itt_group_sync = 1<<4,
+ __itt_group_fsync = 1<<5,
+ __itt_group_jit = 1<<6,
+ __itt_group_model = 1<<7,
+ __itt_group_splitter_min = 1<<7,
+ __itt_group_counter = 1<<8,
+ __itt_group_frame = 1<<9,
+ __itt_group_stitch = 1<<10,
+ __itt_group_heap = 1<<11,
+ __itt_group_splitter_max = 1<<12,
+ __itt_group_structure = 1<<12,
+ __itt_group_suppress = 1<<13,
+ __itt_group_all = -1
+} __itt_group_id;
+
+#pragma pack(push, 8)
+
+typedef struct ___itt_group_list
+{
+ __itt_group_id id;
+ const char* name;
+} __itt_group_list;
+
+#pragma pack(pop)
+
+#define ITT_GROUP_LIST(varname) \
+ static __itt_group_list varname[] = { \
+ { __itt_group_all, "all" }, \
+ { __itt_group_control, "control" }, \
+ { __itt_group_thread, "thread" }, \
+ { __itt_group_mark, "mark" }, \
+ { __itt_group_sync, "sync" }, \
+ { __itt_group_fsync, "fsync" }, \
+ { __itt_group_jit, "jit" }, \
+ { __itt_group_model, "model" }, \
+ { __itt_group_counter, "counter" }, \
+ { __itt_group_frame, "frame" }, \
+ { __itt_group_stitch, "stitch" }, \
+ { __itt_group_heap, "heap" }, \
+ { __itt_group_structure, "structure" }, \
+ { __itt_group_suppress, "suppress" }, \
+ { __itt_group_none, NULL } \
+ }
+
+#endif /* _ITTNOTIFY_TYPES_H_ */
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c
new file mode 100644
index 0000000..e966889
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c
@@ -0,0 +1,482 @@
+/*===-- jitprofiling.c - JIT (Just-In-Time) Profiling API----------*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file provides Intel(R) Performance Analyzer JIT (Just-In-Time)
+ * Profiling API implementation.
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#include "ittnotify_config.h"
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#include <windows.h>
+#pragma optimize("", off)
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <pthread.h>
+#include <dlfcn.h>
+#include <stdint.h>
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <malloc.h>
+#include <stdlib.h>
+
+#include "jitprofiling.h"
+
+static const char rcsid[] = "\n@(#) $Revision: 243501 $\n";
+
+#define DLL_ENVIRONMENT_VAR "VS_PROFILER"
+
+#ifndef NEW_DLL_ENVIRONMENT_VAR
+#if ITT_ARCH==ITT_ARCH_IA32
+#define NEW_DLL_ENVIRONMENT_VAR "INTEL_JIT_PROFILER32"
+#else
+#define NEW_DLL_ENVIRONMENT_VAR "INTEL_JIT_PROFILER64"
+#endif
+#endif /* NEW_DLL_ENVIRONMENT_VAR */
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#define DEFAULT_DLLNAME "JitPI.dll"
+HINSTANCE m_libHandle = NULL;
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#define DEFAULT_DLLNAME "libJitPI.so"
+void* m_libHandle = NULL;
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+/* default location of JIT profiling agent on Android */
+#define ANDROID_JIT_AGENT_PATH "/data/intel/libittnotify.so"
+
+/* the function pointers */
+typedef unsigned int(*TPInitialize)(void);
+static TPInitialize FUNC_Initialize=NULL;
+
+typedef unsigned int(*TPNotify)(unsigned int, void*);
+static TPNotify FUNC_NotifyEvent=NULL;
+
+static iJIT_IsProfilingActiveFlags executionMode = iJIT_NOTHING_RUNNING;
+
+/* end collector dll part. */
+
+/* loadiJIT_Funcs() : this function is called just in the beginning
+ * and is responsible to load the functions from BistroJavaCollector.dll
+ * result:
+ * on success: the functions loads, iJIT_DLL_is_missing=0, return value = 1
+ * on failure: the functions are NULL, iJIT_DLL_is_missing=1, return value = 0
+ */
+static int loadiJIT_Funcs(void);
+
+/* global representing whether the BistroJavaCollector can't be loaded */
+static int iJIT_DLL_is_missing = 0;
+
+/* Virtual stack - the struct is used as a virtual stack for each thread.
+ * Every thread initializes with a stack of size INIT_TOP_STACK.
+ * Every method entry decreases from the current stack point,
+ * and when a thread stack reaches its top of stack (return from the global
+ * function), the top of stack and the current stack increase. Notice that
+ * when returning from a function the stack pointer is the address of
+ * the function return.
+*/
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+static DWORD threadLocalStorageHandle = 0;
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+static pthread_key_t threadLocalStorageHandle = (pthread_key_t)0;
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+#define INIT_TOP_Stack 10000
+
+typedef struct
+{
+ unsigned int TopStack;
+ unsigned int CurrentStack;
+} ThreadStack, *pThreadStack;
+
+/* end of virtual stack. */
+
+/*
+ * The function for reporting virtual-machine related events to VTune.
+ * Note: when reporting iJVM_EVENT_TYPE_ENTER_NIDS, there is no need to fill
+ * in the stack_id field in the iJIT_Method_NIDS structure, as VTune fills it.
+ * The return value in iJVM_EVENT_TYPE_ENTER_NIDS &&
+ * iJVM_EVENT_TYPE_LEAVE_NIDS events will be 0 in case of failure.
+ * in iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED event
+ * it will be -1 if EventSpecificData == 0 otherwise it will be 0.
+*/
+
+ITT_EXTERN_C int JITAPI
+iJIT_NotifyEvent(iJIT_JVM_EVENT event_type, void *EventSpecificData)
+{
+ int ReturnValue;
+
+ /*
+ * This section is for debugging outside of VTune.
+ * It creates the environment variables that indicates call graph mode.
+ * If running outside of VTune remove the remark.
+ *
+ *
+ * static int firstTime = 1;
+ * char DoCallGraph[12] = "DoCallGraph";
+ * if (firstTime)
+ * {
+ * firstTime = 0;
+ * SetEnvironmentVariable( "BISTRO_COLLECTORS_DO_CALLGRAPH", DoCallGraph);
+ * }
+ *
+ * end of section.
+ */
+
+ /* initialization part - the functions have not been loaded yet. This part
+ * will load the functions, and check if we are in Call Graph mode.
+ * (for special treatment).
+ */
+ if (!FUNC_NotifyEvent)
+ {
+ if (iJIT_DLL_is_missing)
+ return 0;
+
+ /* load the Function from the DLL */
+ if (!loadiJIT_Funcs())
+ return 0;
+
+ /* Call Graph initialization. */
+ }
+
+ /* If the event is method entry/exit, check that in the current mode
+ * VTune is allowed to receive it
+ */
+ if ((event_type == iJVM_EVENT_TYPE_ENTER_NIDS ||
+ event_type == iJVM_EVENT_TYPE_LEAVE_NIDS) &&
+ (executionMode != iJIT_CALLGRAPH_ON))
+ {
+ return 0;
+ }
+ /* This section is performed when method enter event occurs.
+ * It updates the virtual stack, or creates it if this is the first
+ * method entry in the thread. The stack pointer is decreased.
+ */
+ if (event_type == iJVM_EVENT_TYPE_ENTER_NIDS)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ pThreadStack threadStack =
+ (pThreadStack)TlsGetValue (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pThreadStack threadStack =
+ (pThreadStack)pthread_getspecific(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ /* check for use of reserved method IDs */
+ if ( ((piJIT_Method_NIDS) EventSpecificData)->method_id <= 999 )
+ return 0;
+
+ if (!threadStack)
+ {
+ /* initialize the stack. */
+ threadStack = (pThreadStack) calloc (sizeof(ThreadStack), 1);
+ threadStack->TopStack = INIT_TOP_Stack;
+ threadStack->CurrentStack = INIT_TOP_Stack;
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ TlsSetValue(threadLocalStorageHandle,(void*)threadStack);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_setspecific(threadLocalStorageHandle,(void*)threadStack);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+
+ /* decrease the stack. */
+ ((piJIT_Method_NIDS) EventSpecificData)->stack_id =
+ (threadStack->CurrentStack)--;
+ }
+
+ /* This section is performed when method leave event occurs
+ * It updates the virtual stack.
+ * Increases the stack pointer.
+ * If the stack pointer reached the top (left the global function)
+ * increase the pointer and the top pointer.
+ */
+ if (event_type == iJVM_EVENT_TYPE_LEAVE_NIDS)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ pThreadStack threadStack =
+ (pThreadStack)TlsGetValue (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pThreadStack threadStack =
+ (pThreadStack)pthread_getspecific(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ /* check for use of reserved method IDs */
+ if ( ((piJIT_Method_NIDS) EventSpecificData)->method_id <= 999 )
+ return 0;
+
+ if (!threadStack)
+ {
+ /* Error: first report in this thread is method exit */
+ exit (1);
+ }
+
+ ((piJIT_Method_NIDS) EventSpecificData)->stack_id =
+ ++(threadStack->CurrentStack) + 1;
+
+ if (((piJIT_Method_NIDS) EventSpecificData)->stack_id
+ > threadStack->TopStack)
+ ((piJIT_Method_NIDS) EventSpecificData)->stack_id =
+ (unsigned int)-1;
+ }
+
+ if (event_type == iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED)
+ {
+ /* check for use of reserved method IDs */
+ if ( ((piJIT_Method_Load) EventSpecificData)->method_id <= 999 )
+ return 0;
+ }
+
+ ReturnValue = (int)FUNC_NotifyEvent(event_type, EventSpecificData);
+
+ return ReturnValue;
+}
+
+/* The new mode call back routine */
+ITT_EXTERN_C void JITAPI
+iJIT_RegisterCallbackEx(void *userdata, iJIT_ModeChangedEx
+ NewModeCallBackFuncEx)
+{
+ /* is it already missing... or the load of functions from the DLL failed */
+ if (iJIT_DLL_is_missing || !loadiJIT_Funcs())
+ {
+ /* then do not bother with notifications */
+ NewModeCallBackFuncEx(userdata, iJIT_NO_NOTIFICATIONS);
+ /* Error: could not load JIT functions. */
+ return;
+ }
+ /* nothing to do with the callback */
+}
+
+/*
+ * This function allows the user to query in which mode, if at all,
+ *VTune is running
+ */
+ITT_EXTERN_C iJIT_IsProfilingActiveFlags JITAPI iJIT_IsProfilingActive()
+{
+ if (!iJIT_DLL_is_missing)
+ {
+ loadiJIT_Funcs();
+ }
+
+ return executionMode;
+}
+
+/* this function loads the collector dll (BistroJavaCollector)
+ * and the relevant functions.
+ * on success: all functions load, iJIT_DLL_is_missing = 0, return value = 1
+ * on failure: all functions are NULL, iJIT_DLL_is_missing = 1, return value = 0
+ */
+static int loadiJIT_Funcs()
+{
+ static int bDllWasLoaded = 0;
+ char *dllName = (char*)rcsid; /* !! Just to avoid unused code elimination */
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ DWORD dNameLength = 0;
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ if(bDllWasLoaded)
+ {
+ /* dll was already loaded, no need to do it for the second time */
+ return 1;
+ }
+
+ /* Assumes that the DLL will not be found */
+ iJIT_DLL_is_missing = 1;
+ FUNC_NotifyEvent = NULL;
+
+ if (m_libHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FreeLibrary(m_libHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ dlclose(m_libHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ m_libHandle = NULL;
+ }
+
+ /* Try to get the dll name from the environment */
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ dNameLength = GetEnvironmentVariableA(NEW_DLL_ENVIRONMENT_VAR, NULL, 0);
+ if (dNameLength)
+ {
+ DWORD envret = 0;
+ dllName = (char*)malloc(sizeof(char) * (dNameLength + 1));
+ envret = GetEnvironmentVariableA(NEW_DLL_ENVIRONMENT_VAR,
+ dllName, dNameLength);
+ if (envret)
+ {
+ /* Try to load the dll from the PATH... */
+ m_libHandle = LoadLibraryExA(dllName,
+ NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
+ }
+ free(dllName);
+ } else {
+ /* Try to use old VS_PROFILER variable */
+ dNameLength = GetEnvironmentVariableA(DLL_ENVIRONMENT_VAR, NULL, 0);
+ if (dNameLength)
+ {
+ DWORD envret = 0;
+ dllName = (char*)malloc(sizeof(char) * (dNameLength + 1));
+ envret = GetEnvironmentVariableA(DLL_ENVIRONMENT_VAR,
+ dllName, dNameLength);
+ if (envret)
+ {
+ /* Try to load the dll from the PATH... */
+ m_libHandle = LoadLibraryA(dllName);
+ }
+ free(dllName);
+ }
+ }
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ dllName = getenv(NEW_DLL_ENVIRONMENT_VAR);
+ if (!dllName)
+ dllName = getenv(DLL_ENVIRONMENT_VAR);
+#ifdef ANDROID
+ if (!dllName)
+ dllName = ANDROID_JIT_AGENT_PATH;
+#endif
+ if (dllName)
+ {
+ /* Try to load the dll from the PATH... */
+ m_libHandle = dlopen(dllName, RTLD_LAZY);
+ }
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ if (!m_libHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ m_libHandle = LoadLibraryA(DEFAULT_DLLNAME);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ m_libHandle = dlopen(DEFAULT_DLLNAME, RTLD_LAZY);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+
+ /* if the dll wasn't loaded - exit. */
+ if (!m_libHandle)
+ {
+ iJIT_DLL_is_missing = 1; /* don't try to initialize
+ * JIT agent the second time
+ */
+ return 0;
+ }
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FUNC_NotifyEvent = (TPNotify)GetProcAddress(m_libHandle, "NotifyEvent");
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ FUNC_NotifyEvent = (TPNotify)(intptr_t)dlsym(m_libHandle, "NotifyEvent");
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ if (!FUNC_NotifyEvent)
+ {
+ FUNC_Initialize = NULL;
+ return 0;
+ }
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FUNC_Initialize = (TPInitialize)GetProcAddress(m_libHandle, "Initialize");
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ FUNC_Initialize = (TPInitialize)(intptr_t)dlsym(m_libHandle, "Initialize");
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ if (!FUNC_Initialize)
+ {
+ FUNC_NotifyEvent = NULL;
+ return 0;
+ }
+
+ executionMode = (iJIT_IsProfilingActiveFlags)FUNC_Initialize();
+
+ bDllWasLoaded = 1;
+ iJIT_DLL_is_missing = 0; /* DLL is ok. */
+
+ /*
+ * Call Graph mode: init the thread local storage
+ * (need to store the virtual stack there).
+ */
+ if ( executionMode == iJIT_CALLGRAPH_ON )
+ {
+ /* Allocate a thread local storage slot for the thread "stack" */
+ if (!threadLocalStorageHandle)
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ threadLocalStorageHandle = TlsAlloc();
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_key_create(&threadLocalStorageHandle, NULL);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+
+ return 1;
+}
+
+/*
+ * This function should be called by the user whenever a thread ends,
+ * to free the thread "virtual stack" storage
+ */
+ITT_EXTERN_C void JITAPI FinalizeThread()
+{
+ if (threadLocalStorageHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ pThreadStack threadStack =
+ (pThreadStack)TlsGetValue (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pThreadStack threadStack =
+ (pThreadStack)pthread_getspecific(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ if (threadStack)
+ {
+ free (threadStack);
+ threadStack = NULL;
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ TlsSetValue (threadLocalStorageHandle, threadStack);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_setspecific(threadLocalStorageHandle, threadStack);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+ }
+}
+
+/*
+ * This function should be called by the user when the process ends,
+ * to free the local storage index
+*/
+ITT_EXTERN_C void JITAPI FinalizeProcess()
+{
+ if (m_libHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FreeLibrary(m_libHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ dlclose(m_libHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ m_libHandle = NULL;
+ }
+
+ if (threadLocalStorageHandle)
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ TlsFree (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_key_delete(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+}
+
+/*
+ * This function should be called by the user for any method once.
+ * The function will return a unique method ID, the user should maintain
+ * the ID for each method
+ */
+ITT_EXTERN_C unsigned int JITAPI iJIT_GetNewMethodID()
+{
+ static unsigned int methodID = 0x100000;
+
+ if (methodID == 0)
+ return 0; /* ERROR : this is not a valid value */
+
+ return methodID++;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h
new file mode 100644
index 0000000..8d16ee8
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h
@@ -0,0 +1,259 @@
+/*===-- jitprofiling.h - JIT Profiling API-------------------------*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file provides Intel(R) Performance Analyzer JIT (Just-In-Time)
+ * Profiling API declaration.
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#ifndef __JITPROFILING_H__
+#define __JITPROFILING_H__
+
+/*
+ * Various constants used by functions
+ */
+
+/* event notification */
+typedef enum iJIT_jvm_event
+{
+
+ /* shutdown */
+
+ /*
+ * Program exiting EventSpecificData NA
+ */
+ iJVM_EVENT_TYPE_SHUTDOWN = 2,
+
+ /* JIT profiling */
+
+ /*
+ * issued after method code jitted into memory but before code is executed
+ * EventSpecificData is an iJIT_Method_Load
+ */
+ iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED=13,
+
+ /* issued before unload. Method code will no longer be executed, but code
+ * and info are still in memory. The VTune profiler may capture method
+ * code only at this point EventSpecificData is iJIT_Method_Id
+ */
+ iJVM_EVENT_TYPE_METHOD_UNLOAD_START,
+
+ /* Method Profiling */
+
+ /* method name, Id and stack is supplied
+ * issued when a method is about to be entered EventSpecificData is
+ * iJIT_Method_NIDS
+ */
+ iJVM_EVENT_TYPE_ENTER_NIDS = 19,
+
+ /* method name, Id and stack is supplied
+ * issued when a method is about to be left EventSpecificData is
+ * iJIT_Method_NIDS
+ */
+ iJVM_EVENT_TYPE_LEAVE_NIDS
+} iJIT_JVM_EVENT;
+
+typedef enum _iJIT_ModeFlags
+{
+ /* No need to Notify VTune, since VTune is not running */
+ iJIT_NO_NOTIFICATIONS = 0x0000,
+
+ /* when turned on the jit must call
+ * iJIT_NotifyEvent
+ * (
+ * iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED,
+ * )
+ * for all the method already jitted
+ */
+ iJIT_BE_NOTIFY_ON_LOAD = 0x0001,
+
+ /* when turned on the jit must call
+ * iJIT_NotifyEvent
+ * (
+ * iJVM_EVENT_TYPE_METHOD_UNLOAD_FINISHED,
+ * ) for all the method that are unloaded
+ */
+ iJIT_BE_NOTIFY_ON_UNLOAD = 0x0002,
+
+ /* when turned on the jit must instrument all
+ * the currently jited code with calls on
+ * method entries
+ */
+ iJIT_BE_NOTIFY_ON_METHOD_ENTRY = 0x0004,
+
+ /* when turned on the jit must instrument all
+ * the currently jited code with calls
+ * on method exit
+ */
+ iJIT_BE_NOTIFY_ON_METHOD_EXIT = 0x0008
+
+} iJIT_ModeFlags;
+
+
+ /* Flags used by iJIT_IsProfilingActive() */
+typedef enum _iJIT_IsProfilingActiveFlags
+{
+ /* No profiler is running. Currently not used */
+ iJIT_NOTHING_RUNNING = 0x0000,
+
+ /* Sampling is running. This is the default value
+ * returned by iJIT_IsProfilingActive()
+ */
+ iJIT_SAMPLING_ON = 0x0001,
+
+ /* Call Graph is running */
+ iJIT_CALLGRAPH_ON = 0x0002
+
+} iJIT_IsProfilingActiveFlags;
+
+/* Enumerator for the environment of methods*/
+typedef enum _iJDEnvironmentType
+{
+ iJDE_JittingAPI = 2
+} iJDEnvironmentType;
+
+/**********************************
+ * Data structures for the events *
+ **********************************/
+
+/* structure for the events:
+ * iJVM_EVENT_TYPE_METHOD_UNLOAD_START
+ */
+
+typedef struct _iJIT_Method_Id
+{
+ /* Id of the method (same as the one passed in
+ * the iJIT_Method_Load struct
+ */
+ unsigned int method_id;
+
+} *piJIT_Method_Id, iJIT_Method_Id;
+
+
+/* structure for the events:
+ * iJVM_EVENT_TYPE_ENTER_NIDS,
+ * iJVM_EVENT_TYPE_LEAVE_NIDS,
+ * iJVM_EVENT_TYPE_EXCEPTION_OCCURRED_NIDS
+ */
+
+typedef struct _iJIT_Method_NIDS
+{
+ /* unique method ID */
+ unsigned int method_id;
+
+ /* NOTE: no need to fill this field, it's filled by VTune */
+ unsigned int stack_id;
+
+ /* method name (just the method, without the class) */
+ char* method_name;
+} *piJIT_Method_NIDS, iJIT_Method_NIDS;
+
+/* structures for the events:
+ * iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED
+ */
+
+typedef struct _LineNumberInfo
+{
+ /* x86 Offset from the beginning of the method*/
+ unsigned int Offset;
+
+ /* source line number from the beginning of the source file */
+ unsigned int LineNumber;
+
+} *pLineNumberInfo, LineNumberInfo;
+
+typedef struct _iJIT_Method_Load
+{
+ /* unique method ID - can be any unique value, (except 0 - 999) */
+ unsigned int method_id;
+
+ /* method name (can be with or without the class and signature, in any case
+ * the class name will be added to it)
+ */
+ char* method_name;
+
+ /* virtual address of that method - This determines the method range for the
+ * iJVM_EVENT_TYPE_ENTER/LEAVE_METHOD_ADDR events
+ */
+ void* method_load_address;
+
+ /* Size in memory - Must be exact */
+ unsigned int method_size;
+
+ /* Line Table size in number of entries - Zero if none */
+ unsigned int line_number_size;
+
+ /* Pointer to the beginning of the line numbers info array */
+ pLineNumberInfo line_number_table;
+
+ /* unique class ID */
+ unsigned int class_id;
+
+ /* class file name */
+ char* class_file_name;
+
+ /* source file name */
+ char* source_file_name;
+
+ /* bits supplied by the user for saving in the JIT file */
+ void* user_data;
+
+ /* the size of the user data buffer */
+ unsigned int user_data_size;
+
+ /* NOTE: no need to fill this field, it's filled by VTune */
+ iJDEnvironmentType env;
+
+} *piJIT_Method_Load, iJIT_Method_Load;
+
+/* API Functions */
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifndef CDECL
+# if defined WIN32 || defined _WIN32
+# define CDECL __cdecl
+# else /* defined WIN32 || defined _WIN32 */
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define CDECL /* not actual on x86_64 platform */
+# else /* _M_X64 || _M_AMD64 || __x86_64__ */
+# define CDECL __attribute__ ((cdecl))
+# endif /* _M_X64 || _M_AMD64 || __x86_64__ */
+# endif /* defined WIN32 || defined _WIN32 */
+#endif /* CDECL */
+
+#define JITAPI CDECL
+
+/* called when the settings are changed with new settings */
+typedef void (*iJIT_ModeChangedEx)(void *UserData, iJIT_ModeFlags Flags);
+
+int JITAPI iJIT_NotifyEvent(iJIT_JVM_EVENT event_type, void *EventSpecificData);
+
+/* The new mode call back routine */
+void JITAPI iJIT_RegisterCallbackEx(void *userdata,
+ iJIT_ModeChangedEx NewModeCallBackFuncEx);
+
+iJIT_IsProfilingActiveFlags JITAPI iJIT_IsProfilingActive(void);
+
+void JITAPI FinalizeThread(void);
+
+void JITAPI FinalizeProcess(void);
+
+unsigned int JITAPI iJIT_GetNewMethodID(void);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __JITPROFILING_H__ */
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
new file mode 100644
index 0000000..dbfa37e
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -0,0 +1,2147 @@
+//===-- Execution.cpp - Implement code to simulate the program ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the actual instruction interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+#define DEBUG_TYPE "interpreter"
+
+STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
+
+static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
+ cl::desc("make the interpreter print every volatile load and store"));
+
+//===----------------------------------------------------------------------===//
+// Various Helper Functions
+//===----------------------------------------------------------------------===//
+
+static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
+ SF.Values[V] = Val;
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
+ case Type::TY##TyID: \
+ Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
+ break
+
+static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(+, Float);
+ IMPLEMENT_BINARY_OPERATOR(+, Double);
+ default:
+ dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+}
+
+static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(-, Float);
+ IMPLEMENT_BINARY_OPERATOR(-, Double);
+ default:
+ dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+}
+
+static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(*, Float);
+ IMPLEMENT_BINARY_OPERATOR(*, Double);
+ default:
+ dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+}
+
+static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(/, Float);
+ IMPLEMENT_BINARY_OPERATOR(/, Double);
+ default:
+ dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+}
+
+static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::FloatTyID:
+ Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
+ break;
+ default:
+ dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+}
+
+#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
+ case Type::IntegerTyID: \
+ Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
+ break;
+
+#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
+ case Type::VectorTyID: { \
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
+ for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
+ Dest.AggregateVal[_i].IntVal = APInt(1, \
+ Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
+ } break;
+
+// Handle pointers specially because they must be compared with only as much
+// width as the host has. We _do not_ want to be comparing 64 bit values when
+// running on a 32-bit target, otherwise the upper 32 bits might mess up
+// comparisons if they contain garbage.
+#define IMPLEMENT_POINTER_ICMP(OP) \
+ case Type::PointerTyID: \
+ Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
+ (void*)(intptr_t)Src2.PointerVal); \
+ break;
+
+static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(eq,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
+ IMPLEMENT_POINTER_ICMP(==);
+ default:
+ dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ne,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
+ IMPLEMENT_POINTER_ICMP(!=);
+ default:
+ dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ult,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
+ IMPLEMENT_POINTER_ICMP(<);
+ default:
+ dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(slt,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
+ IMPLEMENT_POINTER_ICMP(<);
+ default:
+ dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ugt,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
+ IMPLEMENT_POINTER_ICMP(>);
+ default:
+ dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sgt,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
+ IMPLEMENT_POINTER_ICMP(>);
+ default:
+ dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ule,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
+ IMPLEMENT_POINTER_ICMP(<=);
+ default:
+ dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sle,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
+ IMPLEMENT_POINTER_ICMP(<=);
+ default:
+ dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(uge,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
+ IMPLEMENT_POINTER_ICMP(>=);
+ default:
+ dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sge,Ty);
+ IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
+ IMPLEMENT_POINTER_ICMP(>=);
+ default:
+ dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+void Interpreter::visitICmpInst(ICmpInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
+ default:
+ dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
+ llvm_unreachable(nullptr);
+ }
+
+ SetValue(&I, R, SF);
+}
+
+#define IMPLEMENT_FCMP(OP, TY) \
+ case Type::TY##TyID: \
+ Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
+ break
+
+#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
+ for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
+ Dest.AggregateVal[_i].IntVal = APInt(1, \
+ Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
+ break;
+
+#define IMPLEMENT_VECTOR_FCMP(OP) \
+ case Type::VectorTyID: \
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
+ IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
+ } else { \
+ IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
+ }
+
+static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(==, Float);
+ IMPLEMENT_FCMP(==, Double);
+ IMPLEMENT_VECTOR_FCMP(==);
+ default:
+ dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
+ if (TY->isFloatTy()) { \
+ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
+ Dest.IntVal = APInt(1,false); \
+ return Dest; \
+ } \
+ } else { \
+ if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
+ Dest.IntVal = APInt(1,false); \
+ return Dest; \
+ } \
+ }
+
+#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
+ assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
+ Dest.AggregateVal.resize( X.AggregateVal.size() ); \
+ for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
+ if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
+ Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
+ Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
+ else { \
+ Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
+ } \
+ }
+
+#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
+ if (TY->isVectorTy()) { \
+ if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
+ MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
+ } else { \
+ MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
+ } \
+ } \
+
+
+
+static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
+ Type *Ty)
+{
+ GenericValue Dest;
+ // if input is scalar value and Src1 or Src2 is NaN return false
+ IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
+ // if vector input detect NaNs and fill mask
+ MASK_VECTOR_NANS(Ty, Src1, Src2, false)
+ GenericValue DestMask = Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(!=, Float);
+ IMPLEMENT_FCMP(!=, Double);
+ IMPLEMENT_VECTOR_FCMP(!=);
+ default:
+ dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ // in vector case mask out NaN elements
+ if (Ty->isVectorTy())
+ for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
+ if (DestMask.AggregateVal[_i].IntVal == false)
+ Dest.AggregateVal[_i].IntVal = APInt(1,false);
+
+ return Dest;
+}
+
+static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(<=, Float);
+ IMPLEMENT_FCMP(<=, Double);
+ IMPLEMENT_VECTOR_FCMP(<=);
+ default:
+ dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(>=, Float);
+ IMPLEMENT_FCMP(>=, Double);
+ IMPLEMENT_VECTOR_FCMP(>=);
+ default:
+ dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(<, Float);
+ IMPLEMENT_FCMP(<, Double);
+ IMPLEMENT_VECTOR_FCMP(<);
+ default:
+ dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(>, Float);
+ IMPLEMENT_FCMP(>, Double);
+ IMPLEMENT_VECTOR_FCMP(>);
+ default:
+ dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ return Dest;
+}
+
+#define IMPLEMENT_UNORDERED(TY, X,Y) \
+ if (TY->isFloatTy()) { \
+ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
+ Dest.IntVal = APInt(1,true); \
+ return Dest; \
+ } \
+ } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
+ Dest.IntVal = APInt(1,true); \
+ return Dest; \
+ }
+
+#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
+ if (TY->isVectorTy()) { \
+ GenericValue DestMask = Dest; \
+ Dest = FUNC(Src1, Src2, Ty); \
+ for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
+ if (DestMask.AggregateVal[_i].IntVal == true) \
+ Dest.AggregateVal[_i].IntVal = APInt(1, true); \
+ return Dest; \
+ }
+
+static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
+ return executeFCMP_OEQ(Src1, Src2, Ty);
+
+}
+
+static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
+ return executeFCMP_ONE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
+ return executeFCMP_OLE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
+ return executeFCMP_OGE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
+ return executeFCMP_OLT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ MASK_VECTOR_NANS(Ty, Src1, Src2, true)
+ IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
+ return executeFCMP_OGT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].FloatVal ==
+ Src1.AggregateVal[_i].FloatVal) &&
+ (Src2.AggregateVal[_i].FloatVal ==
+ Src2.AggregateVal[_i].FloatVal)));
+ } else {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].DoubleVal ==
+ Src1.AggregateVal[_i].DoubleVal) &&
+ (Src2.AggregateVal[_i].DoubleVal ==
+ Src2.AggregateVal[_i].DoubleVal)));
+ }
+ } else if (Ty->isFloatTy())
+ Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
+ Src2.FloatVal == Src2.FloatVal));
+ else {
+ Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
+ Src2.DoubleVal == Src2.DoubleVal));
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].FloatVal !=
+ Src1.AggregateVal[_i].FloatVal) ||
+ (Src2.AggregateVal[_i].FloatVal !=
+ Src2.AggregateVal[_i].FloatVal)));
+ } else {
+ for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,
+ ( (Src1.AggregateVal[_i].DoubleVal !=
+ Src1.AggregateVal[_i].DoubleVal) ||
+ (Src2.AggregateVal[_i].DoubleVal !=
+ Src2.AggregateVal[_i].DoubleVal)));
+ }
+ } else if (Ty->isFloatTy())
+ Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
+ Src2.FloatVal != Src2.FloatVal));
+ else {
+ Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
+ Src2.DoubleVal != Src2.DoubleVal));
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
+ const Type *Ty, const bool val) {
+ GenericValue Dest;
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
+ Dest.AggregateVal[_i].IntVal = APInt(1,val);
+ } else {
+ Dest.IntVal = APInt(1, val);
+ }
+
+ return Dest;
+}
+
+void Interpreter::visitFCmpInst(FCmpInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getPredicate()) {
+ default:
+ dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
+ llvm_unreachable(nullptr);
+ break;
+ case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
+ break;
+ case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
+ break;
+ case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
+ }
+
+ SetValue(&I, R, SF);
+}
+
+static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ GenericValue Result;
+ switch (predicate) {
+ case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
+ case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
+ case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
+ default:
+ dbgs() << "Unhandled Cmp predicate\n";
+ llvm_unreachable(nullptr);
+ }
+}
+
+void Interpreter::visitBinaryOperator(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ // First process vector operation
+ if (Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ R.AggregateVal.resize(Src1.AggregateVal.size());
+
+ // Macros to execute binary operation 'OP' over integer vectors
+#define INTEGER_VECTOR_OPERATION(OP) \
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
+ R.AggregateVal[i].IntVal = \
+ Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
+
+ // Additional macros to execute binary operations udiv/sdiv/urem/srem since
+ // they have different notation.
+#define INTEGER_VECTOR_FUNCTION(OP) \
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
+ R.AggregateVal[i].IntVal = \
+ Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
+
+ // Macros to execute binary operation 'OP' over floating point type TY
+ // (float or double) vectors
+#define FLOAT_VECTOR_FUNCTION(OP, TY) \
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
+ R.AggregateVal[i].TY = \
+ Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
+
+ // Macros to choose appropriate TY: float or double and run operation
+ // execution
+#define FLOAT_VECTOR_OP(OP) { \
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
+ FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
+ else { \
+ if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
+ FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
+ else { \
+ dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
+ llvm_unreachable(0); \
+ } \
+ } \
+}
+
+ switch(I.getOpcode()){
+ default:
+ dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
+ llvm_unreachable(nullptr);
+ break;
+ case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
+ case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
+ case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
+ case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
+ case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
+ case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
+ case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
+ case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
+ case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
+ case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
+ case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
+ case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
+ case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
+ case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
+ case Instruction::FRem:
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
+ R.AggregateVal[i].FloatVal =
+ fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
+ else {
+ if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
+ for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
+ R.AggregateVal[i].DoubleVal =
+ fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
+ else {
+ dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+ }
+ break;
+ }
+ } else {
+ switch (I.getOpcode()) {
+ default:
+ dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
+ llvm_unreachable(nullptr);
+ break;
+ case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
+ case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
+ case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
+ case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
+ case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
+ case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
+ case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
+ case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
+ case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
+ case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
+ case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
+ case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
+ case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
+ case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
+ }
+ }
+ SetValue(&I, R, SF);
+}
+
+static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
+ GenericValue Src3, const Type *Ty) {
+ GenericValue Dest;
+ if(Ty->isVectorTy()) {
+ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
+ assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
+ Dest.AggregateVal.resize( Src1.AggregateVal.size() );
+ for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
+ Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
+ Src3.AggregateVal[i] : Src2.AggregateVal[i];
+ } else {
+ Dest = (Src1.IntVal == 0) ? Src3 : Src2;
+ }
+ return Dest;
+}
+
+void Interpreter::visitSelectInst(SelectInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ const Type * Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
+ SetValue(&I, R, SF);
+}
+
+//===----------------------------------------------------------------------===//
+// Terminator Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::exitCalled(GenericValue GV) {
+ // runAtExitHandlers() assumes there are no stack frames, but
+ // if exit() was called, then it had a stack frame. Blow away
+ // the stack before interpreting atexit handlers.
+ ECStack.clear();
+ runAtExitHandlers();
+ exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
+}
+
+/// Pop the last stack frame off of ECStack and then copy the result
+/// back into the result variable if we are not returning void. The
+/// result variable may be the ExitValue, or the Value of the calling
+/// CallInst if there was a previous stack frame. This method may
+/// invalidate any ECStack iterators you have. This method also takes
+/// care of switching to the normal destination BB, if we are returning
+/// from an invoke.
+///
+void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
+ GenericValue Result) {
+ // Pop the current stack frame.
+ ECStack.pop_back();
+
+ if (ECStack.empty()) { // Finished main. Put result into exit code...
+ if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
+ ExitValue = Result; // Capture the exit value of the program
+ } else {
+ memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
+ }
+ } else {
+ // If we have a previous stack frame, and we have a previous call,
+ // fill in the return value...
+ ExecutionContext &CallingSF = ECStack.back();
+ if (Instruction *I = CallingSF.Caller.getInstruction()) {
+ // Save result...
+ if (!CallingSF.Caller.getType()->isVoidTy())
+ SetValue(I, Result, CallingSF);
+ if (InvokeInst *II = dyn_cast<InvokeInst> (I))
+ SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
+ CallingSF.Caller = CallSite(); // We returned from the call...
+ }
+ }
+}
+
+void Interpreter::visitReturnInst(ReturnInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *RetTy = Type::getVoidTy(I.getContext());
+ GenericValue Result;
+
+ // Save away the return value... (if we are not 'ret void')
+ if (I.getNumOperands()) {
+ RetTy = I.getReturnValue()->getType();
+ Result = getOperandValue(I.getReturnValue(), SF);
+ }
+
+ popStackAndReturnValueToCaller(RetTy, Result);
+}
+
+void Interpreter::visitUnreachableInst(UnreachableInst &I) {
+ report_fatal_error("Program executed an 'unreachable' instruction!");
+}
+
+void Interpreter::visitBranchInst(BranchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ BasicBlock *Dest;
+
+ Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
+ if (!I.isUnconditional()) {
+ Value *Cond = I.getCondition();
+ if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
+ Dest = I.getSuccessor(1);
+ }
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+void Interpreter::visitSwitchInst(SwitchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Value* Cond = I.getCondition();
+ Type *ElTy = Cond->getType();
+ GenericValue CondVal = getOperandValue(Cond, SF);
+
+ // Check to see if any of the cases match...
+ BasicBlock *Dest = nullptr;
+ for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
+ GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF);
+ if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
+ Dest = cast<BasicBlock>(i.getCaseSuccessor());
+ break;
+ }
+ }
+ if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
+ SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
+}
+
+
+// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
+// This function handles the actual updating of block and instruction iterators
+// as well as execution of all of the PHI nodes in the destination block.
+//
+// This method does this because all of the PHI nodes must be executed
+// atomically, reading their inputs before any of the results are updated. Not
+// doing this can cause problems if the PHI nodes depend on other PHI nodes for
+// their inputs. If the input PHI node is updated before it is read, incorrect
+// results can happen. Thus we use a two phase approach.
+//
+void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
+ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
+ SF.CurBB = Dest; // Update CurBB to branch destination
+ SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
+
+ if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
+
+ // Loop over all of the PHI nodes in the current block, reading their inputs.
+ std::vector<GenericValue> ResultValues;
+
+ for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
+ // Search for the value corresponding to this previous bb...
+ int i = PN->getBasicBlockIndex(PrevBB);
+ assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
+ Value *IncomingValue = PN->getIncomingValue(i);
+
+ // Save the incoming value for this PHI node...
+ ResultValues.push_back(getOperandValue(IncomingValue, SF));
+ }
+
+ // Now loop over all of the PHI nodes setting their values...
+ SF.CurInst = SF.CurBB->begin();
+ for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
+ PHINode *PN = cast<PHINode>(SF.CurInst);
+ SetValue(PN, ResultValues[i], SF);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitAllocaInst(AllocaInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ Type *Ty = I.getType()->getElementType(); // Type to be allocated
+
+ // Get the number of elements being allocated by the array...
+ unsigned NumElements =
+ getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
+
+ unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
+
+ // Avoid malloc-ing zero bytes, use max()...
+ unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
+
+ // Allocate enough memory to hold the type...
+ void *Memory = malloc(MemToAlloc);
+
+ DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
+ << NumElements << " (Total: " << MemToAlloc << ") at "
+ << uintptr_t(Memory) << '\n');
+
+ GenericValue Result = PTOGV(Memory);
+ assert(Result.PointerVal && "Null pointer returned by malloc!");
+ SetValue(&I, Result, SF);
+
+ if (I.getOpcode() == Instruction::Alloca)
+ ECStack.back().Allocas.add(Memory);
+}
+
+// getElementOffset - The workhorse for getelementptr.
+//
+GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E,
+ ExecutionContext &SF) {
+ assert(Ptr->getType()->isPointerTy() &&
+ "Cannot getElementOffset of a nonpointer type!");
+
+ uint64_t Total = 0;
+
+ for (; I != E; ++I) {
+ if (StructType *STy = dyn_cast<StructType>(*I)) {
+ const StructLayout *SLO = TD.getStructLayout(STy);
+
+ const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
+ unsigned Index = unsigned(CPU->getZExtValue());
+
+ Total += SLO->getElementOffset(Index);
+ } else {
+ SequentialType *ST = cast<SequentialType>(*I);
+ // Get the index number for the array... which must be long type...
+ GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
+
+ int64_t Idx;
+ unsigned BitWidth =
+ cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
+ if (BitWidth == 32)
+ Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
+ else {
+ assert(BitWidth == 64 && "Invalid index type for getelementptr");
+ Idx = (int64_t)IdxGV.IntVal.getZExtValue();
+ }
+ Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
+ }
+ }
+
+ GenericValue Result;
+ Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
+ DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
+ return Result;
+}
+
+void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeGEPOperation(I.getPointerOperand(),
+ gep_type_begin(I), gep_type_end(I), SF), SF);
+}
+
+void Interpreter::visitLoadInst(LoadInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
+ GenericValue Result;
+ LoadValueFromMemory(Result, Ptr, I.getType());
+ SetValue(&I, Result, SF);
+ if (I.isVolatile() && PrintVolatile)
+ dbgs() << "Volatile load " << I;
+}
+
+void Interpreter::visitStoreInst(StoreInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Val = getOperandValue(I.getOperand(0), SF);
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
+ I.getOperand(0)->getType());
+ if (I.isVolatile() && PrintVolatile)
+ dbgs() << "Volatile store: " << I;
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitCallSite(CallSite CS) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Check to see if this is an intrinsic function call...
+ Function *F = CS.getCalledFunction();
+ if (F && F->isDeclaration())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ break;
+ case Intrinsic::vastart: { // va_start
+ GenericValue ArgIndex;
+ ArgIndex.UIntPairVal.first = ECStack.size() - 1;
+ ArgIndex.UIntPairVal.second = 0;
+ SetValue(CS.getInstruction(), ArgIndex, SF);
+ return;
+ }
+ case Intrinsic::vaend: // va_end is a noop for the interpreter
+ return;
+ case Intrinsic::vacopy: // va_copy: dest = src
+ SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
+ return;
+ default:
+ // If it is an unknown intrinsic function, use the intrinsic lowering
+ // class to transform it into hopefully tasty LLVM code.
+ //
+ BasicBlock::iterator me(CS.getInstruction());
+ BasicBlock *Parent = CS.getInstruction()->getParent();
+ bool atBegin(Parent->begin() == me);
+ if (!atBegin)
+ --me;
+ IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
+
+ // Restore the CurInst pointer to the first instruction newly inserted, if
+ // any.
+ if (atBegin) {
+ SF.CurInst = Parent->begin();
+ } else {
+ SF.CurInst = me;
+ ++SF.CurInst;
+ }
+ return;
+ }
+
+
+ SF.Caller = CS;
+ std::vector<GenericValue> ArgVals;
+ const unsigned NumArgs = SF.Caller.arg_size();
+ ArgVals.reserve(NumArgs);
+ uint16_t pNum = 1;
+ for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
+ e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
+ Value *V = *i;
+ ArgVals.push_back(getOperandValue(V, SF));
+ }
+
+ // To handle indirect calls, we must get the pointer value from the argument
+ // and treat it as a function pointer.
+ GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
+ callFunction((Function*)GVTOP(SRC), ArgVals);
+}
+
+// auxiliary function for shift operations
+static unsigned getShiftAmount(uint64_t orgShiftAmount,
+ llvm::APInt valueToShift) {
+ unsigned valueWidth = valueToShift.getBitWidth();
+ if (orgShiftAmount < (uint64_t)valueWidth)
+ return orgShiftAmount;
+ // according to the llvm documentation, if orgShiftAmount > valueWidth,
+ // the result is undfeined. but we do shift by this rule:
+ return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
+}
+
+
+void Interpreter::visitShl(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitLShr(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitAShr(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ const Type *Ty = I.getType();
+
+ if (Ty->isVectorTy()) {
+ size_t src1Size = Src1.AggregateVal.size();
+ assert(src1Size == Src2.AggregateVal.size());
+ for (unsigned i = 0; i < src1Size; i++) {
+ GenericValue Result;
+ uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
+ Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
+ Dest.AggregateVal.push_back(Result);
+ }
+ } else {
+ // scalar
+ uint64_t shiftAmount = Src2.IntVal.getZExtValue();
+ llvm::APInt valueToShift = Src1.IntVal;
+ Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ Type *SrcTy = SrcVal->getType();
+ if (SrcTy->isVectorTy()) {
+ Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned NumElts = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(NumElts);
+ for (unsigned i = 0; i < NumElts; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
+ } else {
+ IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ if (SrcTy->isVectorTy()) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
+ } else {
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.sext(DBitWidth);
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ const Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ if (SrcTy->isVectorTy()) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
+ } else {
+ const IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.zext(DBitWidth);
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
+ DstTy->getScalarType()->isFloatTy() &&
+ "Invalid FPTrunc instruction");
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
+ } else {
+ assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
+ "Invalid FPTrunc instruction");
+ Dest.FloatVal = (float)Src.DoubleVal;
+ }
+
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
+ DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
+
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
+ } else {
+ assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
+ "Invalid FPExt instruction");
+ Dest.DoubleVal = (double)Src.FloatVal;
+ }
+
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ const Type *SrcVecTy = SrcTy->getScalarType();
+ uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal.
+ Dest.AggregateVal.resize(size);
+
+ if (SrcVecTy->getTypeID() == Type::FloatTyID) {
+ assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
+ Src.AggregateVal[i].FloatVal, DBitWidth);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
+ Src.AggregateVal[i].DoubleVal, DBitWidth);
+ }
+ } else {
+ // scalar
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else {
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ }
+ }
+
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ const Type *SrcVecTy = SrcTy->getScalarType();
+ uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (SrcVecTy->getTypeID() == Type::FloatTyID) {
+ assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
+ Src.AggregateVal[i].FloatVal, DBitWidth);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
+ Src.AggregateVal[i].DoubleVal, DBitWidth);
+ }
+ } else {
+ // scalar
+ unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else {
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ }
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (DstVecTy->getTypeID() == Type::FloatTyID) {
+ assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal =
+ APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
+ }
+ } else {
+ // scalar
+ assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
+ else {
+ Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+ }
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
+ const Type *DstVecTy = DstTy->getScalarType();
+ unsigned size = Src.AggregateVal.size();
+ // the sizes of src and dst vectors must be equal
+ Dest.AggregateVal.resize(size);
+
+ if (DstVecTy->getTypeID() == Type::FloatTyID) {
+ assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].FloatVal =
+ APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
+ } else {
+ for (unsigned i = 0; i < size; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
+ }
+ } else {
+ // scalar
+ assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
+
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
+ else {
+ Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
+ }
+ }
+
+ return Dest;
+}
+
+GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
+
+ Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
+ return Dest;
+}
+
+GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
+
+ uint32_t PtrSize = TD.getPointerSizeInBits();
+ if (PtrSize != Src.IntVal.getBitWidth())
+ Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
+
+ Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
+ return Dest;
+}
+
+GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+
+ // This instruction supports bitwise conversion of vectors to integers and
+ // to vectors of other types (as long as they have the same size)
+ Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+
+ if ((SrcTy->getTypeID() == Type::VectorTyID) ||
+ (DstTy->getTypeID() == Type::VectorTyID)) {
+ // vector src bitcast to vector dst or vector src bitcast to scalar dst or
+ // scalar src bitcast to vector dst
+ bool isLittleEndian = TD.isLittleEndian();
+ GenericValue TempDst, TempSrc, SrcVec;
+ const Type *SrcElemTy;
+ const Type *DstElemTy;
+ unsigned SrcBitSize;
+ unsigned DstBitSize;
+ unsigned SrcNum;
+ unsigned DstNum;
+
+ if (SrcTy->getTypeID() == Type::VectorTyID) {
+ SrcElemTy = SrcTy->getScalarType();
+ SrcBitSize = SrcTy->getScalarSizeInBits();
+ SrcNum = Src.AggregateVal.size();
+ SrcVec = Src;
+ } else {
+ // if src is scalar value, make it vector <1 x type>
+ SrcElemTy = SrcTy;
+ SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+ SrcNum = 1;
+ SrcVec.AggregateVal.push_back(Src);
+ }
+
+ if (DstTy->getTypeID() == Type::VectorTyID) {
+ DstElemTy = DstTy->getScalarType();
+ DstBitSize = DstTy->getScalarSizeInBits();
+ DstNum = (SrcNum * SrcBitSize) / DstBitSize;
+ } else {
+ DstElemTy = DstTy;
+ DstBitSize = DstTy->getPrimitiveSizeInBits();
+ DstNum = 1;
+ }
+
+ if (SrcNum * SrcBitSize != DstNum * DstBitSize)
+ llvm_unreachable("Invalid BitCast");
+
+ // If src is floating point, cast to integer first.
+ TempSrc.AggregateVal.resize(SrcNum);
+ if (SrcElemTy->isFloatTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal =
+ APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
+
+ } else if (SrcElemTy->isDoubleTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal =
+ APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
+ } else if (SrcElemTy->isIntegerTy()) {
+ for (unsigned i = 0; i < SrcNum; i++)
+ TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
+ } else {
+ // Pointers are not allowed as the element type of vector.
+ llvm_unreachable("Invalid Bitcast");
+ }
+
+ // now TempSrc is integer type vector
+ if (DstNum < SrcNum) {
+ // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
+ unsigned Ratio = SrcNum / DstNum;
+ unsigned SrcElt = 0;
+ for (unsigned i = 0; i < DstNum; i++) {
+ GenericValue Elt;
+ Elt.IntVal = 0;
+ Elt.IntVal = Elt.IntVal.zext(DstBitSize);
+ unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
+ for (unsigned j = 0; j < Ratio; j++) {
+ APInt Tmp;
+ Tmp = Tmp.zext(SrcBitSize);
+ Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
+ Tmp = Tmp.zext(DstBitSize);
+ Tmp = Tmp.shl(ShiftAmt);
+ ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
+ Elt.IntVal |= Tmp;
+ }
+ TempDst.AggregateVal.push_back(Elt);
+ }
+ } else {
+ // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
+ unsigned Ratio = DstNum / SrcNum;
+ for (unsigned i = 0; i < SrcNum; i++) {
+ unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
+ for (unsigned j = 0; j < Ratio; j++) {
+ GenericValue Elt;
+ Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
+ Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
+ Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
+ // it could be DstBitSize == SrcBitSize, so check it
+ if (DstBitSize < SrcBitSize)
+ Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
+ ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
+ TempDst.AggregateVal.push_back(Elt);
+ }
+ }
+ }
+
+ // convert result from integer to specified type
+ if (DstTy->getTypeID() == Type::VectorTyID) {
+ if (DstElemTy->isDoubleTy()) {
+ Dest.AggregateVal.resize(DstNum);
+ for (unsigned i = 0; i < DstNum; i++)
+ Dest.AggregateVal[i].DoubleVal =
+ TempDst.AggregateVal[i].IntVal.bitsToDouble();
+ } else if (DstElemTy->isFloatTy()) {
+ Dest.AggregateVal.resize(DstNum);
+ for (unsigned i = 0; i < DstNum; i++)
+ Dest.AggregateVal[i].FloatVal =
+ TempDst.AggregateVal[i].IntVal.bitsToFloat();
+ } else {
+ Dest = TempDst;
+ }
+ } else {
+ if (DstElemTy->isDoubleTy())
+ Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
+ else if (DstElemTy->isFloatTy()) {
+ Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
+ } else {
+ Dest.IntVal = TempDst.AggregateVal[0].IntVal;
+ }
+ }
+ } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
+ // (DstTy->getTypeID() == Type::VectorTyID))
+
+ // scalar src bitcast to scalar dst
+ if (DstTy->isPointerTy()) {
+ assert(SrcTy->isPointerTy() && "Invalid BitCast");
+ Dest.PointerVal = Src.PointerVal;
+ } else if (DstTy->isIntegerTy()) {
+ if (SrcTy->isFloatTy())
+ Dest.IntVal = APInt::floatToBits(Src.FloatVal);
+ else if (SrcTy->isDoubleTy()) {
+ Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
+ } else if (SrcTy->isIntegerTy()) {
+ Dest.IntVal = Src.IntVal;
+ } else {
+ llvm_unreachable("Invalid BitCast");
+ }
+ } else if (DstTy->isFloatTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.FloatVal = Src.IntVal.bitsToFloat();
+ else {
+ Dest.FloatVal = Src.FloatVal;
+ }
+ } else if (DstTy->isDoubleTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.DoubleVal = Src.IntVal.bitsToDouble();
+ else {
+ Dest.DoubleVal = Src.DoubleVal;
+ }
+ } else {
+ llvm_unreachable("Invalid Bitcast");
+ }
+ }
+
+ return Dest;
+}
+
+void Interpreter::visitTruncInst(TruncInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSExtInst(SExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitZExtInst(ZExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPTruncInst(FPTruncInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPExtInst(FPExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitUIToFPInst(UIToFPInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSIToFPInst(SIToFPInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToUIInst(FPToUIInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToSIInst(FPToSIInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitBitCastInst(BitCastInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+#define IMPLEMENT_VAARG(TY) \
+ case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
+
+void Interpreter::visitVAArgInst(VAArgInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Get the incoming valist parameter. LLI treats the valist as a
+ // (ec-stack-depth var-arg-index) pair.
+ GenericValue VAList = getOperandValue(I.getOperand(0), SF);
+ GenericValue Dest;
+ GenericValue Src = ECStack[VAList.UIntPairVal.first]
+ .VarArgs[VAList.UIntPairVal.second];
+ Type *Ty = I.getType();
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ Dest.IntVal = Src.IntVal;
+ break;
+ IMPLEMENT_VAARG(Pointer);
+ IMPLEMENT_VAARG(Float);
+ IMPLEMENT_VAARG(Double);
+ default:
+ dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ }
+
+ // Set the Value of this Instruction.
+ SetValue(&I, Dest, SF);
+
+ // Move the pointer to the next vararg.
+ ++VAList.UIntPairVal.second;
+}
+
+void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+
+ Type *Ty = I.getType();
+ const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
+
+ if(Src1.AggregateVal.size() > indx) {
+ switch (Ty->getTypeID()) {
+ default:
+ dbgs() << "Unhandled destination type for extractelement instruction: "
+ << *Ty << "\n";
+ llvm_unreachable(nullptr);
+ break;
+ case Type::IntegerTyID:
+ Dest.IntVal = Src1.AggregateVal[indx].IntVal;
+ break;
+ case Type::FloatTyID:
+ Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
+ break;
+ }
+ } else {
+ dbgs() << "Invalid index in extractelement instruction\n";
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitInsertElementInst(InsertElementInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getType();
+
+ if(!(Ty->isVectorTy()) )
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue Dest;
+
+ Type *TyContained = Ty->getContainedType(0);
+
+ const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
+ Dest.AggregateVal = Src1.AggregateVal;
+
+ if(Src1.AggregateVal.size() <= indx)
+ llvm_unreachable("Invalid index in insertelement instruction");
+ switch (TyContained->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+ case Type::IntegerTyID:
+ Dest.AggregateVal[indx].IntVal = Src2.IntVal;
+ break;
+ case Type::FloatTyID:
+ Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
+ break;
+ }
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
+ ExecutionContext &SF = ECStack.back();
+
+ Type *Ty = I.getType();
+ if(!(Ty->isVectorTy()))
+ llvm_unreachable("Unhandled dest type for shufflevector instruction");
+
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue Dest;
+
+ // There is no need to check types of src1 and src2, because the compiled
+ // bytecode can't contain different types for src1 and src2 for a
+ // shufflevector instruction.
+
+ Type *TyContained = Ty->getContainedType(0);
+ unsigned src1Size = (unsigned)Src1.AggregateVal.size();
+ unsigned src2Size = (unsigned)Src2.AggregateVal.size();
+ unsigned src3Size = (unsigned)Src3.AggregateVal.size();
+
+ Dest.AggregateVal.resize(src3Size);
+
+ switch (TyContained->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+ break;
+ case Type::IntegerTyID:
+ for( unsigned i=0; i<src3Size; i++) {
+ unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
+ if(j < src1Size)
+ Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
+ else if(j < src1Size + src2Size)
+ Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
+ else
+ // The selector may not be greater than sum of lengths of first and
+ // second operands and llasm should not allow situation like
+ // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
+ // <2 x i32> < i32 0, i32 5 >,
+ // where i32 5 is invalid, but let it be additional check here:
+ llvm_unreachable("Invalid mask in shufflevector instruction");
+ }
+ break;
+ case Type::FloatTyID:
+ for( unsigned i=0; i<src3Size; i++) {
+ unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
+ if(j < src1Size)
+ Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
+ else if(j < src1Size + src2Size)
+ Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
+ else
+ llvm_unreachable("Invalid mask in shufflevector instruction");
+ }
+ break;
+ case Type::DoubleTyID:
+ for( unsigned i=0; i<src3Size; i++) {
+ unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
+ if(j < src1Size)
+ Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
+ else if(j < src1Size + src2Size)
+ Dest.AggregateVal[i].DoubleVal =
+ Src2.AggregateVal[j-src1Size].DoubleVal;
+ else
+ llvm_unreachable("Invalid mask in shufflevector instruction");
+ }
+ break;
+ }
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Value *Agg = I.getAggregateOperand();
+ GenericValue Dest;
+ GenericValue Src = getOperandValue(Agg, SF);
+
+ ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
+ unsigned Num = I.getNumIndices();
+ GenericValue *pSrc = &Src;
+
+ for (unsigned i = 0 ; i < Num; ++i) {
+ pSrc = &pSrc->AggregateVal[*IdxBegin];
+ ++IdxBegin;
+ }
+
+ Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
+ switch (IndexedType->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for extractelement instruction");
+ break;
+ case Type::IntegerTyID:
+ Dest.IntVal = pSrc->IntVal;
+ break;
+ case Type::FloatTyID:
+ Dest.FloatVal = pSrc->FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = pSrc->DoubleVal;
+ break;
+ case Type::ArrayTyID:
+ case Type::StructTyID:
+ case Type::VectorTyID:
+ Dest.AggregateVal = pSrc->AggregateVal;
+ break;
+ case Type::PointerTyID:
+ Dest.PointerVal = pSrc->PointerVal;
+ break;
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitInsertValueInst(InsertValueInst &I) {
+
+ ExecutionContext &SF = ECStack.back();
+ Value *Agg = I.getAggregateOperand();
+
+ GenericValue Src1 = getOperandValue(Agg, SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest = Src1; // Dest is a slightly changed Src1
+
+ ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
+ unsigned Num = I.getNumIndices();
+
+ GenericValue *pDest = &Dest;
+ for (unsigned i = 0 ; i < Num; ++i) {
+ pDest = &pDest->AggregateVal[*IdxBegin];
+ ++IdxBegin;
+ }
+ // pDest points to the target value in the Dest now
+
+ Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
+
+ switch (IndexedType->getTypeID()) {
+ default:
+ llvm_unreachable("Unhandled dest type for insertelement instruction");
+ break;
+ case Type::IntegerTyID:
+ pDest->IntVal = Src2.IntVal;
+ break;
+ case Type::FloatTyID:
+ pDest->FloatVal = Src2.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ pDest->DoubleVal = Src2.DoubleVal;
+ break;
+ case Type::ArrayTyID:
+ case Type::StructTyID:
+ case Type::VectorTyID:
+ pDest->AggregateVal = Src2.AggregateVal;
+ break;
+ case Type::PointerTyID:
+ pDest->PointerVal = Src2.PointerVal;
+ break;
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
+ ExecutionContext &SF) {
+ switch (CE->getOpcode()) {
+ case Instruction::Trunc:
+ return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::ZExt:
+ return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::SExt:
+ return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPTrunc:
+ return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPExt:
+ return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::UIToFP:
+ return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::SIToFP:
+ return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPToUI:
+ return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPToSI:
+ return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::PtrToInt:
+ return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::IntToPtr:
+ return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::BitCast:
+ return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::GetElementPtr:
+ return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
+ gep_type_end(CE), SF);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ return executeCmpInst(CE->getPredicate(),
+ getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Select:
+ return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ getOperandValue(CE->getOperand(2), SF),
+ CE->getOperand(0)->getType());
+ default :
+ break;
+ }
+
+ // The cases below here require a GenericValue parameter for the result
+ // so we initialize one, compute it and then return it.
+ GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
+ GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
+ GenericValue Dest;
+ Type * Ty = CE->getOperand(0)->getType();
+ switch (CE->getOpcode()) {
+ case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
+ case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
+ case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
+ case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
+ case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
+ case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
+ case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
+ case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
+ case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
+ case Instruction::Shl:
+ Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
+ break;
+ case Instruction::LShr:
+ Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
+ break;
+ case Instruction::AShr:
+ Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
+ break;
+ default:
+ dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
+ llvm_unreachable("Unhandled ConstantExpr");
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ return getConstantExprValue(CE, SF);
+ } else if (Constant *CPV = dyn_cast<Constant>(V)) {
+ return getConstantValue(CPV);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ return PTOGV(getPointerToGlobal(GV));
+ } else {
+ return SF.Values[V];
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Dispatch and Execution Code
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// callFunction - Execute the specified function...
+//
+void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
+ assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
+ ECStack.back().Caller.arg_size() == ArgVals.size()) &&
+ "Incorrect number of arguments passed into function call!");
+ // Make a new stack frame... and fill it in.
+ ECStack.emplace_back();
+ ExecutionContext &StackFrame = ECStack.back();
+ StackFrame.CurFunction = F;
+
+ // Special handling for external functions.
+ if (F->isDeclaration()) {
+ GenericValue Result = callExternalFunction (F, ArgVals);
+ // Simulate a 'ret' instruction of the appropriate type.
+ popStackAndReturnValueToCaller (F->getReturnType (), Result);
+ return;
+ }
+
+ // Get pointers to first LLVM BB & Instruction in function.
+ StackFrame.CurBB = F->begin();
+ StackFrame.CurInst = StackFrame.CurBB->begin();
+
+ // Run through the function arguments and initialize their values...
+ assert((ArgVals.size() == F->arg_size() ||
+ (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
+ "Invalid number of values passed to function invocation!");
+
+ // Handle non-varargs arguments...
+ unsigned i = 0;
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI, ++i)
+ SetValue(AI, ArgVals[i], StackFrame);
+
+ // Handle varargs arguments...
+ StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
+}
+
+
+void Interpreter::run() {
+ while (!ECStack.empty()) {
+ // Interpret a single instruction & increment the "PC".
+ ExecutionContext &SF = ECStack.back(); // Current stack frame
+ Instruction &I = *SF.CurInst++; // Increment before execute
+
+ // Track the number of dynamic instructions executed.
+ ++NumDynamicInsts;
+
+ DEBUG(dbgs() << "About to interpret: " << I);
+ visit(I); // Dispatch to one of the visit* methods...
+#if 0
+ // This is not safe, as visiting the instruction could lower it and free I.
+DEBUG(
+ if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
+ I.getType() != Type::VoidTy) {
+ dbgs() << " --> ";
+ const GenericValue &Val = SF.Values[&I];
+ switch (I.getType()->getTypeID()) {
+ default: llvm_unreachable("Invalid GenericValue Type");
+ case Type::VoidTyID: dbgs() << "void"; break;
+ case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
+ case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
+ case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
+ break;
+ case Type::IntegerTyID:
+ dbgs() << "i" << Val.IntVal.getBitWidth() << " "
+ << Val.IntVal.toStringUnsigned(10)
+ << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
+ break;
+ }
+ });
+#endif
+ }
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
new file mode 100644
index 0000000..9b44042
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -0,0 +1,498 @@
+//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains both code to deal with invoking "external" functions, but
+// also contains code that implements "exported" external functions.
+//
+// There are currently two mechanisms for handling external functions in the
+// Interpreter. The first is to implement lle_* wrapper functions that are
+// specific to well-known library functions which manually translate the
+// arguments from GenericValues and make the call. If such a wrapper does
+// not exist, and libffi is available, then the Interpreter will attempt to
+// invoke the function using libffi, after finding its address.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/Config/config.h" // Detect libffi
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/UniqueLock.h"
+#include <cmath>
+#include <csignal>
+#include <cstdio>
+#include <cstring>
+#include <map>
+
+#ifdef HAVE_FFI_CALL
+#ifdef HAVE_FFI_H
+#include <ffi.h>
+#define USE_LIBFFI
+#elif HAVE_FFI_FFI_H
+#include <ffi/ffi.h>
+#define USE_LIBFFI
+#endif
+#endif
+
+using namespace llvm;
+
+static ManagedStatic<sys::Mutex> FunctionsLock;
+
+typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
+static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
+static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
+
+#ifdef USE_LIBFFI
+typedef void (*RawFunc)();
+static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
+#endif
+
+static Interpreter *TheInterpreter;
+
+static char getTypeID(Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return 'V';
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 1: return 'o';
+ case 8: return 'B';
+ case 16: return 'S';
+ case 32: return 'I';
+ case 64: return 'L';
+ default: return 'N';
+ }
+ case Type::FloatTyID: return 'F';
+ case Type::DoubleTyID: return 'D';
+ case Type::PointerTyID: return 'P';
+ case Type::FunctionTyID:return 'M';
+ case Type::StructTyID: return 'T';
+ case Type::ArrayTyID: return 'A';
+ default: return 'U';
+ }
+}
+
+// Try to find address of external function given a Function object.
+// Please note, that interpreter doesn't know how to assemble a
+// real call in general case (this is JIT job), that's why it assumes,
+// that all external functions has the same (and pretty "general") signature.
+// The typical example of such functions are "lle_X_" ones.
+static ExFunc lookupFunction(const Function *F) {
+ // Function not found, look it up... start by figuring out what the
+ // composite function name should be.
+ std::string ExtName = "lle_";
+ FunctionType *FT = F->getFunctionType();
+ for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
+ ExtName += getTypeID(FT->getContainedType(i));
+ ExtName += ("_" + F->getName()).str();
+
+ sys::ScopedLock Writer(*FunctionsLock);
+ ExFunc FnPtr = (*FuncNames)[ExtName];
+ if (!FnPtr)
+ FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
+ if (!FnPtr) // Try calling a generic function... if it exists...
+ FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
+ ("lle_X_" + F->getName()).str());
+ if (FnPtr)
+ ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
+ return FnPtr;
+}
+
+#ifdef USE_LIBFFI
+static ffi_type *ffiTypeFor(Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return &ffi_type_void;
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 8: return &ffi_type_sint8;
+ case 16: return &ffi_type_sint16;
+ case 32: return &ffi_type_sint32;
+ case 64: return &ffi_type_sint64;
+ }
+ case Type::FloatTyID: return &ffi_type_float;
+ case Type::DoubleTyID: return &ffi_type_double;
+ case Type::PointerTyID: return &ffi_type_pointer;
+ default: break;
+ }
+ // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+ report_fatal_error("Type could not be mapped for use with libffi.");
+ return NULL;
+}
+
+static void *ffiValueFor(Type *Ty, const GenericValue &AV,
+ void *ArgDataPtr) {
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 8: {
+ int8_t *I8Ptr = (int8_t *) ArgDataPtr;
+ *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 16: {
+ int16_t *I16Ptr = (int16_t *) ArgDataPtr;
+ *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 32: {
+ int32_t *I32Ptr = (int32_t *) ArgDataPtr;
+ *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 64: {
+ int64_t *I64Ptr = (int64_t *) ArgDataPtr;
+ *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ }
+ case Type::FloatTyID: {
+ float *FloatPtr = (float *) ArgDataPtr;
+ *FloatPtr = AV.FloatVal;
+ return ArgDataPtr;
+ }
+ case Type::DoubleTyID: {
+ double *DoublePtr = (double *) ArgDataPtr;
+ *DoublePtr = AV.DoubleVal;
+ return ArgDataPtr;
+ }
+ case Type::PointerTyID: {
+ void **PtrPtr = (void **) ArgDataPtr;
+ *PtrPtr = GVTOP(AV);
+ return ArgDataPtr;
+ }
+ default: break;
+ }
+ // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+ report_fatal_error("Type value could not be mapped for use with libffi.");
+ return NULL;
+}
+
+static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
+ const DataLayout *TD, GenericValue &Result) {
+ ffi_cif cif;
+ FunctionType *FTy = F->getFunctionType();
+ const unsigned NumArgs = F->arg_size();
+
+ // TODO: We don't have type information about the remaining arguments, because
+ // this information is never passed into ExecutionEngine::runFunction().
+ if (ArgVals.size() > NumArgs && F->isVarArg()) {
+ report_fatal_error("Calling external var arg function '" + F->getName()
+ + "' is not supported by the Interpreter.");
+ }
+
+ unsigned ArgBytes = 0;
+
+ std::vector<ffi_type*> args(NumArgs);
+ for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+ A != E; ++A) {
+ const unsigned ArgNo = A->getArgNo();
+ Type *ArgTy = FTy->getParamType(ArgNo);
+ args[ArgNo] = ffiTypeFor(ArgTy);
+ ArgBytes += TD->getTypeStoreSize(ArgTy);
+ }
+
+ SmallVector<uint8_t, 128> ArgData;
+ ArgData.resize(ArgBytes);
+ uint8_t *ArgDataPtr = ArgData.data();
+ SmallVector<void*, 16> values(NumArgs);
+ for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+ A != E; ++A) {
+ const unsigned ArgNo = A->getArgNo();
+ Type *ArgTy = FTy->getParamType(ArgNo);
+ values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
+ ArgDataPtr += TD->getTypeStoreSize(ArgTy);
+ }
+
+ Type *RetTy = FTy->getReturnType();
+ ffi_type *rtype = ffiTypeFor(RetTy);
+
+ if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
+ SmallVector<uint8_t, 128> ret;
+ if (RetTy->getTypeID() != Type::VoidTyID)
+ ret.resize(TD->getTypeStoreSize(RetTy));
+ ffi_call(&cif, Fn, ret.data(), values.data());
+ switch (RetTy->getTypeID()) {
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(RetTy)->getBitWidth()) {
+ case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
+ case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
+ case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
+ case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
+ }
+ break;
+ case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
+ case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
+ case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
+ default: break;
+ }
+ return true;
+ }
+
+ return false;
+}
+#endif // USE_LIBFFI
+
+GenericValue Interpreter::callExternalFunction(Function *F,
+ ArrayRef<GenericValue> ArgVals) {
+ TheInterpreter = this;
+
+ unique_lock<sys::Mutex> Guard(*FunctionsLock);
+
+ // Do a lookup to see if the function is in our cache... this should just be a
+ // deferred annotation!
+ std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
+ if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
+ : FI->second) {
+ Guard.unlock();
+ return Fn(F->getFunctionType(), ArgVals);
+ }
+
+#ifdef USE_LIBFFI
+ std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
+ RawFunc RawFn;
+ if (RF == RawFunctions->end()) {
+ RawFn = (RawFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
+ if (!RawFn)
+ RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
+ if (RawFn != 0)
+ RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
+ } else {
+ RawFn = RF->second;
+ }
+
+ Guard.unlock();
+
+ GenericValue Result;
+ if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
+ return Result;
+#endif // USE_LIBFFI
+
+ if (F->getName() == "__main")
+ errs() << "Tried to execute an unknown external function: "
+ << *F->getType() << " __main\n";
+ else
+ report_fatal_error("Tried to execute an unknown external function: " +
+ F->getName());
+#ifndef USE_LIBFFI
+ errs() << "Recompiling LLVM with --enable-libffi might help.\n";
+#endif
+ return GenericValue();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Functions "exported" to the running application...
+//
+
+// void atexit(Function*)
+static GenericValue lle_X_atexit(FunctionType *FT,
+ ArrayRef<GenericValue> Args) {
+ assert(Args.size() == 1);
+ TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
+// void exit(int)
+static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
+ TheInterpreter->exitCalled(Args[0]);
+ return GenericValue();
+}
+
+// void abort(void)
+static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
+ //FIXME: should we report or raise here?
+ //report_fatal_error("Interpreted program raised SIGABRT");
+ raise (SIGABRT);
+ return GenericValue();
+}
+
+// int sprintf(char *, const char *, ...) - a very rough implementation to make
+// output useful.
+static GenericValue lle_X_sprintf(FunctionType *FT,
+ ArrayRef<GenericValue> Args) {
+ char *OutputBuffer = (char *)GVTOP(Args[0]);
+ const char *FmtStr = (const char *)GVTOP(Args[1]);
+ unsigned ArgNo = 2;
+
+ // printf should return # chars printed. This is completely incorrect, but
+ // close enough for now.
+ GenericValue GV;
+ GV.IntVal = APInt(32, strlen(FmtStr));
+ while (1) {
+ switch (*FmtStr) {
+ case 0: return GV; // Null terminator...
+ default: // Normal nonspecial character
+ sprintf(OutputBuffer++, "%c", *FmtStr++);
+ break;
+ case '\\': { // Handle escape codes
+ sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
+ FmtStr += 2; OutputBuffer += 2;
+ break;
+ }
+ case '%': { // Handle format specifiers
+ char FmtBuf[100] = "", Buffer[1000] = "";
+ char *FB = FmtBuf;
+ *FB++ = *FmtStr++;
+ char Last = *FB++ = *FmtStr++;
+ unsigned HowLong = 0;
+ while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
+ Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
+ Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
+ Last != 'p' && Last != 's' && Last != '%') {
+ if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
+ Last = *FB++ = *FmtStr++;
+ }
+ *FB = 0;
+
+ switch (Last) {
+ case '%':
+ memcpy(Buffer, "%", 2); break;
+ case 'c':
+ sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'd': case 'i':
+ case 'u': case 'o':
+ case 'x': case 'X':
+ if (HowLong >= 1) {
+ if (HowLong == 1 &&
+ TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
+ sizeof(long) < sizeof(int64_t)) {
+ // Make sure we use %lld with a 64 bit argument because we might be
+ // compiling LLI on a 32 bit compiler.
+ unsigned Size = strlen(FmtBuf);
+ FmtBuf[Size] = FmtBuf[Size-1];
+ FmtBuf[Size+1] = 0;
+ FmtBuf[Size-1] = 'l';
+ }
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
+ } else
+ sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'e': case 'E': case 'g': case 'G': case 'f':
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
+ case 'p':
+ sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
+ case 's':
+ sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
+ default:
+ errs() << "<unknown printf code '" << *FmtStr << "'!>";
+ ArgNo++; break;
+ }
+ size_t Len = strlen(Buffer);
+ memcpy(OutputBuffer, Buffer, Len + 1);
+ OutputBuffer += Len;
+ }
+ break;
+ }
+ }
+ return GV;
+}
+
+// int printf(const char *, ...) - a very rough implementation to make output
+// useful.
+static GenericValue lle_X_printf(FunctionType *FT,
+ ArrayRef<GenericValue> Args) {
+ char Buffer[10000];
+ std::vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV((void*)&Buffer[0]));
+ NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+ outs() << Buffer;
+ return GV;
+}
+
+// int sscanf(const char *format, ...);
+static GenericValue lle_X_sscanf(FunctionType *FT,
+ ArrayRef<GenericValue> args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ return GV;
+}
+
+// int scanf(const char *format, ...);
+static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ return GV;
+}
+
+// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
+// output useful.
+static GenericValue lle_X_fprintf(FunctionType *FT,
+ ArrayRef<GenericValue> Args) {
+ assert(Args.size() >= 2);
+ char Buffer[10000];
+ std::vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV(Buffer));
+ NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+
+ fputs(Buffer, (FILE *) GVTOP(Args[0]));
+ return GV;
+}
+
+static GenericValue lle_X_memset(FunctionType *FT,
+ ArrayRef<GenericValue> Args) {
+ int val = (int)Args[1].IntVal.getSExtValue();
+ size_t len = (size_t)Args[2].IntVal.getZExtValue();
+ memset((void *)GVTOP(Args[0]), val, len);
+ // llvm.memset.* returns void, lle_X_* returns GenericValue,
+ // so here we return GenericValue with IntVal set to zero
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
+static GenericValue lle_X_memcpy(FunctionType *FT,
+ ArrayRef<GenericValue> Args) {
+ memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
+ (size_t)(Args[2].IntVal.getLimitedValue()));
+
+ // llvm.memcpy* returns void, lle_X_* returns GenericValue,
+ // so here we return GenericValue with IntVal set to zero
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
+void Interpreter::initializeExternalFunctions() {
+ sys::ScopedLock Writer(*FunctionsLock);
+ (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
+ (*FuncNames)["lle_X_exit"] = lle_X_exit;
+ (*FuncNames)["lle_X_abort"] = lle_X_abort;
+
+ (*FuncNames)["lle_X_printf"] = lle_X_printf;
+ (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
+ (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
+ (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
+ (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
+ (*FuncNames)["lle_X_memset"] = lle_X_memset;
+ (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
new file mode 100644
index 0000000..f103c09
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
@@ -0,0 +1,100 @@
+//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the top-level functionality for the LLVM interpreter.
+// This interpreter is designed to be a very simple, portable, inefficient
+// interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include <cstring>
+using namespace llvm;
+
+namespace {
+
+static struct RegisterInterp {
+ RegisterInterp() { Interpreter::Register(); }
+} InterpRegistrator;
+
+}
+
+extern "C" void LLVMLinkInInterpreter() { }
+
+/// Create a new interpreter object.
+///
+ExecutionEngine *Interpreter::create(std::unique_ptr<Module> M,
+ std::string *ErrStr) {
+ // Tell this Module to materialize everything and release the GVMaterializer.
+ if (std::error_code EC = M->materializeAllPermanently()) {
+ if (ErrStr)
+ *ErrStr = EC.message();
+ // We got an error, just return 0
+ return nullptr;
+ }
+
+ return new Interpreter(std::move(M));
+}
+
+//===----------------------------------------------------------------------===//
+// Interpreter ctor - Initialize stuff
+//
+Interpreter::Interpreter(std::unique_ptr<Module> M)
+ : ExecutionEngine(std::move(M)), TD(Modules.back().get()) {
+
+ memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
+ setDataLayout(&TD);
+ // Initialize the "backend"
+ initializeExecutionEngine();
+ initializeExternalFunctions();
+ emitGlobals();
+
+ IL = new IntrinsicLowering(TD);
+}
+
+Interpreter::~Interpreter() {
+ delete IL;
+}
+
+void Interpreter::runAtExitHandlers () {
+ while (!AtExitHandlers.empty()) {
+ callFunction(AtExitHandlers.back(), None);
+ AtExitHandlers.pop_back();
+ run();
+ }
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue Interpreter::runFunction(Function *F,
+ ArrayRef<GenericValue> ArgValues) {
+ assert (F && "Function *F was null at entry to run()");
+
+ // Try extra hard not to pass extra args to a function that isn't
+ // expecting them. C programmers frequently bend the rules and
+ // declare main() with fewer parameters than it actually gets
+ // passed, and the interpreter barfs if you pass a function more
+ // parameters than it is declared to take. This does not attempt to
+ // take into account gratuitous differences in declared types,
+ // though.
+ const size_t ArgCount = F->getFunctionType()->getNumParams();
+ ArrayRef<GenericValue> ActualArgs =
+ ArgValues.slice(0, std::min(ArgValues.size(), ArgCount));
+
+ // Set up the function call.
+ callFunction(F, ActualArgs);
+
+ // Start executing the function.
+ run();
+
+ return ExitValue;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
new file mode 100644
index 0000000..f976641
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -0,0 +1,256 @@
+//===-- Interpreter.h ------------------------------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header file defines the interpreter structure
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H
+#define LLVM_LIB_EXECUTIONENGINE_INTERPRETER_INTERPRETER_H
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+namespace llvm {
+
+class IntrinsicLowering;
+struct FunctionInfo;
+template<typename T> class generic_gep_type_iterator;
+class ConstantExpr;
+typedef generic_gep_type_iterator<User::const_op_iterator> gep_type_iterator;
+
+
+// AllocaHolder - Object to track all of the blocks of memory allocated by
+// alloca. When the function returns, this object is popped off the execution
+// stack, which causes the dtor to be run, which frees all the alloca'd memory.
+//
+class AllocaHolder {
+ std::vector<void *> Allocations;
+
+public:
+ AllocaHolder() {}
+
+ // Make this type move-only. Define explicit move special members for MSVC.
+ AllocaHolder(AllocaHolder &&RHS) : Allocations(std::move(RHS.Allocations)) {}
+ AllocaHolder &operator=(AllocaHolder &&RHS) {
+ Allocations = std::move(RHS.Allocations);
+ return *this;
+ }
+
+ ~AllocaHolder() {
+ for (void *Allocation : Allocations)
+ free(Allocation);
+ }
+
+ void add(void *Mem) { Allocations.push_back(Mem); }
+};
+
+typedef std::vector<GenericValue> ValuePlaneTy;
+
+// ExecutionContext struct - This struct represents one stack frame currently
+// executing.
+//
+struct ExecutionContext {
+ Function *CurFunction;// The currently executing function
+ BasicBlock *CurBB; // The currently executing BB
+ BasicBlock::iterator CurInst; // The next instruction to execute
+ CallSite Caller; // Holds the call that called subframes.
+ // NULL if main func or debugger invoked fn
+ std::map<Value *, GenericValue> Values; // LLVM values used in this invocation
+ std::vector<GenericValue> VarArgs; // Values passed through an ellipsis
+ AllocaHolder Allocas; // Track memory allocated by alloca
+
+ ExecutionContext() : CurFunction(nullptr), CurBB(nullptr), CurInst(nullptr) {}
+
+ ExecutionContext(ExecutionContext &&O)
+ : CurFunction(O.CurFunction), CurBB(O.CurBB), CurInst(O.CurInst),
+ Caller(O.Caller), Values(std::move(O.Values)),
+ VarArgs(std::move(O.VarArgs)), Allocas(std::move(O.Allocas)) {}
+
+ ExecutionContext &operator=(ExecutionContext &&O) {
+ CurFunction = O.CurFunction;
+ CurBB = O.CurBB;
+ CurInst = O.CurInst;
+ Caller = O.Caller;
+ Values = std::move(O.Values);
+ VarArgs = std::move(O.VarArgs);
+ Allocas = std::move(O.Allocas);
+ return *this;
+ }
+};
+
+// Interpreter - This class represents the entirety of the interpreter.
+//
+class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> {
+ GenericValue ExitValue; // The return value of the called function
+ DataLayout TD;
+ IntrinsicLowering *IL;
+
+ // The runtime stack of executing code. The top of the stack is the current
+ // function record.
+ std::vector<ExecutionContext> ECStack;
+
+ // AtExitHandlers - List of functions to call when the program exits,
+ // registered with the atexit() library function.
+ std::vector<Function*> AtExitHandlers;
+
+public:
+ explicit Interpreter(std::unique_ptr<Module> M);
+ ~Interpreter() override;
+
+ /// runAtExitHandlers - Run any functions registered by the program's calls to
+ /// atexit(3), which we intercept and store in AtExitHandlers.
+ ///
+ void runAtExitHandlers();
+
+ static void Register() {
+ InterpCtor = create;
+ }
+
+ /// Create an interpreter ExecutionEngine.
+ ///
+ static ExecutionEngine *create(std::unique_ptr<Module> M,
+ std::string *ErrorStr = nullptr);
+
+ /// run - Start execution with the specified function and arguments.
+ ///
+ GenericValue runFunction(Function *F,
+ ArrayRef<GenericValue> ArgValues) override;
+
+ void *getPointerToNamedFunction(StringRef Name,
+ bool AbortOnFailure = true) override {
+ // FIXME: not implemented.
+ return nullptr;
+ }
+
+ // Methods used to execute code:
+ // Place a call on the stack
+ void callFunction(Function *F, ArrayRef<GenericValue> ArgVals);
+ void run(); // Execute instructions until nothing left to do
+
+ // Opcode Implementations
+ void visitReturnInst(ReturnInst &I);
+ void visitBranchInst(BranchInst &I);
+ void visitSwitchInst(SwitchInst &I);
+ void visitIndirectBrInst(IndirectBrInst &I);
+
+ void visitBinaryOperator(BinaryOperator &I);
+ void visitICmpInst(ICmpInst &I);
+ void visitFCmpInst(FCmpInst &I);
+ void visitAllocaInst(AllocaInst &I);
+ void visitLoadInst(LoadInst &I);
+ void visitStoreInst(StoreInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+ void visitPHINode(PHINode &PN) {
+ llvm_unreachable("PHI nodes already handled!");
+ }
+ void visitTruncInst(TruncInst &I);
+ void visitZExtInst(ZExtInst &I);
+ void visitSExtInst(SExtInst &I);
+ void visitFPTruncInst(FPTruncInst &I);
+ void visitFPExtInst(FPExtInst &I);
+ void visitUIToFPInst(UIToFPInst &I);
+ void visitSIToFPInst(SIToFPInst &I);
+ void visitFPToUIInst(FPToUIInst &I);
+ void visitFPToSIInst(FPToSIInst &I);
+ void visitPtrToIntInst(PtrToIntInst &I);
+ void visitIntToPtrInst(IntToPtrInst &I);
+ void visitBitCastInst(BitCastInst &I);
+ void visitSelectInst(SelectInst &I);
+
+
+ void visitCallSite(CallSite CS);
+ void visitCallInst(CallInst &I) { visitCallSite (CallSite (&I)); }
+ void visitInvokeInst(InvokeInst &I) { visitCallSite (CallSite (&I)); }
+ void visitUnreachableInst(UnreachableInst &I);
+
+ void visitShl(BinaryOperator &I);
+ void visitLShr(BinaryOperator &I);
+ void visitAShr(BinaryOperator &I);
+
+ void visitVAArgInst(VAArgInst &I);
+ void visitExtractElementInst(ExtractElementInst &I);
+ void visitInsertElementInst(InsertElementInst &I);
+ void visitShuffleVectorInst(ShuffleVectorInst &I);
+
+ void visitExtractValueInst(ExtractValueInst &I);
+ void visitInsertValueInst(InsertValueInst &I);
+
+ void visitInstruction(Instruction &I) {
+ errs() << I << "\n";
+ llvm_unreachable("Instruction not interpretable yet!");
+ }
+
+ GenericValue callExternalFunction(Function *F,
+ ArrayRef<GenericValue> ArgVals);
+ void exitCalled(GenericValue GV);
+
+ void addAtExitHandler(Function *F) {
+ AtExitHandlers.push_back(F);
+ }
+
+ GenericValue *getFirstVarArg () {
+ return &(ECStack.back ().VarArgs[0]);
+ }
+
+private: // Helper functions
+ GenericValue executeGEPOperation(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E, ExecutionContext &SF);
+
+ // SwitchToNewBasicBlock - Start execution in a new basic block and run any
+ // PHI nodes in the top of the block. This is used for intraprocedural
+ // control flow.
+ //
+ void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
+
+ void *getPointerToFunction(Function *F) override { return (void*)F; }
+
+ void initializeExecutionEngine() { }
+ void initializeExternalFunctions();
+ GenericValue getConstantExprValue(ConstantExpr *CE, ExecutionContext &SF);
+ GenericValue getOperandValue(Value *V, ExecutionContext &SF);
+ GenericValue executeTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeSExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeZExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPToUIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPToSIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeUIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeSIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executePtrToIntInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeIntToPtrInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeBitCastInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeCastOperation(Instruction::CastOps opcode, Value *SrcVal,
+ Type *Ty, ExecutionContext &SF);
+ void popStackAndReturnValueToCaller(Type *RetTy, GenericValue Result);
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
new file mode 100644
index 0000000..a7d6705
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
@@ -0,0 +1,633 @@
+//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCJIT.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/MCJIT.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LegacyPassManager.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Object/Archive.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/MutexGuard.h"
+
+using namespace llvm;
+
+void ObjectCache::anchor() {}
+
+namespace {
+
+static struct RegisterJIT {
+ RegisterJIT() { MCJIT::Register(); }
+} JITRegistrator;
+
+}
+
+extern "C" void LLVMLinkInMCJIT() {
+}
+
+ExecutionEngine*
+MCJIT::createJIT(std::unique_ptr<Module> M,
+ std::string *ErrorStr,
+ std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
+ std::unique_ptr<TargetMachine> TM) {
+ // Try to register the program as a source of symbols to resolve against.
+ //
+ // FIXME: Don't do this here.
+ sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
+
+ if (!MemMgr || !Resolver) {
+ auto RTDyldMM = std::make_shared<SectionMemoryManager>();
+ if (!MemMgr)
+ MemMgr = RTDyldMM;
+ if (!Resolver)
+ Resolver = RTDyldMM;
+ }
+
+ return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
+ std::move(Resolver));
+}
+
+MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm,
+ std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver)
+ : ExecutionEngine(std::move(M)), TM(std::move(tm)), Ctx(nullptr),
+ MemMgr(std::move(MemMgr)), Resolver(*this, std::move(Resolver)),
+ Dyld(*this->MemMgr, this->Resolver), ObjCache(nullptr) {
+ // FIXME: We are managing our modules, so we do not want the base class
+ // ExecutionEngine to manage them as well. To avoid double destruction
+ // of the first (and only) module added in ExecutionEngine constructor
+ // we remove it from EE and will destruct it ourselves.
+ //
+ // It may make sense to move our module manager (based on SmallStPtr) back
+ // into EE if the JIT and Interpreter can live with it.
+ // If so, additional functions: addModule, removeModule, FindFunctionNamed,
+ // runStaticConstructorsDestructors could be moved back to EE as well.
+ //
+ std::unique_ptr<Module> First = std::move(Modules[0]);
+ Modules.clear();
+
+ OwnedModules.addModule(std::move(First));
+ setDataLayout(TM->getDataLayout());
+ RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
+}
+
+MCJIT::~MCJIT() {
+ MutexGuard locked(lock);
+
+ Dyld.deregisterEHFrames();
+
+ for (auto &Obj : LoadedObjects)
+ if (Obj)
+ NotifyFreeingObject(*Obj);
+
+ Archives.clear();
+}
+
+void MCJIT::addModule(std::unique_ptr<Module> M) {
+ MutexGuard locked(lock);
+ OwnedModules.addModule(std::move(M));
+}
+
+bool MCJIT::removeModule(Module *M) {
+ MutexGuard locked(lock);
+ return OwnedModules.removeModule(M);
+}
+
+void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
+ if (Dyld.hasError())
+ report_fatal_error(Dyld.getErrorString());
+
+ NotifyObjectEmitted(*Obj, *L);
+
+ LoadedObjects.push_back(std::move(Obj));
+}
+
+void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
+ std::unique_ptr<object::ObjectFile> ObjFile;
+ std::unique_ptr<MemoryBuffer> MemBuf;
+ std::tie(ObjFile, MemBuf) = Obj.takeBinary();
+ addObjectFile(std::move(ObjFile));
+ Buffers.push_back(std::move(MemBuf));
+}
+
+void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
+ Archives.push_back(std::move(A));
+}
+
+void MCJIT::setObjectCache(ObjectCache* NewCache) {
+ MutexGuard locked(lock);
+ ObjCache = NewCache;
+}
+
+std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
+ MutexGuard locked(lock);
+
+ // This must be a module which has already been added but not loaded to this
+ // MCJIT instance, since these conditions are tested by our caller,
+ // generateCodeForModule.
+
+ legacy::PassManager PM;
+
+ // The RuntimeDyld will take ownership of this shortly
+ SmallVector<char, 4096> ObjBufferSV;
+ raw_svector_ostream ObjStream(ObjBufferSV);
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
+ report_fatal_error("Target does not support MC emission!");
+
+ // Initialize passes.
+ PM.run(*M);
+ // Flush the output buffer to get the generated code into memory
+ ObjStream.flush();
+
+ std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
+ new ObjectMemoryBuffer(std::move(ObjBufferSV)));
+
+ // If we have an object cache, tell it about the new object.
+ // Note that we're using the compiled image, not the loaded image (as below).
+ if (ObjCache) {
+ // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
+ // to create a temporary object here and delete it after the call.
+ MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
+ ObjCache->notifyObjectCompiled(M, MB);
+ }
+
+ return CompiledObjBuffer;
+}
+
+void MCJIT::generateCodeForModule(Module *M) {
+ // Get a thread lock to make sure we aren't trying to load multiple times
+ MutexGuard locked(lock);
+
+ // This must be a module which has already been added to this MCJIT instance.
+ assert(OwnedModules.ownsModule(M) &&
+ "MCJIT::generateCodeForModule: Unknown module.");
+
+ // Re-compilation is not supported
+ if (OwnedModules.hasModuleBeenLoaded(M))
+ return;
+
+ std::unique_ptr<MemoryBuffer> ObjectToLoad;
+ // Try to load the pre-compiled object from cache if possible
+ if (ObjCache)
+ ObjectToLoad = ObjCache->getObject(M);
+
+ M->setDataLayout(*TM->getDataLayout());
+
+ // If the cache did not contain a suitable object, compile the object
+ if (!ObjectToLoad) {
+ ObjectToLoad = emitObject(M);
+ assert(ObjectToLoad && "Compilation did not produce an object.");
+ }
+
+ // Load the object into the dynamic linker.
+ // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
+ ErrorOr<std::unique_ptr<object::ObjectFile>> LoadedObject =
+ object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
+ Dyld.loadObject(*LoadedObject.get());
+
+ if (Dyld.hasError())
+ report_fatal_error(Dyld.getErrorString());
+
+ NotifyObjectEmitted(*LoadedObject.get(), *L);
+
+ Buffers.push_back(std::move(ObjectToLoad));
+ LoadedObjects.push_back(std::move(*LoadedObject));
+
+ OwnedModules.markModuleAsLoaded(M);
+}
+
+void MCJIT::finalizeLoadedModules() {
+ MutexGuard locked(lock);
+
+ // Resolve any outstanding relocations.
+ Dyld.resolveRelocations();
+
+ OwnedModules.markAllLoadedModulesAsFinalized();
+
+ // Register EH frame data for any module we own which has been loaded
+ Dyld.registerEHFrames();
+
+ // Set page permissions.
+ MemMgr->finalizeMemory();
+}
+
+// FIXME: Rename this.
+void MCJIT::finalizeObject() {
+ MutexGuard locked(lock);
+
+ // Generate code for module is going to move objects out of the 'added' list,
+ // so we need to copy that out before using it:
+ SmallVector<Module*, 16> ModsToAdd;
+ for (auto M : OwnedModules.added())
+ ModsToAdd.push_back(M);
+
+ for (auto M : ModsToAdd)
+ generateCodeForModule(M);
+
+ finalizeLoadedModules();
+}
+
+void MCJIT::finalizeModule(Module *M) {
+ MutexGuard locked(lock);
+
+ // This must be a module which has already been added to this MCJIT instance.
+ assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
+
+ // If the module hasn't been compiled, just do that.
+ if (!OwnedModules.hasModuleBeenLoaded(M))
+ generateCodeForModule(M);
+
+ finalizeLoadedModules();
+}
+
+RuntimeDyld::SymbolInfo MCJIT::findExistingSymbol(const std::string &Name) {
+ SmallString<128> FullName;
+ Mangler::getNameWithPrefix(FullName, Name, *TM->getDataLayout());
+ return Dyld.getSymbol(FullName);
+}
+
+Module *MCJIT::findModuleForSymbol(const std::string &Name,
+ bool CheckFunctionsOnly) {
+ MutexGuard locked(lock);
+
+ // If it hasn't already been generated, see if it's in one of our modules.
+ for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
+ E = OwnedModules.end_added();
+ I != E; ++I) {
+ Module *M = *I;
+ Function *F = M->getFunction(Name);
+ if (F && !F->isDeclaration())
+ return M;
+ if (!CheckFunctionsOnly) {
+ GlobalVariable *G = M->getGlobalVariable(Name);
+ if (G && !G->isDeclaration())
+ return M;
+ // FIXME: Do we need to worry about global aliases?
+ }
+ }
+ // We didn't find the symbol in any of our modules.
+ return nullptr;
+}
+
+uint64_t MCJIT::getSymbolAddress(const std::string &Name,
+ bool CheckFunctionsOnly) {
+ return findSymbol(Name, CheckFunctionsOnly).getAddress();
+}
+
+RuntimeDyld::SymbolInfo MCJIT::findSymbol(const std::string &Name,
+ bool CheckFunctionsOnly) {
+ MutexGuard locked(lock);
+
+ // First, check to see if we already have this symbol.
+ if (auto Sym = findExistingSymbol(Name))
+ return Sym;
+
+ for (object::OwningBinary<object::Archive> &OB : Archives) {
+ object::Archive *A = OB.getBinary();
+ // Look for our symbols in each Archive
+ object::Archive::child_iterator ChildIt = A->findSym(Name);
+ if (ChildIt != A->child_end()) {
+ // FIXME: Support nested archives?
+ ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
+ ChildIt->getAsBinary();
+ if (ChildBinOrErr.getError())
+ continue;
+ std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
+ if (ChildBin->isObject()) {
+ std::unique_ptr<object::ObjectFile> OF(
+ static_cast<object::ObjectFile *>(ChildBin.release()));
+ // This causes the object file to be loaded.
+ addObjectFile(std::move(OF));
+ // The address should be here now.
+ if (auto Sym = findExistingSymbol(Name))
+ return Sym;
+ }
+ }
+ }
+
+ // If it hasn't already been generated, see if it's in one of our modules.
+ Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
+ if (M) {
+ generateCodeForModule(M);
+
+ // Check the RuntimeDyld table again, it should be there now.
+ return findExistingSymbol(Name);
+ }
+
+ // If a LazyFunctionCreator is installed, use it to get/create the function.
+ // FIXME: Should we instead have a LazySymbolCreator callback?
+ if (LazyFunctionCreator) {
+ auto Addr = static_cast<uint64_t>(
+ reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
+ return RuntimeDyld::SymbolInfo(Addr, JITSymbolFlags::Exported);
+ }
+
+ return nullptr;
+}
+
+uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
+ MutexGuard locked(lock);
+ uint64_t Result = getSymbolAddress(Name, false);
+ if (Result != 0)
+ finalizeLoadedModules();
+ return Result;
+}
+
+uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
+ MutexGuard locked(lock);
+ uint64_t Result = getSymbolAddress(Name, true);
+ if (Result != 0)
+ finalizeLoadedModules();
+ return Result;
+}
+
+// Deprecated. Use getFunctionAddress instead.
+void *MCJIT::getPointerToFunction(Function *F) {
+ MutexGuard locked(lock);
+
+ Mangler Mang;
+ SmallString<128> Name;
+ TM->getNameWithPrefix(Name, F, Mang);
+
+ if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
+ bool AbortOnFailure = !F->hasExternalWeakLinkage();
+ void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
+ updateGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ Module *M = F->getParent();
+ bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
+
+ // Make sure the relevant module has been compiled and loaded.
+ if (HasBeenAddedButNotLoaded)
+ generateCodeForModule(M);
+ else if (!OwnedModules.hasModuleBeenLoaded(M)) {
+ // If this function doesn't belong to one of our modules, we're done.
+ // FIXME: Asking for the pointer to a function that hasn't been registered,
+ // and isn't a declaration (which is handled above) should probably
+ // be an assertion.
+ return nullptr;
+ }
+
+ // FIXME: Should the Dyld be retaining module information? Probably not.
+ //
+ // This is the accessor for the target address, so make sure to check the
+ // load address of the symbol, not the local address.
+ return (void*)Dyld.getSymbol(Name).getAddress();
+}
+
+void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
+ bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
+ for (; I != E; ++I) {
+ ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
+ }
+}
+
+void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
+ // Execute global ctors/dtors for each module in the program.
+ runStaticConstructorsDestructorsInModulePtrSet(
+ isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
+ runStaticConstructorsDestructorsInModulePtrSet(
+ isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
+ runStaticConstructorsDestructorsInModulePtrSet(
+ isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
+}
+
+Function *MCJIT::FindFunctionNamedInModulePtrSet(const char *FnName,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E) {
+ for (; I != E; ++I) {
+ Function *F = (*I)->getFunction(FnName);
+ if (F && !F->isDeclaration())
+ return F;
+ }
+ return nullptr;
+}
+
+GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(const char *Name,
+ bool AllowInternal,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E) {
+ for (; I != E; ++I) {
+ GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
+ if (GV && !GV->isDeclaration())
+ return GV;
+ }
+ return nullptr;
+}
+
+
+Function *MCJIT::FindFunctionNamed(const char *FnName) {
+ Function *F = FindFunctionNamedInModulePtrSet(
+ FnName, OwnedModules.begin_added(), OwnedModules.end_added());
+ if (!F)
+ F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
+ OwnedModules.end_loaded());
+ if (!F)
+ F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
+ OwnedModules.end_finalized());
+ return F;
+}
+
+GlobalVariable *MCJIT::FindGlobalVariableNamed(const char *Name, bool AllowInternal) {
+ GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
+ Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
+ if (!GV)
+ GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
+ OwnedModules.end_loaded());
+ if (!GV)
+ GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
+ OwnedModules.end_finalized());
+ return GV;
+}
+
+GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ FunctionType *FTy = F->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() == ArgValues.size() ||
+ (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
+ "Wrong number of arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
+ switch (ArgValues.size()) {
+ case 3:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy() &&
+ FTy->getParamType(2)->isPointerTy()) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy()) {
+ int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getNumParams() == 1 &&
+ FTy->getParamType(0)->isIntegerTy(32)) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: llvm_unreachable("Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
+ else
+ llvm_unreachable("Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ llvm_unreachable("long double not supported yet");
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ llvm_unreachable("Full-featured argument passing not supported yet!");
+}
+
+void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
+ if (!isSymbolSearchingDisabled()) {
+ void *ptr =
+ reinterpret_cast<void*>(
+ static_cast<uintptr_t>(Resolver.findSymbol(Name).getAddress()));
+ if (ptr)
+ return ptr;
+ }
+
+ /// If a LazyFunctionCreator is installed, use it to get/create the function.
+ if (LazyFunctionCreator)
+ if (void *RP = LazyFunctionCreator(Name))
+ return RP;
+
+ if (AbortOnFailure) {
+ report_fatal_error("Program used external function '"+Name+
+ "' which could not be resolved!");
+ }
+ return nullptr;
+}
+
+void MCJIT::RegisterJITEventListener(JITEventListener *L) {
+ if (!L)
+ return;
+ MutexGuard locked(lock);
+ EventListeners.push_back(L);
+}
+
+void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
+ if (!L)
+ return;
+ MutexGuard locked(lock);
+ auto I = std::find(EventListeners.rbegin(), EventListeners.rend(), L);
+ if (I != EventListeners.rend()) {
+ std::swap(*I, EventListeners.back());
+ EventListeners.pop_back();
+ }
+}
+
+void MCJIT::NotifyObjectEmitted(const object::ObjectFile& Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) {
+ MutexGuard locked(lock);
+ MemMgr->notifyObjectLoaded(this, Obj);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyObjectEmitted(Obj, L);
+ }
+}
+
+void MCJIT::NotifyFreeingObject(const object::ObjectFile& Obj) {
+ MutexGuard locked(lock);
+ for (JITEventListener *L : EventListeners)
+ L->NotifyFreeingObject(Obj);
+}
+
+RuntimeDyld::SymbolInfo
+LinkingSymbolResolver::findSymbol(const std::string &Name) {
+ auto Result = ParentEngine.findSymbol(Name, false);
+ // If the symbols wasn't found and it begins with an underscore, try again
+ // without the underscore.
+ if (!Result && Name[0] == '_')
+ Result = ParentEngine.findSymbol(Name.substr(1), false);
+ if (Result)
+ return Result;
+ if (ParentEngine.isSymbolSearchingDisabled())
+ return nullptr;
+ return ClientResolver->findSymbol(Name);
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
new file mode 100644
index 0000000..a45173c
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
@@ -0,0 +1,340 @@
+//===-- MCJIT.h - Class definition for the MCJIT ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H
+#define LLVM_LIB_EXECUTIONENGINE_MCJIT_MCJIT_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/ObjectCache.h"
+#include "llvm/ExecutionEngine/ObjectMemoryBuffer.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "llvm/IR/Module.h"
+
+namespace llvm {
+class MCJIT;
+
+// This is a helper class that the MCJIT execution engine uses for linking
+// functions across modules that it owns. It aggregates the memory manager
+// that is passed in to the MCJIT constructor and defers most functionality
+// to that object.
+class LinkingSymbolResolver : public RuntimeDyld::SymbolResolver {
+public:
+ LinkingSymbolResolver(MCJIT &Parent,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver)
+ : ParentEngine(Parent), ClientResolver(std::move(Resolver)) {}
+
+ RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override;
+
+ // MCJIT doesn't support logical dylibs.
+ RuntimeDyld::SymbolInfo
+ findSymbolInLogicalDylib(const std::string &Name) override {
+ return nullptr;
+ }
+
+private:
+ MCJIT &ParentEngine;
+ std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver;
+};
+
+// About Module states: added->loaded->finalized.
+//
+// The purpose of the "added" state is having modules in standby. (added=known
+// but not compiled). The idea is that you can add a module to provide function
+// definitions but if nothing in that module is referenced by a module in which
+// a function is executed (note the wording here because it's not exactly the
+// ideal case) then the module never gets compiled. This is sort of lazy
+// compilation.
+//
+// The purpose of the "loaded" state (loaded=compiled and required sections
+// copied into local memory but not yet ready for execution) is to have an
+// intermediate state wherein clients can remap the addresses of sections, using
+// MCJIT::mapSectionAddress, (in preparation for later copying to a new location
+// or an external process) before relocations and page permissions are applied.
+//
+// It might not be obvious at first glance, but the "remote-mcjit" case in the
+// lli tool does this. In that case, the intermediate action is taken by the
+// RemoteMemoryManager in response to the notifyObjectLoaded function being
+// called.
+
+class MCJIT : public ExecutionEngine {
+ MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm,
+ std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver);
+
+ typedef llvm::SmallPtrSet<Module *, 4> ModulePtrSet;
+
+ class OwningModuleContainer {
+ public:
+ OwningModuleContainer() {
+ }
+ ~OwningModuleContainer() {
+ freeModulePtrSet(AddedModules);
+ freeModulePtrSet(LoadedModules);
+ freeModulePtrSet(FinalizedModules);
+ }
+
+ ModulePtrSet::iterator begin_added() { return AddedModules.begin(); }
+ ModulePtrSet::iterator end_added() { return AddedModules.end(); }
+ iterator_range<ModulePtrSet::iterator> added() {
+ return iterator_range<ModulePtrSet::iterator>(begin_added(), end_added());
+ }
+
+ ModulePtrSet::iterator begin_loaded() { return LoadedModules.begin(); }
+ ModulePtrSet::iterator end_loaded() { return LoadedModules.end(); }
+
+ ModulePtrSet::iterator begin_finalized() { return FinalizedModules.begin(); }
+ ModulePtrSet::iterator end_finalized() { return FinalizedModules.end(); }
+
+ void addModule(std::unique_ptr<Module> M) {
+ AddedModules.insert(M.release());
+ }
+
+ bool removeModule(Module *M) {
+ return AddedModules.erase(M) || LoadedModules.erase(M) ||
+ FinalizedModules.erase(M);
+ }
+
+ bool hasModuleBeenAddedButNotLoaded(Module *M) {
+ return AddedModules.count(M) != 0;
+ }
+
+ bool hasModuleBeenLoaded(Module *M) {
+ // If the module is in either the "loaded" or "finalized" sections it
+ // has been loaded.
+ return (LoadedModules.count(M) != 0 ) || (FinalizedModules.count(M) != 0);
+ }
+
+ bool hasModuleBeenFinalized(Module *M) {
+ return FinalizedModules.count(M) != 0;
+ }
+
+ bool ownsModule(Module* M) {
+ return (AddedModules.count(M) != 0) || (LoadedModules.count(M) != 0) ||
+ (FinalizedModules.count(M) != 0);
+ }
+
+ void markModuleAsLoaded(Module *M) {
+ // This checks against logic errors in the MCJIT implementation.
+ // This function should never be called with either a Module that MCJIT
+ // does not own or a Module that has already been loaded and/or finalized.
+ assert(AddedModules.count(M) &&
+ "markModuleAsLoaded: Module not found in AddedModules");
+
+ // Remove the module from the "Added" set.
+ AddedModules.erase(M);
+
+ // Add the Module to the "Loaded" set.
+ LoadedModules.insert(M);
+ }
+
+ void markModuleAsFinalized(Module *M) {
+ // This checks against logic errors in the MCJIT implementation.
+ // This function should never be called with either a Module that MCJIT
+ // does not own, a Module that has not been loaded or a Module that has
+ // already been finalized.
+ assert(LoadedModules.count(M) &&
+ "markModuleAsFinalized: Module not found in LoadedModules");
+
+ // Remove the module from the "Loaded" section of the list.
+ LoadedModules.erase(M);
+
+ // Add the Module to the "Finalized" section of the list by inserting it
+ // before the 'end' iterator.
+ FinalizedModules.insert(M);
+ }
+
+ void markAllLoadedModulesAsFinalized() {
+ for (ModulePtrSet::iterator I = LoadedModules.begin(),
+ E = LoadedModules.end();
+ I != E; ++I) {
+ Module *M = *I;
+ FinalizedModules.insert(M);
+ }
+ LoadedModules.clear();
+ }
+
+ private:
+ ModulePtrSet AddedModules;
+ ModulePtrSet LoadedModules;
+ ModulePtrSet FinalizedModules;
+
+ void freeModulePtrSet(ModulePtrSet& MPS) {
+ // Go through the module set and delete everything.
+ for (ModulePtrSet::iterator I = MPS.begin(), E = MPS.end(); I != E; ++I) {
+ Module *M = *I;
+ delete M;
+ }
+ MPS.clear();
+ }
+ };
+
+ std::unique_ptr<TargetMachine> TM;
+ MCContext *Ctx;
+ std::shared_ptr<MCJITMemoryManager> MemMgr;
+ LinkingSymbolResolver Resolver;
+ RuntimeDyld Dyld;
+ std::vector<JITEventListener*> EventListeners;
+
+ OwningModuleContainer OwnedModules;
+
+ SmallVector<object::OwningBinary<object::Archive>, 2> Archives;
+ SmallVector<std::unique_ptr<MemoryBuffer>, 2> Buffers;
+
+ SmallVector<std::unique_ptr<object::ObjectFile>, 2> LoadedObjects;
+
+ // An optional ObjectCache to be notified of compiled objects and used to
+ // perform lookup of pre-compiled code to avoid re-compilation.
+ ObjectCache *ObjCache;
+
+ Function *FindFunctionNamedInModulePtrSet(const char *FnName,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E);
+
+ GlobalVariable *FindGlobalVariableNamedInModulePtrSet(const char *Name,
+ bool AllowInternal,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E);
+
+ void runStaticConstructorsDestructorsInModulePtrSet(bool isDtors,
+ ModulePtrSet::iterator I,
+ ModulePtrSet::iterator E);
+
+public:
+ ~MCJIT() override;
+
+ /// @name ExecutionEngine interface implementation
+ /// @{
+ void addModule(std::unique_ptr<Module> M) override;
+ void addObjectFile(std::unique_ptr<object::ObjectFile> O) override;
+ void addObjectFile(object::OwningBinary<object::ObjectFile> O) override;
+ void addArchive(object::OwningBinary<object::Archive> O) override;
+ bool removeModule(Module *M) override;
+
+ /// FindFunctionNamed - Search all of the active modules to find the function that
+ /// defines FnName. This is very slow operation and shouldn't be used for
+ /// general code.
+ virtual Function *FindFunctionNamed(const char *FnName) override;
+
+ /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
+ /// that defines Name. This is very slow operation and shouldn't be used for
+ /// general code.
+ virtual GlobalVariable *FindGlobalVariableNamed(const char *Name, bool AllowInternal = false) override;
+
+ /// Sets the object manager that MCJIT should use to avoid compilation.
+ void setObjectCache(ObjectCache *manager) override;
+
+ void setProcessAllSections(bool ProcessAllSections) override {
+ Dyld.setProcessAllSections(ProcessAllSections);
+ }
+
+ void generateCodeForModule(Module *M) override;
+
+ /// finalizeObject - ensure the module is fully processed and is usable.
+ ///
+ /// It is the user-level function for completing the process of making the
+ /// object usable for execution. It should be called after sections within an
+ /// object have been relocated using mapSectionAddress. When this method is
+ /// called the MCJIT execution engine will reapply relocations for a loaded
+ /// object.
+ /// Is it OK to finalize a set of modules, add modules and finalize again.
+ // FIXME: Do we really need both of these?
+ void finalizeObject() override;
+ virtual void finalizeModule(Module *);
+ void finalizeLoadedModules();
+
+ /// runStaticConstructorsDestructors - This method is used to execute all of
+ /// the static constructors or destructors for a program.
+ ///
+ /// \param isDtors - Run the destructors instead of constructors.
+ void runStaticConstructorsDestructors(bool isDtors) override;
+
+ void *getPointerToFunction(Function *F) override;
+
+ GenericValue runFunction(Function *F,
+ ArrayRef<GenericValue> ArgValues) override;
+
+ /// getPointerToNamedFunction - This method returns the address of the
+ /// specified function by using the dlsym function call. As such it is only
+ /// useful for resolving library symbols, not code generated symbols.
+ ///
+ /// If AbortOnFailure is false and no function with the given name is
+ /// found, this function silently returns a null pointer. Otherwise,
+ /// it prints a message to stderr and aborts.
+ ///
+ void *getPointerToNamedFunction(StringRef Name,
+ bool AbortOnFailure = true) override;
+
+ /// mapSectionAddress - map a section to its target address space value.
+ /// Map the address of a JIT section as returned from the memory manager
+ /// to the address in the target process as the running code will see it.
+ /// This is the address which will be used for relocation resolution.
+ void mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) override {
+ Dyld.mapSectionAddress(LocalAddress, TargetAddress);
+ }
+ void RegisterJITEventListener(JITEventListener *L) override;
+ void UnregisterJITEventListener(JITEventListener *L) override;
+
+ // If successful, these function will implicitly finalize all loaded objects.
+ // To get a function address within MCJIT without causing a finalize, use
+ // getSymbolAddress.
+ uint64_t getGlobalValueAddress(const std::string &Name) override;
+ uint64_t getFunctionAddress(const std::string &Name) override;
+
+ TargetMachine *getTargetMachine() override { return TM.get(); }
+
+ /// @}
+ /// @name (Private) Registration Interfaces
+ /// @{
+
+ static void Register() {
+ MCJITCtor = createJIT;
+ }
+
+ static ExecutionEngine*
+ createJIT(std::unique_ptr<Module> M,
+ std::string *ErrorStr,
+ std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
+ std::unique_ptr<TargetMachine> TM);
+
+ // @}
+
+ RuntimeDyld::SymbolInfo findSymbol(const std::string &Name,
+ bool CheckFunctionsOnly);
+ // DEPRECATED - Please use findSymbol instead.
+ // This is not directly exposed via the ExecutionEngine API, but it is
+ // used by the LinkingMemoryManager.
+ uint64_t getSymbolAddress(const std::string &Name,
+ bool CheckFunctionsOnly);
+
+protected:
+ /// emitObject -- Generate a JITed object in memory from the specified module
+ /// Currently, MCJIT only supports a single module and the module passed to
+ /// this function call is expected to be the contained module. The module
+ /// is passed as a parameter here to prepare for multiple module support in
+ /// the future.
+ std::unique_ptr<MemoryBuffer> emitObject(Module *M);
+
+ void NotifyObjectEmitted(const object::ObjectFile& Obj,
+ const RuntimeDyld::LoadedObjectInfo &L);
+ void NotifyFreeingObject(const object::ObjectFile& Obj);
+
+ RuntimeDyld::SymbolInfo findExistingSymbol(const std::string &Name);
+ Module *findModuleForSymbol(const std::string &Name,
+ bool CheckFunctionsOnly);
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h b/contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h
new file mode 100644
index 0000000..92310f3
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/ObjectBuffer.h
@@ -0,0 +1,48 @@
+//===--- ObjectBuffer.h - Utility class to wrap object memory ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares a wrapper class to hold the memory into which an
+// object will be generated.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
+#define LLVM_EXECUTIONENGINE_OBJECTBUFFER_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+
+namespace llvm {
+
+class ObjectMemoryBuffer : public MemoryBuffer {
+public:
+ template <unsigned N>
+ ObjectMemoryBuffer(SmallVector<char, N> SV)
+ : SV(SV), BufferName("<in-memory object>") {
+ init(this->SV.begin(), this->SV.end(), false);
+ }
+
+ template <unsigned N>
+ ObjectMemoryBuffer(SmallVector<char, N> SV, StringRef Name)
+ : SV(SV), BufferName(Name) {
+ init(this->SV.begin(), this->SV.end(), false);
+ }
+ const char* getBufferIdentifier() const override { return BufferName.c_str(); }
+
+ BufferKind getBufferKind() const override { return MemoryBuffer_Malloc; }
+
+private:
+ SmallVector<char, 4096> SV;
+ std::string BufferName;
+};
+
+} // namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp
new file mode 100644
index 0000000..b720338
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp
@@ -0,0 +1,153 @@
+//===-- OProfileJITEventListener.cpp - Tell OProfile about JITted code ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITEventListener object that uses OProfileWrapper to tell
+// oprofile about JITted functions, including source line information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/OProfileWrapper.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/SymbolSize.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Errno.h"
+#include "llvm/Support/raw_ostream.h"
+#include <dirent.h>
+#include <fcntl.h>
+
+using namespace llvm;
+using namespace llvm::object;
+
+#define DEBUG_TYPE "oprofile-jit-event-listener"
+
+namespace {
+
+class OProfileJITEventListener : public JITEventListener {
+ std::unique_ptr<OProfileWrapper> Wrapper;
+
+ void initialize();
+ std::map<const char*, OwningBinary<ObjectFile>> DebugObjects;
+
+public:
+ OProfileJITEventListener(std::unique_ptr<OProfileWrapper> LibraryWrapper)
+ : Wrapper(std::move(LibraryWrapper)) {
+ initialize();
+ }
+
+ ~OProfileJITEventListener();
+
+ void NotifyObjectEmitted(const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) override;
+
+ void NotifyFreeingObject(const ObjectFile &Obj) override;
+};
+
+void OProfileJITEventListener::initialize() {
+ if (!Wrapper->op_open_agent()) {
+ const std::string err_str = sys::StrError();
+ DEBUG(dbgs() << "Failed to connect to OProfile agent: " << err_str << "\n");
+ } else {
+ DEBUG(dbgs() << "Connected to OProfile agent.\n");
+ }
+}
+
+OProfileJITEventListener::~OProfileJITEventListener() {
+ if (Wrapper->isAgentAvailable()) {
+ if (Wrapper->op_close_agent() == -1) {
+ const std::string err_str = sys::StrError();
+ DEBUG(dbgs() << "Failed to disconnect from OProfile agent: "
+ << err_str << "\n");
+ } else {
+ DEBUG(dbgs() << "Disconnected from OProfile agent.\n");
+ }
+ }
+}
+
+void OProfileJITEventListener::NotifyObjectEmitted(
+ const ObjectFile &Obj,
+ const RuntimeDyld::LoadedObjectInfo &L) {
+ if (!Wrapper->isAgentAvailable()) {
+ return;
+ }
+
+ OwningBinary<ObjectFile> DebugObjOwner = L.getObjectForDebug(Obj);
+ const ObjectFile &DebugObj = *DebugObjOwner.getBinary();
+
+ // Use symbol info to iterate functions in the object.
+ for (const std::pair<SymbolRef, uint64_t> &P : computeSymbolSizes(DebugObj)) {
+ SymbolRef Sym = P.first;
+ if (Sym.getType() == SymbolRef::ST_Function) {
+ StringRef Name;
+ uint64_t Addr;
+ if (Sym.getName(Name))
+ continue;
+ if (Sym.getAddress(Addr))
+ continue;
+ uint64_t Size = P.second;
+
+ if (Wrapper->op_write_native_code(Name.data(), Addr, (void*)Addr, Size)
+ == -1) {
+ DEBUG(dbgs() << "Failed to tell OProfile about native function "
+ << Name << " at ["
+ << (void*)Addr << "-" << ((char*)Addr + Size) << "]\n");
+ continue;
+ }
+ // TODO: support line number info (similar to IntelJITEventListener.cpp)
+ }
+ }
+
+ DebugObjects[Obj.getData().data()] = std::move(DebugObjOwner);
+}
+
+void OProfileJITEventListener::NotifyFreeingObject(const ObjectFile &Obj) {
+ if (Wrapper->isAgentAvailable()) {
+
+ // If there was no agent registered when the original object was loaded then
+ // we won't have created a debug object for it, so bail out.
+ if (DebugObjects.find(Obj.getData().data()) == DebugObjects.end())
+ return;
+
+ const ObjectFile &DebugObj = *DebugObjects[Obj.getData().data()].getBinary();
+
+ // Use symbol info to iterate functions in the object.
+ for (symbol_iterator I = DebugObj.symbol_begin(),
+ E = DebugObj.symbol_end();
+ I != E; ++I) {
+ if (I->getType() == SymbolRef::ST_Function) {
+ uint64_t Addr;
+ if (I->getAddress(Addr)) continue;
+
+ if (Wrapper->op_unload_native_code(Addr) == -1) {
+ DEBUG(dbgs()
+ << "Failed to tell OProfile about unload of native function at "
+ << (void*)Addr << "\n");
+ continue;
+ }
+ }
+ }
+ }
+
+ DebugObjects.erase(Obj.getData().data());
+}
+
+} // anonymous namespace.
+
+namespace llvm {
+JITEventListener *JITEventListener::createOProfileJITEventListener() {
+ return new OProfileJITEventListener(llvm::make_unique<OProfileWrapper>());
+}
+
+} // namespace llvm
+
diff --git a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp
new file mode 100644
index 0000000..04edbd2
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp
@@ -0,0 +1,268 @@
+//===-- OProfileWrapper.cpp - OProfile JIT API Wrapper implementation -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interface in OProfileWrapper.h. It is responsible
+// for loading the opagent dynamic library when the first call to an op_
+// function occurs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/OProfileWrapper.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cstring>
+#include <dirent.h>
+#include <fcntl.h>
+#include <sstream>
+#include <stddef.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#define DEBUG_TYPE "oprofile-wrapper"
+
+namespace {
+
+// Global mutex to ensure a single thread initializes oprofile agent.
+llvm::sys::Mutex OProfileInitializationMutex;
+
+} // anonymous namespace
+
+namespace llvm {
+
+OProfileWrapper::OProfileWrapper()
+: Agent(0),
+ OpenAgentFunc(0),
+ CloseAgentFunc(0),
+ WriteNativeCodeFunc(0),
+ WriteDebugLineInfoFunc(0),
+ UnloadNativeCodeFunc(0),
+ MajorVersionFunc(0),
+ MinorVersionFunc(0),
+ IsOProfileRunningFunc(0),
+ Initialized(false) {
+}
+
+bool OProfileWrapper::initialize() {
+ using namespace llvm;
+ using namespace llvm::sys;
+
+ MutexGuard Guard(OProfileInitializationMutex);
+
+ if (Initialized)
+ return OpenAgentFunc != 0;
+
+ Initialized = true;
+
+ // If the oprofile daemon is not running, don't load the opagent library
+ if (!isOProfileRunning()) {
+ DEBUG(dbgs() << "OProfile daemon is not detected.\n");
+ return false;
+ }
+
+ std::string error;
+ if(!DynamicLibrary::LoadLibraryPermanently("libopagent.so", &error)) {
+ DEBUG(dbgs()
+ << "OProfile connector library libopagent.so could not be loaded: "
+ << error << "\n");
+ }
+
+ // Get the addresses of the opagent functions
+ OpenAgentFunc = (op_open_agent_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_open_agent");
+ CloseAgentFunc = (op_close_agent_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_close_agent");
+ WriteNativeCodeFunc = (op_write_native_code_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_write_native_code");
+ WriteDebugLineInfoFunc = (op_write_debug_line_info_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_write_debug_line_info");
+ UnloadNativeCodeFunc = (op_unload_native_code_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_unload_native_code");
+ MajorVersionFunc = (op_major_version_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_major_version");
+ MinorVersionFunc = (op_major_version_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_minor_version");
+
+ // With missing functions, we can do nothing
+ if (!OpenAgentFunc
+ || !CloseAgentFunc
+ || !WriteNativeCodeFunc
+ || !WriteDebugLineInfoFunc
+ || !UnloadNativeCodeFunc) {
+ OpenAgentFunc = 0;
+ CloseAgentFunc = 0;
+ WriteNativeCodeFunc = 0;
+ WriteDebugLineInfoFunc = 0;
+ UnloadNativeCodeFunc = 0;
+ return false;
+ }
+
+ return true;
+}
+
+bool OProfileWrapper::isOProfileRunning() {
+ if (IsOProfileRunningFunc != 0)
+ return IsOProfileRunningFunc();
+ return checkForOProfileProcEntry();
+}
+
+bool OProfileWrapper::checkForOProfileProcEntry() {
+ DIR* ProcDir;
+
+ ProcDir = opendir("/proc");
+ if (!ProcDir)
+ return false;
+
+ // Walk the /proc tree looking for the oprofile daemon
+ struct dirent* Entry;
+ while (0 != (Entry = readdir(ProcDir))) {
+ if (Entry->d_type == DT_DIR) {
+ // Build a path from the current entry name
+ SmallString<256> CmdLineFName;
+ raw_svector_ostream(CmdLineFName) << "/proc/" << Entry->d_name
+ << "/cmdline";
+
+ // Open the cmdline file
+ int CmdLineFD = open(CmdLineFName.c_str(), S_IRUSR);
+ if (CmdLineFD != -1) {
+ char ExeName[PATH_MAX+1];
+ char* BaseName = 0;
+
+ // Read the cmdline file
+ ssize_t NumRead = read(CmdLineFD, ExeName, PATH_MAX+1);
+ close(CmdLineFD);
+ ssize_t Idx = 0;
+
+ if (ExeName[0] != '/') {
+ BaseName = ExeName;
+ }
+
+ // Find the terminator for the first string
+ while (Idx < NumRead-1 && ExeName[Idx] != 0) {
+ Idx++;
+ }
+
+ // Go back to the last non-null character
+ Idx--;
+
+ // Find the last path separator in the first string
+ while (Idx > 0) {
+ if (ExeName[Idx] == '/') {
+ BaseName = ExeName + Idx + 1;
+ break;
+ }
+ Idx--;
+ }
+
+ // Test this to see if it is the oprofile daemon
+ if (BaseName != 0 && (!strcmp("oprofiled", BaseName) ||
+ !strcmp("operf", BaseName))) {
+ // If it is, we're done
+ closedir(ProcDir);
+ return true;
+ }
+ }
+ }
+ }
+
+ // We've looked through all the files and didn't find the daemon
+ closedir(ProcDir);
+ return false;
+}
+
+bool OProfileWrapper::op_open_agent() {
+ if (!Initialized)
+ initialize();
+
+ if (OpenAgentFunc != 0) {
+ Agent = OpenAgentFunc();
+ return Agent != 0;
+ }
+
+ return false;
+}
+
+int OProfileWrapper::op_close_agent() {
+ if (!Initialized)
+ initialize();
+
+ int ret = -1;
+ if (Agent && CloseAgentFunc) {
+ ret = CloseAgentFunc(Agent);
+ if (ret == 0) {
+ Agent = 0;
+ }
+ }
+ return ret;
+}
+
+bool OProfileWrapper::isAgentAvailable() {
+ return Agent != 0;
+}
+
+int OProfileWrapper::op_write_native_code(const char* Name,
+ uint64_t Addr,
+ void const* Code,
+ const unsigned int Size) {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && WriteNativeCodeFunc)
+ return WriteNativeCodeFunc(Agent, Name, Addr, Code, Size);
+
+ return -1;
+}
+
+int OProfileWrapper::op_write_debug_line_info(
+ void const* Code,
+ size_t NumEntries,
+ struct debug_line_info const* Info) {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && WriteDebugLineInfoFunc)
+ return WriteDebugLineInfoFunc(Agent, Code, NumEntries, Info);
+
+ return -1;
+}
+
+int OProfileWrapper::op_major_version() {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && MajorVersionFunc)
+ return MajorVersionFunc();
+
+ return -1;
+}
+
+int OProfileWrapper::op_minor_version() {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && MinorVersionFunc)
+ return MinorVersionFunc();
+
+ return -1;
+}
+
+int OProfileWrapper::op_unload_native_code(uint64_t Addr) {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && UnloadNativeCodeFunc)
+ return UnloadNativeCodeFunc(Agent, Addr);
+
+ return -1;
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/Orc/ExecutionUtils.cpp b/contrib/llvm/lib/ExecutionEngine/Orc/ExecutionUtils.cpp
new file mode 100644
index 0000000..b7220db
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Orc/ExecutionUtils.cpp
@@ -0,0 +1,102 @@
+//===---- ExecutionUtils.cpp - Utilities for executing functions in Orc ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
+
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+
+namespace llvm {
+namespace orc {
+
+CtorDtorIterator::CtorDtorIterator(const GlobalVariable *GV, bool End)
+ : InitList(
+ GV ? dyn_cast_or_null<ConstantArray>(GV->getInitializer()) : nullptr),
+ I((InitList && End) ? InitList->getNumOperands() : 0) {
+}
+
+bool CtorDtorIterator::operator==(const CtorDtorIterator &Other) const {
+ assert(InitList == Other.InitList && "Incomparable iterators.");
+ return I == Other.I;
+}
+
+bool CtorDtorIterator::operator!=(const CtorDtorIterator &Other) const {
+ return !(*this == Other);
+}
+
+CtorDtorIterator& CtorDtorIterator::operator++() {
+ ++I;
+ return *this;
+}
+
+CtorDtorIterator CtorDtorIterator::operator++(int) {
+ CtorDtorIterator Temp = *this;
+ ++I;
+ return Temp;
+}
+
+CtorDtorIterator::Element CtorDtorIterator::operator*() const {
+ ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(I));
+ assert(CS && "Unrecognized type in llvm.global_ctors/llvm.global_dtors");
+
+ Constant *FuncC = CS->getOperand(1);
+ Function *Func = nullptr;
+
+ // Extract function pointer, pulling off any casts.
+ while (FuncC) {
+ if (Function *F = dyn_cast_or_null<Function>(FuncC)) {
+ Func = F;
+ break;
+ } else if (ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(FuncC)) {
+ if (CE->isCast())
+ FuncC = dyn_cast_or_null<ConstantExpr>(CE->getOperand(0));
+ else
+ break;
+ } else {
+ // This isn't anything we recognize. Bail out with Func left set to null.
+ break;
+ }
+ }
+
+ ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
+ Value *Data = CS->getOperand(2);
+ return Element(Priority->getZExtValue(), Func, Data);
+}
+
+iterator_range<CtorDtorIterator> getConstructors(const Module &M) {
+ const GlobalVariable *CtorsList = M.getNamedGlobal("llvm.global_ctors");
+ return make_range(CtorDtorIterator(CtorsList, false),
+ CtorDtorIterator(CtorsList, true));
+}
+
+iterator_range<CtorDtorIterator> getDestructors(const Module &M) {
+ const GlobalVariable *DtorsList = M.getNamedGlobal("llvm.global_dtors");
+ return make_range(CtorDtorIterator(DtorsList, false),
+ CtorDtorIterator(DtorsList, true));
+}
+
+void LocalCXXRuntimeOverrides::runDestructors() {
+ auto& CXXDestructorDataPairs = DSOHandleOverride;
+ for (auto &P : CXXDestructorDataPairs)
+ P.first(P.second);
+ CXXDestructorDataPairs.clear();
+}
+
+int LocalCXXRuntimeOverrides::CXAAtExitOverride(DestructorPtr Destructor,
+ void *Arg, void *DSOHandle) {
+ auto& CXXDestructorDataPairs =
+ *reinterpret_cast<CXXDestructorDataPairList*>(DSOHandle);
+ CXXDestructorDataPairs.push_back(std::make_pair(Destructor, Arg));
+ return 0;
+}
+
+} // End namespace orc.
+} // End namespace llvm.
diff --git a/contrib/llvm/lib/ExecutionEngine/Orc/IndirectionUtils.cpp b/contrib/llvm/lib/ExecutionEngine/Orc/IndirectionUtils.cpp
new file mode 100644
index 0000000..b439810
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Orc/IndirectionUtils.cpp
@@ -0,0 +1,181 @@
+//===---- IndirectionUtils.cpp - Utilities for call indirection in Orc ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <set>
+#include <sstream>
+
+namespace llvm {
+namespace orc {
+
+Constant* createIRTypedAddress(FunctionType &FT, TargetAddress Addr) {
+ Constant *AddrIntVal =
+ ConstantInt::get(Type::getInt64Ty(FT.getContext()), Addr);
+ Constant *AddrPtrVal =
+ ConstantExpr::getCast(Instruction::IntToPtr, AddrIntVal,
+ PointerType::get(&FT, 0));
+ return AddrPtrVal;
+}
+
+GlobalVariable* createImplPointer(PointerType &PT, Module &M,
+ const Twine &Name, Constant *Initializer) {
+ auto IP = new GlobalVariable(M, &PT, false, GlobalValue::ExternalLinkage,
+ Initializer, Name, nullptr,
+ GlobalValue::NotThreadLocal, 0, true);
+ IP->setVisibility(GlobalValue::HiddenVisibility);
+ return IP;
+}
+
+void makeStub(Function &F, GlobalVariable &ImplPointer) {
+ assert(F.isDeclaration() && "Can't turn a definition into a stub.");
+ assert(F.getParent() && "Function isn't in a module.");
+ Module &M = *F.getParent();
+ BasicBlock *EntryBlock = BasicBlock::Create(M.getContext(), "entry", &F);
+ IRBuilder<> Builder(EntryBlock);
+ LoadInst *ImplAddr = Builder.CreateLoad(&ImplPointer);
+ std::vector<Value*> CallArgs;
+ for (auto &A : F.args())
+ CallArgs.push_back(&A);
+ CallInst *Call = Builder.CreateCall(ImplAddr, CallArgs);
+ Call->setTailCall();
+ Call->setAttributes(F.getAttributes());
+ if (F.getReturnType()->isVoidTy())
+ Builder.CreateRetVoid();
+ else
+ Builder.CreateRet(Call);
+}
+
+// Utility class for renaming global values and functions during partitioning.
+class GlobalRenamer {
+public:
+
+ static bool needsRenaming(const Value &New) {
+ if (!New.hasName() || New.getName().startswith("\01L"))
+ return true;
+ return false;
+ }
+
+ const std::string& getRename(const Value &Orig) {
+ // See if we have a name for this global.
+ {
+ auto I = Names.find(&Orig);
+ if (I != Names.end())
+ return I->second;
+ }
+
+ // Nope. Create a new one.
+ // FIXME: Use a more robust uniquing scheme. (This may blow up if the user
+ // writes a "__orc_anon[[:digit:]]* method).
+ unsigned ID = Names.size();
+ std::ostringstream NameStream;
+ NameStream << "__orc_anon" << ID++;
+ auto I = Names.insert(std::make_pair(&Orig, NameStream.str()));
+ return I.first->second;
+ }
+private:
+ DenseMap<const Value*, std::string> Names;
+};
+
+static void raiseVisibilityOnValue(GlobalValue &V, GlobalRenamer &R) {
+ if (V.hasLocalLinkage()) {
+ if (R.needsRenaming(V))
+ V.setName(R.getRename(V));
+ V.setLinkage(GlobalValue::ExternalLinkage);
+ V.setVisibility(GlobalValue::HiddenVisibility);
+ }
+ V.setUnnamedAddr(false);
+ assert(!R.needsRenaming(V) && "Invalid global name.");
+}
+
+void makeAllSymbolsExternallyAccessible(Module &M) {
+ GlobalRenamer Renamer;
+
+ for (auto &F : M)
+ raiseVisibilityOnValue(F, Renamer);
+
+ for (auto &GV : M.globals())
+ raiseVisibilityOnValue(GV, Renamer);
+}
+
+Function* cloneFunctionDecl(Module &Dst, const Function &F,
+ ValueToValueMapTy *VMap) {
+ assert(F.getParent() != &Dst && "Can't copy decl over existing function.");
+ Function *NewF =
+ Function::Create(cast<FunctionType>(F.getType()->getElementType()),
+ F.getLinkage(), F.getName(), &Dst);
+ NewF->copyAttributesFrom(&F);
+
+ if (VMap) {
+ (*VMap)[&F] = NewF;
+ auto NewArgI = NewF->arg_begin();
+ for (auto ArgI = F.arg_begin(), ArgE = F.arg_end(); ArgI != ArgE;
+ ++ArgI, ++NewArgI)
+ (*VMap)[ArgI] = NewArgI;
+ }
+
+ return NewF;
+}
+
+void moveFunctionBody(Function &OrigF, ValueToValueMapTy &VMap,
+ ValueMaterializer *Materializer,
+ Function *NewF) {
+ assert(!OrigF.isDeclaration() && "Nothing to move");
+ if (!NewF)
+ NewF = cast<Function>(VMap[&OrigF]);
+ else
+ assert(VMap[&OrigF] == NewF && "Incorrect function mapping in VMap.");
+ assert(NewF && "Function mapping missing from VMap.");
+ assert(NewF->getParent() != OrigF.getParent() &&
+ "moveFunctionBody should only be used to move bodies between "
+ "modules.");
+
+ SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
+ CloneFunctionInto(NewF, &OrigF, VMap, /*ModuleLevelChanges=*/true, Returns,
+ "", nullptr, nullptr, Materializer);
+ OrigF.deleteBody();
+}
+
+GlobalVariable* cloneGlobalVariableDecl(Module &Dst, const GlobalVariable &GV,
+ ValueToValueMapTy *VMap) {
+ assert(GV.getParent() != &Dst && "Can't copy decl over existing global var.");
+ GlobalVariable *NewGV = new GlobalVariable(
+ Dst, GV.getType()->getElementType(), GV.isConstant(),
+ GV.getLinkage(), nullptr, GV.getName(), nullptr,
+ GV.getThreadLocalMode(), GV.getType()->getAddressSpace());
+ NewGV->copyAttributesFrom(&GV);
+ if (VMap)
+ (*VMap)[&GV] = NewGV;
+ return NewGV;
+}
+
+void moveGlobalVariableInitializer(GlobalVariable &OrigGV,
+ ValueToValueMapTy &VMap,
+ ValueMaterializer *Materializer,
+ GlobalVariable *NewGV) {
+ assert(OrigGV.hasInitializer() && "Nothing to move");
+ if (!NewGV)
+ NewGV = cast<GlobalVariable>(VMap[&OrigGV]);
+ else
+ assert(VMap[&OrigGV] == NewGV &&
+ "Incorrect global variable mapping in VMap.");
+ assert(NewGV->getParent() != OrigGV.getParent() &&
+ "moveGlobalVariable should only be used to move initializers between "
+ "modules");
+
+ NewGV->setInitializer(MapValue(OrigGV.getInitializer(), VMap, RF_None,
+ nullptr, Materializer));
+}
+
+} // End namespace orc.
+} // End namespace llvm.
diff --git a/contrib/llvm/lib/ExecutionEngine/Orc/NullResolver.cpp b/contrib/llvm/lib/ExecutionEngine/Orc/NullResolver.cpp
new file mode 100644
index 0000000..57666a9
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Orc/NullResolver.cpp
@@ -0,0 +1,27 @@
+//===---------- NullResolver.cpp - Reject symbol lookup requests ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/Orc/NullResolver.h"
+
+#include "llvm/Support/ErrorHandling.h"
+
+namespace llvm {
+namespace orc {
+
+RuntimeDyld::SymbolInfo NullResolver::findSymbol(const std::string &Name) {
+ llvm_unreachable("Unexpected cross-object symbol reference");
+}
+
+RuntimeDyld::SymbolInfo
+NullResolver::findSymbolInLogicalDylib(const std::string &Name) {
+ llvm_unreachable("Unexpected cross-object symbol reference");
+}
+
+} // End namespace orc.
+} // End namespace llvm.
diff --git a/contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.cpp b/contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.cpp
new file mode 100644
index 0000000..b7a68e0
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.cpp
@@ -0,0 +1,128 @@
+//===-------- OrcMCJITReplacement.cpp - Orc-based MCJIT replacement -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "OrcMCJITReplacement.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+
+namespace {
+
+static struct RegisterJIT {
+ RegisterJIT() { llvm::orc::OrcMCJITReplacement::Register(); }
+} JITRegistrator;
+
+}
+
+extern "C" void LLVMLinkInOrcMCJITReplacement() {}
+
+namespace llvm {
+namespace orc {
+
+GenericValue
+OrcMCJITReplacement::runFunction(Function *F,
+ ArrayRef<GenericValue> ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ FunctionType *FTy = F->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() == ArgValues.size() ||
+ (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
+ "Wrong number of arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
+ switch (ArgValues.size()) {
+ case 3:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy() &&
+ FTy->getParamType(2)->isPointerTy()) {
+ int (*PF)(int, char **, const char **) =
+ (int (*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy()) {
+ int (*PF)(int, char **) = (int (*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getNumParams() == 1 && FTy->getParamType(0)->isIntegerTy(32)) {
+ GenericValue rv;
+ int (*PF)(int) = (int (*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default:
+ llvm_unreachable("Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool (*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char (*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short (*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int (*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t (*)())(intptr_t)FPtr)());
+ else
+ llvm_unreachable("Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int (*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float (*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double (*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ llvm_unreachable("long double not supported yet");
+ case Type::PointerTyID:
+ return PTOGV(((void *(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ llvm_unreachable("Full-featured argument passing not supported yet!");
+}
+
+} // End namespace orc.
+} // End namespace llvm.
diff --git a/contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.h b/contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.h
new file mode 100644
index 0000000..7dc5164
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Orc/OrcMCJITReplacement.h
@@ -0,0 +1,355 @@
+//===---- OrcMCJITReplacement.h - Orc based MCJIT replacement ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Orc based MCJIT replacement.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
+#define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
+#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
+#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
+#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
+#include "llvm/Object/Archive.h"
+
+namespace llvm {
+namespace orc {
+
+class OrcMCJITReplacement : public ExecutionEngine {
+
+ // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that
+ // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are
+ // expecting - see finalizeMemory.
+ class MCJITReplacementMemMgr : public MCJITMemoryManager {
+ public:
+ MCJITReplacementMemMgr(OrcMCJITReplacement &M,
+ std::shared_ptr<MCJITMemoryManager> ClientMM)
+ : M(M), ClientMM(std::move(ClientMM)) {}
+
+ uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID,
+ StringRef SectionName) override {
+ uint8_t *Addr =
+ ClientMM->allocateCodeSection(Size, Alignment, SectionID,
+ SectionName);
+ M.SectionsAllocatedSinceLastLoad.insert(Addr);
+ return Addr;
+ }
+
+ uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID, StringRef SectionName,
+ bool IsReadOnly) override {
+ uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID,
+ SectionName, IsReadOnly);
+ M.SectionsAllocatedSinceLastLoad.insert(Addr);
+ return Addr;
+ }
+
+ void reserveAllocationSpace(uintptr_t CodeSize, uintptr_t DataSizeRO,
+ uintptr_t DataSizeRW) override {
+ return ClientMM->reserveAllocationSpace(CodeSize, DataSizeRO,
+ DataSizeRW);
+ }
+
+ bool needsToReserveAllocationSpace() override {
+ return ClientMM->needsToReserveAllocationSpace();
+ }
+
+ void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
+ size_t Size) override {
+ return ClientMM->registerEHFrames(Addr, LoadAddr, Size);
+ }
+
+ void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr,
+ size_t Size) override {
+ return ClientMM->deregisterEHFrames(Addr, LoadAddr, Size);
+ }
+
+ void notifyObjectLoaded(ExecutionEngine *EE,
+ const object::ObjectFile &O) override {
+ return ClientMM->notifyObjectLoaded(EE, O);
+ }
+
+ bool finalizeMemory(std::string *ErrMsg = nullptr) override {
+ // Each set of objects loaded will be finalized exactly once, but since
+ // symbol lookup during relocation may recursively trigger the
+ // loading/relocation of other modules, and since we're forwarding all
+ // finalizeMemory calls to a single underlying memory manager, we need to
+ // defer forwarding the call on until all necessary objects have been
+ // loaded. Otherwise, during the relocation of a leaf object, we will end
+ // up finalizing memory, causing a crash further up the stack when we
+ // attempt to apply relocations to finalized memory.
+ // To avoid finalizing too early, look at how many objects have been
+ // loaded but not yet finalized. This is a bit of a hack that relies on
+ // the fact that we're lazily emitting object files: The only way you can
+ // get more than one set of objects loaded but not yet finalized is if
+ // they were loaded during relocation of another set.
+ if (M.UnfinalizedSections.size() == 1)
+ return ClientMM->finalizeMemory(ErrMsg);
+ return false;
+ }
+
+ private:
+ OrcMCJITReplacement &M;
+ std::shared_ptr<MCJITMemoryManager> ClientMM;
+ };
+
+ class LinkingResolver : public RuntimeDyld::SymbolResolver {
+ public:
+ LinkingResolver(OrcMCJITReplacement &M) : M(M) {}
+
+ RuntimeDyld::SymbolInfo findSymbol(const std::string &Name) override {
+ return M.findMangledSymbol(Name);
+ }
+
+ RuntimeDyld::SymbolInfo
+ findSymbolInLogicalDylib(const std::string &Name) override {
+ return M.ClientResolver->findSymbolInLogicalDylib(Name);
+ }
+
+ private:
+ OrcMCJITReplacement &M;
+ };
+
+private:
+
+ static ExecutionEngine *
+ createOrcMCJITReplacement(std::string *ErrorMsg,
+ std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
+ std::unique_ptr<TargetMachine> TM) {
+ return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver),
+ std::move(TM));
+ }
+
+public:
+ static void Register() {
+ OrcMCJITReplacementCtor = createOrcMCJITReplacement;
+ }
+
+ OrcMCJITReplacement(
+ std::shared_ptr<MCJITMemoryManager> MemMgr,
+ std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver,
+ std::unique_ptr<TargetMachine> TM)
+ : TM(std::move(TM)), MemMgr(*this, std::move(MemMgr)),
+ Resolver(*this), ClientResolver(std::move(ClientResolver)),
+ NotifyObjectLoaded(*this), NotifyFinalized(*this),
+ ObjectLayer(NotifyObjectLoaded, NotifyFinalized),
+ CompileLayer(ObjectLayer, SimpleCompiler(*this->TM)),
+ LazyEmitLayer(CompileLayer) {
+ setDataLayout(this->TM->getDataLayout());
+ }
+
+ void addModule(std::unique_ptr<Module> M) override {
+
+ // If this module doesn't have a DataLayout attached then attach the
+ // default.
+ if (M->getDataLayout().isDefault())
+ M->setDataLayout(*getDataLayout());
+
+ Modules.push_back(std::move(M));
+ std::vector<Module *> Ms;
+ Ms.push_back(&*Modules.back());
+ LazyEmitLayer.addModuleSet(std::move(Ms), &MemMgr, &Resolver);
+ }
+
+ void addObjectFile(std::unique_ptr<object::ObjectFile> O) override {
+ std::vector<std::unique_ptr<object::ObjectFile>> Objs;
+ Objs.push_back(std::move(O));
+ ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
+ }
+
+ void addObjectFile(object::OwningBinary<object::ObjectFile> O) override {
+ std::unique_ptr<object::ObjectFile> Obj;
+ std::unique_ptr<MemoryBuffer> Buf;
+ std::tie(Obj, Buf) = O.takeBinary();
+ std::vector<std::unique_ptr<object::ObjectFile>> Objs;
+ Objs.push_back(std::move(Obj));
+ auto H =
+ ObjectLayer.addObjectSet(std::move(Objs), &MemMgr, &Resolver);
+
+ std::vector<std::unique_ptr<MemoryBuffer>> Bufs;
+ Bufs.push_back(std::move(Buf));
+ ObjectLayer.takeOwnershipOfBuffers(H, std::move(Bufs));
+ }
+
+ void addArchive(object::OwningBinary<object::Archive> A) override {
+ Archives.push_back(std::move(A));
+ }
+
+ uint64_t getSymbolAddress(StringRef Name) {
+ return findSymbol(Name).getAddress();
+ }
+
+ RuntimeDyld::SymbolInfo findSymbol(StringRef Name) {
+ return findMangledSymbol(Mangle(Name));
+ }
+
+ void finalizeObject() override {
+ // This is deprecated - Aim to remove in ExecutionEngine.
+ // REMOVE IF POSSIBLE - Doesn't make sense for New JIT.
+ }
+
+ void mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) override {
+ for (auto &P : UnfinalizedSections)
+ if (P.second.count(LocalAddress))
+ ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress);
+ }
+
+ uint64_t getGlobalValueAddress(const std::string &Name) override {
+ return getSymbolAddress(Name);
+ }
+
+ uint64_t getFunctionAddress(const std::string &Name) override {
+ return getSymbolAddress(Name);
+ }
+
+ void *getPointerToFunction(Function *F) override {
+ uint64_t FAddr = getSymbolAddress(F->getName());
+ return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr));
+ }
+
+ void *getPointerToNamedFunction(StringRef Name,
+ bool AbortOnFailure = true) override {
+ uint64_t Addr = getSymbolAddress(Name);
+ if (!Addr && AbortOnFailure)
+ llvm_unreachable("Missing symbol!");
+ return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr));
+ }
+
+ GenericValue runFunction(Function *F,
+ ArrayRef<GenericValue> ArgValues) override;
+
+ void setObjectCache(ObjectCache *NewCache) override {
+ CompileLayer.setObjectCache(NewCache);
+ }
+
+private:
+
+ RuntimeDyld::SymbolInfo findMangledSymbol(StringRef Name) {
+ if (auto Sym = LazyEmitLayer.findSymbol(Name, false))
+ return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
+ if (auto Sym = ClientResolver->findSymbol(Name))
+ return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
+ if (auto Sym = scanArchives(Name))
+ return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
+
+ return nullptr;
+ }
+
+ JITSymbol scanArchives(StringRef Name) {
+ for (object::OwningBinary<object::Archive> &OB : Archives) {
+ object::Archive *A = OB.getBinary();
+ // Look for our symbols in each Archive
+ object::Archive::child_iterator ChildIt = A->findSym(Name);
+ if (ChildIt != A->child_end()) {
+ // FIXME: Support nested archives?
+ ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
+ ChildIt->getAsBinary();
+ if (ChildBinOrErr.getError())
+ continue;
+ std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
+ if (ChildBin->isObject()) {
+ std::vector<std::unique_ptr<object::ObjectFile>> ObjSet;
+ ObjSet.push_back(std::unique_ptr<object::ObjectFile>(
+ static_cast<object::ObjectFile *>(ChildBin.release())));
+ ObjectLayer.addObjectSet(std::move(ObjSet), &MemMgr, &Resolver);
+ if (auto Sym = ObjectLayer.findSymbol(Name, true))
+ return Sym;
+ }
+ }
+ }
+ return nullptr;
+ }
+
+ class NotifyObjectLoadedT {
+ public:
+ typedef std::vector<std::unique_ptr<object::ObjectFile>> ObjListT;
+ typedef std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>
+ LoadedObjInfoListT;
+
+ NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {}
+
+ void operator()(ObjectLinkingLayerBase::ObjSetHandleT H,
+ const ObjListT &Objects,
+ const LoadedObjInfoListT &Infos) const {
+ M.UnfinalizedSections[H] = std::move(M.SectionsAllocatedSinceLastLoad);
+ M.SectionsAllocatedSinceLastLoad = SectionAddrSet();
+ assert(Objects.size() == Infos.size() &&
+ "Incorrect number of Infos for Objects.");
+ for (unsigned I = 0; I < Objects.size(); ++I)
+ M.MemMgr.notifyObjectLoaded(&M, *Objects[I]);
+ };
+
+ private:
+ OrcMCJITReplacement &M;
+ };
+
+ class NotifyFinalizedT {
+ public:
+ NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {}
+ void operator()(ObjectLinkingLayerBase::ObjSetHandleT H) {
+ M.UnfinalizedSections.erase(H);
+ }
+
+ private:
+ OrcMCJITReplacement &M;
+ };
+
+ std::string Mangle(StringRef Name) {
+ std::string MangledName;
+ {
+ raw_string_ostream MangledNameStream(MangledName);
+ Mang.getNameWithPrefix(MangledNameStream, Name, *TM->getDataLayout());
+ }
+ return MangledName;
+ }
+
+ typedef ObjectLinkingLayer<NotifyObjectLoadedT> ObjectLayerT;
+ typedef IRCompileLayer<ObjectLayerT> CompileLayerT;
+ typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
+
+ std::unique_ptr<TargetMachine> TM;
+ MCJITReplacementMemMgr MemMgr;
+ LinkingResolver Resolver;
+ std::shared_ptr<RuntimeDyld::SymbolResolver> ClientResolver;
+ Mangler Mang;
+
+ NotifyObjectLoadedT NotifyObjectLoaded;
+ NotifyFinalizedT NotifyFinalized;
+
+ ObjectLayerT ObjectLayer;
+ CompileLayerT CompileLayer;
+ LazyEmitLayerT LazyEmitLayer;
+
+ // We need to store ObjLayerT::ObjSetHandles for each of the object sets
+ // that have been emitted but not yet finalized so that we can forward the
+ // mapSectionAddress calls appropriately.
+ typedef std::set<const void *> SectionAddrSet;
+ struct ObjSetHandleCompare {
+ bool operator()(ObjectLayerT::ObjSetHandleT H1,
+ ObjectLayerT::ObjSetHandleT H2) const {
+ return &*H1 < &*H2;
+ }
+ };
+ SectionAddrSet SectionsAllocatedSinceLastLoad;
+ std::map<ObjectLayerT::ObjSetHandleT, SectionAddrSet, ObjSetHandleCompare>
+ UnfinalizedSections;
+
+ std::vector<object::OwningBinary<object::Archive>> Archives;
+};
+
+} // End namespace orc.
+} // End namespace llvm.
+
+#endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H
diff --git a/contrib/llvm/lib/ExecutionEngine/Orc/OrcTargetSupport.cpp b/contrib/llvm/lib/ExecutionEngine/Orc/OrcTargetSupport.cpp
new file mode 100644
index 0000000..258868a
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Orc/OrcTargetSupport.cpp
@@ -0,0 +1,138 @@
+#include "llvm/ADT/Triple.h"
+#include "llvm/ExecutionEngine/Orc/OrcTargetSupport.h"
+#include <array>
+
+using namespace llvm::orc;
+
+namespace {
+
+uint64_t executeCompileCallback(JITCompileCallbackManagerBase *JCBM,
+ TargetAddress CallbackID) {
+ return JCBM->executeCompileCallback(CallbackID);
+}
+
+}
+
+namespace llvm {
+namespace orc {
+
+const char* OrcX86_64::ResolverBlockName = "orc_resolver_block";
+
+void OrcX86_64::insertResolverBlock(
+ Module &M, JITCompileCallbackManagerBase &JCBM) {
+
+ // Trampoline code-sequence length, used to get trampoline address from return
+ // address.
+ const unsigned X86_64_TrampolineLength = 6;
+
+ // List of x86-64 GPRs to save. Note - RBP saved separately below.
+ std::array<const char *, 14> GPRs = {{
+ "rax", "rbx", "rcx", "rdx",
+ "rsi", "rdi", "r8", "r9",
+ "r10", "r11", "r12", "r13",
+ "r14", "r15"
+ }};
+
+ // Address of the executeCompileCallback function.
+ uint64_t CallbackAddr =
+ static_cast<uint64_t>(
+ reinterpret_cast<uintptr_t>(executeCompileCallback));
+
+ std::ostringstream AsmStream;
+ Triple TT(M.getTargetTriple());
+
+ // Switch to text section.
+ if (TT.getOS() == Triple::Darwin)
+ AsmStream << ".section __TEXT,__text,regular,pure_instructions\n"
+ << ".align 4, 0x90\n";
+ else
+ AsmStream << ".text\n"
+ << ".align 16, 0x90\n";
+
+ // Bake in a pointer to the callback manager immediately before the
+ // start of the resolver function.
+ AsmStream << "jit_callback_manager_addr:\n"
+ << " .quad " << &JCBM << "\n";
+
+ // Start the resolver function.
+ AsmStream << ResolverBlockName << ":\n"
+ << " pushq %rbp\n"
+ << " movq %rsp, %rbp\n";
+
+ // Store the GPRs.
+ for (const auto &GPR : GPRs)
+ AsmStream << " pushq %" << GPR << "\n";
+
+ // Store floating-point state with FXSAVE.
+ // Note: We need to keep the stack 16-byte aligned, so if we've emitted an odd
+ // number of 64-bit pushes so far (GPRs.size() plus 1 for RBP) then add
+ // an extra 64 bits of padding to the FXSave area.
+ unsigned Padding = (GPRs.size() + 1) % 2 ? 8 : 0;
+ unsigned FXSaveSize = 512 + Padding;
+ AsmStream << " subq $" << FXSaveSize << ", %rsp\n"
+ << " fxsave64 (%rsp)\n"
+
+ // Load callback manager address, compute trampoline address, call JIT.
+ << " lea jit_callback_manager_addr(%rip), %rdi\n"
+ << " movq (%rdi), %rdi\n"
+ << " movq 0x8(%rbp), %rsi\n"
+ << " subq $" << X86_64_TrampolineLength << ", %rsi\n"
+ << " movabsq $" << CallbackAddr << ", %rax\n"
+ << " callq *%rax\n"
+
+ // Replace the return to the trampoline with the return address of the
+ // compiled function body.
+ << " movq %rax, 0x8(%rbp)\n"
+
+ // Restore the floating point state.
+ << " fxrstor64 (%rsp)\n"
+ << " addq $" << FXSaveSize << ", %rsp\n";
+
+ for (const auto &GPR : make_range(GPRs.rbegin(), GPRs.rend()))
+ AsmStream << " popq %" << GPR << "\n";
+
+ // Restore original RBP and return to compiled function body.
+ AsmStream << " popq %rbp\n"
+ << " retq\n";
+
+ M.appendModuleInlineAsm(AsmStream.str());
+}
+
+OrcX86_64::LabelNameFtor
+OrcX86_64::insertCompileCallbackTrampolines(Module &M,
+ TargetAddress ResolverBlockAddr,
+ unsigned NumCalls,
+ unsigned StartIndex) {
+ const char *ResolverBlockPtrName = "Lorc_resolve_block_addr";
+
+ std::ostringstream AsmStream;
+ Triple TT(M.getTargetTriple());
+
+ if (TT.getOS() == Triple::Darwin)
+ AsmStream << ".section __TEXT,__text,regular,pure_instructions\n"
+ << ".align 4, 0x90\n";
+ else
+ AsmStream << ".text\n"
+ << ".align 16, 0x90\n";
+
+ AsmStream << ResolverBlockPtrName << ":\n"
+ << " .quad " << ResolverBlockAddr << "\n";
+
+ auto GetLabelName =
+ [=](unsigned I) {
+ std::ostringstream LabelStream;
+ LabelStream << "orc_jcc_" << (StartIndex + I);
+ return LabelStream.str();
+ };
+
+ for (unsigned I = 0; I < NumCalls; ++I)
+ AsmStream << GetLabelName(I) << ":\n"
+ << " callq *" << ResolverBlockPtrName << "(%rip)\n";
+
+ M.appendModuleInlineAsm(AsmStream.str());
+
+ return GetLabelName;
+}
+
+} // End namespace orc.
+} // End namespace llvm.
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RTDyldMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RTDyldMemoryManager.cpp
new file mode 100644
index 0000000..044eee4
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RTDyldMemoryManager.cpp
@@ -0,0 +1,294 @@
+//===-- RTDyldMemoryManager.cpp - Memory manager for MC-JIT -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the runtime dynamic memory manager base class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cstdlib>
+
+#ifdef __linux__
+ // These includes used by RTDyldMemoryManager::getPointerToNamedFunction()
+ // for Glibc trickery. See comments in this function for more information.
+ #ifdef HAVE_SYS_STAT_H
+ #include <sys/stat.h>
+ #endif
+ #include <fcntl.h>
+ #include <unistd.h>
+#endif
+
+namespace llvm {
+
+RTDyldMemoryManager::~RTDyldMemoryManager() {}
+
+// Determine whether we can register EH tables.
+#if (defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__ia64__) && \
+ !defined(__SEH__) && !defined(__USING_SJLJ_EXCEPTIONS__))
+#define HAVE_EHTABLE_SUPPORT 1
+#else
+#define HAVE_EHTABLE_SUPPORT 0
+#endif
+
+#if HAVE_EHTABLE_SUPPORT
+extern "C" void __register_frame(void *);
+extern "C" void __deregister_frame(void *);
+#else
+// The building compiler does not have __(de)register_frame but
+// it may be found at runtime in a dynamically-loaded library.
+// For example, this happens when building LLVM with Visual C++
+// but using the MingW runtime.
+void __register_frame(void *p) {
+ static bool Searched = false;
+ static void((*rf)(void *)) = 0;
+
+ if (!Searched) {
+ Searched = true;
+ *(void **)&rf =
+ llvm::sys::DynamicLibrary::SearchForAddressOfSymbol("__register_frame");
+ }
+ if (rf)
+ rf(p);
+}
+
+void __deregister_frame(void *p) {
+ static bool Searched = false;
+ static void((*df)(void *)) = 0;
+
+ if (!Searched) {
+ Searched = true;
+ *(void **)&df = llvm::sys::DynamicLibrary::SearchForAddressOfSymbol(
+ "__deregister_frame");
+ }
+ if (df)
+ df(p);
+}
+#endif
+
+#ifdef __APPLE__
+
+static const char *processFDE(const char *Entry, bool isDeregister) {
+ const char *P = Entry;
+ uint32_t Length = *((const uint32_t *)P);
+ P += 4;
+ uint32_t Offset = *((const uint32_t *)P);
+ if (Offset != 0) {
+ if (isDeregister)
+ __deregister_frame(const_cast<char *>(Entry));
+ else
+ __register_frame(const_cast<char *>(Entry));
+ }
+ return P + Length;
+}
+
+// This implementation handles frame registration for local targets.
+// Memory managers for remote targets should re-implement this function
+// and use the LoadAddr parameter.
+void RTDyldMemoryManager::registerEHFrames(uint8_t *Addr,
+ uint64_t LoadAddr,
+ size_t Size) {
+ // On OS X OS X __register_frame takes a single FDE as an argument.
+ // See http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-April/061768.html
+ const char *P = (const char *)Addr;
+ const char *End = P + Size;
+ do {
+ P = processFDE(P, false);
+ } while(P != End);
+}
+
+void RTDyldMemoryManager::deregisterEHFrames(uint8_t *Addr,
+ uint64_t LoadAddr,
+ size_t Size) {
+ const char *P = (const char *)Addr;
+ const char *End = P + Size;
+ do {
+ P = processFDE(P, true);
+ } while(P != End);
+}
+
+#else
+
+void RTDyldMemoryManager::registerEHFrames(uint8_t *Addr,
+ uint64_t LoadAddr,
+ size_t Size) {
+ // On Linux __register_frame takes a single argument:
+ // a pointer to the start of the .eh_frame section.
+
+ // How can it find the end? Because crtendS.o is linked
+ // in and it has an .eh_frame section with four zero chars.
+ __register_frame(Addr);
+}
+
+void RTDyldMemoryManager::deregisterEHFrames(uint8_t *Addr,
+ uint64_t LoadAddr,
+ size_t Size) {
+ __deregister_frame(Addr);
+}
+
+#endif
+
+static int jit_noop() {
+ return 0;
+}
+
+// ARM math functions are statically linked on Android from libgcc.a, but not
+// available at runtime for dynamic linking. On Linux these are usually placed
+// in libgcc_s.so so can be found by normal dynamic lookup.
+#if defined(__BIONIC__) && defined(__arm__)
+// List of functions which are statically linked on Android and can be generated
+// by LLVM. This is done as a nested macro which is used once to declare the
+// imported functions with ARM_MATH_DECL and once to compare them to the
+// user-requested symbol in getSymbolAddress with ARM_MATH_CHECK. The test
+// assumes that all functions start with __aeabi_ and getSymbolAddress must be
+// modified if that changes.
+#define ARM_MATH_IMPORTS(PP) \
+ PP(__aeabi_d2f) \
+ PP(__aeabi_d2iz) \
+ PP(__aeabi_d2lz) \
+ PP(__aeabi_d2uiz) \
+ PP(__aeabi_d2ulz) \
+ PP(__aeabi_dadd) \
+ PP(__aeabi_dcmpeq) \
+ PP(__aeabi_dcmpge) \
+ PP(__aeabi_dcmpgt) \
+ PP(__aeabi_dcmple) \
+ PP(__aeabi_dcmplt) \
+ PP(__aeabi_dcmpun) \
+ PP(__aeabi_ddiv) \
+ PP(__aeabi_dmul) \
+ PP(__aeabi_dsub) \
+ PP(__aeabi_f2d) \
+ PP(__aeabi_f2iz) \
+ PP(__aeabi_f2lz) \
+ PP(__aeabi_f2uiz) \
+ PP(__aeabi_f2ulz) \
+ PP(__aeabi_fadd) \
+ PP(__aeabi_fcmpeq) \
+ PP(__aeabi_fcmpge) \
+ PP(__aeabi_fcmpgt) \
+ PP(__aeabi_fcmple) \
+ PP(__aeabi_fcmplt) \
+ PP(__aeabi_fcmpun) \
+ PP(__aeabi_fdiv) \
+ PP(__aeabi_fmul) \
+ PP(__aeabi_fsub) \
+ PP(__aeabi_i2d) \
+ PP(__aeabi_i2f) \
+ PP(__aeabi_idiv) \
+ PP(__aeabi_idivmod) \
+ PP(__aeabi_l2d) \
+ PP(__aeabi_l2f) \
+ PP(__aeabi_lasr) \
+ PP(__aeabi_ldivmod) \
+ PP(__aeabi_llsl) \
+ PP(__aeabi_llsr) \
+ PP(__aeabi_lmul) \
+ PP(__aeabi_ui2d) \
+ PP(__aeabi_ui2f) \
+ PP(__aeabi_uidiv) \
+ PP(__aeabi_uidivmod) \
+ PP(__aeabi_ul2d) \
+ PP(__aeabi_ul2f) \
+ PP(__aeabi_uldivmod)
+
+// Declare statically linked math functions on ARM. The function declarations
+// here do not have the correct prototypes for each function in
+// ARM_MATH_IMPORTS, but it doesn't matter because only the symbol addresses are
+// needed. In particular the __aeabi_*divmod functions do not have calling
+// conventions which match any C prototype.
+#define ARM_MATH_DECL(name) extern "C" void name();
+ARM_MATH_IMPORTS(ARM_MATH_DECL)
+#undef ARM_MATH_DECL
+#endif
+
+#if defined(__linux__) && defined(__GLIBC__) && \
+ (defined(__i386__) || defined(__x86_64__))
+extern "C" LLVM_ATTRIBUTE_WEAK void __morestack();
+#endif
+
+uint64_t
+RTDyldMemoryManager::getSymbolAddressInProcess(const std::string &Name) {
+ // This implementation assumes that the host program is the target.
+ // Clients generating code for a remote target should implement their own
+ // memory manager.
+#if defined(__linux__) && defined(__GLIBC__)
+ //===--------------------------------------------------------------------===//
+ // Function stubs that are invoked instead of certain library calls
+ //
+ // Force the following functions to be linked in to anything that uses the
+ // JIT. This is a hack designed to work around the all-too-clever Glibc
+ // strategy of making these functions work differently when inlined vs. when
+ // not inlined, and hiding their real definitions in a separate archive file
+ // that the dynamic linker can't see. For more info, search for
+ // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
+ if (Name == "stat") return (uint64_t)&stat;
+ if (Name == "fstat") return (uint64_t)&fstat;
+ if (Name == "lstat") return (uint64_t)&lstat;
+ if (Name == "stat64") return (uint64_t)&stat64;
+ if (Name == "fstat64") return (uint64_t)&fstat64;
+ if (Name == "lstat64") return (uint64_t)&lstat64;
+ if (Name == "atexit") return (uint64_t)&atexit;
+ if (Name == "mknod") return (uint64_t)&mknod;
+
+#if defined(__i386__) || defined(__x86_64__)
+ // __morestack lives in libgcc, a static library.
+ if (&__morestack && Name == "__morestack")
+ return (uint64_t)&__morestack;
+#endif
+#endif // __linux__ && __GLIBC__
+
+ // See ARM_MATH_IMPORTS definition for explanation
+#if defined(__BIONIC__) && defined(__arm__)
+ if (Name.compare(0, 8, "__aeabi_") == 0) {
+ // Check if the user has requested any of the functions listed in
+ // ARM_MATH_IMPORTS, and if so redirect to the statically linked symbol.
+#define ARM_MATH_CHECK(fn) if (Name == #fn) return (uint64_t)&fn;
+ ARM_MATH_IMPORTS(ARM_MATH_CHECK)
+#undef ARM_MATH_CHECK
+ }
+#endif
+
+ // We should not invoke parent's ctors/dtors from generated main()!
+ // On Mingw and Cygwin, the symbol __main is resolved to
+ // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
+ // (and register wrong callee's dtors with atexit(3)).
+ // We expect ExecutionEngine::runStaticConstructorsDestructors()
+ // is called before ExecutionEngine::runFunctionAsMain() is called.
+ if (Name == "__main") return (uint64_t)&jit_noop;
+
+ // Try to demangle Name before looking it up in the process, otherwise symbol
+ // '_<Name>' (if present) will shadow '<Name>', and there will be no way to
+ // refer to the latter.
+
+ const char *NameStr = Name.c_str();
+
+ if (NameStr[0] == '_')
+ if (void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr + 1))
+ return (uint64_t)Ptr;
+
+ // If we Name did not require demangling, or we failed to find the demangled
+ // name, try again without demangling.
+ return (uint64_t)sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
+}
+
+void *RTDyldMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure) {
+ uint64_t Addr = getSymbolAddress(Name);
+
+ if (!Addr && AbortOnFailure)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+ return (void*)Addr;
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
new file mode 100644
index 0000000..fa50182
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
@@ -0,0 +1,953 @@
+//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "RuntimeDyldCheckerImpl.h"
+#include "RuntimeDyldCOFF.h"
+#include "RuntimeDyldELF.h"
+#include "RuntimeDyldImpl.h"
+#include "RuntimeDyldMachO.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Object/COFF.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MutexGuard.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+#define DEBUG_TYPE "dyld"
+
+// Empty out-of-line virtual destructor as the key function.
+RuntimeDyldImpl::~RuntimeDyldImpl() {}
+
+// Pin LoadedObjectInfo's vtables to this file.
+void RuntimeDyld::LoadedObjectInfo::anchor() {}
+
+namespace llvm {
+
+void RuntimeDyldImpl::registerEHFrames() {}
+
+void RuntimeDyldImpl::deregisterEHFrames() {}
+
+#ifndef NDEBUG
+static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
+ dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
+
+ if (S.Address == nullptr) {
+ dbgs() << "\n <section not emitted>\n";
+ return;
+ }
+
+ const unsigned ColsPerRow = 16;
+
+ uint8_t *DataAddr = S.Address;
+ uint64_t LoadAddr = S.LoadAddress;
+
+ unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
+ unsigned BytesRemaining = S.Size;
+
+ if (StartPadding) {
+ dbgs() << "\n" << format("0x%016" PRIx64,
+ LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
+ while (StartPadding--)
+ dbgs() << " ";
+ }
+
+ while (BytesRemaining > 0) {
+ if ((LoadAddr & (ColsPerRow - 1)) == 0)
+ dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
+
+ dbgs() << " " << format("%02x", *DataAddr);
+
+ ++DataAddr;
+ ++LoadAddr;
+ --BytesRemaining;
+ }
+
+ dbgs() << "\n";
+}
+#endif
+
+// Resolve the relocations for all symbols we currently know about.
+void RuntimeDyldImpl::resolveRelocations() {
+ MutexGuard locked(lock);
+
+ // First, resolve relocations associated with external symbols.
+ resolveExternalSymbols();
+
+ // Just iterate over the sections we have and resolve all the relocations
+ // in them. Gross overkill, but it gets the job done.
+ for (int i = 0, e = Sections.size(); i != e; ++i) {
+ // The Section here (Sections[i]) refers to the section in which the
+ // symbol for the relocation is located. The SectionID in the relocation
+ // entry provides the section to which the relocation will be applied.
+ uint64_t Addr = Sections[i].LoadAddress;
+ DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
+ << format("%p", (uintptr_t)Addr) << "\n");
+ DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
+ resolveRelocationList(Relocations[i], Addr);
+ DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
+ Relocations.erase(i);
+ }
+}
+
+void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ MutexGuard locked(lock);
+ for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
+ if (Sections[i].Address == LocalAddress) {
+ reassignSectionAddress(i, TargetAddress);
+ return;
+ }
+ }
+ llvm_unreachable("Attempting to remap address of unknown section!");
+}
+
+static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
+ uint64_t Address;
+ if (std::error_code EC = Sym.getAddress(Address))
+ return EC;
+
+ if (Address == UnknownAddress) {
+ Result = UnknownAddress;
+ return std::error_code();
+ }
+
+ const ObjectFile *Obj = Sym.getObject();
+ section_iterator SecI(Obj->section_begin());
+ if (std::error_code EC = Sym.getSection(SecI))
+ return EC;
+
+ if (SecI == Obj->section_end()) {
+ Result = UnknownAddress;
+ return std::error_code();
+ }
+
+ uint64_t SectionAddress = SecI->getAddress();
+ Result = Address - SectionAddress;
+ return std::error_code();
+}
+
+std::pair<unsigned, unsigned>
+RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
+ MutexGuard locked(lock);
+
+ // Grab the first Section ID. We'll use this later to construct the underlying
+ // range for the returned LoadedObjectInfo.
+ unsigned SectionsAddedBeginIdx = Sections.size();
+
+ // Save information about our target
+ Arch = (Triple::ArchType)Obj.getArch();
+ IsTargetLittleEndian = Obj.isLittleEndian();
+ setMipsABI(Obj);
+
+ // Compute the memory size required to load all sections to be loaded
+ // and pass this information to the memory manager
+ if (MemMgr.needsToReserveAllocationSpace()) {
+ uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
+ computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
+ MemMgr.reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
+ }
+
+ // Used sections from the object file
+ ObjSectionToIDMap LocalSections;
+
+ // Common symbols requiring allocation, with their sizes and alignments
+ CommonSymbolList CommonSymbols;
+
+ // Parse symbols
+ DEBUG(dbgs() << "Parse symbols:\n");
+ for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
+ ++I) {
+ uint32_t Flags = I->getFlags();
+
+ bool IsCommon = Flags & SymbolRef::SF_Common;
+ if (IsCommon)
+ CommonSymbols.push_back(*I);
+ else {
+ object::SymbolRef::Type SymType = I->getType();
+
+ if (SymType == object::SymbolRef::ST_Function ||
+ SymType == object::SymbolRef::ST_Data ||
+ SymType == object::SymbolRef::ST_Unknown) {
+
+ ErrorOr<StringRef> NameOrErr = I->getName();
+ Check(NameOrErr.getError());
+ StringRef Name = *NameOrErr;
+ uint64_t SectOffset;
+ Check(getOffset(*I, SectOffset));
+ section_iterator SI = Obj.section_end();
+ Check(I->getSection(SI));
+ if (SI == Obj.section_end())
+ continue;
+ StringRef SectionData;
+ Check(SI->getContents(SectionData));
+ bool IsCode = SI->isText();
+ unsigned SectionID =
+ findOrEmitSection(Obj, *SI, IsCode, LocalSections);
+ DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
+ << " SID: " << SectionID << " Offset: "
+ << format("%p", (uintptr_t)SectOffset)
+ << " flags: " << Flags << "\n");
+ JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
+ if (Flags & SymbolRef::SF_Weak)
+ RTDyldSymFlags |= JITSymbolFlags::Weak;
+ if (Flags & SymbolRef::SF_Exported)
+ RTDyldSymFlags |= JITSymbolFlags::Exported;
+ GlobalSymbolTable[Name] =
+ SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
+ }
+ }
+ }
+
+ // Allocate common symbols
+ emitCommonSymbols(Obj, CommonSymbols);
+
+ // Parse and process relocations
+ DEBUG(dbgs() << "Parse relocations:\n");
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+ unsigned SectionID = 0;
+ StubMap Stubs;
+ section_iterator RelocatedSection = SI->getRelocatedSection();
+
+ if (RelocatedSection == SE)
+ continue;
+
+ relocation_iterator I = SI->relocation_begin();
+ relocation_iterator E = SI->relocation_end();
+
+ if (I == E && !ProcessAllSections)
+ continue;
+
+ bool IsCode = RelocatedSection->isText();
+ SectionID =
+ findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
+ DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
+
+ for (; I != E;)
+ I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
+
+ // If there is an attached checker, notify it about the stubs for this
+ // section so that they can be verified.
+ if (Checker)
+ Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
+ }
+
+ // Give the subclasses a chance to tie-up any loose ends.
+ finalizeLoad(Obj, LocalSections);
+
+ unsigned SectionsAddedEndIdx = Sections.size();
+
+ return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
+}
+
+// A helper method for computeTotalAllocSize.
+// Computes the memory size required to allocate sections with the given sizes,
+// assuming that all sections are allocated with the given alignment
+static uint64_t
+computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
+ uint64_t Alignment) {
+ uint64_t TotalSize = 0;
+ for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
+ uint64_t AlignedSize =
+ (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
+ TotalSize += AlignedSize;
+ }
+ return TotalSize;
+}
+
+static bool isRequiredForExecution(const SectionRef Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<object::ELFObjectFileBase>(Obj))
+ return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
+ if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
+ const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
+ // Avoid loading zero-sized COFF sections.
+ // In PE files, VirtualSize gives the section size, and SizeOfRawData
+ // may be zero for sections with content. In Obj files, SizeOfRawData
+ // gives the section size, and VirtualSize is always zero. Hence
+ // the need to check for both cases below.
+ bool HasContent = (CoffSection->VirtualSize > 0)
+ || (CoffSection->SizeOfRawData > 0);
+ bool IsDiscardable = CoffSection->Characteristics &
+ (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
+ return HasContent && !IsDiscardable;
+ }
+
+ assert(isa<MachOObjectFile>(Obj));
+ return true;
+}
+
+static bool isReadOnlyData(const SectionRef Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<object::ELFObjectFileBase>(Obj))
+ return !(ELFSectionRef(Section).getFlags() &
+ (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
+ if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
+ return ((COFFObj->getCOFFSection(Section)->Characteristics &
+ (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
+ | COFF::IMAGE_SCN_MEM_READ
+ | COFF::IMAGE_SCN_MEM_WRITE))
+ ==
+ (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
+ | COFF::IMAGE_SCN_MEM_READ));
+
+ assert(isa<MachOObjectFile>(Obj));
+ return false;
+}
+
+static bool isZeroInit(const SectionRef Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<object::ELFObjectFileBase>(Obj))
+ return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
+ if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
+ return COFFObj->getCOFFSection(Section)->Characteristics &
+ COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
+
+ auto *MachO = cast<MachOObjectFile>(Obj);
+ unsigned SectionType = MachO->getSectionType(Section);
+ return SectionType == MachO::S_ZEROFILL ||
+ SectionType == MachO::S_GB_ZEROFILL;
+}
+
+// Compute an upper bound of the memory size that is required to load all
+// sections
+void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
+ uint64_t &CodeSize,
+ uint64_t &DataSizeRO,
+ uint64_t &DataSizeRW) {
+ // Compute the size of all sections required for execution
+ std::vector<uint64_t> CodeSectionSizes;
+ std::vector<uint64_t> ROSectionSizes;
+ std::vector<uint64_t> RWSectionSizes;
+ uint64_t MaxAlignment = sizeof(void *);
+
+ // Collect sizes of all sections to be loaded;
+ // also determine the max alignment of all sections
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+ const SectionRef &Section = *SI;
+
+ bool IsRequired = isRequiredForExecution(Section);
+
+ // Consider only the sections that are required to be loaded for execution
+ if (IsRequired) {
+ StringRef Name;
+ uint64_t DataSize = Section.getSize();
+ uint64_t Alignment64 = Section.getAlignment();
+ bool IsCode = Section.isText();
+ bool IsReadOnly = isReadOnlyData(Section);
+ Check(Section.getName(Name));
+ unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+
+ uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
+ uint64_t SectionSize = DataSize + StubBufSize;
+
+ // The .eh_frame section (at least on Linux) needs an extra four bytes
+ // padded
+ // with zeroes added at the end. For MachO objects, this section has a
+ // slightly different name, so this won't have any effect for MachO
+ // objects.
+ if (Name == ".eh_frame")
+ SectionSize += 4;
+
+ if (!SectionSize)
+ SectionSize = 1;
+
+ if (IsCode) {
+ CodeSectionSizes.push_back(SectionSize);
+ } else if (IsReadOnly) {
+ ROSectionSizes.push_back(SectionSize);
+ } else {
+ RWSectionSizes.push_back(SectionSize);
+ }
+
+ // update the max alignment
+ if (Alignment > MaxAlignment) {
+ MaxAlignment = Alignment;
+ }
+ }
+ }
+
+ // Compute the size of all common symbols
+ uint64_t CommonSize = 0;
+ for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
+ ++I) {
+ uint32_t Flags = I->getFlags();
+ if (Flags & SymbolRef::SF_Common) {
+ // Add the common symbols to a list. We'll allocate them all below.
+ uint64_t Size = I->getCommonSize();
+ CommonSize += Size;
+ }
+ }
+ if (CommonSize != 0) {
+ RWSectionSizes.push_back(CommonSize);
+ }
+
+ // Compute the required allocation space for each different type of sections
+ // (code, read-only data, read-write data) assuming that all sections are
+ // allocated with the max alignment. Note that we cannot compute with the
+ // individual alignments of the sections, because then the required size
+ // depends on the order, in which the sections are allocated.
+ CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
+ DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
+ DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
+}
+
+// compute stub buffer size for the given section
+unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
+ const SectionRef &Section) {
+ unsigned StubSize = getMaxStubSize();
+ if (StubSize == 0) {
+ return 0;
+ }
+ // FIXME: this is an inefficient way to handle this. We should computed the
+ // necessary section allocation size in loadObject by walking all the sections
+ // once.
+ unsigned StubBufSize = 0;
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+ section_iterator RelSecI = SI->getRelocatedSection();
+ if (!(RelSecI == Section))
+ continue;
+
+ for (const RelocationRef &Reloc : SI->relocations()) {
+ (void)Reloc;
+ StubBufSize += StubSize;
+ }
+ }
+
+ // Get section data size and alignment
+ uint64_t DataSize = Section.getSize();
+ uint64_t Alignment64 = Section.getAlignment();
+
+ // Add stubbuf size alignment
+ unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+ unsigned StubAlignment = getStubAlignment();
+ unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
+ if (StubAlignment > EndAlignment)
+ StubBufSize += StubAlignment - EndAlignment;
+ return StubBufSize;
+}
+
+uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
+ unsigned Size) const {
+ uint64_t Result = 0;
+ if (IsTargetLittleEndian) {
+ Src += Size - 1;
+ while (Size--)
+ Result = (Result << 8) | *Src--;
+ } else
+ while (Size--)
+ Result = (Result << 8) | *Src++;
+
+ return Result;
+}
+
+void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
+ unsigned Size) const {
+ if (IsTargetLittleEndian) {
+ while (Size--) {
+ *Dst++ = Value & 0xFF;
+ Value >>= 8;
+ }
+ } else {
+ Dst += Size - 1;
+ while (Size--) {
+ *Dst-- = Value & 0xFF;
+ Value >>= 8;
+ }
+ }
+}
+
+void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
+ CommonSymbolList &CommonSymbols) {
+ if (CommonSymbols.empty())
+ return;
+
+ uint64_t CommonSize = 0;
+ CommonSymbolList SymbolsToAllocate;
+
+ DEBUG(dbgs() << "Processing common symbols...\n");
+
+ for (const auto &Sym : CommonSymbols) {
+ ErrorOr<StringRef> NameOrErr = Sym.getName();
+ Check(NameOrErr.getError());
+ StringRef Name = *NameOrErr;
+
+ // Skip common symbols already elsewhere.
+ if (GlobalSymbolTable.count(Name) ||
+ Resolver.findSymbolInLogicalDylib(Name)) {
+ DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
+ << "'\n");
+ continue;
+ }
+
+ uint32_t Align = Sym.getAlignment();
+ uint64_t Size = Sym.getCommonSize();
+
+ CommonSize += Align + Size;
+ SymbolsToAllocate.push_back(Sym);
+ }
+
+ // Allocate memory for the section
+ unsigned SectionID = Sections.size();
+ uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, sizeof(void *),
+ SectionID, StringRef(), false);
+ if (!Addr)
+ report_fatal_error("Unable to allocate memory for common symbols!");
+ uint64_t Offset = 0;
+ Sections.push_back(SectionEntry("<common symbols>", Addr, CommonSize, 0));
+ memset(Addr, 0, CommonSize);
+
+ DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
+ << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
+
+ // Assign the address of each symbol
+ for (auto &Sym : SymbolsToAllocate) {
+ uint32_t Align = Sym.getAlignment();
+ uint64_t Size = Sym.getCommonSize();
+ ErrorOr<StringRef> NameOrErr = Sym.getName();
+ Check(NameOrErr.getError());
+ StringRef Name = *NameOrErr;
+ if (Align) {
+ // This symbol has an alignment requirement.
+ uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
+ Addr += AlignOffset;
+ Offset += AlignOffset;
+ }
+ uint32_t Flags = Sym.getFlags();
+ JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
+ if (Flags & SymbolRef::SF_Weak)
+ RTDyldSymFlags |= JITSymbolFlags::Weak;
+ if (Flags & SymbolRef::SF_Exported)
+ RTDyldSymFlags |= JITSymbolFlags::Exported;
+ DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
+ << format("%p", Addr) << "\n");
+ GlobalSymbolTable[Name] =
+ SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
+ Offset += Size;
+ Addr += Size;
+ }
+}
+
+unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
+ const SectionRef &Section, bool IsCode) {
+
+ StringRef data;
+ uint64_t Alignment64 = Section.getAlignment();
+
+ unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+ unsigned PaddingSize = 0;
+ unsigned StubBufSize = 0;
+ StringRef Name;
+ bool IsRequired = isRequiredForExecution(Section);
+ bool IsVirtual = Section.isVirtual();
+ bool IsZeroInit = isZeroInit(Section);
+ bool IsReadOnly = isReadOnlyData(Section);
+ uint64_t DataSize = Section.getSize();
+ Check(Section.getName(Name));
+
+ StubBufSize = computeSectionStubBufSize(Obj, Section);
+
+ // The .eh_frame section (at least on Linux) needs an extra four bytes padded
+ // with zeroes added at the end. For MachO objects, this section has a
+ // slightly different name, so this won't have any effect for MachO objects.
+ if (Name == ".eh_frame")
+ PaddingSize = 4;
+
+ uintptr_t Allocate;
+ unsigned SectionID = Sections.size();
+ uint8_t *Addr;
+ const char *pData = nullptr;
+
+ // In either case, set the location of the unrelocated section in memory,
+ // since we still process relocations for it even if we're not applying them.
+ Check(Section.getContents(data));
+ // Virtual sections have no data in the object image, so leave pData = 0
+ if (!IsVirtual)
+ pData = data.data();
+
+ // Some sections, such as debug info, don't need to be loaded for execution.
+ // Leave those where they are.
+ if (IsRequired) {
+ Allocate = DataSize + PaddingSize + StubBufSize;
+ if (!Allocate)
+ Allocate = 1;
+ Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
+ Name)
+ : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
+ Name, IsReadOnly);
+ if (!Addr)
+ report_fatal_error("Unable to allocate section memory!");
+
+ // Zero-initialize or copy the data from the image
+ if (IsZeroInit || IsVirtual)
+ memset(Addr, 0, DataSize);
+ else
+ memcpy(Addr, pData, DataSize);
+
+ // Fill in any extra bytes we allocated for padding
+ if (PaddingSize != 0) {
+ memset(Addr + DataSize, 0, PaddingSize);
+ // Update the DataSize variable so that the stub offset is set correctly.
+ DataSize += PaddingSize;
+ }
+
+ DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
+ << " obj addr: " << format("%p", pData)
+ << " new addr: " << format("%p", Addr)
+ << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
+ << " Allocate: " << Allocate << "\n");
+ } else {
+ // Even if we didn't load the section, we need to record an entry for it
+ // to handle later processing (and by 'handle' I mean don't do anything
+ // with these sections).
+ Allocate = 0;
+ Addr = nullptr;
+ DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
+ << " obj addr: " << format("%p", data.data()) << " new addr: 0"
+ << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
+ << " Allocate: " << Allocate << "\n");
+ }
+
+ Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
+
+ if (Checker)
+ Checker->registerSection(Obj.getFileName(), SectionID);
+
+ return SectionID;
+}
+
+unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
+ const SectionRef &Section,
+ bool IsCode,
+ ObjSectionToIDMap &LocalSections) {
+
+ unsigned SectionID = 0;
+ ObjSectionToIDMap::iterator i = LocalSections.find(Section);
+ if (i != LocalSections.end())
+ SectionID = i->second;
+ else {
+ SectionID = emitSection(Obj, Section, IsCode);
+ LocalSections[Section] = SectionID;
+ }
+ return SectionID;
+}
+
+void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
+ unsigned SectionID) {
+ Relocations[SectionID].push_back(RE);
+}
+
+void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
+ StringRef SymbolName) {
+ // Relocation by symbol. If the symbol is found in the global symbol table,
+ // create an appropriate section relocation. Otherwise, add it to
+ // ExternalSymbolRelocations.
+ RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
+ if (Loc == GlobalSymbolTable.end()) {
+ ExternalSymbolRelocations[SymbolName].push_back(RE);
+ } else {
+ // Copy the RE since we want to modify its addend.
+ RelocationEntry RECopy = RE;
+ const auto &SymInfo = Loc->second;
+ RECopy.Addend += SymInfo.getOffset();
+ Relocations[SymInfo.getSectionID()].push_back(RECopy);
+ }
+}
+
+uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
+ unsigned AbiVariant) {
+ if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
+ // This stub has to be able to access the full address space,
+ // since symbol lookup won't necessarily find a handy, in-range,
+ // PLT stub for functions which could be anywhere.
+ // Stub can use ip0 (== x16) to calculate address
+ writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
+ writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
+ writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
+ writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
+ writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
+
+ return Addr;
+ } else if (Arch == Triple::arm || Arch == Triple::armeb) {
+ // TODO: There is only ARM far stub now. We should add the Thumb stub,
+ // and stubs for branches Thumb - ARM and ARM - Thumb.
+ writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
+ return Addr + 4;
+ } else if (IsMipsO32ABI) {
+ // 0: 3c190000 lui t9,%hi(addr).
+ // 4: 27390000 addiu t9,t9,%lo(addr).
+ // 8: 03200008 jr t9.
+ // c: 00000000 nop.
+ const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
+ const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
+
+ writeBytesUnaligned(LuiT9Instr, Addr, 4);
+ writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
+ writeBytesUnaligned(JrT9Instr, Addr+8, 4);
+ writeBytesUnaligned(NopInstr, Addr+12, 4);
+ return Addr;
+ } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
+ // Depending on which version of the ELF ABI is in use, we need to
+ // generate one of two variants of the stub. They both start with
+ // the same sequence to load the target address into r12.
+ writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
+ writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
+ writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
+ writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
+ writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
+ if (AbiVariant == 2) {
+ // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
+ // The address is already in r12 as required by the ABI. Branch to it.
+ writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
+ writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
+ writeInt32BE(Addr+28, 0x4E800420); // bctr
+ } else {
+ // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
+ // Load the function address on r11 and sets it to control register. Also
+ // loads the function TOC in r2 and environment pointer to r11.
+ writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
+ writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
+ writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
+ writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
+ writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
+ writeInt32BE(Addr+40, 0x4E800420); // bctr
+ }
+ return Addr;
+ } else if (Arch == Triple::systemz) {
+ writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
+ writeInt16BE(Addr+2, 0x0000);
+ writeInt16BE(Addr+4, 0x0004);
+ writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
+ // 8-byte address stored at Addr + 8
+ return Addr;
+ } else if (Arch == Triple::x86_64) {
+ *Addr = 0xFF; // jmp
+ *(Addr+1) = 0x25; // rip
+ // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
+ } else if (Arch == Triple::x86) {
+ *Addr = 0xE9; // 32-bit pc-relative jump.
+ }
+ return Addr;
+}
+
+// Assign an address to a symbol name and resolve all the relocations
+// associated with it.
+void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
+ uint64_t Addr) {
+ // The address to use for relocation resolution is not
+ // the address of the local section buffer. We must be doing
+ // a remote execution environment of some sort. Relocations can't
+ // be applied until all the sections have been moved. The client must
+ // trigger this with a call to MCJIT::finalize() or
+ // RuntimeDyld::resolveRelocations().
+ //
+ // Addr is a uint64_t because we can't assume the pointer width
+ // of the target is the same as that of the host. Just use a generic
+ // "big enough" type.
+ DEBUG(dbgs() << "Reassigning address for section "
+ << SectionID << " (" << Sections[SectionID].Name << "): "
+ << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
+ << format("0x%016" PRIx64, Addr) << "\n");
+ Sections[SectionID].LoadAddress = Addr;
+}
+
+void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
+ uint64_t Value) {
+ for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
+ const RelocationEntry &RE = Relocs[i];
+ // Ignore relocations for sections that were not loaded
+ if (Sections[RE.SectionID].Address == nullptr)
+ continue;
+ resolveRelocation(RE, Value);
+ }
+}
+
+void RuntimeDyldImpl::resolveExternalSymbols() {
+ while (!ExternalSymbolRelocations.empty()) {
+ StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
+
+ StringRef Name = i->first();
+ if (Name.size() == 0) {
+ // This is an absolute symbol, use an address of zero.
+ DEBUG(dbgs() << "Resolving absolute relocations."
+ << "\n");
+ RelocationList &Relocs = i->second;
+ resolveRelocationList(Relocs, 0);
+ } else {
+ uint64_t Addr = 0;
+ RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
+ if (Loc == GlobalSymbolTable.end()) {
+ // This is an external symbol, try to get its address from the symbol
+ // resolver.
+ Addr = Resolver.findSymbol(Name.data()).getAddress();
+ // The call to getSymbolAddress may have caused additional modules to
+ // be loaded, which may have added new entries to the
+ // ExternalSymbolRelocations map. Consquently, we need to update our
+ // iterator. This is also why retrieval of the relocation list
+ // associated with this symbol is deferred until below this point.
+ // New entries may have been added to the relocation list.
+ i = ExternalSymbolRelocations.find(Name);
+ } else {
+ // We found the symbol in our global table. It was probably in a
+ // Module that we loaded previously.
+ const auto &SymInfo = Loc->second;
+ Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
+ SymInfo.getOffset();
+ }
+
+ // FIXME: Implement error handling that doesn't kill the host program!
+ if (!Addr)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+
+ DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
+ << format("0x%lx", Addr) << "\n");
+ // This list may have been updated when we called getSymbolAddress, so
+ // don't change this code to get the list earlier.
+ RelocationList &Relocs = i->second;
+ resolveRelocationList(Relocs, Addr);
+ }
+
+ ExternalSymbolRelocations.erase(i);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// RuntimeDyld class implementation
+
+uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
+ StringRef SectionName) const {
+ for (unsigned I = BeginIdx; I != EndIdx; ++I)
+ if (RTDyld.Sections[I].Name == SectionName)
+ return RTDyld.Sections[I].LoadAddress;
+
+ return 0;
+}
+
+void RuntimeDyld::MemoryManager::anchor() {}
+void RuntimeDyld::SymbolResolver::anchor() {}
+
+RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : MemMgr(MemMgr), Resolver(Resolver) {
+ // FIXME: There's a potential issue lurking here if a single instance of
+ // RuntimeDyld is used to load multiple objects. The current implementation
+ // associates a single memory manager with a RuntimeDyld instance. Even
+ // though the public class spawns a new 'impl' instance for each load,
+ // they share a single memory manager. This can become a problem when page
+ // permissions are applied.
+ Dyld = nullptr;
+ ProcessAllSections = false;
+ Checker = nullptr;
+}
+
+RuntimeDyld::~RuntimeDyld() {}
+
+static std::unique_ptr<RuntimeDyldCOFF>
+createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver,
+ bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
+ std::unique_ptr<RuntimeDyldCOFF> Dyld =
+ RuntimeDyldCOFF::create(Arch, MM, Resolver);
+ Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setRuntimeDyldChecker(Checker);
+ return Dyld;
+}
+
+static std::unique_ptr<RuntimeDyldELF>
+createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver,
+ bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
+ std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
+ Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setRuntimeDyldChecker(Checker);
+ return Dyld;
+}
+
+static std::unique_ptr<RuntimeDyldMachO>
+createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver,
+ bool ProcessAllSections,
+ RuntimeDyldCheckerImpl *Checker) {
+ std::unique_ptr<RuntimeDyldMachO> Dyld =
+ RuntimeDyldMachO::create(Arch, MM, Resolver);
+ Dyld->setProcessAllSections(ProcessAllSections);
+ Dyld->setRuntimeDyldChecker(Checker);
+ return Dyld;
+}
+
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyld::loadObject(const ObjectFile &Obj) {
+ if (!Dyld) {
+ if (Obj.isELF())
+ Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
+ else if (Obj.isMachO())
+ Dyld = createRuntimeDyldMachO(
+ static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
+ ProcessAllSections, Checker);
+ else if (Obj.isCOFF())
+ Dyld = createRuntimeDyldCOFF(
+ static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
+ ProcessAllSections, Checker);
+ else
+ report_fatal_error("Incompatible object format!");
+ }
+
+ if (!Dyld->isCompatibleFile(Obj))
+ report_fatal_error("Incompatible object format!");
+
+ return Dyld->loadObject(Obj);
+}
+
+void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
+ if (!Dyld)
+ return nullptr;
+ return Dyld->getSymbolLocalAddress(Name);
+}
+
+RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
+ if (!Dyld)
+ return nullptr;
+ return Dyld->getSymbol(Name);
+}
+
+void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
+
+void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
+ Dyld->reassignSectionAddress(SectionID, Addr);
+}
+
+void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ Dyld->mapSectionAddress(LocalAddress, TargetAddress);
+}
+
+bool RuntimeDyld::hasError() { return Dyld->hasError(); }
+
+StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
+
+void RuntimeDyld::registerEHFrames() {
+ if (Dyld)
+ Dyld->registerEHFrames();
+}
+
+void RuntimeDyld::deregisterEHFrames() {
+ if (Dyld)
+ Dyld->deregisterEHFrames();
+}
+
+} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.cpp
new file mode 100644
index 0000000..1dacc13
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.cpp
@@ -0,0 +1,73 @@
+//===-- RuntimeDyldCOFF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of COFF support for the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RuntimeDyldCOFF.h"
+#include "Targets/RuntimeDyldCOFFX86_64.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Object/ObjectFile.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+#define DEBUG_TYPE "dyld"
+
+namespace {
+
+class LoadedCOFFObjectInfo
+ : public RuntimeDyld::LoadedObjectInfoHelper<LoadedCOFFObjectInfo> {
+public:
+ LoadedCOFFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
+ unsigned EndIdx)
+ : LoadedObjectInfoHelper(RTDyld, BeginIdx, EndIdx) {}
+
+ OwningBinary<ObjectFile>
+ getObjectForDebug(const ObjectFile &Obj) const override {
+ return OwningBinary<ObjectFile>();
+ }
+};
+}
+
+namespace llvm {
+
+std::unique_ptr<RuntimeDyldCOFF>
+llvm::RuntimeDyldCOFF::create(Triple::ArchType Arch,
+ RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver) {
+ switch (Arch) {
+ default:
+ llvm_unreachable("Unsupported target for RuntimeDyldCOFF.");
+ break;
+ case Triple::x86_64:
+ return make_unique<RuntimeDyldCOFFX86_64>(MemMgr, Resolver);
+ }
+}
+
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldCOFF::loadObject(const object::ObjectFile &O) {
+ unsigned SectionStartIdx, SectionEndIdx;
+ std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
+ return llvm::make_unique<LoadedCOFFObjectInfo>(*this, SectionStartIdx,
+ SectionEndIdx);
+}
+
+uint64_t RuntimeDyldCOFF::getSymbolOffset(const SymbolRef &Sym) {
+ // The value in a relocatable COFF object is the offset.
+ return Sym.getValue();
+}
+
+bool RuntimeDyldCOFF::isCompatibleFile(const object::ObjectFile &Obj) const {
+ return Obj.isCOFF();
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.h
new file mode 100644
index 0000000..32b8fa2
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCOFF.h
@@ -0,0 +1,50 @@
+//===-- RuntimeDyldCOFF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// COFF support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_COFF_H
+#define LLVM_RUNTIME_DYLD_COFF_H
+
+#include "RuntimeDyldImpl.h"
+#include "llvm/ADT/DenseMap.h"
+
+#define DEBUG_TYPE "dyld"
+
+using namespace llvm;
+
+namespace llvm {
+
+// Common base class for COFF dynamic linker support.
+// Concrete subclasses for each target can be found in ./Targets.
+class RuntimeDyldCOFF : public RuntimeDyldImpl {
+
+public:
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+ loadObject(const object::ObjectFile &Obj) override;
+ bool isCompatibleFile(const object::ObjectFile &Obj) const override;
+
+ static std::unique_ptr<RuntimeDyldCOFF>
+ create(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver);
+
+protected:
+ RuntimeDyldCOFF(RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldImpl(MemMgr, Resolver) {}
+ uint64_t getSymbolOffset(const SymbolRef &Sym);
+};
+
+} // end namespace llvm
+
+#undef DEBUG_TYPE
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp
new file mode 100644
index 0000000..957571b
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldChecker.cpp
@@ -0,0 +1,934 @@
+//===--- RuntimeDyldChecker.cpp - RuntimeDyld tester framework --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/STLExtras.h"
+#include "RuntimeDyldCheckerImpl.h"
+#include "RuntimeDyldImpl.h"
+#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/Path.h"
+#include <cctype>
+#include <memory>
+
+#define DEBUG_TYPE "rtdyld"
+
+using namespace llvm;
+
+namespace llvm {
+
+// Helper class that implements the language evaluated by RuntimeDyldChecker.
+class RuntimeDyldCheckerExprEval {
+public:
+ RuntimeDyldCheckerExprEval(const RuntimeDyldCheckerImpl &Checker,
+ raw_ostream &ErrStream)
+ : Checker(Checker) {}
+
+ bool evaluate(StringRef Expr) const {
+ // Expect equality expression of the form 'LHS = RHS'.
+ Expr = Expr.trim();
+ size_t EQIdx = Expr.find('=');
+
+ ParseContext OutsideLoad(false);
+
+ // Evaluate LHS.
+ StringRef LHSExpr = Expr.substr(0, EQIdx).rtrim();
+ StringRef RemainingExpr;
+ EvalResult LHSResult;
+ std::tie(LHSResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(LHSExpr, OutsideLoad), OutsideLoad);
+ if (LHSResult.hasError())
+ return handleError(Expr, LHSResult);
+ if (RemainingExpr != "")
+ return handleError(Expr, unexpectedToken(RemainingExpr, LHSExpr, ""));
+
+ // Evaluate RHS.
+ StringRef RHSExpr = Expr.substr(EQIdx + 1).ltrim();
+ EvalResult RHSResult;
+ std::tie(RHSResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(RHSExpr, OutsideLoad), OutsideLoad);
+ if (RHSResult.hasError())
+ return handleError(Expr, RHSResult);
+ if (RemainingExpr != "")
+ return handleError(Expr, unexpectedToken(RemainingExpr, RHSExpr, ""));
+
+ if (LHSResult.getValue() != RHSResult.getValue()) {
+ Checker.ErrStream << "Expression '" << Expr << "' is false: "
+ << format("0x%" PRIx64, LHSResult.getValue())
+ << " != " << format("0x%" PRIx64, RHSResult.getValue())
+ << "\n";
+ return false;
+ }
+ return true;
+ }
+
+private:
+ // RuntimeDyldCheckerExprEval requires some context when parsing exprs. In
+ // particular, it needs to know whether a symbol is being evaluated in the
+ // context of a load, in which case we want the linker's local address for
+ // the symbol, or outside of a load, in which case we want the symbol's
+ // address in the remote target.
+
+ struct ParseContext {
+ bool IsInsideLoad;
+ ParseContext(bool IsInsideLoad) : IsInsideLoad(IsInsideLoad) {}
+ };
+
+ const RuntimeDyldCheckerImpl &Checker;
+
+ enum class BinOpToken : unsigned {
+ Invalid,
+ Add,
+ Sub,
+ BitwiseAnd,
+ BitwiseOr,
+ ShiftLeft,
+ ShiftRight
+ };
+
+ class EvalResult {
+ public:
+ EvalResult() : Value(0), ErrorMsg("") {}
+ EvalResult(uint64_t Value) : Value(Value), ErrorMsg("") {}
+ EvalResult(std::string ErrorMsg) : Value(0), ErrorMsg(ErrorMsg) {}
+ uint64_t getValue() const { return Value; }
+ bool hasError() const { return ErrorMsg != ""; }
+ const std::string &getErrorMsg() const { return ErrorMsg; }
+
+ private:
+ uint64_t Value;
+ std::string ErrorMsg;
+ };
+
+ StringRef getTokenForError(StringRef Expr) const {
+ if (Expr.empty())
+ return "";
+
+ StringRef Token, Remaining;
+ if (isalpha(Expr[0]))
+ std::tie(Token, Remaining) = parseSymbol(Expr);
+ else if (isdigit(Expr[0]))
+ std::tie(Token, Remaining) = parseNumberString(Expr);
+ else {
+ unsigned TokLen = 1;
+ if (Expr.startswith("<<") || Expr.startswith(">>"))
+ TokLen = 2;
+ Token = Expr.substr(0, TokLen);
+ }
+ return Token;
+ }
+
+ EvalResult unexpectedToken(StringRef TokenStart, StringRef SubExpr,
+ StringRef ErrText) const {
+ std::string ErrorMsg("Encountered unexpected token '");
+ ErrorMsg += getTokenForError(TokenStart);
+ if (SubExpr != "") {
+ ErrorMsg += "' while parsing subexpression '";
+ ErrorMsg += SubExpr;
+ }
+ ErrorMsg += "'";
+ if (ErrText != "") {
+ ErrorMsg += " ";
+ ErrorMsg += ErrText;
+ }
+ return EvalResult(std::move(ErrorMsg));
+ }
+
+ bool handleError(StringRef Expr, const EvalResult &R) const {
+ assert(R.hasError() && "Not an error result.");
+ Checker.ErrStream << "Error evaluating expression '" << Expr
+ << "': " << R.getErrorMsg() << "\n";
+ return false;
+ }
+
+ std::pair<BinOpToken, StringRef> parseBinOpToken(StringRef Expr) const {
+ if (Expr.empty())
+ return std::make_pair(BinOpToken::Invalid, "");
+
+ // Handle the two 2-character tokens.
+ if (Expr.startswith("<<"))
+ return std::make_pair(BinOpToken::ShiftLeft, Expr.substr(2).ltrim());
+ if (Expr.startswith(">>"))
+ return std::make_pair(BinOpToken::ShiftRight, Expr.substr(2).ltrim());
+
+ // Handle one-character tokens.
+ BinOpToken Op;
+ switch (Expr[0]) {
+ default:
+ return std::make_pair(BinOpToken::Invalid, Expr);
+ case '+':
+ Op = BinOpToken::Add;
+ break;
+ case '-':
+ Op = BinOpToken::Sub;
+ break;
+ case '&':
+ Op = BinOpToken::BitwiseAnd;
+ break;
+ case '|':
+ Op = BinOpToken::BitwiseOr;
+ break;
+ }
+
+ return std::make_pair(Op, Expr.substr(1).ltrim());
+ }
+
+ EvalResult computeBinOpResult(BinOpToken Op, const EvalResult &LHSResult,
+ const EvalResult &RHSResult) const {
+ switch (Op) {
+ default:
+ llvm_unreachable("Tried to evaluate unrecognized operation.");
+ case BinOpToken::Add:
+ return EvalResult(LHSResult.getValue() + RHSResult.getValue());
+ case BinOpToken::Sub:
+ return EvalResult(LHSResult.getValue() - RHSResult.getValue());
+ case BinOpToken::BitwiseAnd:
+ return EvalResult(LHSResult.getValue() & RHSResult.getValue());
+ case BinOpToken::BitwiseOr:
+ return EvalResult(LHSResult.getValue() | RHSResult.getValue());
+ case BinOpToken::ShiftLeft:
+ return EvalResult(LHSResult.getValue() << RHSResult.getValue());
+ case BinOpToken::ShiftRight:
+ return EvalResult(LHSResult.getValue() >> RHSResult.getValue());
+ }
+ }
+
+ // Parse a symbol and return a (string, string) pair representing the symbol
+ // name and expression remaining to be parsed.
+ std::pair<StringRef, StringRef> parseSymbol(StringRef Expr) const {
+ size_t FirstNonSymbol = Expr.find_first_not_of("0123456789"
+ "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+ ":_.$");
+ return std::make_pair(Expr.substr(0, FirstNonSymbol),
+ Expr.substr(FirstNonSymbol).ltrim());
+ }
+
+ // Evaluate a call to decode_operand. Decode the instruction operand at the
+ // given symbol and get the value of the requested operand.
+ // Returns an error if the instruction cannot be decoded, or the requested
+ // operand is not an immediate.
+ // On success, retuns a pair containing the value of the operand, plus
+ // the expression remaining to be evaluated.
+ std::pair<EvalResult, StringRef> evalDecodeOperand(StringRef Expr) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+ StringRef Symbol;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!Checker.isSymbolValid(Symbol))
+ return std::make_pair(
+ EvalResult(("Cannot decode unknown symbol '" + Symbol + "'").str()),
+ "");
+
+ if (!RemainingExpr.startswith(","))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ EvalResult OpIdxExpr;
+ std::tie(OpIdxExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+ if (OpIdxExpr.hasError())
+ return std::make_pair(OpIdxExpr, "");
+
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ MCInst Inst;
+ uint64_t Size;
+ if (!decodeInst(Symbol, Inst, Size))
+ return std::make_pair(
+ EvalResult(("Couldn't decode instruction at '" + Symbol + "'").str()),
+ "");
+
+ unsigned OpIdx = OpIdxExpr.getValue();
+ if (OpIdx >= Inst.getNumOperands()) {
+ std::string ErrMsg;
+ raw_string_ostream ErrMsgStream(ErrMsg);
+ ErrMsgStream << "Invalid operand index '" << format("%i", OpIdx)
+ << "' for instruction '" << Symbol
+ << "'. Instruction has only "
+ << format("%i", Inst.getNumOperands())
+ << " operands.\nInstruction is:\n ";
+ Inst.dump_pretty(ErrMsgStream, Checker.InstPrinter);
+ return std::make_pair(EvalResult(ErrMsgStream.str()), "");
+ }
+
+ const MCOperand &Op = Inst.getOperand(OpIdx);
+ if (!Op.isImm()) {
+ std::string ErrMsg;
+ raw_string_ostream ErrMsgStream(ErrMsg);
+ ErrMsgStream << "Operand '" << format("%i", OpIdx) << "' of instruction '"
+ << Symbol << "' is not an immediate.\nInstruction is:\n ";
+ Inst.dump_pretty(ErrMsgStream, Checker.InstPrinter);
+
+ return std::make_pair(EvalResult(ErrMsgStream.str()), "");
+ }
+
+ return std::make_pair(EvalResult(Op.getImm()), RemainingExpr);
+ }
+
+ // Evaluate a call to next_pc.
+ // Decode the instruction at the given symbol and return the following program
+ // counter.
+ // Returns an error if the instruction cannot be decoded.
+ // On success, returns a pair containing the next PC, plus of the
+ // expression remaining to be evaluated.
+ std::pair<EvalResult, StringRef> evalNextPC(StringRef Expr,
+ ParseContext PCtx) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+ StringRef Symbol;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!Checker.isSymbolValid(Symbol))
+ return std::make_pair(
+ EvalResult(("Cannot decode unknown symbol '" + Symbol + "'").str()),
+ "");
+
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ MCInst Inst;
+ uint64_t InstSize;
+ if (!decodeInst(Symbol, Inst, InstSize))
+ return std::make_pair(
+ EvalResult(("Couldn't decode instruction at '" + Symbol + "'").str()),
+ "");
+
+ uint64_t SymbolAddr = PCtx.IsInsideLoad
+ ? Checker.getSymbolLocalAddr(Symbol)
+ : Checker.getSymbolRemoteAddr(Symbol);
+ uint64_t NextPC = SymbolAddr + InstSize;
+
+ return std::make_pair(EvalResult(NextPC), RemainingExpr);
+ }
+
+ // Evaluate a call to stub_addr.
+ // Look up and return the address of the stub for the given
+ // (<file name>, <section name>, <symbol name>) tuple.
+ // On success, returns a pair containing the stub address, plus the expression
+ // remaining to be evaluated.
+ std::pair<EvalResult, StringRef> evalStubAddr(StringRef Expr,
+ ParseContext PCtx) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+
+ // Handle file-name specially, as it may contain characters that aren't
+ // legal for symbols.
+ StringRef FileName;
+ size_t ComaIdx = RemainingExpr.find(',');
+ FileName = RemainingExpr.substr(0, ComaIdx).rtrim();
+ RemainingExpr = RemainingExpr.substr(ComaIdx).ltrim();
+
+ if (!RemainingExpr.startswith(","))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ StringRef SectionName;
+ std::tie(SectionName, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!RemainingExpr.startswith(","))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ StringRef Symbol;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ uint64_t StubAddr;
+ std::string ErrorMsg = "";
+ std::tie(StubAddr, ErrorMsg) = Checker.getStubAddrFor(
+ FileName, SectionName, Symbol, PCtx.IsInsideLoad);
+
+ if (ErrorMsg != "")
+ return std::make_pair(EvalResult(ErrorMsg), "");
+
+ return std::make_pair(EvalResult(StubAddr), RemainingExpr);
+ }
+
+ std::pair<EvalResult, StringRef> evalSectionAddr(StringRef Expr,
+ ParseContext PCtx) const {
+ if (!Expr.startswith("("))
+ return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+
+ // Handle file-name specially, as it may contain characters that aren't
+ // legal for symbols.
+ StringRef FileName;
+ size_t ComaIdx = RemainingExpr.find(',');
+ FileName = RemainingExpr.substr(0, ComaIdx).rtrim();
+ RemainingExpr = RemainingExpr.substr(ComaIdx).ltrim();
+
+ if (!RemainingExpr.startswith(","))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ','"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ StringRef SectionName;
+ std::tie(SectionName, RemainingExpr) = parseSymbol(RemainingExpr);
+
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ uint64_t StubAddr;
+ std::string ErrorMsg = "";
+ std::tie(StubAddr, ErrorMsg) = Checker.getSectionAddr(
+ FileName, SectionName, PCtx.IsInsideLoad);
+
+ if (ErrorMsg != "")
+ return std::make_pair(EvalResult(ErrorMsg), "");
+
+ return std::make_pair(EvalResult(StubAddr), RemainingExpr);
+ }
+
+ // Evaluate an identiefer expr, which may be a symbol, or a call to
+ // one of the builtin functions: get_insn_opcode or get_insn_length.
+ // Return the result, plus the expression remaining to be parsed.
+ std::pair<EvalResult, StringRef> evalIdentifierExpr(StringRef Expr,
+ ParseContext PCtx) const {
+ StringRef Symbol;
+ StringRef RemainingExpr;
+ std::tie(Symbol, RemainingExpr) = parseSymbol(Expr);
+
+ // Check for builtin function calls.
+ if (Symbol == "decode_operand")
+ return evalDecodeOperand(RemainingExpr);
+ else if (Symbol == "next_pc")
+ return evalNextPC(RemainingExpr, PCtx);
+ else if (Symbol == "stub_addr")
+ return evalStubAddr(RemainingExpr, PCtx);
+ else if (Symbol == "section_addr")
+ return evalSectionAddr(RemainingExpr, PCtx);
+
+ if (!Checker.isSymbolValid(Symbol)) {
+ std::string ErrMsg("No known address for symbol '");
+ ErrMsg += Symbol;
+ ErrMsg += "'";
+ if (Symbol.startswith("L"))
+ ErrMsg += " (this appears to be an assembler local label - "
+ " perhaps drop the 'L'?)";
+
+ return std::make_pair(EvalResult(ErrMsg), "");
+ }
+
+ // The value for the symbol depends on the context we're evaluating in:
+ // Inside a load this is the address in the linker's memory, outside a
+ // load it's the address in the target processes memory.
+ uint64_t Value = PCtx.IsInsideLoad ? Checker.getSymbolLocalAddr(Symbol)
+ : Checker.getSymbolRemoteAddr(Symbol);
+
+ // Looks like a plain symbol reference.
+ return std::make_pair(EvalResult(Value), RemainingExpr);
+ }
+
+ // Parse a number (hexadecimal or decimal) and return a (string, string)
+ // pair representing the number and the expression remaining to be parsed.
+ std::pair<StringRef, StringRef> parseNumberString(StringRef Expr) const {
+ size_t FirstNonDigit = StringRef::npos;
+ if (Expr.startswith("0x")) {
+ FirstNonDigit = Expr.find_first_not_of("0123456789abcdefABCDEF", 2);
+ if (FirstNonDigit == StringRef::npos)
+ FirstNonDigit = Expr.size();
+ } else {
+ FirstNonDigit = Expr.find_first_not_of("0123456789");
+ if (FirstNonDigit == StringRef::npos)
+ FirstNonDigit = Expr.size();
+ }
+ return std::make_pair(Expr.substr(0, FirstNonDigit),
+ Expr.substr(FirstNonDigit));
+ }
+
+ // Evaluate a constant numeric expression (hexidecimal or decimal) and
+ // return a pair containing the result, and the expression remaining to be
+ // evaluated.
+ std::pair<EvalResult, StringRef> evalNumberExpr(StringRef Expr) const {
+ StringRef ValueStr;
+ StringRef RemainingExpr;
+ std::tie(ValueStr, RemainingExpr) = parseNumberString(Expr);
+
+ if (ValueStr.empty() || !isdigit(ValueStr[0]))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected number"), "");
+ uint64_t Value;
+ ValueStr.getAsInteger(0, Value);
+ return std::make_pair(EvalResult(Value), RemainingExpr);
+ }
+
+ // Evaluate an expression of the form "(<expr>)" and return a pair
+ // containing the result of evaluating <expr>, plus the expression
+ // remaining to be parsed.
+ std::pair<EvalResult, StringRef> evalParensExpr(StringRef Expr,
+ ParseContext PCtx) const {
+ assert(Expr.startswith("(") && "Not a parenthesized expression");
+ EvalResult SubExprResult;
+ StringRef RemainingExpr;
+ std::tie(SubExprResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(Expr.substr(1).ltrim(), PCtx), PCtx);
+ if (SubExprResult.hasError())
+ return std::make_pair(SubExprResult, "");
+ if (!RemainingExpr.startswith(")"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, Expr, "expected ')'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+ return std::make_pair(SubExprResult, RemainingExpr);
+ }
+
+ // Evaluate an expression in one of the following forms:
+ // *{<number>}<expr>
+ // Return a pair containing the result, plus the expression remaining to be
+ // parsed.
+ std::pair<EvalResult, StringRef> evalLoadExpr(StringRef Expr) const {
+ assert(Expr.startswith("*") && "Not a load expression");
+ StringRef RemainingExpr = Expr.substr(1).ltrim();
+
+ // Parse read size.
+ if (!RemainingExpr.startswith("{"))
+ return std::make_pair(EvalResult("Expected '{' following '*'."), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+ EvalResult ReadSizeExpr;
+ std::tie(ReadSizeExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+ if (ReadSizeExpr.hasError())
+ return std::make_pair(ReadSizeExpr, RemainingExpr);
+ uint64_t ReadSize = ReadSizeExpr.getValue();
+ if (ReadSize < 1 || ReadSize > 8)
+ return std::make_pair(EvalResult("Invalid size for dereference."), "");
+ if (!RemainingExpr.startswith("}"))
+ return std::make_pair(EvalResult("Missing '}' for dereference."), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ // Evaluate the expression representing the load address.
+ ParseContext LoadCtx(true);
+ EvalResult LoadAddrExprResult;
+ std::tie(LoadAddrExprResult, RemainingExpr) =
+ evalComplexExpr(evalSimpleExpr(RemainingExpr, LoadCtx), LoadCtx);
+
+ if (LoadAddrExprResult.hasError())
+ return std::make_pair(LoadAddrExprResult, "");
+
+ uint64_t LoadAddr = LoadAddrExprResult.getValue();
+
+ return std::make_pair(
+ EvalResult(Checker.readMemoryAtAddr(LoadAddr, ReadSize)),
+ RemainingExpr);
+ }
+
+ // Evaluate a "simple" expression. This is any expression that _isn't_ an
+ // un-parenthesized binary expression.
+ //
+ // "Simple" expressions can be optionally bit-sliced. See evalSlicedExpr.
+ //
+ // Returns a pair containing the result of the evaluation, plus the
+ // expression remaining to be parsed.
+ std::pair<EvalResult, StringRef> evalSimpleExpr(StringRef Expr,
+ ParseContext PCtx) const {
+ EvalResult SubExprResult;
+ StringRef RemainingExpr;
+
+ if (Expr.empty())
+ return std::make_pair(EvalResult("Unexpected end of expression"), "");
+
+ if (Expr[0] == '(')
+ std::tie(SubExprResult, RemainingExpr) = evalParensExpr(Expr, PCtx);
+ else if (Expr[0] == '*')
+ std::tie(SubExprResult, RemainingExpr) = evalLoadExpr(Expr);
+ else if (isalpha(Expr[0]) || Expr[0] == '_')
+ std::tie(SubExprResult, RemainingExpr) = evalIdentifierExpr(Expr, PCtx);
+ else if (isdigit(Expr[0]))
+ std::tie(SubExprResult, RemainingExpr) = evalNumberExpr(Expr);
+ else
+ return std::make_pair(
+ unexpectedToken(Expr, Expr,
+ "expected '(', '*', identifier, or number"), "");
+
+ if (SubExprResult.hasError())
+ return std::make_pair(SubExprResult, RemainingExpr);
+
+ // Evaluate bit-slice if present.
+ if (RemainingExpr.startswith("["))
+ std::tie(SubExprResult, RemainingExpr) =
+ evalSliceExpr(std::make_pair(SubExprResult, RemainingExpr));
+
+ return std::make_pair(SubExprResult, RemainingExpr);
+ }
+
+ // Evaluate a bit-slice of an expression.
+ // A bit-slice has the form "<expr>[high:low]". The result of evaluating a
+ // slice is the bits between high and low (inclusive) in the original
+ // expression, right shifted so that the "low" bit is in position 0 in the
+ // result.
+ // Returns a pair containing the result of the slice operation, plus the
+ // expression remaining to be parsed.
+ std::pair<EvalResult, StringRef>
+ evalSliceExpr(std::pair<EvalResult, StringRef> Ctx) const {
+ EvalResult SubExprResult;
+ StringRef RemainingExpr;
+ std::tie(SubExprResult, RemainingExpr) = Ctx;
+
+ assert(RemainingExpr.startswith("[") && "Not a slice expr.");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ EvalResult HighBitExpr;
+ std::tie(HighBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+
+ if (HighBitExpr.hasError())
+ return std::make_pair(HighBitExpr, RemainingExpr);
+
+ if (!RemainingExpr.startswith(":"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ':'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ EvalResult LowBitExpr;
+ std::tie(LowBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
+
+ if (LowBitExpr.hasError())
+ return std::make_pair(LowBitExpr, RemainingExpr);
+
+ if (!RemainingExpr.startswith("]"))
+ return std::make_pair(
+ unexpectedToken(RemainingExpr, RemainingExpr, "expected ']'"), "");
+ RemainingExpr = RemainingExpr.substr(1).ltrim();
+
+ unsigned HighBit = HighBitExpr.getValue();
+ unsigned LowBit = LowBitExpr.getValue();
+ uint64_t Mask = ((uint64_t)1 << (HighBit - LowBit + 1)) - 1;
+ uint64_t SlicedValue = (SubExprResult.getValue() >> LowBit) & Mask;
+ return std::make_pair(EvalResult(SlicedValue), RemainingExpr);
+ }
+
+ // Evaluate a "complex" expression.
+ // Takes an already evaluated subexpression and checks for the presence of a
+ // binary operator, computing the result of the binary operation if one is
+ // found. Used to make arithmetic expressions left-associative.
+ // Returns a pair containing the ultimate result of evaluating the
+ // expression, plus the expression remaining to be evaluated.
+ std::pair<EvalResult, StringRef>
+ evalComplexExpr(std::pair<EvalResult, StringRef> LHSAndRemaining,
+ ParseContext PCtx) const {
+ EvalResult LHSResult;
+ StringRef RemainingExpr;
+ std::tie(LHSResult, RemainingExpr) = LHSAndRemaining;
+
+ // If there was an error, or there's nothing left to evaluate, return the
+ // result.
+ if (LHSResult.hasError() || RemainingExpr == "")
+ return std::make_pair(LHSResult, RemainingExpr);
+
+ // Otherwise check if this is a binary expressioan.
+ BinOpToken BinOp;
+ std::tie(BinOp, RemainingExpr) = parseBinOpToken(RemainingExpr);
+
+ // If this isn't a recognized expression just return.
+ if (BinOp == BinOpToken::Invalid)
+ return std::make_pair(LHSResult, RemainingExpr);
+
+ // This is a recognized bin-op. Evaluate the RHS, then evaluate the binop.
+ EvalResult RHSResult;
+ std::tie(RHSResult, RemainingExpr) = evalSimpleExpr(RemainingExpr, PCtx);
+
+ // If there was an error evaluating the RHS, return it.
+ if (RHSResult.hasError())
+ return std::make_pair(RHSResult, RemainingExpr);
+
+ // This is a binary expression - evaluate and try to continue as a
+ // complex expr.
+ EvalResult ThisResult(computeBinOpResult(BinOp, LHSResult, RHSResult));
+
+ return evalComplexExpr(std::make_pair(ThisResult, RemainingExpr), PCtx);
+ }
+
+ bool decodeInst(StringRef Symbol, MCInst &Inst, uint64_t &Size) const {
+ MCDisassembler *Dis = Checker.Disassembler;
+ StringRef SectionMem = Checker.getSubsectionStartingAt(Symbol);
+ ArrayRef<uint8_t> SectionBytes(
+ reinterpret_cast<const uint8_t *>(SectionMem.data()),
+ SectionMem.size());
+
+ MCDisassembler::DecodeStatus S =
+ Dis->getInstruction(Inst, Size, SectionBytes, 0, nulls(), nulls());
+
+ return (S == MCDisassembler::Success);
+ }
+};
+}
+
+RuntimeDyldCheckerImpl::RuntimeDyldCheckerImpl(RuntimeDyld &RTDyld,
+ MCDisassembler *Disassembler,
+ MCInstPrinter *InstPrinter,
+ raw_ostream &ErrStream)
+ : RTDyld(RTDyld), Disassembler(Disassembler), InstPrinter(InstPrinter),
+ ErrStream(ErrStream) {
+ RTDyld.Checker = this;
+}
+
+bool RuntimeDyldCheckerImpl::check(StringRef CheckExpr) const {
+ CheckExpr = CheckExpr.trim();
+ DEBUG(dbgs() << "RuntimeDyldChecker: Checking '" << CheckExpr << "'...\n");
+ RuntimeDyldCheckerExprEval P(*this, ErrStream);
+ bool Result = P.evaluate(CheckExpr);
+ (void)Result;
+ DEBUG(dbgs() << "RuntimeDyldChecker: '" << CheckExpr << "' "
+ << (Result ? "passed" : "FAILED") << ".\n");
+ return Result;
+}
+
+bool RuntimeDyldCheckerImpl::checkAllRulesInBuffer(StringRef RulePrefix,
+ MemoryBuffer *MemBuf) const {
+ bool DidAllTestsPass = true;
+ unsigned NumRules = 0;
+
+ const char *LineStart = MemBuf->getBufferStart();
+
+ // Eat whitespace.
+ while (LineStart != MemBuf->getBufferEnd() && std::isspace(*LineStart))
+ ++LineStart;
+
+ while (LineStart != MemBuf->getBufferEnd() && *LineStart != '\0') {
+ const char *LineEnd = LineStart;
+ while (LineEnd != MemBuf->getBufferEnd() && *LineEnd != '\r' &&
+ *LineEnd != '\n')
+ ++LineEnd;
+
+ StringRef Line(LineStart, LineEnd - LineStart);
+ if (Line.startswith(RulePrefix)) {
+ DidAllTestsPass &= check(Line.substr(RulePrefix.size()));
+ ++NumRules;
+ }
+
+ // Eat whitespace.
+ LineStart = LineEnd;
+ while (LineStart != MemBuf->getBufferEnd() && std::isspace(*LineStart))
+ ++LineStart;
+ }
+ return DidAllTestsPass && (NumRules != 0);
+}
+
+bool RuntimeDyldCheckerImpl::isSymbolValid(StringRef Symbol) const {
+ return getRTDyld().getSymbolLocalAddress(Symbol) != nullptr;
+}
+
+uint64_t RuntimeDyldCheckerImpl::getSymbolLocalAddr(StringRef Symbol) const {
+ return static_cast<uint64_t>(
+ reinterpret_cast<uintptr_t>(getRTDyld().getSymbolLocalAddress(Symbol)));
+}
+
+uint64_t RuntimeDyldCheckerImpl::getSymbolRemoteAddr(StringRef Symbol) const {
+ if (auto InternalSymbol = getRTDyld().getSymbol(Symbol))
+ return InternalSymbol.getAddress();
+ return getRTDyld().Resolver.findSymbol(Symbol).getAddress();
+}
+
+uint64_t RuntimeDyldCheckerImpl::readMemoryAtAddr(uint64_t SrcAddr,
+ unsigned Size) const {
+ uintptr_t PtrSizedAddr = static_cast<uintptr_t>(SrcAddr);
+ assert(PtrSizedAddr == SrcAddr && "Linker memory pointer out-of-range.");
+ uint8_t *Src = reinterpret_cast<uint8_t*>(PtrSizedAddr);
+ return getRTDyld().readBytesUnaligned(Src, Size);
+}
+
+
+std::pair<const RuntimeDyldCheckerImpl::SectionAddressInfo*, std::string>
+RuntimeDyldCheckerImpl::findSectionAddrInfo(StringRef FileName,
+ StringRef SectionName) const {
+
+ auto SectionMapItr = Stubs.find(FileName);
+ if (SectionMapItr == Stubs.end()) {
+ std::string ErrorMsg = "File '";
+ ErrorMsg += FileName;
+ ErrorMsg += "' not found. ";
+ if (Stubs.empty())
+ ErrorMsg += "No stubs registered.";
+ else {
+ ErrorMsg += "Available files are:";
+ for (const auto& StubEntry : Stubs) {
+ ErrorMsg += " '";
+ ErrorMsg += StubEntry.first;
+ ErrorMsg += "'";
+ }
+ }
+ ErrorMsg += "\n";
+ return std::make_pair(nullptr, ErrorMsg);
+ }
+
+ auto SectionInfoItr = SectionMapItr->second.find(SectionName);
+ if (SectionInfoItr == SectionMapItr->second.end())
+ return std::make_pair(nullptr,
+ ("Section '" + SectionName + "' not found in file '" +
+ FileName + "'\n").str());
+
+ return std::make_pair(&SectionInfoItr->second, std::string(""));
+}
+
+std::pair<uint64_t, std::string> RuntimeDyldCheckerImpl::getSectionAddr(
+ StringRef FileName, StringRef SectionName, bool IsInsideLoad) const {
+
+ const SectionAddressInfo *SectionInfo = nullptr;
+ {
+ std::string ErrorMsg;
+ std::tie(SectionInfo, ErrorMsg) =
+ findSectionAddrInfo(FileName, SectionName);
+ if (ErrorMsg != "")
+ return std::make_pair(0, ErrorMsg);
+ }
+
+ unsigned SectionID = SectionInfo->SectionID;
+ uint64_t Addr;
+ if (IsInsideLoad)
+ Addr =
+ static_cast<uint64_t>(
+ reinterpret_cast<uintptr_t>(getRTDyld().Sections[SectionID].Address));
+ else
+ Addr = getRTDyld().Sections[SectionID].LoadAddress;
+
+ return std::make_pair(Addr, std::string(""));
+}
+
+std::pair<uint64_t, std::string> RuntimeDyldCheckerImpl::getStubAddrFor(
+ StringRef FileName, StringRef SectionName, StringRef SymbolName,
+ bool IsInsideLoad) const {
+
+ const SectionAddressInfo *SectionInfo = nullptr;
+ {
+ std::string ErrorMsg;
+ std::tie(SectionInfo, ErrorMsg) =
+ findSectionAddrInfo(FileName, SectionName);
+ if (ErrorMsg != "")
+ return std::make_pair(0, ErrorMsg);
+ }
+
+ unsigned SectionID = SectionInfo->SectionID;
+ const StubOffsetsMap &SymbolStubs = SectionInfo->StubOffsets;
+ auto StubOffsetItr = SymbolStubs.find(SymbolName);
+ if (StubOffsetItr == SymbolStubs.end())
+ return std::make_pair(0,
+ ("Stub for symbol '" + SymbolName + "' not found. "
+ "If '" + SymbolName + "' is an internal symbol this "
+ "may indicate that the stub target offset is being "
+ "computed incorrectly.\n").str());
+
+ uint64_t StubOffset = StubOffsetItr->second;
+
+ uint64_t Addr;
+ if (IsInsideLoad) {
+ uintptr_t SectionBase =
+ reinterpret_cast<uintptr_t>(getRTDyld().Sections[SectionID].Address);
+ Addr = static_cast<uint64_t>(SectionBase) + StubOffset;
+ } else {
+ uint64_t SectionBase = getRTDyld().Sections[SectionID].LoadAddress;
+ Addr = SectionBase + StubOffset;
+ }
+
+ return std::make_pair(Addr, std::string(""));
+}
+
+StringRef
+RuntimeDyldCheckerImpl::getSubsectionStartingAt(StringRef Name) const {
+ RTDyldSymbolTable::const_iterator pos =
+ getRTDyld().GlobalSymbolTable.find(Name);
+ if (pos == getRTDyld().GlobalSymbolTable.end())
+ return StringRef();
+ const auto &SymInfo = pos->second;
+ uint8_t *SectionAddr = getRTDyld().getSectionAddress(SymInfo.getSectionID());
+ return StringRef(reinterpret_cast<const char *>(SectionAddr) +
+ SymInfo.getOffset(),
+ getRTDyld().Sections[SymInfo.getSectionID()].Size -
+ SymInfo.getOffset());
+}
+
+void RuntimeDyldCheckerImpl::registerSection(
+ StringRef FilePath, unsigned SectionID) {
+ StringRef FileName = sys::path::filename(FilePath);
+ const SectionEntry &Section = getRTDyld().Sections[SectionID];
+ StringRef SectionName = Section.Name;
+
+ Stubs[FileName][SectionName].SectionID = SectionID;
+}
+
+void RuntimeDyldCheckerImpl::registerStubMap(
+ StringRef FilePath, unsigned SectionID,
+ const RuntimeDyldImpl::StubMap &RTDyldStubs) {
+ StringRef FileName = sys::path::filename(FilePath);
+ const SectionEntry &Section = getRTDyld().Sections[SectionID];
+ StringRef SectionName = Section.Name;
+
+ Stubs[FileName][SectionName].SectionID = SectionID;
+
+ for (auto &StubMapEntry : RTDyldStubs) {
+ std::string SymbolName = "";
+
+ if (StubMapEntry.first.SymbolName)
+ SymbolName = StubMapEntry.first.SymbolName;
+ else {
+ // If this is a (Section, Offset) pair, do a reverse lookup in the
+ // global symbol table to find the name.
+ for (auto &GSTEntry : getRTDyld().GlobalSymbolTable) {
+ const auto &SymInfo = GSTEntry.second;
+ if (SymInfo.getSectionID() == StubMapEntry.first.SectionID &&
+ SymInfo.getOffset() ==
+ static_cast<uint64_t>(StubMapEntry.first.Offset)) {
+ SymbolName = GSTEntry.first();
+ break;
+ }
+ }
+ }
+
+ if (SymbolName != "")
+ Stubs[FileName][SectionName].StubOffsets[SymbolName] =
+ StubMapEntry.second;
+ }
+}
+
+RuntimeDyldChecker::RuntimeDyldChecker(RuntimeDyld &RTDyld,
+ MCDisassembler *Disassembler,
+ MCInstPrinter *InstPrinter,
+ raw_ostream &ErrStream)
+ : Impl(make_unique<RuntimeDyldCheckerImpl>(RTDyld, Disassembler,
+ InstPrinter, ErrStream)) {}
+
+RuntimeDyldChecker::~RuntimeDyldChecker() {}
+
+RuntimeDyld& RuntimeDyldChecker::getRTDyld() {
+ return Impl->RTDyld;
+}
+
+const RuntimeDyld& RuntimeDyldChecker::getRTDyld() const {
+ return Impl->RTDyld;
+}
+
+bool RuntimeDyldChecker::check(StringRef CheckExpr) const {
+ return Impl->check(CheckExpr);
+}
+
+bool RuntimeDyldChecker::checkAllRulesInBuffer(StringRef RulePrefix,
+ MemoryBuffer *MemBuf) const {
+ return Impl->checkAllRulesInBuffer(RulePrefix, MemBuf);
+}
+
+std::pair<uint64_t, std::string>
+RuntimeDyldChecker::getSectionAddr(StringRef FileName, StringRef SectionName,
+ bool LocalAddress) {
+ return Impl->getSectionAddr(FileName, SectionName, LocalAddress);
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h
new file mode 100644
index 0000000..69d2a7d
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldCheckerImpl.h
@@ -0,0 +1,77 @@
+//===-- RuntimeDyldCheckerImpl.h -- RuntimeDyld test framework --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDCHECKERIMPL_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDCHECKERIMPL_H
+
+#include "RuntimeDyldImpl.h"
+#include <set>
+
+namespace llvm {
+
+class RuntimeDyldCheckerImpl {
+ friend class RuntimeDyldChecker;
+ friend class RuntimeDyldImpl;
+ friend class RuntimeDyldCheckerExprEval;
+ friend class RuntimeDyldELF;
+
+public:
+ RuntimeDyldCheckerImpl(RuntimeDyld &RTDyld, MCDisassembler *Disassembler,
+ MCInstPrinter *InstPrinter,
+ llvm::raw_ostream &ErrStream);
+
+ bool check(StringRef CheckExpr) const;
+ bool checkAllRulesInBuffer(StringRef RulePrefix, MemoryBuffer *MemBuf) const;
+
+private:
+
+ // StubMap typedefs.
+ typedef std::map<std::string, uint64_t> StubOffsetsMap;
+ struct SectionAddressInfo {
+ uint64_t SectionID;
+ StubOffsetsMap StubOffsets;
+ };
+ typedef std::map<std::string, SectionAddressInfo> SectionMap;
+ typedef std::map<std::string, SectionMap> StubMap;
+
+ RuntimeDyldImpl &getRTDyld() const { return *RTDyld.Dyld; }
+
+ bool isSymbolValid(StringRef Symbol) const;
+ uint64_t getSymbolLocalAddr(StringRef Symbol) const;
+ uint64_t getSymbolRemoteAddr(StringRef Symbol) const;
+ uint64_t readMemoryAtAddr(uint64_t Addr, unsigned Size) const;
+
+ std::pair<const SectionAddressInfo*, std::string> findSectionAddrInfo(
+ StringRef FileName,
+ StringRef SectionName) const;
+
+ std::pair<uint64_t, std::string> getSectionAddr(StringRef FileName,
+ StringRef SectionName,
+ bool IsInsideLoad) const;
+
+ std::pair<uint64_t, std::string> getStubAddrFor(StringRef FileName,
+ StringRef SectionName,
+ StringRef Symbol,
+ bool IsInsideLoad) const;
+ StringRef getSubsectionStartingAt(StringRef Name) const;
+
+ void registerSection(StringRef FilePath, unsigned SectionID);
+ void registerStubMap(StringRef FilePath, unsigned SectionID,
+ const RuntimeDyldImpl::StubMap &RTDyldStubs);
+
+ RuntimeDyld &RTDyld;
+ MCDisassembler *Disassembler;
+ MCInstPrinter *InstPrinter;
+ llvm::raw_ostream &ErrStream;
+
+ StubMap Stubs;
+};
+}
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
new file mode 100644
index 0000000..f5069c0
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -0,0 +1,1694 @@
+//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of ELF support for the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RuntimeDyldELF.h"
+#include "RuntimeDyldCheckerImpl.h"
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/TargetRegistry.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+#define DEBUG_TYPE "dyld"
+
+static inline std::error_code check(std::error_code Err) {
+ if (Err) {
+ report_fatal_error(Err.message());
+ }
+ return Err;
+}
+
+namespace {
+
+template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
+ LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
+
+ typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
+ typedef Elf_Sym_Impl<ELFT> Elf_Sym;
+ typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
+ typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
+
+ typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
+
+ typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+public:
+ DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
+
+ void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
+
+ void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
+
+ // Methods for type inquiry through isa, cast and dyn_cast
+ static inline bool classof(const Binary *v) {
+ return (isa<ELFObjectFile<ELFT>>(v) &&
+ classof(cast<ELFObjectFile<ELFT>>(v)));
+ }
+ static inline bool classof(const ELFObjectFile<ELFT> *v) {
+ return v->isDyldType();
+ }
+
+};
+
+
+
+// The MemoryBuffer passed into this constructor is just a wrapper around the
+// actual memory. Ultimately, the Binary parent class will take ownership of
+// this MemoryBuffer object but not the underlying memory.
+template <class ELFT>
+DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
+ : ELFObjectFile<ELFT>(Wrapper, EC) {
+ this->isDyldELFObject = true;
+}
+
+template <class ELFT>
+void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
+ uint64_t Addr) {
+ DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+ Elf_Shdr *shdr =
+ const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ shdr->sh_addr = static_cast<addr_type>(Addr);
+}
+
+template <class ELFT>
+void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
+ uint64_t Addr) {
+
+ Elf_Sym *sym = const_cast<Elf_Sym *>(
+ ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ sym->st_value = static_cast<addr_type>(Addr);
+}
+
+class LoadedELFObjectInfo
+ : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
+public:
+ LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
+ unsigned EndIdx)
+ : LoadedObjectInfoHelper(RTDyld, BeginIdx, EndIdx) {}
+
+ OwningBinary<ObjectFile>
+ getObjectForDebug(const ObjectFile &Obj) const override;
+};
+
+template <typename ELFT>
+std::unique_ptr<DyldELFObject<ELFT>>
+createRTDyldELFObject(MemoryBufferRef Buffer,
+ const LoadedELFObjectInfo &L,
+ std::error_code &ec) {
+ typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
+ typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+ std::unique_ptr<DyldELFObject<ELFT>> Obj =
+ llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
+
+ // Iterate over all sections in the object.
+ for (const auto &Sec : Obj->sections()) {
+ StringRef SectionName;
+ Sec.getName(SectionName);
+ if (SectionName != "") {
+ DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+ Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
+ reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+ if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
+ // This assumes that the address passed in matches the target address
+ // bitness. The template-based type cast handles everything else.
+ shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
+ }
+ }
+ }
+
+ return Obj;
+}
+
+OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
+ const LoadedELFObjectInfo &L) {
+ assert(Obj.isELF() && "Not an ELF object file.");
+
+ std::unique_ptr<MemoryBuffer> Buffer =
+ MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
+
+ std::error_code ec;
+
+ std::unique_ptr<ObjectFile> DebugObj;
+ if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
+ typedef ELFType<support::little, false> ELF32LE;
+ DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
+ } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
+ typedef ELFType<support::big, false> ELF32BE;
+ DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
+ } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
+ typedef ELFType<support::big, true> ELF64BE;
+ DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
+ } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
+ typedef ELFType<support::little, true> ELF64LE;
+ DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
+ } else
+ llvm_unreachable("Unexpected ELF format");
+
+ assert(!ec && "Could not construct copy ELF object file");
+
+ return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
+}
+
+OwningBinary<ObjectFile>
+LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
+ return createELFDebugObject(Obj, *this);
+}
+
+} // namespace
+
+namespace llvm {
+
+RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
+RuntimeDyldELF::~RuntimeDyldELF() {}
+
+void RuntimeDyldELF::registerEHFrames() {
+ for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
+ SID EHFrameSID = UnregisteredEHFrameSections[i];
+ uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
+ uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
+ size_t EHFrameSize = Sections[EHFrameSID].Size;
+ MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
+ RegisteredEHFrameSections.push_back(EHFrameSID);
+ }
+ UnregisteredEHFrameSections.clear();
+}
+
+void RuntimeDyldELF::deregisterEHFrames() {
+ for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
+ SID EHFrameSID = RegisteredEHFrameSections[i];
+ uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
+ uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
+ size_t EHFrameSize = Sections[EHFrameSID].Size;
+ MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
+ }
+ RegisteredEHFrameSections.clear();
+}
+
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
+ unsigned SectionStartIdx, SectionEndIdx;
+ std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
+ return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
+ SectionEndIdx);
+}
+
+void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
+ uint64_t SymOffset) {
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_X86_64_64: {
+ support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
+ DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
+ << format("%p\n", Section.Address + Offset));
+ break;
+ }
+ case ELF::R_X86_64_32:
+ case ELF::R_X86_64_32S: {
+ Value += Addend;
+ assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
+ (Type == ELF::R_X86_64_32S &&
+ ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
+ uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
+ support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
+ DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
+ << format("%p\n", Section.Address + Offset));
+ break;
+ }
+ case ELF::R_X86_64_PC32: {
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+ int64_t RealOffset = Value + Addend - FinalAddress;
+ assert(isInt<32>(RealOffset));
+ int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
+ support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
+ break;
+ }
+ case ELF::R_X86_64_PC64: {
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+ int64_t RealOffset = Value + Addend - FinalAddress;
+ support::ulittle64_t::ref(Section.Address + Offset) = RealOffset;
+ break;
+ }
+ }
+}
+
+void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
+ switch (Type) {
+ case ELF::R_386_32: {
+ support::ulittle32_t::ref(Section.Address + Offset) = Value + Addend;
+ break;
+ }
+ case ELF::R_386_PC32: {
+ uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+ uint32_t RealOffset = Value + Addend - FinalAddress;
+ support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
+ break;
+ }
+ default:
+ // There are other relocation types, but it appears these are the
+ // only ones currently used by the LLVM ELF object writer
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+
+ DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
+ << format("%llx", Section.Address + Offset)
+ << " FinalAddress: 0x" << format("%llx", FinalAddress)
+ << " Value: 0x" << format("%llx", Value) << " Type: 0x"
+ << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
+ << "\n");
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_AARCH64_ABS64: {
+ uint64_t *TargetPtr =
+ reinterpret_cast<uint64_t *>(Section.Address + Offset);
+ *TargetPtr = Value + Addend;
+ break;
+ }
+ case ELF::R_AARCH64_PREL32: {
+ uint64_t Result = Value + Addend - FinalAddress;
+ assert(static_cast<int64_t>(Result) >= INT32_MIN &&
+ static_cast<int64_t>(Result) <= UINT32_MAX);
+ *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
+ break;
+ }
+ case ELF::R_AARCH64_CALL26: // fallthrough
+ case ELF::R_AARCH64_JUMP26: {
+ // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
+ // calculation.
+ uint64_t BranchImm = Value + Addend - FinalAddress;
+
+ // "Check that -2^27 <= result < 2^27".
+ assert(isInt<28>(BranchImm));
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xfc000000U;
+ // Immediate goes in bits 25:0 of B and BL.
+ *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G3: {
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= Result >> (48 - 5);
+ // Shift must be "lsl #48", in bits 22:21
+ assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
+ // Shift must be "lsl #32", in bits 22:21
+ assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
+ // Shift must be "lsl #16", in bits 22:2
+ assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffe0001fU;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffffU) << 5);
+ // Shift must be "lsl #0", in bits 22:21.
+ assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
+ break;
+ }
+ case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
+ // Operation: Page(S+A) - Page(P)
+ uint64_t Result =
+ ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
+
+ // Check that -2^32 <= X < 2^32
+ assert(isInt<33>(Result) && "overflow check failed for relocation");
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0x9f00001fU;
+ // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
+ // from bits 32:12 of X.
+ *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
+ *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
+ break;
+ }
+ case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
+ // Operation: S + A
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffc003ffU;
+ // Immediate goes in bits 21:10 of LD/ST instruction, taken
+ // from bits 11:2 of X
+ *TargetPtr |= ((Result & 0xffc) << (10 - 2));
+ break;
+ }
+ case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
+ // Operation: S + A
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffc003ffU;
+ // Immediate goes in bits 21:10 of LD/ST instruction, taken
+ // from bits 11:3 of X
+ *TargetPtr |= ((Result & 0xff8) << (10 - 3));
+ break;
+ }
+ }
+}
+
+void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
+ // TODO: Add Thumb relocations.
+ uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
+ uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+ Value += Addend;
+
+ DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
+ << Section.Address + Offset
+ << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
+ << format("%x", Value) << " Type: " << format("%x", Type)
+ << " Addend: " << format("%x", Addend) << "\n");
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+
+ case ELF::R_ARM_NONE:
+ break;
+ case ELF::R_ARM_PREL31:
+ case ELF::R_ARM_TARGET1:
+ case ELF::R_ARM_ABS32:
+ *TargetPtr = Value;
+ break;
+ // Write first 16 bit of 32 bit value to the mov instruction.
+ // Last 4 bit should be shifted.
+ case ELF::R_ARM_MOVW_ABS_NC:
+ case ELF::R_ARM_MOVT_ABS:
+ if (Type == ELF::R_ARM_MOVW_ABS_NC)
+ Value = Value & 0xFFFF;
+ else if (Type == ELF::R_ARM_MOVT_ABS)
+ Value = (Value >> 16) & 0xFFFF;
+ *TargetPtr &= ~0x000F0FFF;
+ *TargetPtr |= Value & 0xFFF;
+ *TargetPtr |= ((Value >> 12) & 0xF) << 16;
+ break;
+ // Write 24 bit relative value to the branch instruction.
+ case ELF::R_ARM_PC24: // Fall through.
+ case ELF::R_ARM_CALL: // Fall through.
+ case ELF::R_ARM_JUMP24:
+ int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
+ RelValue = (RelValue & 0x03FFFFFC) >> 2;
+ assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
+ *TargetPtr &= 0xFF000000;
+ *TargetPtr |= RelValue;
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
+ uint8_t *TargetPtr = Section.Address + Offset;
+ Value += Addend;
+
+ DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
+ << Section.Address + Offset << " FinalAddress: "
+ << format("%p", Section.LoadAddress + Offset) << " Value: "
+ << format("%x", Value) << " Type: " << format("%x", Type)
+ << " Addend: " << format("%x", Addend) << "\n");
+
+ uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+ break;
+ case ELF::R_MIPS_32:
+ writeBytesUnaligned(Value, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_26:
+ Insn &= 0xfc000000;
+ Insn |= (Value & 0x0fffffff) >> 2;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_HI16:
+ // Get the higher 16-bits. Also add 1 if bit 15 is 1.
+ Insn &= 0xffff0000;
+ Insn |= ((Value + 0x8000) >> 16) & 0xffff;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_LO16:
+ Insn &= 0xffff0000;
+ Insn |= Value & 0xffff;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_PC32:
+ uint32_t FinalAddress = (Section.LoadAddress + Offset);
+ writeBytesUnaligned(Value + Addend - FinalAddress, (uint8_t *)TargetPtr, 4);
+ break;
+ }
+}
+
+void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
+ if (Arch == Triple::UnknownArch ||
+ !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
+ IsMipsO32ABI = false;
+ IsMipsN64ABI = false;
+ return;
+ }
+ unsigned AbiVariant;
+ Obj.getPlatformFlags(AbiVariant);
+ IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
+ IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
+ if (AbiVariant & ELF::EF_MIPS_ABI2)
+ llvm_unreachable("Mips N32 ABI is not supported yet");
+}
+
+void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
+ uint64_t SymOffset,
+ SID SectionID) {
+ uint32_t r_type = Type & 0xff;
+ uint32_t r_type2 = (Type >> 8) & 0xff;
+ uint32_t r_type3 = (Type >> 16) & 0xff;
+
+ // RelType is used to keep information for which relocation type we are
+ // applying relocation.
+ uint32_t RelType = r_type;
+ int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
+ RelType, Addend,
+ SymOffset, SectionID);
+ if (r_type2 != ELF::R_MIPS_NONE) {
+ RelType = r_type2;
+ CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
+ CalculatedValue, SymOffset,
+ SectionID);
+ }
+ if (r_type3 != ELF::R_MIPS_NONE) {
+ RelType = r_type3;
+ CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
+ CalculatedValue, SymOffset,
+ SectionID);
+ }
+ applyMIPS64Relocation(Section.Address + Offset, CalculatedValue, RelType);
+}
+
+int64_t
+RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
+ uint64_t SymOffset, SID SectionID) {
+
+ DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
+ << format("%llx", Section.Address + Offset)
+ << " FinalAddress: 0x"
+ << format("%llx", Section.LoadAddress + Offset)
+ << " Value: 0x" << format("%llx", Value) << " Type: 0x"
+ << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
+ << " SymOffset: " << format("%x", SymOffset)
+ << "\n");
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+ break;
+ case ELF::R_MIPS_JALR:
+ case ELF::R_MIPS_NONE:
+ break;
+ case ELF::R_MIPS_32:
+ case ELF::R_MIPS_64:
+ return Value + Addend;
+ case ELF::R_MIPS_26:
+ return ((Value + Addend) >> 2) & 0x3ffffff;
+ case ELF::R_MIPS_GPREL16: {
+ uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
+ return Value + Addend - (GOTAddr + 0x7ff0);
+ }
+ case ELF::R_MIPS_SUB:
+ return Value - Addend;
+ case ELF::R_MIPS_HI16:
+ // Get the higher 16-bits. Also add 1 if bit 15 is 1.
+ return ((Value + Addend + 0x8000) >> 16) & 0xffff;
+ case ELF::R_MIPS_LO16:
+ return (Value + Addend) & 0xffff;
+ case ELF::R_MIPS_CALL16:
+ case ELF::R_MIPS_GOT_DISP:
+ case ELF::R_MIPS_GOT_PAGE: {
+ uint8_t *LocalGOTAddr =
+ getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
+ uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8);
+
+ Value += Addend;
+ if (Type == ELF::R_MIPS_GOT_PAGE)
+ Value = (Value + 0x8000) & ~0xffff;
+
+ if (GOTEntry)
+ assert(GOTEntry == Value &&
+ "GOT entry has two different addresses.");
+ else
+ writeBytesUnaligned(Value, LocalGOTAddr, 8);
+
+ return (SymOffset - 0x7ff0) & 0xffff;
+ }
+ case ELF::R_MIPS_GOT_OFST: {
+ int64_t page = (Value + Addend + 0x8000) & ~0xffff;
+ return (Value + Addend - page) & 0xffff;
+ }
+ case ELF::R_MIPS_GPREL32: {
+ uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
+ return Value + Addend - (GOTAddr + 0x7ff0);
+ }
+ case ELF::R_MIPS_PC16: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
+ }
+ case ELF::R_MIPS_PC32: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return Value + Addend - FinalAddress;
+ }
+ case ELF::R_MIPS_PC18_S3: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return ((Value + Addend - ((FinalAddress | 7) ^ 7)) >> 3) & 0x3ffff;
+ }
+ case ELF::R_MIPS_PC19_S2: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return ((Value + Addend - FinalAddress) >> 2) & 0x7ffff;
+ }
+ case ELF::R_MIPS_PC21_S2: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
+ }
+ case ELF::R_MIPS_PC26_S2: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
+ }
+ case ELF::R_MIPS_PCHI16: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
+ }
+ case ELF::R_MIPS_PCLO16: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ return (Value + Addend - FinalAddress) & 0xffff;
+ }
+ }
+ return 0;
+}
+
+void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
+ int64_t CalculatedValue,
+ uint32_t Type) {
+ uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
+
+ switch (Type) {
+ default:
+ break;
+ case ELF::R_MIPS_32:
+ case ELF::R_MIPS_GPREL32:
+ case ELF::R_MIPS_PC32:
+ writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_64:
+ case ELF::R_MIPS_SUB:
+ writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
+ break;
+ case ELF::R_MIPS_26:
+ case ELF::R_MIPS_PC26_S2:
+ Insn = (Insn & 0xfc000000) | CalculatedValue;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_GPREL16:
+ Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_HI16:
+ case ELF::R_MIPS_LO16:
+ case ELF::R_MIPS_PCHI16:
+ case ELF::R_MIPS_PCLO16:
+ case ELF::R_MIPS_PC16:
+ case ELF::R_MIPS_CALL16:
+ case ELF::R_MIPS_GOT_DISP:
+ case ELF::R_MIPS_GOT_PAGE:
+ case ELF::R_MIPS_GOT_OFST:
+ Insn = (Insn & 0xffff0000) | CalculatedValue;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_PC18_S3:
+ Insn = (Insn & 0xfffc0000) | CalculatedValue;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_PC19_S2:
+ Insn = (Insn & 0xfff80000) | CalculatedValue;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ case ELF::R_MIPS_PC21_S2:
+ Insn = (Insn & 0xffe00000) | CalculatedValue;
+ writeBytesUnaligned(Insn, TargetPtr, 4);
+ break;
+ }
+}
+
+// Return the .TOC. section and offset.
+void RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel) {
+ // Set a default SectionID in case we do not find a TOC section below.
+ // This may happen for references to TOC base base (sym@toc, .odp
+ // relocation) without a .toc directive. In this case just use the
+ // first section (which is usually the .odp) since the code won't
+ // reference the .toc base directly.
+ Rel.SymbolName = NULL;
+ Rel.SectionID = 0;
+
+ // The TOC consists of sections .got, .toc, .tocbss, .plt in that
+ // order. The TOC starts where the first of these sections starts.
+ for (auto &Section: Obj.sections()) {
+ StringRef SectionName;
+ check(Section.getName(SectionName));
+
+ if (SectionName == ".got"
+ || SectionName == ".toc"
+ || SectionName == ".tocbss"
+ || SectionName == ".plt") {
+ Rel.SectionID = findOrEmitSection(Obj, Section, false, LocalSections);
+ break;
+ }
+ }
+
+ // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
+ // thus permitting a full 64 Kbytes segment.
+ Rel.Addend = 0x8000;
+}
+
+// Returns the sections and offset associated with the ODP entry referenced
+// by Symbol.
+void RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel) {
+ // Get the ELF symbol value (st_value) to compare with Relocation offset in
+ // .opd entries
+ for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
+ si != se; ++si) {
+ section_iterator RelSecI = si->getRelocatedSection();
+ if (RelSecI == Obj.section_end())
+ continue;
+
+ StringRef RelSectionName;
+ check(RelSecI->getName(RelSectionName));
+ if (RelSectionName != ".opd")
+ continue;
+
+ for (elf_relocation_iterator i = si->relocation_begin(),
+ e = si->relocation_end();
+ i != e;) {
+ // The R_PPC64_ADDR64 relocation indicates the first field
+ // of a .opd entry
+ uint64_t TypeFunc = i->getType();
+ if (TypeFunc != ELF::R_PPC64_ADDR64) {
+ ++i;
+ continue;
+ }
+
+ uint64_t TargetSymbolOffset = i->getOffset();
+ symbol_iterator TargetSymbol = i->getSymbol();
+ ErrorOr<int64_t> AddendOrErr = i->getAddend();
+ Check(AddendOrErr.getError());
+ int64_t Addend = *AddendOrErr;
+
+ ++i;
+ if (i == e)
+ break;
+
+ // Just check if following relocation is a R_PPC64_TOC
+ uint64_t TypeTOC = i->getType();
+ if (TypeTOC != ELF::R_PPC64_TOC)
+ continue;
+
+ // Finally compares the Symbol value and the target symbol offset
+ // to check if this .opd entry refers to the symbol the relocation
+ // points to.
+ if (Rel.Addend != (int64_t)TargetSymbolOffset)
+ continue;
+
+ section_iterator tsi(Obj.section_end());
+ check(TargetSymbol->getSection(tsi));
+ bool IsCode = tsi->isText();
+ Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
+ Rel.Addend = (intptr_t)Addend;
+ return;
+ }
+ }
+ llvm_unreachable("Attempting to get address of ODP entry!");
+}
+
+// Relocation masks following the #lo(value), #hi(value), #ha(value),
+// #higher(value), #highera(value), #highest(value), and #highesta(value)
+// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
+// document.
+
+static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
+
+static inline uint16_t applyPPChi(uint64_t value) {
+ return (value >> 16) & 0xffff;
+}
+
+static inline uint16_t applyPPCha (uint64_t value) {
+ return ((value + 0x8000) >> 16) & 0xffff;
+}
+
+static inline uint16_t applyPPChigher(uint64_t value) {
+ return (value >> 32) & 0xffff;
+}
+
+static inline uint16_t applyPPChighera (uint64_t value) {
+ return ((value + 0x8000) >> 32) & 0xffff;
+}
+
+static inline uint16_t applyPPChighest(uint64_t value) {
+ return (value >> 48) & 0xffff;
+}
+
+static inline uint16_t applyPPChighesta (uint64_t value) {
+ return ((value + 0x8000) >> 48) & 0xffff;
+}
+
+void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint8_t *LocalAddress = Section.Address + Offset;
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_PPC64_ADDR16:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_DS:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+ break;
+ case ELF::R_PPC64_ADDR16_LO:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_LO_DS:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+ break;
+ case ELF::R_PPC64_ADDR16_HI:
+ writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HA:
+ writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHER:
+ writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHERA:
+ writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHEST:
+ writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHESTA:
+ writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR14: {
+ assert(((Value + Addend) & 3) == 0);
+ // Preserve the AA/LK bits in the branch instruction
+ uint8_t aalk = *(LocalAddress + 3);
+ writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
+ } break;
+ case ELF::R_PPC64_REL16_LO: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPClo(Delta));
+ } break;
+ case ELF::R_PPC64_REL16_HI: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPChi(Delta));
+ } break;
+ case ELF::R_PPC64_REL16_HA: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPCha(Delta));
+ } break;
+ case ELF::R_PPC64_ADDR32: {
+ int32_t Result = static_cast<int32_t>(Value + Addend);
+ if (SignExtend32<32>(Result) != Result)
+ llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
+ writeInt32BE(LocalAddress, Result);
+ } break;
+ case ELF::R_PPC64_REL24: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<24>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL24 overflow");
+ // Generates a 'bl <address>' instruction
+ writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
+ } break;
+ case ELF::R_PPC64_REL32: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<32>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL32 overflow");
+ writeInt32BE(LocalAddress, delta);
+ } break;
+ case ELF::R_PPC64_REL64: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt64BE(LocalAddress, Delta);
+ } break;
+ case ELF::R_PPC64_ADDR64:
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint8_t *LocalAddress = Section.Address + Offset;
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_390_PC16DBL:
+ case ELF::R_390_PLT16DBL: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
+ writeInt16BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32DBL:
+ case ELF::R_390_PLT32DBL: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
+ writeInt32BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
+ writeInt32BE(LocalAddress, Delta);
+ break;
+ }
+ case ELF::R_390_64:
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ }
+}
+
+// The target location for the relocation is described by RE.SectionID and
+// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
+// SectionEntry has three members describing its location.
+// SectionEntry::Address is the address at which the section has been loaded
+// into memory in the current (host) process. SectionEntry::LoadAddress is the
+// address that the section will have in the target process.
+// SectionEntry::ObjAddress is the address of the bits for this section in the
+// original emitted object image (also in the current address space).
+//
+// Relocations will be applied as if the section were loaded at
+// SectionEntry::LoadAddress, but they will be applied at an address based
+// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
+// Target memory contents if they are required for value calculations.
+//
+// The Value parameter here is the load address of the symbol for the
+// relocation to be applied. For relocations which refer to symbols in the
+// current object Value will be the LoadAddress of the section in which
+// the symbol resides (RE.Addend provides additional information about the
+// symbol location). For external symbols, Value will be the address of the
+// symbol in the target address space.
+void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
+ uint64_t Value) {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
+ RE.SymOffset, RE.SectionID);
+}
+
+void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
+ uint64_t SymOffset, SID SectionID) {
+ switch (Arch) {
+ case Triple::x86_64:
+ resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
+ break;
+ case Triple::x86:
+ resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::aarch64:
+ case Triple::aarch64_be:
+ resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::arm: // Fall through.
+ case Triple::armeb:
+ case Triple::thumb:
+ case Triple::thumbeb:
+ resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::mips: // Fall through.
+ case Triple::mipsel:
+ case Triple::mips64:
+ case Triple::mips64el:
+ if (IsMipsO32ABI)
+ resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
+ Type, (uint32_t)(Addend & 0xffffffffL));
+ else if (IsMipsN64ABI)
+ resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
+ SectionID);
+ else
+ llvm_unreachable("Mips ABI not handled");
+ break;
+ case Triple::ppc64: // Fall through.
+ case Triple::ppc64le:
+ resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::systemz:
+ resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
+ break;
+ default:
+ llvm_unreachable("Unsupported CPU type!");
+ }
+}
+
+void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
+ return (void*)(Sections[SectionID].ObjAddress + Offset);
+}
+
+void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+}
+
+relocation_iterator RuntimeDyldELF::processRelocationRef(
+ unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
+ ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
+ const auto &Obj = cast<ELFObjectFileBase>(O);
+ uint64_t RelType = RelI->getType();
+ ErrorOr<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend();
+ int64_t Addend = AddendOrErr ? *AddendOrErr : 0;
+ elf_symbol_iterator Symbol = RelI->getSymbol();
+
+ // Obtain the symbol name which is referenced in the relocation
+ StringRef TargetName;
+ if (Symbol != Obj.symbol_end()) {
+ ErrorOr<StringRef> TargetNameOrErr = Symbol->getName();
+ if (std::error_code EC = TargetNameOrErr.getError())
+ report_fatal_error(EC.message());
+ TargetName = *TargetNameOrErr;
+ }
+ DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
+ << " TargetName: " << TargetName << "\n");
+ RelocationValueRef Value;
+ // First search for the symbol in the local symbol table
+ SymbolRef::Type SymType = SymbolRef::ST_Unknown;
+
+ // Search for the symbol in the global symbol table
+ RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
+ if (Symbol != Obj.symbol_end()) {
+ gsi = GlobalSymbolTable.find(TargetName.data());
+ SymType = Symbol->getType();
+ }
+ if (gsi != GlobalSymbolTable.end()) {
+ const auto &SymInfo = gsi->second;
+ Value.SectionID = SymInfo.getSectionID();
+ Value.Offset = SymInfo.getOffset();
+ Value.Addend = SymInfo.getOffset() + Addend;
+ } else {
+ switch (SymType) {
+ case SymbolRef::ST_Debug: {
+ // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+ // and can be changed by another developers. Maybe best way is add
+ // a new symbol type ST_Section to SymbolRef and use it.
+ section_iterator si(Obj.section_end());
+ Symbol->getSection(si);
+ if (si == Obj.section_end())
+ llvm_unreachable("Symbol section not found, bad object file format!");
+ DEBUG(dbgs() << "\t\tThis is section symbol\n");
+ bool isCode = si->isText();
+ Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
+ Value.Addend = Addend;
+ break;
+ }
+ case SymbolRef::ST_Data:
+ case SymbolRef::ST_Unknown: {
+ Value.SymbolName = TargetName.data();
+ Value.Addend = Addend;
+
+ // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
+ // will manifest here as a NULL symbol name.
+ // We can set this as a valid (but empty) symbol name, and rely
+ // on addRelocationForSymbol to handle this.
+ if (!Value.SymbolName)
+ Value.SymbolName = "";
+ break;
+ }
+ default:
+ llvm_unreachable("Unresolved symbol type!");
+ break;
+ }
+ }
+
+ uint64_t Offset = RelI->getOffset();
+
+ DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
+ << "\n");
+ if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
+ (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
+ // This is an AArch64 branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+ RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset);
+
+ RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
+ ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
+ RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
+ ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
+ RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
+ ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
+ RelocationEntry REmovk_g0(SectionID,
+ StubTargetAddr - Section.Address + 12,
+ ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REmovz_g3, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g2, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g1, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g0, Value.SymbolName);
+ } else {
+ addRelocationForSection(REmovz_g3, Value.SectionID);
+ addRelocationForSection(REmovk_g2, Value.SectionID);
+ addRelocationForSection(REmovk_g1, Value.SectionID);
+ addRelocationForSection(REmovk_g0, Value.SectionID);
+ }
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset, RelType,
+ 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else if (Arch == Triple::arm) {
+ if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
+ RelType == ELF::R_ARM_JUMP24) {
+ // This is an ARM branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+ RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset);
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
+ ELF::R_ARM_ABS32, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset, RelType,
+ 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else {
+ uint32_t *Placeholder =
+ reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
+ if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
+ RelType == ELF::R_ARM_ABS32) {
+ Value.Addend += *Placeholder;
+ } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
+ // See ELF for ARM documentation
+ Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
+ }
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ } else if (IsMipsO32ABI) {
+ uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
+ computePlaceholderAddress(SectionID, Offset));
+ uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
+ if (RelType == ELF::R_MIPS_26) {
+ // This is an Mips branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Extract the addend from the instruction.
+ // We shift up by two since the Value will be down shifted again
+ // when applying the relocation.
+ uint32_t Addend = (Opcode & 0x03ffffff) << 2;
+
+ Value.Addend += Addend;
+
+ // Look up for existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ RelocationEntry RE(SectionID, Offset, RelType, i->second);
+ addRelocationForSection(RE, SectionID);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset);
+
+ // Creating Hi and Lo relocations for the filled stub instructions.
+ RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
+ ELF::R_MIPS_HI16, Value.Addend);
+ RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
+ ELF::R_MIPS_LO16, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REHi, Value.SymbolName);
+ addRelocationForSymbol(RELo, Value.SymbolName);
+ }
+ else {
+ addRelocationForSection(REHi, Value.SectionID);
+ addRelocationForSection(RELo, Value.SectionID);
+ }
+
+ RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
+ addRelocationForSection(RE, SectionID);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else {
+ if (RelType == ELF::R_MIPS_HI16)
+ Value.Addend += (Opcode & 0x0000ffff) << 16;
+ else if (RelType == ELF::R_MIPS_LO16)
+ Value.Addend += (Opcode & 0x0000ffff);
+ else if (RelType == ELF::R_MIPS_32)
+ Value.Addend += Opcode;
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ } else if (IsMipsN64ABI) {
+ uint32_t r_type = RelType & 0xff;
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+ if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
+ || r_type == ELF::R_MIPS_GOT_DISP) {
+ StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
+ if (i != GOTSymbolOffsets.end())
+ RE.SymOffset = i->second;
+ else {
+ RE.SymOffset = allocateGOTEntries(SectionID, 1);
+ GOTSymbolOffsets[TargetName] = RE.SymOffset;
+ }
+ }
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
+ if (RelType == ELF::R_PPC64_REL24) {
+ // Determine ABI variant in use for this object.
+ unsigned AbiVariant;
+ Obj.getPlatformFlags(AbiVariant);
+ AbiVariant &= ELF::EF_PPC64_ABI;
+ // A PPC branch relocation will need a stub function if the target is
+ // an external symbol (Symbol::ST_Unknown) or if the target address
+ // is not within the signed 24-bits branch address.
+ SectionEntry &Section = Sections[SectionID];
+ uint8_t *Target = Section.Address + Offset;
+ bool RangeOverflow = false;
+ if (SymType != SymbolRef::ST_Unknown) {
+ if (AbiVariant != 2) {
+ // In the ELFv1 ABI, a function call may point to the .opd entry,
+ // so the final symbol value is calculated based on the relocation
+ // values in the .opd section.
+ findOPDEntrySection(Obj, ObjSectionToID, Value);
+ } else {
+ // In the ELFv2 ABI, a function symbol may provide a local entry
+ // point, which must be used for direct calls.
+ uint8_t SymOther = Symbol->getOther();
+ Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
+ }
+ uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
+ int32_t delta = static_cast<int32_t>(Target - RelocTarget);
+ // If it is within 24-bits branch range, just set the branch target
+ if (SignExtend32<24>(delta) == delta) {
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else {
+ RangeOverflow = true;
+ }
+ }
+ if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
+ // It is an external symbol (SymbolRef::ST_Unknown) or within a range
+ // larger than 24-bits.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ // Symbol function stub already created, just relocate to it
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset,
+ AbiVariant);
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
+ ELF::R_PPC64_ADDR64, Value.Addend);
+
+ // Generates the 64-bits address loads as exemplified in section
+ // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
+ // apply to the low part of the instructions, so we have to update
+ // the offset according to the target endianness.
+ uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
+ if (!IsTargetLittleEndian)
+ StubRelocOffset += 2;
+
+ RelocationEntry REhst(SectionID, StubRelocOffset + 0,
+ ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
+ RelocationEntry REhr(SectionID, StubRelocOffset + 4,
+ ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
+ RelocationEntry REh(SectionID, StubRelocOffset + 12,
+ ELF::R_PPC64_ADDR16_HI, Value.Addend);
+ RelocationEntry REl(SectionID, StubRelocOffset + 16,
+ ELF::R_PPC64_ADDR16_LO, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REhst, Value.SymbolName);
+ addRelocationForSymbol(REhr, Value.SymbolName);
+ addRelocationForSymbol(REh, Value.SymbolName);
+ addRelocationForSymbol(REl, Value.SymbolName);
+ } else {
+ addRelocationForSection(REhst, Value.SectionID);
+ addRelocationForSection(REhr, Value.SectionID);
+ addRelocationForSection(REh, Value.SectionID);
+ addRelocationForSection(REl, Value.SectionID);
+ }
+
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ if (SymType == SymbolRef::ST_Unknown) {
+ // Restore the TOC for external calls
+ if (AbiVariant == 2)
+ writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
+ else
+ writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
+ }
+ }
+ } else if (RelType == ELF::R_PPC64_TOC16 ||
+ RelType == ELF::R_PPC64_TOC16_DS ||
+ RelType == ELF::R_PPC64_TOC16_LO ||
+ RelType == ELF::R_PPC64_TOC16_LO_DS ||
+ RelType == ELF::R_PPC64_TOC16_HI ||
+ RelType == ELF::R_PPC64_TOC16_HA) {
+ // These relocations are supposed to subtract the TOC address from
+ // the final value. This does not fit cleanly into the RuntimeDyld
+ // scheme, since there may be *two* sections involved in determining
+ // the relocation value (the section of the symbol refered to by the
+ // relocation, and the TOC section associated with the current module).
+ //
+ // Fortunately, these relocations are currently only ever generated
+ // refering to symbols that themselves reside in the TOC, which means
+ // that the two sections are actually the same. Thus they cancel out
+ // and we can immediately resolve the relocation right now.
+ switch (RelType) {
+ case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
+ case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
+ case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
+ case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
+ case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
+ case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
+ default: llvm_unreachable("Wrong relocation type.");
+ }
+
+ RelocationValueRef TOCValue;
+ findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
+ if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
+ llvm_unreachable("Unsupported TOC relocation.");
+ Value.Addend -= TOCValue.Addend;
+ resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
+ } else {
+ // There are two ways to refer to the TOC address directly: either
+ // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
+ // ignored), or via any relocation that refers to the magic ".TOC."
+ // symbols (in which case the addend is respected).
+ if (RelType == ELF::R_PPC64_TOC) {
+ RelType = ELF::R_PPC64_ADDR64;
+ findPPC64TOCSection(Obj, ObjSectionToID, Value);
+ } else if (TargetName == ".TOC.") {
+ findPPC64TOCSection(Obj, ObjSectionToID, Value);
+ Value.Addend += Addend;
+ }
+
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+ } else if (Arch == Triple::systemz &&
+ (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
+ // Create function stubs for both PLT and GOT references, regardless of
+ // whether the GOT reference is to data or code. The stub contains the
+ // full address of the symbol, as needed by GOT references, and the
+ // executable part only adds an overhead of 8 bytes.
+ //
+ // We could try to conserve space by allocating the code and data
+ // parts of the stub separately. However, as things stand, we allocate
+ // a stub for every relocation, so using a GOT in JIT code should be
+ // no less space efficient than using an explicit constant pool.
+ DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ uintptr_t StubAddress;
+ if (i != Stubs.end()) {
+ StubAddress = uintptr_t(Section.Address) + i->second;
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+
+ uintptr_t BaseAddress = uintptr_t(Section.Address);
+ uintptr_t StubAlignment = getStubAlignment();
+ StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+ -StubAlignment;
+ unsigned StubOffset = StubAddress - BaseAddress;
+
+ Stubs[Value] = StubOffset;
+ createStubFunction((uint8_t *)StubAddress);
+ RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
+ Value.Offset);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ Section.StubOffset = StubOffset + getMaxStubSize();
+ }
+
+ if (RelType == ELF::R_390_GOTENT)
+ resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
+ Addend);
+ else
+ resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
+ } else if (Arch == Triple::x86_64) {
+ if (RelType == ELF::R_X86_64_PLT32) {
+ // The way the PLT relocations normally work is that the linker allocates
+ // the
+ // PLT and this relocation makes a PC-relative call into the PLT. The PLT
+ // entry will then jump to an address provided by the GOT. On first call,
+ // the
+ // GOT address will point back into PLT code that resolves the symbol. After
+ // the first call, the GOT entry points to the actual function.
+ //
+ // For local functions we're ignoring all of that here and just replacing
+ // the PLT32 relocation type with PC32, which will translate the relocation
+ // into a PC-relative call directly to the function. For external symbols we
+ // can't be sure the function will be within 2^32 bytes of the call site, so
+ // we need to create a stub, which calls into the GOT. This case is
+ // equivalent to the usual PLT implementation except that we use the stub
+ // mechanism in RuntimeDyld (which puts stubs at the end of the section)
+ // rather than allocating a PLT section.
+ if (Value.SymbolName) {
+ // This is a call to an external function.
+ // Look for an existing stub.
+ SectionEntry &Section = Sections[SectionID];
+ StubMap::const_iterator i = Stubs.find(Value);
+ uintptr_t StubAddress;
+ if (i != Stubs.end()) {
+ StubAddress = uintptr_t(Section.Address) + i->second;
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function (equivalent to a PLT entry).
+ DEBUG(dbgs() << " Create a new stub function\n");
+
+ uintptr_t BaseAddress = uintptr_t(Section.Address);
+ uintptr_t StubAlignment = getStubAlignment();
+ StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+ -StubAlignment;
+ unsigned StubOffset = StubAddress - BaseAddress;
+ Stubs[Value] = StubOffset;
+ createStubFunction((uint8_t *)StubAddress);
+
+ // Bump our stub offset counter
+ Section.StubOffset = StubOffset + getMaxStubSize();
+
+ // Allocate a GOT Entry
+ uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
+
+ // The load of the GOT address has an addend of -4
+ resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
+
+ // Fill in the value of the symbol we're targeting into the GOT
+ addRelocationForSymbol(computeGOTOffsetRE(SectionID,GOTOffset,0,ELF::R_X86_64_64),
+ Value.SymbolName);
+ }
+
+ // Make the target call a call into the stub table.
+ resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
+ Addend);
+ } else {
+ RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
+ Value.Offset);
+ addRelocationForSection(RE, Value.SectionID);
+ }
+ } else if (RelType == ELF::R_X86_64_GOTPCREL) {
+ uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
+ resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
+
+ // Fill in the value of the symbol we're targeting into the GOT
+ RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else if (RelType == ELF::R_X86_64_PC32) {
+ Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ } else if (RelType == ELF::R_X86_64_PC64) {
+ Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ } else {
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ } else {
+ if (Arch == Triple::x86) {
+ Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
+ }
+ processSimpleRelocation(SectionID, Offset, RelType, Value);
+ }
+ return ++RelI;
+}
+
+size_t RuntimeDyldELF::getGOTEntrySize() {
+ // We don't use the GOT in all of these cases, but it's essentially free
+ // to put them all here.
+ size_t Result = 0;
+ switch (Arch) {
+ case Triple::x86_64:
+ case Triple::aarch64:
+ case Triple::aarch64_be:
+ case Triple::ppc64:
+ case Triple::ppc64le:
+ case Triple::systemz:
+ Result = sizeof(uint64_t);
+ break;
+ case Triple::x86:
+ case Triple::arm:
+ case Triple::thumb:
+ Result = sizeof(uint32_t);
+ break;
+ case Triple::mips:
+ case Triple::mipsel:
+ case Triple::mips64:
+ case Triple::mips64el:
+ if (IsMipsO32ABI)
+ Result = sizeof(uint32_t);
+ else if (IsMipsN64ABI)
+ Result = sizeof(uint64_t);
+ else
+ llvm_unreachable("Mips ABI not handled");
+ break;
+ default:
+ llvm_unreachable("Unsupported CPU type!");
+ }
+ return Result;
+}
+
+uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
+{
+ (void)SectionID; // The GOT Section is the same for all section in the object file
+ if (GOTSectionID == 0) {
+ GOTSectionID = Sections.size();
+ // Reserve a section id. We'll allocate the section later
+ // once we know the total size
+ Sections.push_back(SectionEntry(".got", 0, 0, 0));
+ }
+ uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
+ CurrentGOTIndex += no;
+ return StartOffset;
+}
+
+void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
+{
+ // Fill in the relative address of the GOT Entry into the stub
+ RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
+ addRelocationForSection(GOTRE, GOTSectionID);
+}
+
+RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
+ uint32_t Type)
+{
+ (void)SectionID; // The GOT Section is the same for all section in the object file
+ return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
+}
+
+void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
+ ObjSectionToIDMap &SectionMap) {
+ // If necessary, allocate the global offset table
+ if (GOTSectionID != 0) {
+ // Allocate memory for the section
+ size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
+ uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
+ GOTSectionID, ".got", false);
+ if (!Addr)
+ report_fatal_error("Unable to allocate memory for GOT!");
+
+ Sections[GOTSectionID] = SectionEntry(".got", Addr, TotalSize, 0);
+
+ if (Checker)
+ Checker->registerSection(Obj.getFileName(), GOTSectionID);
+
+ // For now, initialize all GOT entries to zero. We'll fill them in as
+ // needed when GOT-based relocations are applied.
+ memset(Addr, 0, TotalSize);
+ if (IsMipsN64ABI) {
+ // To correctly resolve Mips GOT relocations, we need a mapping from
+ // object's sections to GOTs.
+ for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
+ SI != SE; ++SI) {
+ if (SI->relocation_begin() != SI->relocation_end()) {
+ section_iterator RelocatedSection = SI->getRelocatedSection();
+ ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
+ assert (i != SectionMap.end());
+ SectionToGOTMap[i->second] = GOTSectionID;
+ }
+ }
+ GOTSymbolOffsets.clear();
+ }
+ }
+
+ // Look for and record the EH frame section.
+ ObjSectionToIDMap::iterator i, e;
+ for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
+ const SectionRef &Section = i->first;
+ StringRef Name;
+ Section.getName(Name);
+ if (Name == ".eh_frame") {
+ UnregisteredEHFrameSections.push_back(i->second);
+ break;
+ }
+ }
+
+ GOTSectionID = 0;
+ CurrentGOTIndex = 0;
+}
+
+bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
+ return Obj.isELF();
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
new file mode 100644
index 0000000..1a2552d
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
@@ -0,0 +1,167 @@
+//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// ELF support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDELF_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDELF_H
+
+#include "RuntimeDyldImpl.h"
+#include "llvm/ADT/DenseMap.h"
+
+using namespace llvm;
+
+namespace llvm {
+
+class RuntimeDyldELF : public RuntimeDyldImpl {
+
+ void resolveRelocation(const SectionEntry &Section, uint64_t Offset,
+ uint64_t Value, uint32_t Type, int64_t Addend,
+ uint64_t SymOffset = 0, SID SectionID = 0);
+
+ void resolveX86_64Relocation(const SectionEntry &Section, uint64_t Offset,
+ uint64_t Value, uint32_t Type, int64_t Addend,
+ uint64_t SymOffset);
+
+ void resolveX86Relocation(const SectionEntry &Section, uint64_t Offset,
+ uint32_t Value, uint32_t Type, int32_t Addend);
+
+ void resolveAArch64Relocation(const SectionEntry &Section, uint64_t Offset,
+ uint64_t Value, uint32_t Type, int64_t Addend);
+
+ void resolveARMRelocation(const SectionEntry &Section, uint64_t Offset,
+ uint32_t Value, uint32_t Type, int32_t Addend);
+
+ void resolveMIPSRelocation(const SectionEntry &Section, uint64_t Offset,
+ uint32_t Value, uint32_t Type, int32_t Addend);
+
+ void resolvePPC64Relocation(const SectionEntry &Section, uint64_t Offset,
+ uint64_t Value, uint32_t Type, int64_t Addend);
+
+ void resolveSystemZRelocation(const SectionEntry &Section, uint64_t Offset,
+ uint64_t Value, uint32_t Type, int64_t Addend);
+
+ void resolveMIPS64Relocation(const SectionEntry &Section, uint64_t Offset,
+ uint64_t Value, uint32_t Type, int64_t Addend,
+ uint64_t SymOffset, SID SectionID);
+
+ int64_t evaluateMIPS64Relocation(const SectionEntry &Section,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
+ uint64_t SymOffset, SID SectionID);
+
+ void applyMIPS64Relocation(uint8_t *TargetPtr, int64_t CalculatedValue,
+ uint32_t Type);
+
+ unsigned getMaxStubSize() override {
+ if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
+ return 20; // movz; movk; movk; movk; br
+ if (Arch == Triple::arm || Arch == Triple::thumb)
+ return 8; // 32-bit instruction and 32-bit address
+ else if (IsMipsO32ABI)
+ return 16;
+ else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le)
+ return 44;
+ else if (Arch == Triple::x86_64)
+ return 6; // 2-byte jmp instruction + 32-bit relative address
+ else if (Arch == Triple::systemz)
+ return 16;
+ else
+ return 0;
+ }
+
+ unsigned getStubAlignment() override {
+ if (Arch == Triple::systemz)
+ return 8;
+ else
+ return 1;
+ }
+
+ void setMipsABI(const ObjectFile &Obj) override;
+
+ void findPPC64TOCSection(const ELFObjectFileBase &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel);
+ void findOPDEntrySection(const ELFObjectFileBase &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel);
+
+ size_t getGOTEntrySize();
+
+ SectionEntry &getSection(unsigned SectionID) { return Sections[SectionID]; }
+
+ // Allocate no GOT entries for use in the given section.
+ uint64_t allocateGOTEntries(unsigned SectionID, unsigned no);
+
+ // Resolve the relvative address of GOTOffset in Section ID and place
+ // it at the given Offset
+ void resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset,
+ uint64_t GOTOffset);
+
+ // For a GOT entry referenced from SectionID, compute a relocation entry
+ // that will place the final resolved value in the GOT slot
+ RelocationEntry computeGOTOffsetRE(unsigned SectionID,
+ uint64_t GOTOffset,
+ uint64_t SymbolOffset,
+ unsigned Type);
+
+ // Compute the address in memory where we can find the placeholder
+ void *computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const;
+
+ // Split out common case for createing the RelocationEntry for when the relocation requires
+ // no particular advanced processing.
+ void processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value);
+
+ // The tentative ID for the GOT section
+ unsigned GOTSectionID;
+
+ // Records the current number of allocated slots in the GOT
+ // (This would be equivalent to GOTEntries.size() were it not for relocations
+ // that consume more than one slot)
+ unsigned CurrentGOTIndex;
+
+ // A map from section to a GOT section that has entries for section's GOT
+ // relocations. (Mips64 specific)
+ DenseMap<SID, SID> SectionToGOTMap;
+
+ // A map to avoid duplicate got entries (Mips64 specific)
+ StringMap<uint64_t> GOTSymbolOffsets;
+
+ // When a module is loaded we save the SectionID of the EH frame section
+ // in a table until we receive a request to register all unregistered
+ // EH frame sections with the memory manager.
+ SmallVector<SID, 2> UnregisteredEHFrameSections;
+ SmallVector<SID, 2> RegisteredEHFrameSections;
+
+public:
+ RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver);
+ ~RuntimeDyldELF() override;
+
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+ loadObject(const object::ObjectFile &O) override;
+
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override;
+ relocation_iterator
+ processRelocationRef(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override;
+ bool isCompatibleFile(const object::ObjectFile &Obj) const override;
+ void registerEHFrames() override;
+ void deregisterEHFrames() override;
+ void finalizeLoad(const ObjectFile &Obj,
+ ObjSectionToIDMap &SectionMap) override;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
new file mode 100644
index 0000000..e085a92
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
@@ -0,0 +1,452 @@
+//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Interface for the implementations of runtime dynamic linker facilities.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/SwapByteOrder.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+#include <system_error>
+
+using namespace llvm;
+using namespace llvm::object;
+
+namespace llvm {
+
+ // Helper for extensive error checking in debug builds.
+inline std::error_code Check(std::error_code Err) {
+ if (Err) {
+ report_fatal_error(Err.message());
+ }
+ return Err;
+}
+
+class Twine;
+
+/// SectionEntry - represents a section emitted into memory by the dynamic
+/// linker.
+class SectionEntry {
+public:
+ /// Name - section name.
+ std::string Name;
+
+ /// Address - address in the linker's memory where the section resides.
+ uint8_t *Address;
+
+ /// Size - section size. Doesn't include the stubs.
+ size_t Size;
+
+ /// LoadAddress - the address of the section in the target process's memory.
+ /// Used for situations in which JIT-ed code is being executed in the address
+ /// space of a separate process. If the code executes in the same address
+ /// space where it was JIT-ed, this just equals Address.
+ uint64_t LoadAddress;
+
+ /// StubOffset - used for architectures with stub functions for far
+ /// relocations (like ARM).
+ uintptr_t StubOffset;
+
+ /// ObjAddress - address of the section in the in-memory object file. Used
+ /// for calculating relocations in some object formats (like MachO).
+ uintptr_t ObjAddress;
+
+ SectionEntry(StringRef name, uint8_t *address, size_t size,
+ uintptr_t objAddress)
+ : Name(name), Address(address), Size(size),
+ LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
+ ObjAddress(objAddress) {}
+};
+
+/// RelocationEntry - used to represent relocations internally in the dynamic
+/// linker.
+class RelocationEntry {
+public:
+ /// SectionID - the section this relocation points to.
+ unsigned SectionID;
+
+ /// Offset - offset into the section.
+ uint64_t Offset;
+
+ /// RelType - relocation type.
+ uint32_t RelType;
+
+ /// Addend - the relocation addend encoded in the instruction itself. Also
+ /// used to make a relocation section relative instead of symbol relative.
+ int64_t Addend;
+
+ struct SectionPair {
+ uint32_t SectionA;
+ uint32_t SectionB;
+ };
+
+ /// SymOffset - Section offset of the relocation entry's symbol (used for GOT
+ /// lookup).
+ union {
+ uint64_t SymOffset;
+ SectionPair Sections;
+ };
+
+ /// True if this is a PCRel relocation (MachO specific).
+ bool IsPCRel;
+
+ /// The size of this relocation (MachO specific).
+ unsigned Size;
+
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
+ : SectionID(id), Offset(offset), RelType(type), Addend(addend),
+ SymOffset(0), IsPCRel(false), Size(0) {}
+
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
+ uint64_t symoffset)
+ : SectionID(id), Offset(offset), RelType(type), Addend(addend),
+ SymOffset(symoffset), IsPCRel(false), Size(0) {}
+
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
+ bool IsPCRel, unsigned Size)
+ : SectionID(id), Offset(offset), RelType(type), Addend(addend),
+ SymOffset(0), IsPCRel(IsPCRel), Size(Size) {}
+
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
+ unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
+ uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
+ : SectionID(id), Offset(offset), RelType(type),
+ Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
+ Size(Size) {
+ Sections.SectionA = SectionA;
+ Sections.SectionB = SectionB;
+ }
+};
+
+class RelocationValueRef {
+public:
+ unsigned SectionID;
+ uint64_t Offset;
+ int64_t Addend;
+ const char *SymbolName;
+ RelocationValueRef() : SectionID(0), Offset(0), Addend(0),
+ SymbolName(nullptr) {}
+
+ inline bool operator==(const RelocationValueRef &Other) const {
+ return SectionID == Other.SectionID && Offset == Other.Offset &&
+ Addend == Other.Addend && SymbolName == Other.SymbolName;
+ }
+ inline bool operator<(const RelocationValueRef &Other) const {
+ if (SectionID != Other.SectionID)
+ return SectionID < Other.SectionID;
+ if (Offset != Other.Offset)
+ return Offset < Other.Offset;
+ if (Addend != Other.Addend)
+ return Addend < Other.Addend;
+ return SymbolName < Other.SymbolName;
+ }
+};
+
+/// @brief Symbol info for RuntimeDyld.
+class SymbolTableEntry : public JITSymbolBase {
+public:
+ SymbolTableEntry()
+ : JITSymbolBase(JITSymbolFlags::None), Offset(0), SectionID(0) {}
+
+ SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
+ : JITSymbolBase(Flags), Offset(Offset), SectionID(SectionID) {}
+
+ unsigned getSectionID() const { return SectionID; }
+ uint64_t getOffset() const { return Offset; }
+
+private:
+ uint64_t Offset;
+ unsigned SectionID;
+};
+
+typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;
+
+class RuntimeDyldImpl {
+ friend class RuntimeDyld::LoadedObjectInfo;
+ friend class RuntimeDyldCheckerImpl;
+protected:
+ // The MemoryManager to load objects into.
+ RuntimeDyld::MemoryManager &MemMgr;
+
+ // The symbol resolver to use for external symbols.
+ RuntimeDyld::SymbolResolver &Resolver;
+
+ // Attached RuntimeDyldChecker instance. Null if no instance attached.
+ RuntimeDyldCheckerImpl *Checker;
+
+ // A list of all sections emitted by the dynamic linker. These sections are
+ // referenced in the code by means of their index in this list - SectionID.
+ typedef SmallVector<SectionEntry, 64> SectionList;
+ SectionList Sections;
+
+ typedef unsigned SID; // Type for SectionIDs
+#define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1))
+
+ // Keep a map of sections from object file to the SectionID which
+ // references it.
+ typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
+
+ // A global symbol table for symbols from all loaded modules.
+ RTDyldSymbolTable GlobalSymbolTable;
+
+ // Keep a map of common symbols to their info pairs
+ typedef std::vector<SymbolRef> CommonSymbolList;
+
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ // The symbol (or section) the relocation is sourced from is the Key
+ // in the relocation list where it's stored.
+ typedef SmallVector<RelocationEntry, 64> RelocationList;
+ // Relocations to sections already loaded. Indexed by SectionID which is the
+ // source of the address. The target where the address will be written is
+ // SectionID/Offset in the relocation itself.
+ DenseMap<unsigned, RelocationList> Relocations;
+
+ // Relocations to external symbols that are not yet resolved. Symbols are
+ // external when they aren't found in the global symbol table of all loaded
+ // modules. This map is indexed by symbol name.
+ StringMap<RelocationList> ExternalSymbolRelocations;
+
+
+ typedef std::map<RelocationValueRef, uintptr_t> StubMap;
+
+ Triple::ArchType Arch;
+ bool IsTargetLittleEndian;
+ bool IsMipsO32ABI;
+ bool IsMipsN64ABI;
+
+ // True if all sections should be passed to the memory manager, false if only
+ // sections containing relocations should be. Defaults to 'false'.
+ bool ProcessAllSections;
+
+ // This mutex prevents simultaneously loading objects from two different
+ // threads. This keeps us from having to protect individual data structures
+ // and guarantees that section allocation requests to the memory manager
+ // won't be interleaved between modules. It is also used in mapSectionAddress
+ // and resolveRelocations to protect write access to internal data structures.
+ //
+ // loadObject may be called on the same thread during the handling of of
+ // processRelocations, and that's OK. The handling of the relocation lists
+ // is written in such a way as to work correctly if new elements are added to
+ // the end of the list while the list is being processed.
+ sys::Mutex lock;
+
+ virtual unsigned getMaxStubSize() = 0;
+ virtual unsigned getStubAlignment() = 0;
+
+ bool HasError;
+ std::string ErrorStr;
+
+ // Set the error state and record an error string.
+ bool Error(const Twine &Msg) {
+ ErrorStr = Msg.str();
+ HasError = true;
+ return true;
+ }
+
+ uint64_t getSectionLoadAddress(unsigned SectionID) const {
+ return Sections[SectionID].LoadAddress;
+ }
+
+ uint8_t *getSectionAddress(unsigned SectionID) const {
+ return (uint8_t *)Sections[SectionID].Address;
+ }
+
+ void writeInt16BE(uint8_t *Addr, uint16_t Value) {
+ if (IsTargetLittleEndian)
+ sys::swapByteOrder(Value);
+ *Addr = (Value >> 8) & 0xFF;
+ *(Addr + 1) = Value & 0xFF;
+ }
+
+ void writeInt32BE(uint8_t *Addr, uint32_t Value) {
+ if (IsTargetLittleEndian)
+ sys::swapByteOrder(Value);
+ *Addr = (Value >> 24) & 0xFF;
+ *(Addr + 1) = (Value >> 16) & 0xFF;
+ *(Addr + 2) = (Value >> 8) & 0xFF;
+ *(Addr + 3) = Value & 0xFF;
+ }
+
+ void writeInt64BE(uint8_t *Addr, uint64_t Value) {
+ if (IsTargetLittleEndian)
+ sys::swapByteOrder(Value);
+ *Addr = (Value >> 56) & 0xFF;
+ *(Addr + 1) = (Value >> 48) & 0xFF;
+ *(Addr + 2) = (Value >> 40) & 0xFF;
+ *(Addr + 3) = (Value >> 32) & 0xFF;
+ *(Addr + 4) = (Value >> 24) & 0xFF;
+ *(Addr + 5) = (Value >> 16) & 0xFF;
+ *(Addr + 6) = (Value >> 8) & 0xFF;
+ *(Addr + 7) = Value & 0xFF;
+ }
+
+ virtual void setMipsABI(const ObjectFile &Obj) {
+ IsMipsO32ABI = false;
+ IsMipsN64ABI = false;
+ }
+
+ /// Endian-aware read Read the least significant Size bytes from Src.
+ uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
+
+ /// Endian-aware write. Write the least significant Size bytes from Value to
+ /// Dst.
+ void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
+
+ /// \brief Given the common symbols discovered in the object file, emit a
+ /// new section for them and update the symbol mappings in the object and
+ /// symbol table.
+ void emitCommonSymbols(const ObjectFile &Obj, CommonSymbolList &CommonSymbols);
+
+ /// \brief Emits section data from the object file to the MemoryManager.
+ /// \param IsCode if it's true then allocateCodeSection() will be
+ /// used for emits, else allocateDataSection() will be used.
+ /// \return SectionID.
+ unsigned emitSection(const ObjectFile &Obj, const SectionRef &Section,
+ bool IsCode);
+
+ /// \brief Find Section in LocalSections. If the secton is not found - emit
+ /// it and store in LocalSections.
+ /// \param IsCode if it's true then allocateCodeSection() will be
+ /// used for emmits, else allocateDataSection() will be used.
+ /// \return SectionID.
+ unsigned findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section,
+ bool IsCode, ObjSectionToIDMap &LocalSections);
+
+ // \brief Add a relocation entry that uses the given section.
+ void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
+
+ // \brief Add a relocation entry that uses the given symbol. This symbol may
+ // be found in the global symbol table, or it may be external.
+ void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
+
+ /// \brief Emits long jump instruction to Addr.
+ /// \return Pointer to the memory area for emitting target address.
+ uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);
+
+ /// \brief Resolves relocations from Relocs list with address from Value.
+ void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
+
+ /// \brief A object file specific relocation resolver
+ /// \param RE The relocation to be resolved
+ /// \param Value Target symbol address to apply the relocation action
+ virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
+
+ /// \brief Parses one or more object file relocations (some object files use
+ /// relocation pairs) and stores it to Relocations or SymbolRelocations
+ /// (this depends on the object file type).
+ /// \return Iterator to the next relocation that needs to be parsed.
+ virtual relocation_iterator
+ processRelocationRef(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) = 0;
+
+ /// \brief Resolve relocations to external symbols.
+ void resolveExternalSymbols();
+
+ // \brief Compute an upper bound of the memory that is required to load all
+ // sections
+ void computeTotalAllocSize(const ObjectFile &Obj, uint64_t &CodeSize,
+ uint64_t &DataSizeRO, uint64_t &DataSizeRW);
+
+ // \brief Compute the stub buffer size required for a section
+ unsigned computeSectionStubBufSize(const ObjectFile &Obj,
+ const SectionRef &Section);
+
+ // \brief Implementation of the generic part of the loadObject algorithm.
+ std::pair<unsigned, unsigned> loadObjectImpl(const object::ObjectFile &Obj);
+
+public:
+ RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : MemMgr(MemMgr), Resolver(Resolver), Checker(nullptr),
+ ProcessAllSections(false), HasError(false) {
+ }
+
+ virtual ~RuntimeDyldImpl();
+
+ void setProcessAllSections(bool ProcessAllSections) {
+ this->ProcessAllSections = ProcessAllSections;
+ }
+
+ void setRuntimeDyldChecker(RuntimeDyldCheckerImpl *Checker) {
+ this->Checker = Checker;
+ }
+
+ virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+ loadObject(const object::ObjectFile &Obj) = 0;
+
+ uint8_t* getSymbolLocalAddress(StringRef Name) const {
+ // FIXME: Just look up as a function for now. Overly simple of course.
+ // Work in progress.
+ RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
+ if (pos == GlobalSymbolTable.end())
+ return nullptr;
+ const auto &SymInfo = pos->second;
+ return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
+ }
+
+ RuntimeDyld::SymbolInfo getSymbol(StringRef Name) const {
+ // FIXME: Just look up as a function for now. Overly simple of course.
+ // Work in progress.
+ RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
+ if (pos == GlobalSymbolTable.end())
+ return nullptr;
+ const auto &SymEntry = pos->second;
+ uint64_t TargetAddr =
+ getSectionLoadAddress(SymEntry.getSectionID()) + SymEntry.getOffset();
+ return RuntimeDyld::SymbolInfo(TargetAddr, SymEntry.getFlags());
+ }
+
+ void resolveRelocations();
+
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
+ void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
+
+ // Is the linker in an error state?
+ bool hasError() { return HasError; }
+
+ // Mark the error condition as handled and continue.
+ void clearError() { HasError = false; }
+
+ // Get the error message.
+ StringRef getErrorString() { return ErrorStr; }
+
+ virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
+
+ virtual void registerEHFrames();
+
+ virtual void deregisterEHFrames();
+
+ virtual void finalizeLoad(const ObjectFile &ObjImg,
+ ObjSectionToIDMap &SectionMap) {}
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
new file mode 100644
index 0000000..74b13d6
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
@@ -0,0 +1,315 @@
+//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#include "RuntimeDyldMachO.h"
+#include "Targets/RuntimeDyldMachOAArch64.h"
+#include "Targets/RuntimeDyldMachOARM.h"
+#include "Targets/RuntimeDyldMachOI386.h"
+#include "Targets/RuntimeDyldMachOX86_64.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+#define DEBUG_TYPE "dyld"
+
+namespace {
+
+class LoadedMachOObjectInfo
+ : public RuntimeDyld::LoadedObjectInfoHelper<LoadedMachOObjectInfo> {
+public:
+ LoadedMachOObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
+ unsigned EndIdx)
+ : LoadedObjectInfoHelper(RTDyld, BeginIdx, EndIdx) {}
+
+ OwningBinary<ObjectFile>
+ getObjectForDebug(const ObjectFile &Obj) const override {
+ return OwningBinary<ObjectFile>();
+ }
+};
+
+}
+
+namespace llvm {
+
+int64_t RuntimeDyldMachO::memcpyAddend(const RelocationEntry &RE) const {
+ unsigned NumBytes = 1 << RE.Size;
+ uint8_t *Src = Sections[RE.SectionID].Address + RE.Offset;
+
+ return static_cast<int64_t>(readBytesUnaligned(Src, NumBytes));
+}
+
+RelocationValueRef RuntimeDyldMachO::getRelocationValueRef(
+ const ObjectFile &BaseTObj, const relocation_iterator &RI,
+ const RelocationEntry &RE, ObjSectionToIDMap &ObjSectionToID) {
+
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseTObj);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RI->getRawDataRefImpl());
+ RelocationValueRef Value;
+
+ bool IsExternal = Obj.getPlainRelocationExternal(RelInfo);
+ if (IsExternal) {
+ symbol_iterator Symbol = RI->getSymbol();
+ ErrorOr<StringRef> TargetNameOrErr = Symbol->getName();
+ if (std::error_code EC = TargetNameOrErr.getError())
+ report_fatal_error(EC.message());
+ StringRef TargetName = *TargetNameOrErr;
+ RTDyldSymbolTable::const_iterator SI =
+ GlobalSymbolTable.find(TargetName.data());
+ if (SI != GlobalSymbolTable.end()) {
+ const auto &SymInfo = SI->second;
+ Value.SectionID = SymInfo.getSectionID();
+ Value.Offset = SymInfo.getOffset() + RE.Addend;
+ } else {
+ Value.SymbolName = TargetName.data();
+ Value.Offset = RE.Addend;
+ }
+ } else {
+ SectionRef Sec = Obj.getAnyRelocationSection(RelInfo);
+ bool IsCode = Sec.isText();
+ Value.SectionID = findOrEmitSection(Obj, Sec, IsCode, ObjSectionToID);
+ uint64_t Addr = Sec.getAddress();
+ Value.Offset = RE.Addend - Addr;
+ }
+
+ return Value;
+}
+
+void RuntimeDyldMachO::makeValueAddendPCRel(RelocationValueRef &Value,
+ const ObjectFile &BaseTObj,
+ const relocation_iterator &RI,
+ unsigned OffsetToNextPC) {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseTObj);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RI->getRawDataRefImpl());
+
+ bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
+ if (IsPCRel) {
+ ErrorOr<uint64_t> RelocAddr = RI->getAddress();
+ Value.Offset += *RelocAddr + OffsetToNextPC;
+ }
+}
+
+void RuntimeDyldMachO::dumpRelocationToResolve(const RelocationEntry &RE,
+ uint64_t Value) const {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+ uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+
+ dbgs() << "resolveRelocation Section: " << RE.SectionID
+ << " LocalAddress: " << format("%p", LocalAddress)
+ << " FinalAddress: " << format("0x%016" PRIx64, FinalAddress)
+ << " Value: " << format("0x%016" PRIx64, Value) << " Addend: " << RE.Addend
+ << " isPCRel: " << RE.IsPCRel << " MachoType: " << RE.RelType
+ << " Size: " << (1 << RE.Size) << "\n";
+}
+
+section_iterator
+RuntimeDyldMachO::getSectionByAddress(const MachOObjectFile &Obj,
+ uint64_t Addr) {
+ section_iterator SI = Obj.section_begin();
+ section_iterator SE = Obj.section_end();
+
+ for (; SI != SE; ++SI) {
+ uint64_t SAddr = SI->getAddress();
+ uint64_t SSize = SI->getSize();
+ if ((Addr >= SAddr) && (Addr < SAddr + SSize))
+ return SI;
+ }
+
+ return SE;
+}
+
+
+// Populate __pointers section.
+void RuntimeDyldMachO::populateIndirectSymbolPointersSection(
+ const MachOObjectFile &Obj,
+ const SectionRef &PTSection,
+ unsigned PTSectionID) {
+ assert(!Obj.is64Bit() &&
+ "Pointer table section not supported in 64-bit MachO.");
+
+ MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
+ MachO::section Sec32 = Obj.getSection(PTSection.getRawDataRefImpl());
+ uint32_t PTSectionSize = Sec32.size;
+ unsigned FirstIndirectSymbol = Sec32.reserved1;
+ const unsigned PTEntrySize = 4;
+ unsigned NumPTEntries = PTSectionSize / PTEntrySize;
+ unsigned PTEntryOffset = 0;
+
+ assert((PTSectionSize % PTEntrySize) == 0 &&
+ "Pointers section does not contain a whole number of stubs?");
+
+ DEBUG(dbgs() << "Populating pointer table section "
+ << Sections[PTSectionID].Name
+ << ", Section ID " << PTSectionID << ", "
+ << NumPTEntries << " entries, " << PTEntrySize
+ << " bytes each:\n");
+
+ for (unsigned i = 0; i < NumPTEntries; ++i) {
+ unsigned SymbolIndex =
+ Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
+ symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
+ ErrorOr<StringRef> IndirectSymbolNameOrErr = SI->getName();
+ if (std::error_code EC = IndirectSymbolNameOrErr.getError())
+ report_fatal_error(EC.message());
+ StringRef IndirectSymbolName = *IndirectSymbolNameOrErr;
+ DEBUG(dbgs() << " " << IndirectSymbolName << ": index " << SymbolIndex
+ << ", PT offset: " << PTEntryOffset << "\n");
+ RelocationEntry RE(PTSectionID, PTEntryOffset,
+ MachO::GENERIC_RELOC_VANILLA, 0, false, 2);
+ addRelocationForSymbol(RE, IndirectSymbolName);
+ PTEntryOffset += PTEntrySize;
+ }
+}
+
+bool RuntimeDyldMachO::isCompatibleFile(const object::ObjectFile &Obj) const {
+ return Obj.isMachO();
+}
+
+template <typename Impl>
+void RuntimeDyldMachOCRTPBase<Impl>::finalizeLoad(const ObjectFile &Obj,
+ ObjSectionToIDMap &SectionMap) {
+ unsigned EHFrameSID = RTDYLD_INVALID_SECTION_ID;
+ unsigned TextSID = RTDYLD_INVALID_SECTION_ID;
+ unsigned ExceptTabSID = RTDYLD_INVALID_SECTION_ID;
+
+ for (const auto &Section : Obj.sections()) {
+ StringRef Name;
+ Section.getName(Name);
+
+ // Force emission of the __text, __eh_frame, and __gcc_except_tab sections
+ // if they're present. Otherwise call down to the impl to handle other
+ // sections that have already been emitted.
+ if (Name == "__text")
+ TextSID = findOrEmitSection(Obj, Section, true, SectionMap);
+ else if (Name == "__eh_frame")
+ EHFrameSID = findOrEmitSection(Obj, Section, false, SectionMap);
+ else if (Name == "__gcc_except_tab")
+ ExceptTabSID = findOrEmitSection(Obj, Section, true, SectionMap);
+ else {
+ auto I = SectionMap.find(Section);
+ if (I != SectionMap.end())
+ impl().finalizeSection(Obj, I->second, Section);
+ }
+ }
+ UnregisteredEHFrameSections.push_back(
+ EHFrameRelatedSections(EHFrameSID, TextSID, ExceptTabSID));
+}
+
+template <typename Impl>
+unsigned char *RuntimeDyldMachOCRTPBase<Impl>::processFDE(unsigned char *P,
+ int64_t DeltaForText,
+ int64_t DeltaForEH) {
+ typedef typename Impl::TargetPtrT TargetPtrT;
+
+ DEBUG(dbgs() << "Processing FDE: Delta for text: " << DeltaForText
+ << ", Delta for EH: " << DeltaForEH << "\n");
+ uint32_t Length = readBytesUnaligned(P, 4);
+ P += 4;
+ unsigned char *Ret = P + Length;
+ uint32_t Offset = readBytesUnaligned(P, 4);
+ if (Offset == 0) // is a CIE
+ return Ret;
+
+ P += 4;
+ TargetPtrT FDELocation = readBytesUnaligned(P, sizeof(TargetPtrT));
+ TargetPtrT NewLocation = FDELocation - DeltaForText;
+ writeBytesUnaligned(NewLocation, P, sizeof(TargetPtrT));
+
+ P += sizeof(TargetPtrT);
+
+ // Skip the FDE address range
+ P += sizeof(TargetPtrT);
+
+ uint8_t Augmentationsize = *P;
+ P += 1;
+ if (Augmentationsize != 0) {
+ TargetPtrT LSDA = readBytesUnaligned(P, sizeof(TargetPtrT));
+ TargetPtrT NewLSDA = LSDA - DeltaForEH;
+ writeBytesUnaligned(NewLSDA, P, sizeof(TargetPtrT));
+ }
+
+ return Ret;
+}
+
+static int64_t computeDelta(SectionEntry *A, SectionEntry *B) {
+ int64_t ObjDistance =
+ static_cast<int64_t>(A->ObjAddress) - static_cast<int64_t>(B->ObjAddress);
+ int64_t MemDistance = A->LoadAddress - B->LoadAddress;
+ return ObjDistance - MemDistance;
+}
+
+template <typename Impl>
+void RuntimeDyldMachOCRTPBase<Impl>::registerEHFrames() {
+
+ for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
+ EHFrameRelatedSections &SectionInfo = UnregisteredEHFrameSections[i];
+ if (SectionInfo.EHFrameSID == RTDYLD_INVALID_SECTION_ID ||
+ SectionInfo.TextSID == RTDYLD_INVALID_SECTION_ID)
+ continue;
+ SectionEntry *Text = &Sections[SectionInfo.TextSID];
+ SectionEntry *EHFrame = &Sections[SectionInfo.EHFrameSID];
+ SectionEntry *ExceptTab = nullptr;
+ if (SectionInfo.ExceptTabSID != RTDYLD_INVALID_SECTION_ID)
+ ExceptTab = &Sections[SectionInfo.ExceptTabSID];
+
+ int64_t DeltaForText = computeDelta(Text, EHFrame);
+ int64_t DeltaForEH = 0;
+ if (ExceptTab)
+ DeltaForEH = computeDelta(ExceptTab, EHFrame);
+
+ unsigned char *P = EHFrame->Address;
+ unsigned char *End = P + EHFrame->Size;
+ do {
+ P = processFDE(P, DeltaForText, DeltaForEH);
+ } while (P != End);
+
+ MemMgr.registerEHFrames(EHFrame->Address, EHFrame->LoadAddress,
+ EHFrame->Size);
+ }
+ UnregisteredEHFrameSections.clear();
+}
+
+std::unique_ptr<RuntimeDyldMachO>
+RuntimeDyldMachO::create(Triple::ArchType Arch,
+ RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver) {
+ switch (Arch) {
+ default:
+ llvm_unreachable("Unsupported target for RuntimeDyldMachO.");
+ break;
+ case Triple::arm:
+ return make_unique<RuntimeDyldMachOARM>(MemMgr, Resolver);
+ case Triple::aarch64:
+ return make_unique<RuntimeDyldMachOAArch64>(MemMgr, Resolver);
+ case Triple::x86:
+ return make_unique<RuntimeDyldMachOI386>(MemMgr, Resolver);
+ case Triple::x86_64:
+ return make_unique<RuntimeDyldMachOX86_64>(MemMgr, Resolver);
+ }
+}
+
+std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+RuntimeDyldMachO::loadObject(const object::ObjectFile &O) {
+ unsigned SectionStartIdx, SectionEndIdx;
+ std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
+ return llvm::make_unique<LoadedMachOObjectInfo>(*this, SectionStartIdx,
+ SectionEndIdx);
+}
+
+} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
new file mode 100644
index 0000000..36ba8d1
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
@@ -0,0 +1,161 @@
+//===-- RuntimeDyldMachO.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MachO support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDMACHO_H
+
+#include "RuntimeDyldImpl.h"
+#include "llvm/Object/MachO.h"
+#include "llvm/Support/Format.h"
+
+#define DEBUG_TYPE "dyld"
+
+using namespace llvm;
+using namespace llvm::object;
+
+namespace llvm {
+class RuntimeDyldMachO : public RuntimeDyldImpl {
+protected:
+ struct SectionOffsetPair {
+ unsigned SectionID;
+ uint64_t Offset;
+ };
+
+ struct EHFrameRelatedSections {
+ EHFrameRelatedSections()
+ : EHFrameSID(RTDYLD_INVALID_SECTION_ID),
+ TextSID(RTDYLD_INVALID_SECTION_ID),
+ ExceptTabSID(RTDYLD_INVALID_SECTION_ID) {}
+
+ EHFrameRelatedSections(SID EH, SID T, SID Ex)
+ : EHFrameSID(EH), TextSID(T), ExceptTabSID(Ex) {}
+ SID EHFrameSID;
+ SID TextSID;
+ SID ExceptTabSID;
+ };
+
+ // When a module is loaded we save the SectionID of the EH frame section
+ // in a table until we receive a request to register all unregistered
+ // EH frame sections with the memory manager.
+ SmallVector<EHFrameRelatedSections, 2> UnregisteredEHFrameSections;
+
+ RuntimeDyldMachO(RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldImpl(MemMgr, Resolver) {}
+
+ /// This convenience method uses memcpy to extract a contiguous addend (the
+ /// addend size and offset are taken from the corresponding fields of the RE).
+ int64_t memcpyAddend(const RelocationEntry &RE) const;
+
+ /// Given a relocation_iterator for a non-scattered relocation, construct a
+ /// RelocationEntry and fill in the common fields. The 'Addend' field is *not*
+ /// filled in, since immediate encodings are highly target/opcode specific.
+ /// For targets/opcodes with simple, contiguous immediates (e.g. X86) the
+ /// memcpyAddend method can be used to read the immediate.
+ RelocationEntry getRelocationEntry(unsigned SectionID,
+ const ObjectFile &BaseTObj,
+ const relocation_iterator &RI) const {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseTObj);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RI->getRawDataRefImpl());
+
+ bool IsPCRel = Obj.getAnyRelocationPCRel(RelInfo);
+ unsigned Size = Obj.getAnyRelocationLength(RelInfo);
+ uint64_t Offset = RI->getOffset();
+ MachO::RelocationInfoType RelType =
+ static_cast<MachO::RelocationInfoType>(Obj.getAnyRelocationType(RelInfo));
+
+ return RelocationEntry(SectionID, Offset, RelType, 0, IsPCRel, Size);
+ }
+
+ /// Construct a RelocationValueRef representing the relocation target.
+ /// For Symbols in known sections, this will return a RelocationValueRef
+ /// representing a (SectionID, Offset) pair.
+ /// For Symbols whose section is not known, this will return a
+ /// (SymbolName, Offset) pair, where the Offset is taken from the instruction
+ /// immediate (held in RE.Addend).
+ /// In both cases the Addend field is *NOT* fixed up to be PC-relative. That
+ /// should be done by the caller where appropriate by calling makePCRel on
+ /// the RelocationValueRef.
+ RelocationValueRef getRelocationValueRef(const ObjectFile &BaseTObj,
+ const relocation_iterator &RI,
+ const RelocationEntry &RE,
+ ObjSectionToIDMap &ObjSectionToID);
+
+ /// Make the RelocationValueRef addend PC-relative.
+ void makeValueAddendPCRel(RelocationValueRef &Value,
+ const ObjectFile &BaseTObj,
+ const relocation_iterator &RI,
+ unsigned OffsetToNextPC);
+
+ /// Dump information about the relocation entry (RE) and resolved value.
+ void dumpRelocationToResolve(const RelocationEntry &RE, uint64_t Value) const;
+
+ // Return a section iterator for the section containing the given address.
+ static section_iterator getSectionByAddress(const MachOObjectFile &Obj,
+ uint64_t Addr);
+
+
+ // Populate __pointers section.
+ void populateIndirectSymbolPointersSection(const MachOObjectFile &Obj,
+ const SectionRef &PTSection,
+ unsigned PTSectionID);
+
+public:
+
+ /// Create a RuntimeDyldMachO instance for the given target architecture.
+ static std::unique_ptr<RuntimeDyldMachO>
+ create(Triple::ArchType Arch,
+ RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver);
+
+ std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
+ loadObject(const object::ObjectFile &O) override;
+
+ SectionEntry &getSection(unsigned SectionID) { return Sections[SectionID]; }
+
+ bool isCompatibleFile(const object::ObjectFile &Obj) const override;
+};
+
+/// RuntimeDyldMachOTarget - Templated base class for generic MachO linker
+/// algorithms and data structures.
+///
+/// Concrete, target specific sub-classes can be accessed via the impl()
+/// methods. (i.e. the RuntimeDyldMachO hierarchy uses the Curiously
+/// Recurring Template Idiom). Concrete subclasses for each target
+/// can be found in ./Targets.
+template <typename Impl>
+class RuntimeDyldMachOCRTPBase : public RuntimeDyldMachO {
+private:
+ Impl &impl() { return static_cast<Impl &>(*this); }
+ const Impl &impl() const { return static_cast<const Impl &>(*this); }
+
+ unsigned char *processFDE(unsigned char *P, int64_t DeltaForText,
+ int64_t DeltaForEH);
+
+public:
+ RuntimeDyldMachOCRTPBase(RuntimeDyld::MemoryManager &MemMgr,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldMachO(MemMgr, Resolver) {}
+
+ void finalizeLoad(const ObjectFile &Obj,
+ ObjSectionToIDMap &SectionMap) override;
+ void registerEHFrames() override;
+};
+
+} // end namespace llvm
+
+#undef DEBUG_TYPE
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldCOFFX86_64.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldCOFFX86_64.h
new file mode 100644
index 0000000..408227e
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldCOFFX86_64.h
@@ -0,0 +1,216 @@
+//===-- RuntimeDyldCOFFX86_64.h --- COFF/X86_64 specific code ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// COFF x86_x64 support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFF86_64_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFF86_64_H
+
+#include "llvm/Object/COFF.h"
+#include "llvm/Support/COFF.h"
+#include "../RuntimeDyldCOFF.h"
+
+#define DEBUG_TYPE "dyld"
+
+namespace llvm {
+
+class RuntimeDyldCOFFX86_64 : public RuntimeDyldCOFF {
+
+private:
+ // When a module is loaded we save the SectionID of the unwind
+ // sections in a table until we receive a request to register all
+ // unregisteredEH frame sections with the memory manager.
+ SmallVector<SID, 2> UnregisteredEHFrameSections;
+ SmallVector<SID, 2> RegisteredEHFrameSections;
+
+public:
+ RuntimeDyldCOFFX86_64(RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldCOFF(MM, Resolver) {}
+
+ unsigned getMaxStubSize() override {
+ return 6; // 2-byte jmp instruction + 32-bit relative address
+ }
+
+ // The target location for the relocation is described by RE.SectionID and
+ // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
+ // SectionEntry has three members describing its location.
+ // SectionEntry::Address is the address at which the section has been loaded
+ // into memory in the current (host) process. SectionEntry::LoadAddress is
+ // the address that the section will have in the target process.
+ // SectionEntry::ObjAddress is the address of the bits for this section in the
+ // original emitted object image (also in the current address space).
+ //
+ // Relocations will be applied as if the section were loaded at
+ // SectionEntry::LoadAddress, but they will be applied at an address based
+ // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer
+ // to Target memory contents if they are required for value calculations.
+ //
+ // The Value parameter here is the load address of the symbol for the
+ // relocation to be applied. For relocations which refer to symbols in the
+ // current object Value will be the LoadAddress of the section in which
+ // the symbol resides (RE.Addend provides additional information about the
+ // symbol location). For external symbols, Value will be the address of the
+ // symbol in the target address space.
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *Target = Section.Address + RE.Offset;
+
+ switch (RE.RelType) {
+
+ case COFF::IMAGE_REL_AMD64_REL32:
+ case COFF::IMAGE_REL_AMD64_REL32_1:
+ case COFF::IMAGE_REL_AMD64_REL32_2:
+ case COFF::IMAGE_REL_AMD64_REL32_3:
+ case COFF::IMAGE_REL_AMD64_REL32_4:
+ case COFF::IMAGE_REL_AMD64_REL32_5: {
+ uint32_t *TargetAddress = (uint32_t *)Target;
+ uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+ // Delta is the distance from the start of the reloc to the end of the
+ // instruction with the reloc.
+ uint64_t Delta = 4 + (RE.RelType - COFF::IMAGE_REL_AMD64_REL32);
+ Value -= FinalAddress + Delta;
+ uint64_t Result = Value + RE.Addend;
+ assert(((int64_t)Result <= INT32_MAX) && "Relocation overflow");
+ assert(((int64_t)Result >= INT32_MIN) && "Relocation underflow");
+ *TargetAddress = Result;
+ break;
+ }
+
+ case COFF::IMAGE_REL_AMD64_ADDR32NB: {
+ // Note ADDR32NB requires a well-established notion of
+ // image base. This address must be less than or equal
+ // to every section's load address, and all sections must be
+ // within a 32 bit offset from the base.
+ //
+ // For now we just set these to zero.
+ uint32_t *TargetAddress = (uint32_t *)Target;
+ *TargetAddress = 0;
+ break;
+ }
+
+ case COFF::IMAGE_REL_AMD64_ADDR64: {
+ uint64_t *TargetAddress = (uint64_t *)Target;
+ *TargetAddress = Value + RE.Addend;
+ break;
+ }
+
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ }
+ }
+
+ relocation_iterator processRelocationRef(unsigned SectionID,
+ relocation_iterator RelI,
+ const ObjectFile &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
+ // If possible, find the symbol referred to in the relocation,
+ // and the section that contains it.
+ symbol_iterator Symbol = RelI->getSymbol();
+ if (Symbol == Obj.symbol_end())
+ report_fatal_error("Unknown symbol in relocation");
+ section_iterator SecI(Obj.section_end());
+ Symbol->getSection(SecI);
+ // If there is no section, this must be an external reference.
+ const bool IsExtern = SecI == Obj.section_end();
+
+ // Determine the Addend used to adjust the relocation value.
+ uint64_t RelType = RelI->getType();
+ uint64_t Offset = RelI->getOffset();
+ uint64_t Addend = 0;
+ SectionEntry &Section = Sections[SectionID];
+ uintptr_t ObjTarget = Section.ObjAddress + Offset;
+
+ switch (RelType) {
+
+ case COFF::IMAGE_REL_AMD64_REL32:
+ case COFF::IMAGE_REL_AMD64_REL32_1:
+ case COFF::IMAGE_REL_AMD64_REL32_2:
+ case COFF::IMAGE_REL_AMD64_REL32_3:
+ case COFF::IMAGE_REL_AMD64_REL32_4:
+ case COFF::IMAGE_REL_AMD64_REL32_5:
+ case COFF::IMAGE_REL_AMD64_ADDR32NB: {
+ uint32_t *Displacement = (uint32_t *)ObjTarget;
+ Addend = *Displacement;
+ break;
+ }
+
+ case COFF::IMAGE_REL_AMD64_ADDR64: {
+ uint64_t *Displacement = (uint64_t *)ObjTarget;
+ Addend = *Displacement;
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ ErrorOr<StringRef> TargetNameOrErr = Symbol->getName();
+ if (std::error_code EC = TargetNameOrErr.getError())
+ report_fatal_error(EC.message());
+ StringRef TargetName = *TargetNameOrErr;
+
+ DEBUG(dbgs() << "\t\tIn Section " << SectionID << " Offset " << Offset
+ << " RelType: " << RelType << " TargetName: " << TargetName
+ << " Addend " << Addend << "\n");
+
+ if (IsExtern) {
+ RelocationEntry RE(SectionID, Offset, RelType, Addend);
+ addRelocationForSymbol(RE, TargetName);
+ } else {
+ bool IsCode = SecI->isText();
+ unsigned TargetSectionID =
+ findOrEmitSection(Obj, *SecI, IsCode, ObjSectionToID);
+ uint64_t TargetOffset = getSymbolOffset(*Symbol);
+ RelocationEntry RE(SectionID, Offset, RelType, TargetOffset + Addend);
+ addRelocationForSection(RE, TargetSectionID);
+ }
+
+ return ++RelI;
+ }
+
+ unsigned getStubAlignment() override { return 1; }
+ void registerEHFrames() override {
+ for (auto const &EHFrameSID : UnregisteredEHFrameSections) {
+ uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
+ uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
+ size_t EHFrameSize = Sections[EHFrameSID].Size;
+ MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
+ RegisteredEHFrameSections.push_back(EHFrameSID);
+ }
+ UnregisteredEHFrameSections.clear();
+ }
+ void deregisterEHFrames() override {
+ // Stub
+ }
+ void finalizeLoad(const ObjectFile &Obj,
+ ObjSectionToIDMap &SectionMap) override {
+ // Look for and record the EH frame section IDs.
+ for (const auto &SectionPair : SectionMap) {
+ const SectionRef &Section = SectionPair.first;
+ StringRef Name;
+ Check(Section.getName(Name));
+ // Note unwind info is split across .pdata and .xdata, so this
+ // may not be sufficiently general for all users.
+ if (Name == ".xdata") {
+ UnregisteredEHFrameSections.push_back(SectionPair.second);
+ }
+ }
+ }
+};
+
+} // end namespace llvm
+
+#undef DEBUG_TYPE
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h
new file mode 100644
index 0000000..99fd6e3
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOAArch64.h
@@ -0,0 +1,407 @@
+//===-- RuntimeDyldMachOAArch64.h -- MachO/AArch64 specific code. -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOAARCH64_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOAARCH64_H
+
+#include "../RuntimeDyldMachO.h"
+#include "llvm/Support/Endian.h"
+
+#define DEBUG_TYPE "dyld"
+
+namespace llvm {
+
+class RuntimeDyldMachOAArch64
+ : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOAArch64> {
+public:
+
+ typedef uint64_t TargetPtrT;
+
+ RuntimeDyldMachOAArch64(RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldMachOCRTPBase(MM, Resolver) {}
+
+ unsigned getMaxStubSize() override { return 8; }
+
+ unsigned getStubAlignment() override { return 8; }
+
+ /// Extract the addend encoded in the instruction / memory location.
+ int64_t decodeAddend(const RelocationEntry &RE) const {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+ unsigned NumBytes = 1 << RE.Size;
+ int64_t Addend = 0;
+ // Verify that the relocation has the correct size and alignment.
+ switch (RE.RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ assert((NumBytes == 4 || NumBytes == 8) && "Invalid relocation size.");
+ break;
+ case MachO::ARM64_RELOC_BRANCH26:
+ case MachO::ARM64_RELOC_PAGE21:
+ case MachO::ARM64_RELOC_PAGEOFF12:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
+ assert(NumBytes == 4 && "Invalid relocation size.");
+ assert((((uintptr_t)LocalAddress & 0x3) == 0) &&
+ "Instruction address is not aligned to 4 bytes.");
+ break;
+ }
+
+ switch (RE.RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ // This could be an unaligned memory location.
+ if (NumBytes == 4)
+ Addend = *reinterpret_cast<support::ulittle32_t *>(LocalAddress);
+ else
+ Addend = *reinterpret_cast<support::ulittle64_t *>(LocalAddress);
+ break;
+ case MachO::ARM64_RELOC_BRANCH26: {
+ // Verify that the relocation points to the expected branch instruction.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0xFC000000) == 0x14000000 && "Expected branch instruction.");
+
+ // Get the 26 bit addend encoded in the branch instruction and sign-extend
+ // to 64 bit. The lower 2 bits are always zeros and are therefore implicit
+ // (<< 2).
+ Addend = (*p & 0x03FFFFFF) << 2;
+ Addend = SignExtend64(Addend, 28);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_PAGE21: {
+ // Verify that the relocation points to the expected adrp instruction.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0x9F000000) == 0x90000000 && "Expected adrp instruction.");
+
+ // Get the 21 bit addend encoded in the adrp instruction and sign-extend
+ // to 64 bit. The lower 12 bits (4096 byte page) are always zeros and are
+ // therefore implicit (<< 12).
+ Addend = ((*p & 0x60000000) >> 29) | ((*p & 0x01FFFFE0) >> 3) << 12;
+ Addend = SignExtend64(Addend, 33);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ (void)p;
+ assert((*p & 0x3B000000) == 0x39000000 &&
+ "Only expected load / store instructions.");
+ } // fall-through
+ case MachO::ARM64_RELOC_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // or add / sub instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((((*p & 0x3B000000) == 0x39000000) ||
+ ((*p & 0x11C00000) == 0x11000000) ) &&
+ "Expected load / store or add/sub instruction.");
+
+ // Get the 12 bit addend encoded in the instruction.
+ Addend = (*p & 0x003FFC00) >> 10;
+
+ // Check which instruction we are decoding to obtain the implicit shift
+ // factor of the instruction.
+ int ImplicitShift = 0;
+ if ((*p & 0x3B000000) == 0x39000000) { // << load / store
+ // For load / store instructions the size is encoded in bits 31:30.
+ ImplicitShift = ((*p >> 30) & 0x3);
+ if (ImplicitShift == 0) {
+ // Check if this a vector op to get the correct shift value.
+ if ((*p & 0x04800000) == 0x04800000)
+ ImplicitShift = 4;
+ }
+ }
+ // Compensate for implicit shift.
+ Addend <<= ImplicitShift;
+ break;
+ }
+ }
+ return Addend;
+ }
+
+ /// Extract the addend encoded in the instruction.
+ void encodeAddend(uint8_t *LocalAddress, unsigned NumBytes,
+ MachO::RelocationInfoType RelType, int64_t Addend) const {
+ // Verify that the relocation has the correct alignment.
+ switch (RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ assert((NumBytes == 4 || NumBytes == 8) && "Invalid relocation size.");
+ break;
+ case MachO::ARM64_RELOC_BRANCH26:
+ case MachO::ARM64_RELOC_PAGE21:
+ case MachO::ARM64_RELOC_PAGEOFF12:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
+ assert(NumBytes == 4 && "Invalid relocation size.");
+ assert((((uintptr_t)LocalAddress & 0x3) == 0) &&
+ "Instruction address is not aligned to 4 bytes.");
+ break;
+ }
+
+ switch (RelType) {
+ default:
+ llvm_unreachable("Unsupported relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED:
+ // This could be an unaligned memory location.
+ if (NumBytes == 4)
+ *reinterpret_cast<support::ulittle32_t *>(LocalAddress) = Addend;
+ else
+ *reinterpret_cast<support::ulittle64_t *>(LocalAddress) = Addend;
+ break;
+ case MachO::ARM64_RELOC_BRANCH26: {
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ // Verify that the relocation points to the expected branch instruction.
+ assert((*p & 0xFC000000) == 0x14000000 && "Expected branch instruction.");
+
+ // Verify addend value.
+ assert((Addend & 0x3) == 0 && "Branch target is not aligned");
+ assert(isInt<28>(Addend) && "Branch target is out of range.");
+
+ // Encode the addend as 26 bit immediate in the branch instruction.
+ *p = (*p & 0xFC000000) | ((uint32_t)(Addend >> 2) & 0x03FFFFFF);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_PAGE21: {
+ // Verify that the relocation points to the expected adrp instruction.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0x9F000000) == 0x90000000 && "Expected adrp instruction.");
+
+ // Check that the addend fits into 21 bits (+ 12 lower bits).
+ assert((Addend & 0xFFF) == 0 && "ADRP target is not page aligned.");
+ assert(isInt<33>(Addend) && "Invalid page reloc value.");
+
+ // Encode the addend into the instruction.
+ uint32_t ImmLoValue = ((uint64_t)Addend << 17) & 0x60000000;
+ uint32_t ImmHiValue = ((uint64_t)Addend >> 9) & 0x00FFFFE0;
+ *p = (*p & 0x9F00001F) | ImmHiValue | ImmLoValue;
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((*p & 0x3B000000) == 0x39000000 &&
+ "Only expected load / store instructions.");
+ (void)p;
+ } // fall-through
+ case MachO::ARM64_RELOC_PAGEOFF12: {
+ // Verify that the relocation points to one of the expected load / store
+ // or add / sub instructions.
+ auto *p = reinterpret_cast<support::aligned_ulittle32_t *>(LocalAddress);
+ assert((((*p & 0x3B000000) == 0x39000000) ||
+ ((*p & 0x11C00000) == 0x11000000) ) &&
+ "Expected load / store or add/sub instruction.");
+
+ // Check which instruction we are decoding to obtain the implicit shift
+ // factor of the instruction and verify alignment.
+ int ImplicitShift = 0;
+ if ((*p & 0x3B000000) == 0x39000000) { // << load / store
+ // For load / store instructions the size is encoded in bits 31:30.
+ ImplicitShift = ((*p >> 30) & 0x3);
+ switch (ImplicitShift) {
+ case 0:
+ // Check if this a vector op to get the correct shift value.
+ if ((*p & 0x04800000) == 0x04800000) {
+ ImplicitShift = 4;
+ assert(((Addend & 0xF) == 0) &&
+ "128-bit LDR/STR not 16-byte aligned.");
+ }
+ break;
+ case 1:
+ assert(((Addend & 0x1) == 0) && "16-bit LDR/STR not 2-byte aligned.");
+ break;
+ case 2:
+ assert(((Addend & 0x3) == 0) && "32-bit LDR/STR not 4-byte aligned.");
+ break;
+ case 3:
+ assert(((Addend & 0x7) == 0) && "64-bit LDR/STR not 8-byte aligned.");
+ break;
+ }
+ }
+ // Compensate for implicit shift.
+ Addend >>= ImplicitShift;
+ assert(isUInt<12>(Addend) && "Addend cannot be encoded.");
+
+ // Encode the addend into the instruction.
+ *p = (*p & 0xFFC003FF) | ((uint32_t)(Addend << 10) & 0x003FFC00);
+ break;
+ }
+ }
+ }
+
+ relocation_iterator
+ processRelocationRef(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseObjT);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RelI->getRawDataRefImpl());
+
+ assert(!Obj.isRelocationScattered(RelInfo) && "");
+
+ // ARM64 has an ARM64_RELOC_ADDEND relocation type that carries an explicit
+ // addend for the following relocation. If found: (1) store the associated
+ // addend, (2) consume the next relocation, and (3) use the stored addend to
+ // override the addend.
+ int64_t ExplicitAddend = 0;
+ if (Obj.getAnyRelocationType(RelInfo) == MachO::ARM64_RELOC_ADDEND) {
+ assert(!Obj.getPlainRelocationExternal(RelInfo));
+ assert(!Obj.getAnyRelocationPCRel(RelInfo));
+ assert(Obj.getAnyRelocationLength(RelInfo) == 2);
+ int64_t RawAddend = Obj.getPlainRelocationSymbolNum(RelInfo);
+ // Sign-extend the 24-bit to 64-bit.
+ ExplicitAddend = SignExtend64(RawAddend, 24);
+ ++RelI;
+ RelInfo = Obj.getRelocation(RelI->getRawDataRefImpl());
+ }
+
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = decodeAddend(RE);
+ RelocationValueRef Value(
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
+
+ assert((ExplicitAddend == 0 || RE.Addend == 0) && "Relocation has "\
+ "ARM64_RELOC_ADDEND and embedded addend in the instruction.");
+ if (ExplicitAddend) {
+ RE.Addend = ExplicitAddend;
+ Value.Offset = ExplicitAddend;
+ }
+
+ bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
+ if (!IsExtern && RE.IsPCRel)
+ makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
+
+ RE.Addend = Value.Offset;
+
+ if (RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGE21 ||
+ RE.RelType == MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12)
+ processGOTRelocation(RE, Value, Stubs);
+ else {
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+
+ return ++RelI;
+ }
+
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
+ DEBUG(dumpRelocationToResolve(RE, Value));
+
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+ MachO::RelocationInfoType RelType =
+ static_cast<MachO::RelocationInfoType>(RE.RelType);
+
+ switch (RelType) {
+ default:
+ llvm_unreachable("Invalid relocation type!");
+ case MachO::ARM64_RELOC_UNSIGNED: {
+ assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_UNSIGNED not supported");
+ // Mask in the target value a byte at a time (we don't have an alignment
+ // guarantee for the target address, so this is safest).
+ if (RE.Size < 2)
+ llvm_unreachable("Invalid size for ARM64_RELOC_UNSIGNED");
+
+ encodeAddend(LocalAddress, 1 << RE.Size, RelType, Value + RE.Addend);
+ break;
+ }
+ case MachO::ARM64_RELOC_BRANCH26: {
+ assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_BRANCH26 not supported");
+ // Check if branch is in range.
+ uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+ int64_t PCRelVal = Value - FinalAddress + RE.Addend;
+ encodeAddend(LocalAddress, /*Size=*/4, RelType, PCRelVal);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_PAGE21: {
+ assert(RE.IsPCRel && "not PCRel and ARM64_RELOC_PAGE21 not supported");
+ // Adjust for PC-relative relocation and offset.
+ uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+ int64_t PCRelVal =
+ ((Value + RE.Addend) & (-4096)) - (FinalAddress & (-4096));
+ encodeAddend(LocalAddress, /*Size=*/4, RelType, PCRelVal);
+ break;
+ }
+ case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
+ case MachO::ARM64_RELOC_PAGEOFF12: {
+ assert(!RE.IsPCRel && "PCRel and ARM64_RELOC_PAGEOFF21 not supported");
+ // Add the offset from the symbol.
+ Value += RE.Addend;
+ // Mask out the page address and only use the lower 12 bits.
+ Value &= 0xFFF;
+ encodeAddend(LocalAddress, /*Size=*/4, RelType, Value);
+ break;
+ }
+ case MachO::ARM64_RELOC_SUBTRACTOR:
+ case MachO::ARM64_RELOC_POINTER_TO_GOT:
+ case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
+ case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
+ llvm_unreachable("Relocation type not yet implemented!");
+ case MachO::ARM64_RELOC_ADDEND:
+ llvm_unreachable("ARM64_RELOC_ADDEND should have been handeled by "
+ "processRelocationRef!");
+ }
+ }
+
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
+ const SectionRef &Section) {}
+
+private:
+ void processGOTRelocation(const RelocationEntry &RE,
+ RelocationValueRef &Value, StubMap &Stubs) {
+ assert(RE.Size == 2);
+ SectionEntry &Section = Sections[RE.SectionID];
+ StubMap::const_iterator i = Stubs.find(Value);
+ int64_t Offset;
+ if (i != Stubs.end())
+ Offset = static_cast<int64_t>(i->second);
+ else {
+ // FIXME: There must be a better way to do this then to check and fix the
+ // alignment every time!!!
+ uintptr_t BaseAddress = uintptr_t(Section.Address);
+ uintptr_t StubAlignment = getStubAlignment();
+ uintptr_t StubAddress =
+ (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+ -StubAlignment;
+ unsigned StubOffset = StubAddress - BaseAddress;
+ Stubs[Value] = StubOffset;
+ assert(((StubAddress % getStubAlignment()) == 0) &&
+ "GOT entry not aligned");
+ RelocationEntry GOTRE(RE.SectionID, StubOffset,
+ MachO::ARM64_RELOC_UNSIGNED, Value.Offset,
+ /*IsPCRel=*/false, /*Size=*/3);
+ if (Value.SymbolName)
+ addRelocationForSymbol(GOTRE, Value.SymbolName);
+ else
+ addRelocationForSection(GOTRE, Value.SectionID);
+ Section.StubOffset = StubOffset + getMaxStubSize();
+ Offset = static_cast<int64_t>(StubOffset);
+ }
+ RelocationEntry TargetRE(RE.SectionID, RE.Offset, RE.RelType, Offset,
+ RE.IsPCRel, RE.Size);
+ addRelocationForSection(TargetRE, RE.SectionID);
+ }
+};
+}
+
+#undef DEBUG_TYPE
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h
new file mode 100644
index 0000000..0d9445e
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOARM.h
@@ -0,0 +1,278 @@
+//===----- RuntimeDyldMachOARM.h ---- MachO/ARM specific code. ----*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOARM_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOARM_H
+
+#include "../RuntimeDyldMachO.h"
+
+#define DEBUG_TYPE "dyld"
+
+namespace llvm {
+
+class RuntimeDyldMachOARM
+ : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM> {
+private:
+ typedef RuntimeDyldMachOCRTPBase<RuntimeDyldMachOARM> ParentT;
+
+public:
+
+ typedef uint32_t TargetPtrT;
+
+ RuntimeDyldMachOARM(RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldMachOCRTPBase(MM, Resolver) {}
+
+ unsigned getMaxStubSize() override { return 8; }
+
+ unsigned getStubAlignment() override { return 4; }
+
+ int64_t decodeAddend(const RelocationEntry &RE) const {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+
+ switch (RE.RelType) {
+ default:
+ return memcpyAddend(RE);
+ case MachO::ARM_RELOC_BR24: {
+ uint32_t Temp = readBytesUnaligned(LocalAddress, 4);
+ Temp &= 0x00ffffff; // Mask out the opcode.
+ // Now we've got the shifted immediate, shift by 2, sign extend and ret.
+ return SignExtend32<26>(Temp << 2);
+ }
+ }
+ }
+
+ relocation_iterator
+ processRelocationRef(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseObjT);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RelI->getRawDataRefImpl());
+ uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
+
+ if (Obj.isRelocationScattered(RelInfo)) {
+ if (RelType == MachO::ARM_RELOC_HALF_SECTDIFF)
+ return processHALFSECTDIFFRelocation(SectionID, RelI, Obj,
+ ObjSectionToID);
+ else
+ return ++++RelI;
+ }
+
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = decodeAddend(RE);
+ RelocationValueRef Value(
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
+
+ if (RE.IsPCRel)
+ makeValueAddendPCRel(Value, Obj, RelI, 8);
+
+ if ((RE.RelType & 0xf) == MachO::ARM_RELOC_BR24)
+ processBranchRelocation(RE, Value, Stubs);
+ else {
+ RE.Addend = Value.Offset;
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+
+ return ++RelI;
+ }
+
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
+ DEBUG(dumpRelocationToResolve(RE, Value));
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+
+ // If the relocation is PC-relative, the value to be encoded is the
+ // pointer difference.
+ if (RE.IsPCRel) {
+ uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+ Value -= FinalAddress;
+ // ARM PCRel relocations have an effective-PC offset of two instructions
+ // (four bytes in Thumb mode, 8 bytes in ARM mode).
+ // FIXME: For now, assume ARM mode.
+ Value -= 8;
+ }
+
+ switch (RE.RelType) {
+ default:
+ llvm_unreachable("Invalid relocation type!");
+ case MachO::ARM_RELOC_VANILLA:
+ writeBytesUnaligned(Value + RE.Addend, LocalAddress, 1 << RE.Size);
+ break;
+ case MachO::ARM_RELOC_BR24: {
+ // Mask the value into the target address. We know instructions are
+ // 32-bit aligned, so we can do it all at once.
+ Value += RE.Addend;
+ // The low two bits of the value are not encoded.
+ Value >>= 2;
+ // Mask the value to 24 bits.
+ uint64_t FinalValue = Value & 0xffffff;
+ // FIXME: If the destination is a Thumb function (and the instruction
+ // is a non-predicated BL instruction), we need to change it to a BLX
+ // instruction instead.
+
+ // Insert the value into the instruction.
+ uint32_t Temp = readBytesUnaligned(LocalAddress, 4);
+ writeBytesUnaligned((Temp & ~0xffffff) | FinalValue, LocalAddress, 4);
+
+ break;
+ }
+ case MachO::ARM_RELOC_HALF_SECTDIFF: {
+ uint64_t SectionABase = Sections[RE.Sections.SectionA].LoadAddress;
+ uint64_t SectionBBase = Sections[RE.Sections.SectionB].LoadAddress;
+ assert((Value == SectionABase || Value == SectionBBase) &&
+ "Unexpected HALFSECTDIFF relocation value.");
+ Value = SectionABase - SectionBBase + RE.Addend;
+ if (RE.Size & 0x1) // :upper16:
+ Value = (Value >> 16);
+ Value &= 0xffff;
+
+ uint32_t Insn = readBytesUnaligned(LocalAddress, 4);
+ Insn = (Insn & 0xfff0f000) | ((Value & 0xf000) << 4) | (Value & 0x0fff);
+ writeBytesUnaligned(Insn, LocalAddress, 4);
+ break;
+ }
+
+ case MachO::ARM_THUMB_RELOC_BR22:
+ case MachO::ARM_THUMB_32BIT_BRANCH:
+ case MachO::ARM_RELOC_HALF:
+ case MachO::ARM_RELOC_PAIR:
+ case MachO::ARM_RELOC_SECTDIFF:
+ case MachO::ARM_RELOC_LOCAL_SECTDIFF:
+ case MachO::ARM_RELOC_PB_LA_PTR:
+ Error("Relocation type not implemented yet!");
+ return;
+ }
+ }
+
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
+ const SectionRef &Section) {
+ StringRef Name;
+ Section.getName(Name);
+
+ if (Name == "__nl_symbol_ptr")
+ populateIndirectSymbolPointersSection(cast<MachOObjectFile>(Obj),
+ Section, SectionID);
+ }
+
+private:
+
+ void processBranchRelocation(const RelocationEntry &RE,
+ const RelocationValueRef &Value,
+ StubMap &Stubs) {
+ // This is an ARM branch relocation, need to use a stub function.
+ // Look up for existing stub.
+ SectionEntry &Section = Sections[RE.SectionID];
+ RuntimeDyldMachO::StubMap::const_iterator i = Stubs.find(Value);
+ uint8_t *Addr;
+ if (i != Stubs.end()) {
+ Addr = Section.Address + i->second;
+ } else {
+ // Create a new stub function.
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset);
+ RelocationEntry StubRE(RE.SectionID, StubTargetAddr - Section.Address,
+ MachO::GENERIC_RELOC_VANILLA, Value.Offset, false,
+ 2);
+ if (Value.SymbolName)
+ addRelocationForSymbol(StubRE, Value.SymbolName);
+ else
+ addRelocationForSection(StubRE, Value.SectionID);
+ Addr = Section.Address + Section.StubOffset;
+ Section.StubOffset += getMaxStubSize();
+ }
+ RelocationEntry TargetRE(RE.SectionID, RE.Offset, RE.RelType, 0,
+ RE.IsPCRel, RE.Size);
+ resolveRelocation(TargetRE, (uint64_t)Addr);
+ }
+
+ relocation_iterator
+ processHALFSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseTObj,
+ ObjSectionToIDMap &ObjSectionToID) {
+ const MachOObjectFile &MachO =
+ static_cast<const MachOObjectFile&>(BaseTObj);
+ MachO::any_relocation_info RE =
+ MachO.getRelocation(RelI->getRawDataRefImpl());
+
+
+ // For a half-diff relocation the length bits actually record whether this
+ // is a movw/movt, and whether this is arm or thumb.
+ // Bit 0 indicates movw (b0 == 0) or movt (b0 == 1).
+ // Bit 1 indicates arm (b1 == 0) or thumb (b1 == 1).
+ unsigned HalfDiffKindBits = MachO.getAnyRelocationLength(RE);
+ if (HalfDiffKindBits & 0x2)
+ llvm_unreachable("Thumb not yet supported.");
+
+ SectionEntry &Section = Sections[SectionID];
+ uint32_t RelocType = MachO.getAnyRelocationType(RE);
+ bool IsPCRel = MachO.getAnyRelocationPCRel(RE);
+ uint64_t Offset = RelI->getOffset();
+ uint8_t *LocalAddress = Section.Address + Offset;
+ int64_t Immediate = readBytesUnaligned(LocalAddress, 4); // Copy the whole instruction out.
+ Immediate = ((Immediate >> 4) & 0xf000) | (Immediate & 0xfff);
+
+ ++RelI;
+ MachO::any_relocation_info RE2 =
+ MachO.getRelocation(RelI->getRawDataRefImpl());
+ uint32_t AddrA = MachO.getScatteredRelocationValue(RE);
+ section_iterator SAI = getSectionByAddress(MachO, AddrA);
+ assert(SAI != MachO.section_end() && "Can't find section for address A");
+ uint64_t SectionABase = SAI->getAddress();
+ uint64_t SectionAOffset = AddrA - SectionABase;
+ SectionRef SectionA = *SAI;
+ bool IsCode = SectionA.isText();
+ uint32_t SectionAID =
+ findOrEmitSection(MachO, SectionA, IsCode, ObjSectionToID);
+
+ uint32_t AddrB = MachO.getScatteredRelocationValue(RE2);
+ section_iterator SBI = getSectionByAddress(MachO, AddrB);
+ assert(SBI != MachO.section_end() && "Can't find section for address B");
+ uint64_t SectionBBase = SBI->getAddress();
+ uint64_t SectionBOffset = AddrB - SectionBBase;
+ SectionRef SectionB = *SBI;
+ uint32_t SectionBID =
+ findOrEmitSection(MachO, SectionB, IsCode, ObjSectionToID);
+
+ uint32_t OtherHalf = MachO.getAnyRelocationAddress(RE2) & 0xffff;
+ unsigned Shift = (HalfDiffKindBits & 0x1) ? 16 : 0;
+ uint32_t FullImmVal = (Immediate << Shift) | (OtherHalf << (16 - Shift));
+ int64_t Addend = FullImmVal - (AddrA - AddrB);
+
+ // addend = Encoded - Expected
+ // = Encoded - (AddrA - AddrB)
+
+ DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA << ", AddrB: " << AddrB
+ << ", Addend: " << Addend << ", SectionA ID: " << SectionAID
+ << ", SectionAOffset: " << SectionAOffset
+ << ", SectionB ID: " << SectionBID
+ << ", SectionBOffset: " << SectionBOffset << "\n");
+ RelocationEntry R(SectionID, Offset, RelocType, Addend, SectionAID,
+ SectionAOffset, SectionBID, SectionBOffset, IsPCRel,
+ HalfDiffKindBits);
+
+ addRelocationForSection(R, SectionAID);
+ addRelocationForSection(R, SectionBID);
+
+ return ++RelI;
+ }
+
+};
+}
+
+#undef DEBUG_TYPE
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h
new file mode 100644
index 0000000..aceb304
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOI386.h
@@ -0,0 +1,260 @@
+//===---- RuntimeDyldMachOI386.h ---- MachO/I386 specific code. ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOI386_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOI386_H
+
+#include "../RuntimeDyldMachO.h"
+
+#define DEBUG_TYPE "dyld"
+
+namespace llvm {
+
+class RuntimeDyldMachOI386
+ : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOI386> {
+public:
+
+ typedef uint32_t TargetPtrT;
+
+ RuntimeDyldMachOI386(RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldMachOCRTPBase(MM, Resolver) {}
+
+ unsigned getMaxStubSize() override { return 0; }
+
+ unsigned getStubAlignment() override { return 1; }
+
+ relocation_iterator
+ processRelocationRef(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseObjT);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RelI->getRawDataRefImpl());
+ uint32_t RelType = Obj.getAnyRelocationType(RelInfo);
+
+ if (Obj.isRelocationScattered(RelInfo)) {
+ if (RelType == MachO::GENERIC_RELOC_SECTDIFF ||
+ RelType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)
+ return processSECTDIFFRelocation(SectionID, RelI, Obj,
+ ObjSectionToID);
+ else if (RelType == MachO::GENERIC_RELOC_VANILLA)
+ return processI386ScatteredVANILLA(SectionID, RelI, Obj,
+ ObjSectionToID);
+ llvm_unreachable("Unhandled scattered relocation.");
+ }
+
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = memcpyAddend(RE);
+ RelocationValueRef Value(
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
+
+ // Addends for external, PC-rel relocations on i386 point back to the zero
+ // offset. Calculate the final offset from the relocation target instead.
+ // This allows us to use the same logic for both external and internal
+ // relocations in resolveI386RelocationRef.
+ // bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
+ // if (IsExtern && RE.IsPCRel) {
+ // uint64_t RelocAddr = 0;
+ // RelI->getAddress(RelocAddr);
+ // Value.Addend += RelocAddr + 4;
+ // }
+ if (RE.IsPCRel)
+ makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
+
+ RE.Addend = Value.Offset;
+
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+
+ return ++RelI;
+ }
+
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
+ DEBUG(dumpRelocationToResolve(RE, Value));
+
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+
+ if (RE.IsPCRel) {
+ uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+ Value -= FinalAddress + 4; // see MachOX86_64::resolveRelocation.
+ }
+
+ switch (RE.RelType) {
+ default:
+ llvm_unreachable("Invalid relocation type!");
+ case MachO::GENERIC_RELOC_VANILLA:
+ writeBytesUnaligned(Value + RE.Addend, LocalAddress, 1 << RE.Size);
+ break;
+ case MachO::GENERIC_RELOC_SECTDIFF:
+ case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
+ uint64_t SectionABase = Sections[RE.Sections.SectionA].LoadAddress;
+ uint64_t SectionBBase = Sections[RE.Sections.SectionB].LoadAddress;
+ assert((Value == SectionABase || Value == SectionBBase) &&
+ "Unexpected SECTDIFF relocation value.");
+ Value = SectionABase - SectionBBase + RE.Addend;
+ writeBytesUnaligned(Value, LocalAddress, 1 << RE.Size);
+ break;
+ }
+ case MachO::GENERIC_RELOC_PB_LA_PTR:
+ Error("Relocation type not implemented yet!");
+ }
+ }
+
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
+ const SectionRef &Section) {
+ StringRef Name;
+ Section.getName(Name);
+
+ if (Name == "__jump_table")
+ populateJumpTable(cast<MachOObjectFile>(Obj), Section, SectionID);
+ else if (Name == "__pointers")
+ populateIndirectSymbolPointersSection(cast<MachOObjectFile>(Obj),
+ Section, SectionID);
+ }
+
+private:
+ relocation_iterator
+ processSECTDIFFRelocation(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID) {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile&>(BaseObjT);
+ MachO::any_relocation_info RE =
+ Obj.getRelocation(RelI->getRawDataRefImpl());
+
+ SectionEntry &Section = Sections[SectionID];
+ uint32_t RelocType = Obj.getAnyRelocationType(RE);
+ bool IsPCRel = Obj.getAnyRelocationPCRel(RE);
+ unsigned Size = Obj.getAnyRelocationLength(RE);
+ uint64_t Offset = RelI->getOffset();
+ uint8_t *LocalAddress = Section.Address + Offset;
+ unsigned NumBytes = 1 << Size;
+ uint64_t Addend = readBytesUnaligned(LocalAddress, NumBytes);
+
+ ++RelI;
+ MachO::any_relocation_info RE2 =
+ Obj.getRelocation(RelI->getRawDataRefImpl());
+
+ uint32_t AddrA = Obj.getScatteredRelocationValue(RE);
+ section_iterator SAI = getSectionByAddress(Obj, AddrA);
+ assert(SAI != Obj.section_end() && "Can't find section for address A");
+ uint64_t SectionABase = SAI->getAddress();
+ uint64_t SectionAOffset = AddrA - SectionABase;
+ SectionRef SectionA = *SAI;
+ bool IsCode = SectionA.isText();
+ uint32_t SectionAID =
+ findOrEmitSection(Obj, SectionA, IsCode, ObjSectionToID);
+
+ uint32_t AddrB = Obj.getScatteredRelocationValue(RE2);
+ section_iterator SBI = getSectionByAddress(Obj, AddrB);
+ assert(SBI != Obj.section_end() && "Can't find section for address B");
+ uint64_t SectionBBase = SBI->getAddress();
+ uint64_t SectionBOffset = AddrB - SectionBBase;
+ SectionRef SectionB = *SBI;
+ uint32_t SectionBID =
+ findOrEmitSection(Obj, SectionB, IsCode, ObjSectionToID);
+
+ // Compute the addend 'C' from the original expression 'A - B + C'.
+ Addend -= AddrA - AddrB;
+
+ DEBUG(dbgs() << "Found SECTDIFF: AddrA: " << AddrA << ", AddrB: " << AddrB
+ << ", Addend: " << Addend << ", SectionA ID: " << SectionAID
+ << ", SectionAOffset: " << SectionAOffset
+ << ", SectionB ID: " << SectionBID
+ << ", SectionBOffset: " << SectionBOffset << "\n");
+ RelocationEntry R(SectionID, Offset, RelocType, Addend, SectionAID,
+ SectionAOffset, SectionBID, SectionBOffset,
+ IsPCRel, Size);
+
+ addRelocationForSection(R, SectionAID);
+
+ return ++RelI;
+ }
+
+ relocation_iterator processI386ScatteredVANILLA(
+ unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseObjT,
+ RuntimeDyldMachO::ObjSectionToIDMap &ObjSectionToID) {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile&>(BaseObjT);
+ MachO::any_relocation_info RE =
+ Obj.getRelocation(RelI->getRawDataRefImpl());
+
+ SectionEntry &Section = Sections[SectionID];
+ uint32_t RelocType = Obj.getAnyRelocationType(RE);
+ bool IsPCRel = Obj.getAnyRelocationPCRel(RE);
+ unsigned Size = Obj.getAnyRelocationLength(RE);
+ uint64_t Offset = RelI->getOffset();
+ uint8_t *LocalAddress = Section.Address + Offset;
+ unsigned NumBytes = 1 << Size;
+ int64_t Addend = readBytesUnaligned(LocalAddress, NumBytes);
+
+ unsigned SymbolBaseAddr = Obj.getScatteredRelocationValue(RE);
+ section_iterator TargetSI = getSectionByAddress(Obj, SymbolBaseAddr);
+ assert(TargetSI != Obj.section_end() && "Can't find section for symbol");
+ uint64_t SectionBaseAddr = TargetSI->getAddress();
+ SectionRef TargetSection = *TargetSI;
+ bool IsCode = TargetSection.isText();
+ uint32_t TargetSectionID =
+ findOrEmitSection(Obj, TargetSection, IsCode, ObjSectionToID);
+
+ Addend -= SectionBaseAddr;
+ RelocationEntry R(SectionID, Offset, RelocType, Addend, IsPCRel, Size);
+
+ addRelocationForSection(R, TargetSectionID);
+
+ return ++RelI;
+ }
+
+ // Populate stubs in __jump_table section.
+ void populateJumpTable(const MachOObjectFile &Obj, const SectionRef &JTSection,
+ unsigned JTSectionID) {
+ assert(!Obj.is64Bit() &&
+ "__jump_table section not supported in 64-bit MachO.");
+
+ MachO::dysymtab_command DySymTabCmd = Obj.getDysymtabLoadCommand();
+ MachO::section Sec32 = Obj.getSection(JTSection.getRawDataRefImpl());
+ uint32_t JTSectionSize = Sec32.size;
+ unsigned FirstIndirectSymbol = Sec32.reserved1;
+ unsigned JTEntrySize = Sec32.reserved2;
+ unsigned NumJTEntries = JTSectionSize / JTEntrySize;
+ uint8_t *JTSectionAddr = getSectionAddress(JTSectionID);
+ unsigned JTEntryOffset = 0;
+
+ assert((JTSectionSize % JTEntrySize) == 0 &&
+ "Jump-table section does not contain a whole number of stubs?");
+
+ for (unsigned i = 0; i < NumJTEntries; ++i) {
+ unsigned SymbolIndex =
+ Obj.getIndirectSymbolTableEntry(DySymTabCmd, FirstIndirectSymbol + i);
+ symbol_iterator SI = Obj.getSymbolByIndex(SymbolIndex);
+ ErrorOr<StringRef> IndirectSymbolName = SI->getName();
+ if (std::error_code EC = IndirectSymbolName.getError())
+ report_fatal_error(EC.message());
+ uint8_t *JTEntryAddr = JTSectionAddr + JTEntryOffset;
+ createStubFunction(JTEntryAddr);
+ RelocationEntry RE(JTSectionID, JTEntryOffset + 1,
+ MachO::GENERIC_RELOC_VANILLA, 0, true, 2);
+ addRelocationForSymbol(RE, *IndirectSymbolName);
+ JTEntryOffset += JTEntrySize;
+ }
+ }
+
+};
+}
+
+#undef DEBUG_TYPE
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h
new file mode 100644
index 0000000..4b3b01b
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldMachOX86_64.h
@@ -0,0 +1,138 @@
+//===-- RuntimeDyldMachOX86_64.h ---- MachO/X86_64 specific code. -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOX86_64_H
+#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDMACHOX86_64_H
+
+#include "../RuntimeDyldMachO.h"
+
+#define DEBUG_TYPE "dyld"
+
+namespace llvm {
+
+class RuntimeDyldMachOX86_64
+ : public RuntimeDyldMachOCRTPBase<RuntimeDyldMachOX86_64> {
+public:
+
+ typedef uint64_t TargetPtrT;
+
+ RuntimeDyldMachOX86_64(RuntimeDyld::MemoryManager &MM,
+ RuntimeDyld::SymbolResolver &Resolver)
+ : RuntimeDyldMachOCRTPBase(MM, Resolver) {}
+
+ unsigned getMaxStubSize() override { return 8; }
+
+ unsigned getStubAlignment() override { return 1; }
+
+ relocation_iterator
+ processRelocationRef(unsigned SectionID, relocation_iterator RelI,
+ const ObjectFile &BaseObjT,
+ ObjSectionToIDMap &ObjSectionToID,
+ StubMap &Stubs) override {
+ const MachOObjectFile &Obj =
+ static_cast<const MachOObjectFile &>(BaseObjT);
+ MachO::any_relocation_info RelInfo =
+ Obj.getRelocation(RelI->getRawDataRefImpl());
+
+ assert(!Obj.isRelocationScattered(RelInfo) &&
+ "Scattered relocations not supported on X86_64");
+
+ RelocationEntry RE(getRelocationEntry(SectionID, Obj, RelI));
+ RE.Addend = memcpyAddend(RE);
+ RelocationValueRef Value(
+ getRelocationValueRef(Obj, RelI, RE, ObjSectionToID));
+
+ bool IsExtern = Obj.getPlainRelocationExternal(RelInfo);
+ if (!IsExtern && RE.IsPCRel)
+ makeValueAddendPCRel(Value, Obj, RelI, 1 << RE.Size);
+
+ if (RE.RelType == MachO::X86_64_RELOC_GOT ||
+ RE.RelType == MachO::X86_64_RELOC_GOT_LOAD)
+ processGOTRelocation(RE, Value, Stubs);
+ else {
+ RE.Addend = Value.Offset;
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+
+ return ++RelI;
+ }
+
+ void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
+ DEBUG(dumpRelocationToResolve(RE, Value));
+ const SectionEntry &Section = Sections[RE.SectionID];
+ uint8_t *LocalAddress = Section.Address + RE.Offset;
+
+ // If the relocation is PC-relative, the value to be encoded is the
+ // pointer difference.
+ if (RE.IsPCRel) {
+ // FIXME: It seems this value needs to be adjusted by 4 for an effective
+ // PC address. Is that expected? Only for branches, perhaps?
+ uint64_t FinalAddress = Section.LoadAddress + RE.Offset;
+ Value -= FinalAddress + 4;
+ }
+
+ switch (RE.RelType) {
+ default:
+ llvm_unreachable("Invalid relocation type!");
+ case MachO::X86_64_RELOC_SIGNED_1:
+ case MachO::X86_64_RELOC_SIGNED_2:
+ case MachO::X86_64_RELOC_SIGNED_4:
+ case MachO::X86_64_RELOC_SIGNED:
+ case MachO::X86_64_RELOC_UNSIGNED:
+ case MachO::X86_64_RELOC_BRANCH:
+ writeBytesUnaligned(Value + RE.Addend, LocalAddress, 1 << RE.Size);
+ break;
+ case MachO::X86_64_RELOC_GOT_LOAD:
+ case MachO::X86_64_RELOC_GOT:
+ case MachO::X86_64_RELOC_SUBTRACTOR:
+ case MachO::X86_64_RELOC_TLV:
+ Error("Relocation type not implemented yet!");
+ }
+ }
+
+ void finalizeSection(const ObjectFile &Obj, unsigned SectionID,
+ const SectionRef &Section) {}
+
+private:
+ void processGOTRelocation(const RelocationEntry &RE,
+ RelocationValueRef &Value, StubMap &Stubs) {
+ SectionEntry &Section = Sections[RE.SectionID];
+ assert(RE.IsPCRel);
+ assert(RE.Size == 2);
+ Value.Offset -= RE.Addend;
+ RuntimeDyldMachO::StubMap::const_iterator i = Stubs.find(Value);
+ uint8_t *Addr;
+ if (i != Stubs.end()) {
+ Addr = Section.Address + i->second;
+ } else {
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *GOTEntry = Section.Address + Section.StubOffset;
+ RelocationEntry GOTRE(RE.SectionID, Section.StubOffset,
+ MachO::X86_64_RELOC_UNSIGNED, Value.Offset, false,
+ 3);
+ if (Value.SymbolName)
+ addRelocationForSymbol(GOTRE, Value.SymbolName);
+ else
+ addRelocationForSection(GOTRE, Value.SectionID);
+ Section.StubOffset += 8;
+ Addr = GOTEntry;
+ }
+ RelocationEntry TargetRE(RE.SectionID, RE.Offset,
+ MachO::X86_64_RELOC_UNSIGNED, RE.Addend, true, 2);
+ resolveRelocation(TargetRE, (uint64_t)Addr);
+ }
+};
+}
+
+#undef DEBUG_TYPE
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/SectionMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/SectionMemoryManager.cpp
new file mode 100644
index 0000000..5986084
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/SectionMemoryManager.cpp
@@ -0,0 +1,178 @@
+//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the section-based memory manager used by the MCJIT
+// execution engine and RuntimeDyld
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/Support/MathExtras.h"
+
+namespace llvm {
+
+uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
+ unsigned Alignment,
+ unsigned SectionID,
+ StringRef SectionName,
+ bool IsReadOnly) {
+ if (IsReadOnly)
+ return allocateSection(RODataMem, Size, Alignment);
+ return allocateSection(RWDataMem, Size, Alignment);
+}
+
+uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size,
+ unsigned Alignment,
+ unsigned SectionID,
+ StringRef SectionName) {
+ return allocateSection(CodeMem, Size, Alignment);
+}
+
+uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup,
+ uintptr_t Size,
+ unsigned Alignment) {
+ if (!Alignment)
+ Alignment = 16;
+
+ assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
+
+ uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1);
+ uintptr_t Addr = 0;
+
+ // Look in the list of free memory regions and use a block there if one
+ // is available.
+ for (int i = 0, e = MemGroup.FreeMem.size(); i != e; ++i) {
+ sys::MemoryBlock &MB = MemGroup.FreeMem[i];
+ if (MB.size() >= RequiredSize) {
+ Addr = (uintptr_t)MB.base();
+ uintptr_t EndOfBlock = Addr + MB.size();
+ // Align the address.
+ Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
+ // Store cutted free memory block.
+ MemGroup.FreeMem[i] = sys::MemoryBlock((void*)(Addr + Size),
+ EndOfBlock - Addr - Size);
+ return (uint8_t*)Addr;
+ }
+ }
+
+ // No pre-allocated free block was large enough. Allocate a new memory region.
+ // Note that all sections get allocated as read-write. The permissions will
+ // be updated later based on memory group.
+ //
+ // FIXME: It would be useful to define a default allocation size (or add
+ // it as a constructor parameter) to minimize the number of allocations.
+ //
+ // FIXME: Initialize the Near member for each memory group to avoid
+ // interleaving.
+ std::error_code ec;
+ sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize,
+ &MemGroup.Near,
+ sys::Memory::MF_READ |
+ sys::Memory::MF_WRITE,
+ ec);
+ if (ec) {
+ // FIXME: Add error propagation to the interface.
+ return nullptr;
+ }
+
+ // Save this address as the basis for our next request
+ MemGroup.Near = MB;
+
+ MemGroup.AllocatedMem.push_back(MB);
+ Addr = (uintptr_t)MB.base();
+ uintptr_t EndOfBlock = Addr + MB.size();
+
+ // Align the address.
+ Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
+
+ // The allocateMappedMemory may allocate much more memory than we need. In
+ // this case, we store the unused memory as a free memory block.
+ unsigned FreeSize = EndOfBlock-Addr-Size;
+ if (FreeSize > 16)
+ MemGroup.FreeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize));
+
+ // Return aligned address
+ return (uint8_t*)Addr;
+}
+
+bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg)
+{
+ // FIXME: Should in-progress permissions be reverted if an error occurs?
+ std::error_code ec;
+
+ // Don't allow free memory blocks to be used after setting protection flags.
+ CodeMem.FreeMem.clear();
+
+ // Make code memory executable.
+ ec = applyMemoryGroupPermissions(CodeMem,
+ sys::Memory::MF_READ | sys::Memory::MF_EXEC);
+ if (ec) {
+ if (ErrMsg) {
+ *ErrMsg = ec.message();
+ }
+ return true;
+ }
+
+ // Don't allow free memory blocks to be used after setting protection flags.
+ RODataMem.FreeMem.clear();
+
+ // Make read-only data memory read-only.
+ ec = applyMemoryGroupPermissions(RODataMem,
+ sys::Memory::MF_READ | sys::Memory::MF_EXEC);
+ if (ec) {
+ if (ErrMsg) {
+ *ErrMsg = ec.message();
+ }
+ return true;
+ }
+
+ // Read-write data memory already has the correct permissions
+
+ // Some platforms with separate data cache and instruction cache require
+ // explicit cache flush, otherwise JIT code manipulations (like resolved
+ // relocations) will get to the data cache but not to the instruction cache.
+ invalidateInstructionCache();
+
+ return false;
+}
+
+std::error_code
+SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup,
+ unsigned Permissions) {
+
+ for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) {
+ std::error_code ec;
+ ec =
+ sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i], Permissions);
+ if (ec) {
+ return ec;
+ }
+ }
+
+ return std::error_code();
+}
+
+void SectionMemoryManager::invalidateInstructionCache() {
+ for (int i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::InvalidateInstructionCache(CodeMem.AllocatedMem[i].base(),
+ CodeMem.AllocatedMem[i].size());
+}
+
+SectionMemoryManager::~SectionMemoryManager() {
+ for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]);
+ for (unsigned i = 0, e = RWDataMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(RWDataMem.AllocatedMem[i]);
+ for (unsigned i = 0, e = RODataMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(RODataMem.AllocatedMem[i]);
+}
+
+} // namespace llvm
+
diff --git a/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp
new file mode 100644
index 0000000..57f6e08
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp
@@ -0,0 +1,104 @@
+//===-- TargetSelect.cpp - Target Chooser Code ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This just asks the TargetRegistry for the appropriate target to use, and
+// allows the user to specify a specific one on the commandline with -march=x,
+// -mcpu=y, and -mattr=a,-b,+c. Clients should initialize targets prior to
+// calling selectTarget().
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/SubtargetFeature.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+TargetMachine *EngineBuilder::selectTarget() {
+ Triple TT;
+
+ // MCJIT can generate code for remote targets, but the old JIT and Interpreter
+ // must use the host architecture.
+ if (WhichEngine != EngineKind::Interpreter && M)
+ TT.setTriple(M->getTargetTriple());
+
+ return selectTarget(TT, MArch, MCPU, MAttrs);
+}
+
+/// selectTarget - Pick a target either via -march or by guessing the native
+/// arch. Add any CPU features specified via -mcpu or -mattr.
+TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple,
+ StringRef MArch,
+ StringRef MCPU,
+ const SmallVectorImpl<std::string>& MAttrs) {
+ Triple TheTriple(TargetTriple);
+ if (TheTriple.getTriple().empty())
+ TheTriple.setTriple(sys::getProcessTriple());
+
+ // Adjust the triple to match what the user requested.
+ const Target *TheTarget = nullptr;
+ if (!MArch.empty()) {
+ auto I = std::find_if(
+ TargetRegistry::targets().begin(), TargetRegistry::targets().end(),
+ [&](const Target &T) { return MArch == T.getName(); });
+
+ if (I == TargetRegistry::targets().end()) {
+ if (ErrorStr)
+ *ErrorStr = "No available targets are compatible with this -march, "
+ "see -version for the available targets.\n";
+ return nullptr;
+ }
+
+ TheTarget = &*I;
+
+ // Adjust the triple to match (if known), otherwise stick with the
+ // requested/host triple.
+ Triple::ArchType Type = Triple::getArchTypeForLLVMName(MArch);
+ if (Type != Triple::UnknownArch)
+ TheTriple.setArch(Type);
+ } else {
+ std::string Error;
+ TheTarget = TargetRegistry::lookupTarget(TheTriple.getTriple(), Error);
+ if (!TheTarget) {
+ if (ErrorStr)
+ *ErrorStr = Error;
+ return nullptr;
+ }
+ }
+
+ // Package up features to be passed to target/subtarget
+ std::string FeaturesStr;
+ if (!MAttrs.empty()) {
+ SubtargetFeatures Features;
+ for (unsigned i = 0; i != MAttrs.size(); ++i)
+ Features.AddFeature(MAttrs[i]);
+ FeaturesStr = Features.getString();
+ }
+
+ // FIXME: non-iOS ARM FastISel is broken with MCJIT.
+ if (TheTriple.getArch() == Triple::arm &&
+ !TheTriple.isiOS() &&
+ OptLevel == CodeGenOpt::None) {
+ OptLevel = CodeGenOpt::Less;
+ }
+
+ // Allocate a target...
+ TargetMachine *Target = TheTarget->createTargetMachine(TheTriple.getTriple(),
+ MCPU, FeaturesStr,
+ Options,
+ RelocModel, CMModel,
+ OptLevel);
+ assert(Target && "Could not allocate target machine!");
+ return Target;
+}
OpenPOWER on IntegriCloud