summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/ExecutionEngine
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h67
-rw-r--r--contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp1308
-rw-r--r--contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp252
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp302
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h96
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h454
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h70
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c481
-rw-r--r--contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h259
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp1396
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp484
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp98
-rw-r--r--contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h248
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp848
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JIT.h226
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp596
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h77
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp1301
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp932
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp336
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h113
-rw-r--r--contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp226
-rw-r--r--contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp177
-rw-r--r--contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp264
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp214
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h43
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h78
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp537
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp851
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h97
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h344
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp311
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h71
-rw-r--r--contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp99
34 files changed, 13256 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h b/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h
new file mode 100644
index 0000000..314db8b
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/EventListenerCommon.h
@@ -0,0 +1,67 @@
+//===-- JIT.h - Abstract Execution Engine Interface -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Common functionality for JITEventListener implementations
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef EVENT_LISTENER_COMMON_H
+#define EVENT_LISTENER_COMMON_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/ValueHandle.h"
+
+namespace llvm {
+
+namespace jitprofiling {
+
+class FilenameCache {
+ // Holds the filename of each Scope, so that we can pass a null-terminated
+ // string into oprofile. Use an AssertingVH rather than a ValueMap because we
+ // shouldn't be modifying any MDNodes while this map is alive.
+ DenseMap<AssertingVH<MDNode>, std::string> Filenames;
+ DenseMap<AssertingVH<MDNode>, std::string> Paths;
+
+ public:
+ const char *getFilename(MDNode *Scope) {
+ std::string &Filename = Filenames[Scope];
+ if (Filename.empty()) {
+ DIScope DIScope(Scope);
+ Filename = DIScope.getFilename();
+ }
+ return Filename.c_str();
+ }
+
+ const char *getFullPath(MDNode *Scope) {
+ std::string &P = Paths[Scope];
+ if (P.empty()) {
+ DIScope DIScope(Scope);
+ StringRef DirName = DIScope.getDirectory();
+ StringRef FileName = DIScope.getFilename();
+ SmallString<256> FullPath;
+ if (DirName != "." && DirName != "") {
+ FullPath = DirName;
+ }
+ if (FileName != "") {
+ sys::path::append(FullPath, FileName);
+ }
+ P = FullPath.str();
+ }
+ return P.c_str();
+ }
+};
+
+} // namespace jitprofiling
+
+} // namespace llvm
+
+#endif //EVENT_LISTENER_COMMON_H
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
new file mode 100644
index 0000000..906a3a3
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
@@ -0,0 +1,1308 @@
+//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the common interface used by the various execution engine
+// subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cmath>
+#include <cstring>
+using namespace llvm;
+
+STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
+STATISTIC(NumGlobals , "Number of global vars initialized");
+
+ExecutionEngine *(*ExecutionEngine::JITCtor)(
+ Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM) = 0;
+ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
+ Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM) = 0;
+ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
+ std::string *ErrorStr) = 0;
+
+ExecutionEngine::ExecutionEngine(Module *M)
+ : EEState(*this),
+ LazyFunctionCreator(0),
+ ExceptionTableRegister(0),
+ ExceptionTableDeregister(0) {
+ CompilingLazily = false;
+ GVCompilationDisabled = false;
+ SymbolSearchingDisabled = false;
+ Modules.push_back(M);
+ assert(M && "Module is null?");
+}
+
+ExecutionEngine::~ExecutionEngine() {
+ clearAllGlobalMappings();
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ delete Modules[i];
+}
+
+void ExecutionEngine::DeregisterAllTables() {
+ if (ExceptionTableDeregister) {
+ DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
+ DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
+ for (; it != ite; ++it)
+ ExceptionTableDeregister(it->second);
+ AllExceptionTables.clear();
+ }
+}
+
+namespace {
+/// \brief Helper class which uses a value handler to automatically deletes the
+/// memory block when the GlobalVariable is destroyed.
+class GVMemoryBlock : public CallbackVH {
+ GVMemoryBlock(const GlobalVariable *GV)
+ : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
+
+public:
+ /// \brief Returns the address the GlobalVariable should be written into. The
+ /// GVMemoryBlock object prefixes that.
+ static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
+ Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
+ void *RawMemory = ::operator new(
+ DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
+ TD.getPreferredAlignment(GV))
+ + GVSize);
+ new(RawMemory) GVMemoryBlock(GV);
+ return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
+ }
+
+ virtual void deleted() {
+ // We allocated with operator new and with some extra memory hanging off the
+ // end, so don't just delete this. I'm not sure if this is actually
+ // required.
+ this->~GVMemoryBlock();
+ ::operator delete(this);
+ }
+};
+} // anonymous namespace
+
+char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
+ return GVMemoryBlock::Create(GV, *getDataLayout());
+}
+
+bool ExecutionEngine::removeModule(Module *M) {
+ for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
+ E = Modules.end(); I != E; ++I) {
+ Module *Found = *I;
+ if (Found == M) {
+ Modules.erase(I);
+ clearGlobalMappingsFromModule(M);
+ return true;
+ }
+ }
+ return false;
+}
+
+Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
+ if (Function *F = Modules[i]->getFunction(FnName))
+ return F;
+ }
+ return 0;
+}
+
+
+void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
+ const GlobalValue *ToUnmap) {
+ GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
+ void *OldVal;
+
+ // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
+ // GlobalAddressMap.
+ if (I == GlobalAddressMap.end())
+ OldVal = 0;
+ else {
+ OldVal = I->second;
+ GlobalAddressMap.erase(I);
+ }
+
+ GlobalAddressReverseMap.erase(OldVal);
+ return OldVal;
+}
+
+void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
+ << "\' to [" << Addr << "]\n";);
+ void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
+ assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too.
+ if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+ AssertingVH<const GlobalValue> &V =
+ EEState.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+}
+
+void ExecutionEngine::clearAllGlobalMappings() {
+ MutexGuard locked(lock);
+
+ EEState.getGlobalAddressMap(locked).clear();
+ EEState.getGlobalAddressReverseMap(locked).clear();
+}
+
+void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
+ MutexGuard locked(lock);
+
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
+ EEState.RemoveMapping(locked, FI);
+ for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
+ GI != GE; ++GI)
+ EEState.RemoveMapping(locked, GI);
+}
+
+void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
+ MutexGuard locked(lock);
+
+ ExecutionEngineState::GlobalAddressMapTy &Map =
+ EEState.getGlobalAddressMap(locked);
+
+ // Deleting from the mapping?
+ if (Addr == 0)
+ return EEState.RemoveMapping(locked, GV);
+
+ void *&CurVal = Map[GV];
+ void *OldVal = CurVal;
+
+ if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
+ EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
+ CurVal = Addr;
+
+ // If we are using the reverse mapping, add it too.
+ if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
+ AssertingVH<const GlobalValue> &V =
+ EEState.getGlobalAddressReverseMap(locked)[Addr];
+ assert((V == 0 || GV == 0) && "GlobalMapping already established!");
+ V = GV;
+ }
+ return OldVal;
+}
+
+void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
+ MutexGuard locked(lock);
+
+ ExecutionEngineState::GlobalAddressMapTy::iterator I =
+ EEState.getGlobalAddressMap(locked).find(GV);
+ return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
+}
+
+const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
+ MutexGuard locked(lock);
+
+ // If we haven't computed the reverse mapping yet, do so first.
+ if (EEState.getGlobalAddressReverseMap(locked).empty()) {
+ for (ExecutionEngineState::GlobalAddressMapTy::iterator
+ I = EEState.getGlobalAddressMap(locked).begin(),
+ E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
+ EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
+ I->second, I->first));
+ }
+
+ std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
+ EEState.getGlobalAddressReverseMap(locked).find(Addr);
+ return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
+}
+
+namespace {
+class ArgvArray {
+ char *Array;
+ std::vector<char*> Values;
+public:
+ ArgvArray() : Array(NULL) {}
+ ~ArgvArray() { clear(); }
+ void clear() {
+ delete[] Array;
+ Array = NULL;
+ for (size_t I = 0, E = Values.size(); I != E; ++I) {
+ delete[] Values[I];
+ }
+ Values.clear();
+ }
+ /// Turn a vector of strings into a nice argv style array of pointers to null
+ /// terminated strings.
+ void *reset(LLVMContext &C, ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv);
+};
+} // anonymous namespace
+void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
+ const std::vector<std::string> &InputArgv) {
+ clear(); // Free the old contents.
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
+ Array = new char[(InputArgv.size()+1)*PtrSize];
+
+ DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
+ Type *SBytePtr = Type::getInt8PtrTy(C);
+
+ for (unsigned i = 0; i != InputArgv.size(); ++i) {
+ unsigned Size = InputArgv[i].size()+1;
+ char *Dest = new char[Size];
+ Values.push_back(Dest);
+ DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
+
+ std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
+ Dest[Size-1] = 0;
+
+ // Endian safe: Array[i] = (PointerTy)Dest;
+ EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
+ SBytePtr);
+ }
+
+ // Null terminate it
+ EE->StoreValueToMemory(PTOGV(0),
+ (GenericValue*)(Array+InputArgv.size()*PtrSize),
+ SBytePtr);
+ return Array;
+}
+
+void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
+ bool isDtors) {
+ const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
+ GlobalVariable *GV = module->getNamedGlobal(Name);
+
+ // If this global has internal linkage, or if it has a use, then it must be
+ // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
+ // this is the case, don't execute any of the global ctors, __main will do
+ // it.
+ if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
+
+ // Should be an array of '{ i32, void ()* }' structs. The first value is
+ // the init priority, which we ignore.
+ ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (InitList == 0)
+ return;
+ for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
+ ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
+ if (CS == 0) continue;
+
+ Constant *FP = CS->getOperand(1);
+ if (FP->isNullValue())
+ continue; // Found a sentinal value, ignore.
+
+ // Strip off constant expression casts.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
+ if (CE->isCast())
+ FP = CE->getOperand(0);
+
+ // Execute the ctor/dtor function!
+ if (Function *F = dyn_cast<Function>(FP))
+ runFunction(F, std::vector<GenericValue>());
+
+ // FIXME: It is marginally lame that we just do nothing here if we see an
+ // entry we don't recognize. It might not be unreasonable for the verifier
+ // to not even allow this and just assert here.
+ }
+}
+
+void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
+ // Execute global ctors/dtors for each module in the program.
+ for (unsigned i = 0, e = Modules.size(); i != e; ++i)
+ runStaticConstructorsDestructors(Modules[i], isDtors);
+}
+
+#ifndef NDEBUG
+/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
+static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
+ unsigned PtrSize = EE->getDataLayout()->getPointerSize();
+ for (unsigned i = 0; i < PtrSize; ++i)
+ if (*(i + (uint8_t*)Loc))
+ return false;
+ return true;
+}
+#endif
+
+int ExecutionEngine::runFunctionAsMain(Function *Fn,
+ const std::vector<std::string> &argv,
+ const char * const * envp) {
+ std::vector<GenericValue> GVArgs;
+ GenericValue GVArgc;
+ GVArgc.IntVal = APInt(32, argv.size());
+
+ // Check main() type
+ unsigned NumArgs = Fn->getFunctionType()->getNumParams();
+ FunctionType *FTy = Fn->getFunctionType();
+ Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
+
+ // Check the argument types.
+ if (NumArgs > 3)
+ report_fatal_error("Invalid number of arguments of main() supplied");
+ if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
+ report_fatal_error("Invalid type for third argument of main() supplied");
+ if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
+ report_fatal_error("Invalid type for second argument of main() supplied");
+ if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
+ report_fatal_error("Invalid type for first argument of main() supplied");
+ if (!FTy->getReturnType()->isIntegerTy() &&
+ !FTy->getReturnType()->isVoidTy())
+ report_fatal_error("Invalid return type of main() supplied");
+
+ ArgvArray CArgv;
+ ArgvArray CEnv;
+ if (NumArgs) {
+ GVArgs.push_back(GVArgc); // Arg #0 = argc.
+ if (NumArgs > 1) {
+ // Arg #1 = argv.
+ GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
+ assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
+ "argv[0] was null after CreateArgv");
+ if (NumArgs > 2) {
+ std::vector<std::string> EnvVars;
+ for (unsigned i = 0; envp[i]; ++i)
+ EnvVars.push_back(envp[i]);
+ // Arg #2 = envp.
+ GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
+ }
+ }
+ }
+
+ return runFunction(Fn, GVArgs).IntVal.getZExtValue();
+}
+
+ExecutionEngine *ExecutionEngine::create(Module *M,
+ bool ForceInterpreter,
+ std::string *ErrorStr,
+ CodeGenOpt::Level OptLevel,
+ bool GVsWithCode) {
+ EngineBuilder EB = EngineBuilder(M)
+ .setEngineKind(ForceInterpreter
+ ? EngineKind::Interpreter
+ : EngineKind::JIT)
+ .setErrorStr(ErrorStr)
+ .setOptLevel(OptLevel)
+ .setAllocateGVsWithCode(GVsWithCode);
+
+ return EB.create();
+}
+
+/// createJIT - This is the factory method for creating a JIT for the current
+/// machine, it does not fall back to the interpreter. This takes ownership
+/// of the module.
+ExecutionEngine *ExecutionEngine::createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ CodeGenOpt::Level OL,
+ bool GVsWithCode,
+ Reloc::Model RM,
+ CodeModel::Model CMM) {
+ if (ExecutionEngine::JITCtor == 0) {
+ if (ErrorStr)
+ *ErrorStr = "JIT has not been linked in.";
+ return 0;
+ }
+
+ // Use the defaults for extra parameters. Users can use EngineBuilder to
+ // set them.
+ EngineBuilder EB(M);
+ EB.setEngineKind(EngineKind::JIT);
+ EB.setErrorStr(ErrorStr);
+ EB.setRelocationModel(RM);
+ EB.setCodeModel(CMM);
+ EB.setAllocateGVsWithCode(GVsWithCode);
+ EB.setOptLevel(OL);
+ EB.setJITMemoryManager(JMM);
+
+ // TODO: permit custom TargetOptions here
+ TargetMachine *TM = EB.selectTarget();
+ if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
+
+ return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
+}
+
+ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
+ OwningPtr<TargetMachine> TheTM(TM); // Take ownership.
+
+ // Make sure we can resolve symbols in the program as well. The zero arg
+ // to the function tells DynamicLibrary to load the program, not a library.
+ if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
+ return 0;
+
+ // If the user specified a memory manager but didn't specify which engine to
+ // create, we assume they only want the JIT, and we fail if they only want
+ // the interpreter.
+ if (JMM) {
+ if (WhichEngine & EngineKind::JIT)
+ WhichEngine = EngineKind::JIT;
+ else {
+ if (ErrorStr)
+ *ErrorStr = "Cannot create an interpreter with a memory manager.";
+ return 0;
+ }
+ }
+
+ // Unless the interpreter was explicitly selected or the JIT is not linked,
+ // try making a JIT.
+ if ((WhichEngine & EngineKind::JIT) && TheTM) {
+ Triple TT(M->getTargetTriple());
+ if (!TM->getTarget().hasJIT()) {
+ errs() << "WARNING: This target JIT is not designed for the host"
+ << " you are running. If bad things happen, please choose"
+ << " a different -march switch.\n";
+ }
+
+ if (UseMCJIT && ExecutionEngine::MCJITCtor) {
+ ExecutionEngine *EE =
+ ExecutionEngine::MCJITCtor(M, ErrorStr, JMM,
+ AllocateGVsWithCode, TheTM.take());
+ if (EE) return EE;
+ } else if (ExecutionEngine::JITCtor) {
+ ExecutionEngine *EE =
+ ExecutionEngine::JITCtor(M, ErrorStr, JMM,
+ AllocateGVsWithCode, TheTM.take());
+ if (EE) return EE;
+ }
+ }
+
+ // If we can't make a JIT and we didn't request one specifically, try making
+ // an interpreter instead.
+ if (WhichEngine & EngineKind::Interpreter) {
+ if (ExecutionEngine::InterpCtor)
+ return ExecutionEngine::InterpCtor(M, ErrorStr);
+ if (ErrorStr)
+ *ErrorStr = "Interpreter has not been linked in.";
+ return 0;
+ }
+
+ if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 &&
+ ExecutionEngine::MCJITCtor == 0) {
+ if (ErrorStr)
+ *ErrorStr = "JIT has not been linked in.";
+ }
+
+ return 0;
+}
+
+void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
+ if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
+ return getPointerToFunction(F);
+
+ MutexGuard locked(lock);
+ if (void *P = EEState.getGlobalAddressMap(locked)[GV])
+ return P;
+
+ // Global variable might have been added since interpreter started.
+ if (GlobalVariable *GVar =
+ const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
+ EmitGlobalVariable(GVar);
+ else
+ llvm_unreachable("Global hasn't had an address allocated yet!");
+
+ return EEState.getGlobalAddressMap(locked)[GV];
+}
+
+/// \brief Converts a Constant* into a GenericValue, including handling of
+/// ConstantExpr values.
+GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
+ // If its undefined, return the garbage.
+ if (isa<UndefValue>(C)) {
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ default:
+ break;
+ case Type::IntegerTyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ // Although the value is undefined, we still have to construct an APInt
+ // with the correct bit width.
+ Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
+ break;
+ case Type::VectorTyID:
+ // if the whole vector is 'undef' just reserve memory for the value.
+ const VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ const Type *ElemTy = VTy->getElementType();
+ unsigned int elemNum = VTy->getNumElements();
+ Result.AggregateVal.resize(elemNum);
+ if (ElemTy->isIntegerTy())
+ for (unsigned int i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal =
+ APInt(ElemTy->getPrimitiveSizeInBits(), 0);
+ break;
+ }
+ return Result;
+ }
+
+ // Otherwise, if the value is a ConstantExpr...
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ Constant *Op0 = CE->getOperand(0);
+ switch (CE->getOpcode()) {
+ case Instruction::GetElementPtr: {
+ // Compute the index
+ GenericValue Result = getConstantValue(Op0);
+ APInt Offset(TD->getPointerSizeInBits(), 0);
+ cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset);
+
+ char* tmp = (char*) Result.PointerVal;
+ Result = PTOGV(tmp + Offset.getSExtValue());
+ return Result;
+ }
+ case Instruction::Trunc: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.trunc(BitWidth);
+ return GV;
+ }
+ case Instruction::ZExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.zext(BitWidth);
+ return GV;
+ }
+ case Instruction::SExt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ GV.IntVal = GV.IntVal.sext(BitWidth);
+ return GV;
+ }
+ case Instruction::FPTrunc: {
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.FloatVal = float(GV.DoubleVal);
+ return GV;
+ }
+ case Instruction::FPExt:{
+ // FIXME long double
+ GenericValue GV = getConstantValue(Op0);
+ GV.DoubleVal = double(GV.FloatVal);
+ return GV;
+ }
+ case Instruction::UIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType()->isFloatTy())
+ GV.FloatVal = float(GV.IntVal.roundToDouble());
+ else if (CE->getType()->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.roundToDouble();
+ else if (CE->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ (void)apf.convertFromAPInt(GV.IntVal,
+ false,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::SIToFP: {
+ GenericValue GV = getConstantValue(Op0);
+ if (CE->getType()->isFloatTy())
+ GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
+ else if (CE->getType()->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.signedRoundToDouble();
+ else if (CE->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
+ (void)apf.convertFromAPInt(GV.IntVal,
+ true,
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apf.bitcastToAPInt();
+ }
+ return GV;
+ }
+ case Instruction::FPToUI: // double->APInt conversion handles sign
+ case Instruction::FPToSI: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
+ if (Op0->getType()->isFloatTy())
+ GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
+ else if (Op0->getType()->isDoubleTy())
+ GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
+ else if (Op0->getType()->isX86_FP80Ty()) {
+ APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
+ uint64_t v;
+ bool ignored;
+ (void)apf.convertToInteger(&v, BitWidth,
+ CE->getOpcode()==Instruction::FPToSI,
+ APFloat::rmTowardZero, &ignored);
+ GV.IntVal = v; // endian?
+ }
+ return GV;
+ }
+ case Instruction::PtrToInt: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType());
+ assert(PtrWidth <= 64 && "Bad pointer width");
+ GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
+ uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType());
+ GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
+ return GV;
+ }
+ case Instruction::IntToPtr: {
+ GenericValue GV = getConstantValue(Op0);
+ uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType());
+ GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
+ assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
+ GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
+ return GV;
+ }
+ case Instruction::BitCast: {
+ GenericValue GV = getConstantValue(Op0);
+ Type* DestTy = CE->getType();
+ switch (Op0->getType()->getTypeID()) {
+ default: llvm_unreachable("Invalid bitcast operand");
+ case Type::IntegerTyID:
+ assert(DestTy->isFloatingPointTy() && "invalid bitcast");
+ if (DestTy->isFloatTy())
+ GV.FloatVal = GV.IntVal.bitsToFloat();
+ else if (DestTy->isDoubleTy())
+ GV.DoubleVal = GV.IntVal.bitsToDouble();
+ break;
+ case Type::FloatTyID:
+ assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
+ GV.IntVal = APInt::floatToBits(GV.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
+ GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
+ break;
+ case Type::PointerTyID:
+ assert(DestTy->isPointerTy() && "Invalid bitcast");
+ break; // getConstantValue(Op0) above already converted it
+ }
+ return GV;
+ }
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ GenericValue LHS = getConstantValue(Op0);
+ GenericValue RHS = getConstantValue(CE->getOperand(1));
+ GenericValue GV;
+ switch (CE->getOperand(0)->getType()->getTypeID()) {
+ default: llvm_unreachable("Bad add type!");
+ case Type::IntegerTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid integer opcode");
+ case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
+ case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
+ case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
+ case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
+ case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
+ case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
+ case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
+ case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
+ case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
+ case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
+ }
+ break;
+ case Type::FloatTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid float opcode");
+ case Instruction::FAdd:
+ GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
+ case Instruction::FSub:
+ GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
+ case Instruction::FMul:
+ GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
+ case Instruction::FDiv:
+ GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
+ case Instruction::FRem:
+ GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
+ }
+ break;
+ case Type::DoubleTyID:
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid double opcode");
+ case Instruction::FAdd:
+ GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
+ case Instruction::FSub:
+ GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
+ case Instruction::FMul:
+ GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
+ case Instruction::FDiv:
+ GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
+ case Instruction::FRem:
+ GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
+ }
+ break;
+ case Type::X86_FP80TyID:
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID: {
+ const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
+ APFloat apfLHS = APFloat(Sem, LHS.IntVal);
+ switch (CE->getOpcode()) {
+ default: llvm_unreachable("Invalid long double opcode");
+ case Instruction::FAdd:
+ apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FSub:
+ apfLHS.subtract(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FMul:
+ apfLHS.multiply(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FDiv:
+ apfLHS.divide(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ case Instruction::FRem:
+ apfLHS.mod(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
+ GV.IntVal = apfLHS.bitcastToAPInt();
+ break;
+ }
+ }
+ break;
+ }
+ return GV;
+ }
+ default:
+ break;
+ }
+
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ConstantExpr not handled: " << *CE;
+ report_fatal_error(OS.str());
+ }
+
+ // Otherwise, we have a simple constant.
+ GenericValue Result;
+ switch (C->getType()->getTypeID()) {
+ case Type::FloatTyID:
+ Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
+ break;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
+ break;
+ case Type::IntegerTyID:
+ Result.IntVal = cast<ConstantInt>(C)->getValue();
+ break;
+ case Type::PointerTyID:
+ if (isa<ConstantPointerNull>(C))
+ Result.PointerVal = 0;
+ else if (const Function *F = dyn_cast<Function>(C))
+ Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
+ else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
+ Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
+ else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
+ Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
+ BA->getBasicBlock())));
+ else
+ llvm_unreachable("Unknown constant pointer type!");
+ break;
+ case Type::VectorTyID: {
+ unsigned elemNum;
+ Type* ElemTy;
+ const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
+ const ConstantVector *CV = dyn_cast<ConstantVector>(C);
+ const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
+
+ if (CDV) {
+ elemNum = CDV->getNumElements();
+ ElemTy = CDV->getElementType();
+ } else if (CV || CAZ) {
+ VectorType* VTy = dyn_cast<VectorType>(C->getType());
+ elemNum = VTy->getNumElements();
+ ElemTy = VTy->getElementType();
+ } else {
+ llvm_unreachable("Unknown constant vector type!");
+ }
+
+ Result.AggregateVal.resize(elemNum);
+ // Check if vector holds floats.
+ if(ElemTy->isFloatTy()) {
+ if (CAZ) {
+ GenericValue floatZero;
+ floatZero.FloatVal = 0.f;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ floatZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToFloat();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
+
+ break;
+ }
+ // Check if vector holds doubles.
+ if (ElemTy->isDoubleTy()) {
+ if (CAZ) {
+ GenericValue doubleZero;
+ doubleZero.DoubleVal = 0.0;
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ doubleZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
+ CV->getOperand(i))->getValueAPF().convertToDouble();
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
+
+ break;
+ }
+ // Check if vector holds integers.
+ if (ElemTy->isIntegerTy()) {
+ if (CAZ) {
+ GenericValue intZero;
+ intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
+ std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
+ intZero);
+ break;
+ }
+ if(CV) {
+ for (unsigned i = 0; i < elemNum; ++i)
+ if (!isa<UndefValue>(CV->getOperand(i)))
+ Result.AggregateVal[i].IntVal = cast<ConstantInt>(
+ CV->getOperand(i))->getValue();
+ else {
+ Result.AggregateVal[i].IntVal =
+ APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
+ }
+ break;
+ }
+ if(CDV)
+ for (unsigned i = 0; i < elemNum; ++i)
+ Result.AggregateVal[i].IntVal = APInt(
+ CDV->getElementType()->getPrimitiveSizeInBits(),
+ CDV->getElementAsInteger(i));
+
+ break;
+ }
+ llvm_unreachable("Unknown constant pointer type!");
+ }
+ break;
+
+ default:
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ERROR: Constant unimplemented for type: " << *C->getType();
+ report_fatal_error(OS.str());
+ }
+
+ return Result;
+}
+
+/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
+/// with the integer held in IntVal.
+static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
+ unsigned StoreBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
+ const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
+
+ if (sys::isLittleEndianHost()) {
+ // Little-endian host - the source is ordered from LSB to MSB. Order the
+ // destination from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, StoreBytes);
+ } else {
+ // Big-endian host - the source is an array of 64 bit words ordered from
+ // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
+ // from MSB to LSB: Reverse the word order, but not the bytes in a word.
+ while (StoreBytes > sizeof(uint64_t)) {
+ StoreBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
+ Src += sizeof(uint64_t);
+ }
+
+ memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
+ }
+}
+
+void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
+ GenericValue *Ptr, Type *Ty) {
+ const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
+
+ switch (Ty->getTypeID()) {
+ default:
+ dbgs() << "Cannot store value of type " << *Ty << "!\n";
+ break;
+ case Type::IntegerTyID:
+ StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
+ break;
+ case Type::FloatTyID:
+ *((float*)Ptr) = Val.FloatVal;
+ break;
+ case Type::DoubleTyID:
+ *((double*)Ptr) = Val.DoubleVal;
+ break;
+ case Type::X86_FP80TyID:
+ memcpy(Ptr, Val.IntVal.getRawData(), 10);
+ break;
+ case Type::PointerTyID:
+ // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
+ if (StoreBytes != sizeof(PointerTy))
+ memset(&(Ptr->PointerVal), 0, StoreBytes);
+
+ *((PointerTy*)Ptr) = Val.PointerVal;
+ break;
+ case Type::VectorTyID:
+ for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
+ if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
+ *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
+ if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
+ *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
+ if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
+ unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
+ StoreIntToMemory(Val.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
+ }
+ }
+ break;
+ }
+
+ if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
+ // Host and target are different endian - reverse the stored bytes.
+ std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
+}
+
+/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
+/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
+static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
+ assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
+ uint8_t *Dst = reinterpret_cast<uint8_t *>(
+ const_cast<uint64_t *>(IntVal.getRawData()));
+
+ if (sys::isLittleEndianHost())
+ // Little-endian host - the destination must be ordered from LSB to MSB.
+ // The source is ordered from LSB to MSB: Do a straight copy.
+ memcpy(Dst, Src, LoadBytes);
+ else {
+ // Big-endian - the destination is an array of 64 bit words ordered from
+ // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
+ // ordered from MSB to LSB: Reverse the word order, but not the bytes in
+ // a word.
+ while (LoadBytes > sizeof(uint64_t)) {
+ LoadBytes -= sizeof(uint64_t);
+ // May not be aligned so use memcpy.
+ memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
+ Dst += sizeof(uint64_t);
+ }
+
+ memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
+ }
+}
+
+/// FIXME: document
+///
+void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
+ GenericValue *Ptr,
+ Type *Ty) {
+ const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
+
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ // An APInt with all words initially zero.
+ Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
+ LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
+ break;
+ case Type::FloatTyID:
+ Result.FloatVal = *((float*)Ptr);
+ break;
+ case Type::DoubleTyID:
+ Result.DoubleVal = *((double*)Ptr);
+ break;
+ case Type::PointerTyID:
+ Result.PointerVal = *((PointerTy*)Ptr);
+ break;
+ case Type::X86_FP80TyID: {
+ // This is endian dependent, but it will only work on x86 anyway.
+ // FIXME: Will not trap if loading a signaling NaN.
+ uint64_t y[2];
+ memcpy(y, Ptr, 10);
+ Result.IntVal = APInt(80, y);
+ break;
+ }
+ case Type::VectorTyID: {
+ const VectorType *VT = cast<VectorType>(Ty);
+ const Type *ElemT = VT->getElementType();
+ const unsigned numElems = VT->getNumElements();
+ if (ElemT->isFloatTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
+ }
+ if (ElemT->isDoubleTy()) {
+ Result.AggregateVal.resize(numElems);
+ for (unsigned i = 0; i < numElems; ++i)
+ Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
+ }
+ if (ElemT->isIntegerTy()) {
+ GenericValue intZero;
+ const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
+ intZero.IntVal = APInt(elemBitWidth, 0);
+ Result.AggregateVal.resize(numElems, intZero);
+ for (unsigned i = 0; i < numElems; ++i)
+ LoadIntFromMemory(Result.AggregateVal[i].IntVal,
+ (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
+ }
+ break;
+ }
+ default:
+ SmallString<256> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "Cannot load value of type " << *Ty << "!";
+ report_fatal_error(OS.str());
+ }
+}
+
+void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
+ DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
+ DEBUG(Init->dump());
+ if (isa<UndefValue>(Init))
+ return;
+
+ if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
+ unsigned ElementSize =
+ getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
+ for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
+ InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ if (isa<ConstantAggregateZero>(Init)) {
+ memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
+ return;
+ }
+
+ if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
+ unsigned ElementSize =
+ getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
+ for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
+ return;
+ }
+
+ if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
+ const StructLayout *SL =
+ getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
+ for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
+ InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
+ return;
+ }
+
+ if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(Init)) {
+ // CDS is already laid out in host memory order.
+ StringRef Data = CDS->getRawDataValues();
+ memcpy(Addr, Data.data(), Data.size());
+ return;
+ }
+
+ if (Init->getType()->isFirstClassType()) {
+ GenericValue Val = getConstantValue(Init);
+ StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
+ return;
+ }
+
+ DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
+ llvm_unreachable("Unknown constant type to initialize memory with!");
+}
+
+/// EmitGlobals - Emit all of the global variables to memory, storing their
+/// addresses into GlobalAddress. This must make sure to copy the contents of
+/// their initializers into the memory.
+void ExecutionEngine::emitGlobals() {
+ // Loop over all of the global variables in the program, allocating the memory
+ // to hold them. If there is more than one module, do a prepass over globals
+ // to figure out how the different modules should link together.
+ std::map<std::pair<std::string, Type*>,
+ const GlobalValue*> LinkedGlobalsMap;
+
+ if (Modules.size() != 1) {
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m];
+ for (Module::const_global_iterator I = M.global_begin(),
+ E = M.global_end(); I != E; ++I) {
+ const GlobalValue *GV = I;
+ if (GV->hasLocalLinkage() || GV->isDeclaration() ||
+ GV->hasAppendingLinkage() || !GV->hasName())
+ continue;// Ignore external globals and globals with internal linkage.
+
+ const GlobalValue *&GVEntry =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+
+ // If this is the first time we've seen this global, it is the canonical
+ // version.
+ if (!GVEntry) {
+ GVEntry = GV;
+ continue;
+ }
+
+ // If the existing global is strong, never replace it.
+ if (GVEntry->hasExternalLinkage() ||
+ GVEntry->hasDLLImportLinkage() ||
+ GVEntry->hasDLLExportLinkage())
+ continue;
+
+ // Otherwise, we know it's linkonce/weak, replace it if this is a strong
+ // symbol. FIXME is this right for common?
+ if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
+ GVEntry = GV;
+ }
+ }
+ }
+
+ std::vector<const GlobalValue*> NonCanonicalGlobals;
+ for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
+ Module &M = *Modules[m];
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ // In the multi-module case, see what this global maps to.
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
+ // If something else is the canonical global, ignore this one.
+ if (GVEntry != &*I) {
+ NonCanonicalGlobals.push_back(I);
+ continue;
+ }
+ }
+ }
+
+ if (!I->isDeclaration()) {
+ addGlobalMapping(I, getMemoryForGV(I));
+ } else {
+ // External variable reference. Try to use the dynamic loader to
+ // get a pointer to it.
+ if (void *SymAddr =
+ sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
+ addGlobalMapping(I, SymAddr);
+ else {
+ report_fatal_error("Could not resolve external global address: "
+ +I->getName());
+ }
+ }
+ }
+
+ // If there are multiple modules, map the non-canonical globals to their
+ // canonical location.
+ if (!NonCanonicalGlobals.empty()) {
+ for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
+ const GlobalValue *GV = NonCanonicalGlobals[i];
+ const GlobalValue *CGV =
+ LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
+ void *Ptr = getPointerToGlobalIfAvailable(CGV);
+ assert(Ptr && "Canonical global wasn't codegen'd!");
+ addGlobalMapping(GV, Ptr);
+ }
+ }
+
+ // Now that all of the globals are set up in memory, loop through them all
+ // and initialize their contents.
+ for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
+ I != E; ++I) {
+ if (!I->isDeclaration()) {
+ if (!LinkedGlobalsMap.empty()) {
+ if (const GlobalValue *GVEntry =
+ LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
+ if (GVEntry != &*I) // Not the canonical variable.
+ continue;
+ }
+ EmitGlobalVariable(I);
+ }
+ }
+ }
+}
+
+// EmitGlobalVariable - This method emits the specified global variable to the
+// address specified in GlobalAddresses, or allocates new memory if it's not
+// already in the map.
+void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
+ void *GA = getPointerToGlobalIfAvailable(GV);
+
+ if (GA == 0) {
+ // If it's not already specified, allocate memory for the global.
+ GA = getMemoryForGV(GV);
+ addGlobalMapping(GV, GA);
+ }
+
+ // Don't initialize if it's thread local, let the client do it.
+ if (!GV->isThreadLocal())
+ InitializeMemory(GV->getInitializer(), GA);
+
+ Type *ElTy = GV->getType()->getElementType();
+ size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
+ NumInitBytes += (unsigned)GVSize;
+ ++NumGlobals;
+}
+
+ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
+ : EE(EE), GlobalAddressMap(this) {
+}
+
+sys::Mutex *
+ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
+ return &EES->EE.lock;
+}
+
+void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
+ const GlobalValue *Old) {
+ void *OldVal = EES->GlobalAddressMap.lookup(Old);
+ EES->GlobalAddressReverseMap.erase(OldVal);
+}
+
+void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
+ const GlobalValue *,
+ const GlobalValue *) {
+ llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
+ " RAUW on a value it has a global mapping for.");
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
new file mode 100644
index 0000000..f4e8246
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/ExecutionEngineBindings.cpp
@@ -0,0 +1,252 @@
+//===-- ExecutionEngineBindings.cpp - C bindings for EEs ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the C bindings for the ExecutionEngine library.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "llvm-c/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cstring>
+
+using namespace llvm;
+
+/*===-- Operations on generic values --------------------------------------===*/
+
+LLVMGenericValueRef LLVMCreateGenericValueOfInt(LLVMTypeRef Ty,
+ unsigned long long N,
+ LLVMBool IsSigned) {
+ GenericValue *GenVal = new GenericValue();
+ GenVal->IntVal = APInt(unwrap<IntegerType>(Ty)->getBitWidth(), N, IsSigned);
+ return wrap(GenVal);
+}
+
+LLVMGenericValueRef LLVMCreateGenericValueOfPointer(void *P) {
+ GenericValue *GenVal = new GenericValue();
+ GenVal->PointerVal = P;
+ return wrap(GenVal);
+}
+
+LLVMGenericValueRef LLVMCreateGenericValueOfFloat(LLVMTypeRef TyRef, double N) {
+ GenericValue *GenVal = new GenericValue();
+ switch (unwrap(TyRef)->getTypeID()) {
+ case Type::FloatTyID:
+ GenVal->FloatVal = N;
+ break;
+ case Type::DoubleTyID:
+ GenVal->DoubleVal = N;
+ break;
+ default:
+ llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
+ }
+ return wrap(GenVal);
+}
+
+unsigned LLVMGenericValueIntWidth(LLVMGenericValueRef GenValRef) {
+ return unwrap(GenValRef)->IntVal.getBitWidth();
+}
+
+unsigned long long LLVMGenericValueToInt(LLVMGenericValueRef GenValRef,
+ LLVMBool IsSigned) {
+ GenericValue *GenVal = unwrap(GenValRef);
+ if (IsSigned)
+ return GenVal->IntVal.getSExtValue();
+ else
+ return GenVal->IntVal.getZExtValue();
+}
+
+void *LLVMGenericValueToPointer(LLVMGenericValueRef GenVal) {
+ return unwrap(GenVal)->PointerVal;
+}
+
+double LLVMGenericValueToFloat(LLVMTypeRef TyRef, LLVMGenericValueRef GenVal) {
+ switch (unwrap(TyRef)->getTypeID()) {
+ case Type::FloatTyID:
+ return unwrap(GenVal)->FloatVal;
+ case Type::DoubleTyID:
+ return unwrap(GenVal)->DoubleVal;
+ default:
+ llvm_unreachable("LLVMGenericValueToFloat supports only float and double.");
+ }
+}
+
+void LLVMDisposeGenericValue(LLVMGenericValueRef GenVal) {
+ delete unwrap(GenVal);
+}
+
+/*===-- Operations on execution engines -----------------------------------===*/
+
+LLVMBool LLVMCreateExecutionEngineForModule(LLVMExecutionEngineRef *OutEE,
+ LLVMModuleRef M,
+ char **OutError) {
+ std::string Error;
+ EngineBuilder builder(unwrap(M));
+ builder.setEngineKind(EngineKind::Either)
+ .setErrorStr(&Error);
+ if (ExecutionEngine *EE = builder.create()){
+ *OutEE = wrap(EE);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
+LLVMBool LLVMCreateInterpreterForModule(LLVMExecutionEngineRef *OutInterp,
+ LLVMModuleRef M,
+ char **OutError) {
+ std::string Error;
+ EngineBuilder builder(unwrap(M));
+ builder.setEngineKind(EngineKind::Interpreter)
+ .setErrorStr(&Error);
+ if (ExecutionEngine *Interp = builder.create()) {
+ *OutInterp = wrap(Interp);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
+LLVMBool LLVMCreateJITCompilerForModule(LLVMExecutionEngineRef *OutJIT,
+ LLVMModuleRef M,
+ unsigned OptLevel,
+ char **OutError) {
+ std::string Error;
+ EngineBuilder builder(unwrap(M));
+ builder.setEngineKind(EngineKind::JIT)
+ .setErrorStr(&Error)
+ .setOptLevel((CodeGenOpt::Level)OptLevel);
+ if (ExecutionEngine *JIT = builder.create()) {
+ *OutJIT = wrap(JIT);
+ return 0;
+ }
+ *OutError = strdup(Error.c_str());
+ return 1;
+}
+
+LLVMBool LLVMCreateExecutionEngine(LLVMExecutionEngineRef *OutEE,
+ LLVMModuleProviderRef MP,
+ char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMCreateExecutionEngineForModule(OutEE,
+ reinterpret_cast<LLVMModuleRef>(MP),
+ OutError);
+}
+
+LLVMBool LLVMCreateInterpreter(LLVMExecutionEngineRef *OutInterp,
+ LLVMModuleProviderRef MP,
+ char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMCreateInterpreterForModule(OutInterp,
+ reinterpret_cast<LLVMModuleRef>(MP),
+ OutError);
+}
+
+LLVMBool LLVMCreateJITCompiler(LLVMExecutionEngineRef *OutJIT,
+ LLVMModuleProviderRef MP,
+ unsigned OptLevel,
+ char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMCreateJITCompilerForModule(OutJIT,
+ reinterpret_cast<LLVMModuleRef>(MP),
+ OptLevel, OutError);
+}
+
+
+void LLVMDisposeExecutionEngine(LLVMExecutionEngineRef EE) {
+ delete unwrap(EE);
+}
+
+void LLVMRunStaticConstructors(LLVMExecutionEngineRef EE) {
+ unwrap(EE)->runStaticConstructorsDestructors(false);
+}
+
+void LLVMRunStaticDestructors(LLVMExecutionEngineRef EE) {
+ unwrap(EE)->runStaticConstructorsDestructors(true);
+}
+
+int LLVMRunFunctionAsMain(LLVMExecutionEngineRef EE, LLVMValueRef F,
+ unsigned ArgC, const char * const *ArgV,
+ const char * const *EnvP) {
+ std::vector<std::string> ArgVec;
+ for (unsigned I = 0; I != ArgC; ++I)
+ ArgVec.push_back(ArgV[I]);
+
+ return unwrap(EE)->runFunctionAsMain(unwrap<Function>(F), ArgVec, EnvP);
+}
+
+LLVMGenericValueRef LLVMRunFunction(LLVMExecutionEngineRef EE, LLVMValueRef F,
+ unsigned NumArgs,
+ LLVMGenericValueRef *Args) {
+ std::vector<GenericValue> ArgVec;
+ ArgVec.reserve(NumArgs);
+ for (unsigned I = 0; I != NumArgs; ++I)
+ ArgVec.push_back(*unwrap(Args[I]));
+
+ GenericValue *Result = new GenericValue();
+ *Result = unwrap(EE)->runFunction(unwrap<Function>(F), ArgVec);
+ return wrap(Result);
+}
+
+void LLVMFreeMachineCodeForFunction(LLVMExecutionEngineRef EE, LLVMValueRef F) {
+ unwrap(EE)->freeMachineCodeForFunction(unwrap<Function>(F));
+}
+
+void LLVMAddModule(LLVMExecutionEngineRef EE, LLVMModuleRef M){
+ unwrap(EE)->addModule(unwrap(M));
+}
+
+void LLVMAddModuleProvider(LLVMExecutionEngineRef EE, LLVMModuleProviderRef MP){
+ /* The module provider is now actually a module. */
+ LLVMAddModule(EE, reinterpret_cast<LLVMModuleRef>(MP));
+}
+
+LLVMBool LLVMRemoveModule(LLVMExecutionEngineRef EE, LLVMModuleRef M,
+ LLVMModuleRef *OutMod, char **OutError) {
+ Module *Mod = unwrap(M);
+ unwrap(EE)->removeModule(Mod);
+ *OutMod = wrap(Mod);
+ return 0;
+}
+
+LLVMBool LLVMRemoveModuleProvider(LLVMExecutionEngineRef EE,
+ LLVMModuleProviderRef MP,
+ LLVMModuleRef *OutMod, char **OutError) {
+ /* The module provider is now actually a module. */
+ return LLVMRemoveModule(EE, reinterpret_cast<LLVMModuleRef>(MP), OutMod,
+ OutError);
+}
+
+LLVMBool LLVMFindFunction(LLVMExecutionEngineRef EE, const char *Name,
+ LLVMValueRef *OutFn) {
+ if (Function *F = unwrap(EE)->FindFunctionNamed(Name)) {
+ *OutFn = wrap(F);
+ return 0;
+ }
+ return 1;
+}
+
+void *LLVMRecompileAndRelinkFunction(LLVMExecutionEngineRef EE, LLVMValueRef Fn) {
+ return unwrap(EE)->recompileAndRelinkFunction(unwrap<Function>(Fn));
+}
+
+LLVMTargetDataRef LLVMGetExecutionEngineTargetData(LLVMExecutionEngineRef EE) {
+ return wrap(unwrap(EE)->getDataLayout());
+}
+
+void LLVMAddGlobalMapping(LLVMExecutionEngineRef EE, LLVMValueRef Global,
+ void* Addr) {
+ unwrap(EE)->addGlobalMapping(unwrap<GlobalValue>(Global), Addr);
+}
+
+void *LLVMGetPointerToGlobal(LLVMExecutionEngineRef EE, LLVMValueRef Global) {
+ return unwrap(EE)->getPointerToGlobal(unwrap<GlobalValue>(Global));
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp
new file mode 100644
index 0000000..7dc295f
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp
@@ -0,0 +1,302 @@
+//===-- IntelJITEventListener.cpp - Tell Intel profiler about JITed code --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITEventListener object to tell Intel(R) VTune(TM)
+// Amplifier XE 2011 about JITted functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+
+#define DEBUG_TYPE "amplifier-jit-event-listener"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/DebugInfo/DIContext.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Errno.h"
+#include "llvm/Support/ValueHandle.h"
+#include "EventListenerCommon.h"
+#include "IntelJITEventsWrapper.h"
+
+using namespace llvm;
+using namespace llvm::jitprofiling;
+
+namespace {
+
+class IntelJITEventListener : public JITEventListener {
+ typedef DenseMap<void*, unsigned int> MethodIDMap;
+
+ OwningPtr<IntelJITEventsWrapper> Wrapper;
+ MethodIDMap MethodIDs;
+ FilenameCache Filenames;
+
+ typedef SmallVector<const void *, 64> MethodAddressVector;
+ typedef DenseMap<const void *, MethodAddressVector> ObjectMap;
+
+ ObjectMap LoadedObjectMap;
+
+public:
+ IntelJITEventListener(IntelJITEventsWrapper* libraryWrapper) {
+ Wrapper.reset(libraryWrapper);
+ }
+
+ ~IntelJITEventListener() {
+ }
+
+ virtual void NotifyFunctionEmitted(const Function &F,
+ void *FnStart, size_t FnSize,
+ const EmittedFunctionDetails &Details);
+
+ virtual void NotifyFreeingMachineCode(void *OldPtr);
+
+ virtual void NotifyObjectEmitted(const ObjectImage &Obj);
+
+ virtual void NotifyFreeingObject(const ObjectImage &Obj);
+};
+
+static LineNumberInfo LineStartToIntelJITFormat(
+ uintptr_t StartAddress,
+ uintptr_t Address,
+ DebugLoc Loc) {
+ LineNumberInfo Result;
+
+ Result.Offset = Address - StartAddress;
+ Result.LineNumber = Loc.getLine();
+
+ return Result;
+}
+
+static LineNumberInfo DILineInfoToIntelJITFormat(uintptr_t StartAddress,
+ uintptr_t Address,
+ DILineInfo Line) {
+ LineNumberInfo Result;
+
+ Result.Offset = Address - StartAddress;
+ Result.LineNumber = Line.getLine();
+
+ return Result;
+}
+
+static iJIT_Method_Load FunctionDescToIntelJITFormat(
+ IntelJITEventsWrapper& Wrapper,
+ const char* FnName,
+ uintptr_t FnStart,
+ size_t FnSize) {
+ iJIT_Method_Load Result;
+ memset(&Result, 0, sizeof(iJIT_Method_Load));
+
+ Result.method_id = Wrapper.iJIT_GetNewMethodID();
+ Result.method_name = const_cast<char*>(FnName);
+ Result.method_load_address = reinterpret_cast<void*>(FnStart);
+ Result.method_size = FnSize;
+
+ Result.class_id = 0;
+ Result.class_file_name = NULL;
+ Result.user_data = NULL;
+ Result.user_data_size = 0;
+ Result.env = iJDE_JittingAPI;
+
+ return Result;
+}
+
+// Adds the just-emitted function to the symbol table.
+void IntelJITEventListener::NotifyFunctionEmitted(
+ const Function &F, void *FnStart, size_t FnSize,
+ const EmittedFunctionDetails &Details) {
+ iJIT_Method_Load FunctionMessage = FunctionDescToIntelJITFormat(*Wrapper,
+ F.getName().data(),
+ reinterpret_cast<uint64_t>(FnStart),
+ FnSize);
+
+ std::vector<LineNumberInfo> LineInfo;
+
+ if (!Details.LineStarts.empty()) {
+ // Now convert the line number information from the address/DebugLoc
+ // format in Details to the offset/lineno in Intel JIT API format.
+
+ LineInfo.reserve(Details.LineStarts.size() + 1);
+
+ DebugLoc FirstLoc = Details.LineStarts[0].Loc;
+ assert(!FirstLoc.isUnknown()
+ && "LineStarts should not contain unknown DebugLocs");
+
+ MDNode *FirstLocScope = FirstLoc.getScope(F.getContext());
+ DISubprogram FunctionDI = getDISubprogram(FirstLocScope);
+ if (FunctionDI.Verify()) {
+ FunctionMessage.source_file_name = const_cast<char*>(
+ Filenames.getFullPath(FirstLocScope));
+
+ LineNumberInfo FirstLine;
+ FirstLine.Offset = 0;
+ FirstLine.LineNumber = FunctionDI.getLineNumber();
+ LineInfo.push_back(FirstLine);
+ }
+
+ for (std::vector<EmittedFunctionDetails::LineStart>::const_iterator I =
+ Details.LineStarts.begin(), E = Details.LineStarts.end();
+ I != E; ++I) {
+ // This implementation ignores the DebugLoc filename because the Intel
+ // JIT API does not support multiple source files associated with a single
+ // JIT function
+ LineInfo.push_back(LineStartToIntelJITFormat(
+ reinterpret_cast<uintptr_t>(FnStart),
+ I->Address,
+ I->Loc));
+
+ // If we have no file name yet for the function, use the filename from
+ // the first instruction that has one
+ if (FunctionMessage.source_file_name == 0) {
+ MDNode *scope = I->Loc.getScope(
+ Details.MF->getFunction()->getContext());
+ FunctionMessage.source_file_name = const_cast<char*>(
+ Filenames.getFullPath(scope));
+ }
+ }
+
+ FunctionMessage.line_number_size = LineInfo.size();
+ FunctionMessage.line_number_table = &*LineInfo.begin();
+ } else {
+ FunctionMessage.line_number_size = 0;
+ FunctionMessage.line_number_table = 0;
+ }
+
+ Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED,
+ &FunctionMessage);
+ MethodIDs[FnStart] = FunctionMessage.method_id;
+}
+
+void IntelJITEventListener::NotifyFreeingMachineCode(void *FnStart) {
+ MethodIDMap::iterator I = MethodIDs.find(FnStart);
+ if (I != MethodIDs.end()) {
+ Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_UNLOAD_START, &I->second);
+ MethodIDs.erase(I);
+ }
+}
+
+void IntelJITEventListener::NotifyObjectEmitted(const ObjectImage &Obj) {
+ // Get the address of the object image for use as a unique identifier
+ const void* ObjData = Obj.getData().data();
+ DIContext* Context = DIContext::getDWARFContext(Obj.getObjectFile());
+ MethodAddressVector Functions;
+
+ // Use symbol info to iterate functions in the object.
+ error_code ec;
+ for (object::symbol_iterator I = Obj.begin_symbols(),
+ E = Obj.end_symbols();
+ I != E && !ec;
+ I.increment(ec)) {
+ std::vector<LineNumberInfo> LineInfo;
+ std::string SourceFileName;
+
+ object::SymbolRef::Type SymType;
+ if (I->getType(SymType)) continue;
+ if (SymType == object::SymbolRef::ST_Function) {
+ StringRef Name;
+ uint64_t Addr;
+ uint64_t Size;
+ if (I->getName(Name)) continue;
+ if (I->getAddress(Addr)) continue;
+ if (I->getSize(Size)) continue;
+
+ // Record this address in a local vector
+ Functions.push_back((void*)Addr);
+
+ // Build the function loaded notification message
+ iJIT_Method_Load FunctionMessage = FunctionDescToIntelJITFormat(*Wrapper,
+ Name.data(),
+ Addr,
+ Size);
+ if (Context) {
+ DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size);
+ DILineInfoTable::iterator Begin = Lines.begin();
+ DILineInfoTable::iterator End = Lines.end();
+ for (DILineInfoTable::iterator It = Begin; It != End; ++It) {
+ LineInfo.push_back(DILineInfoToIntelJITFormat((uintptr_t)Addr,
+ It->first,
+ It->second));
+ }
+ if (LineInfo.size() == 0) {
+ FunctionMessage.source_file_name = 0;
+ FunctionMessage.line_number_size = 0;
+ FunctionMessage.line_number_table = 0;
+ } else {
+ SourceFileName = Lines.front().second.getFileName();
+ FunctionMessage.source_file_name = (char *)SourceFileName.c_str();
+ FunctionMessage.line_number_size = LineInfo.size();
+ FunctionMessage.line_number_table = &*LineInfo.begin();
+ }
+ } else {
+ FunctionMessage.source_file_name = 0;
+ FunctionMessage.line_number_size = 0;
+ FunctionMessage.line_number_table = 0;
+ }
+
+ Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED,
+ &FunctionMessage);
+ MethodIDs[(void*)Addr] = FunctionMessage.method_id;
+ }
+ }
+
+ // To support object unload notification, we need to keep a list of
+ // registered function addresses for each loaded object. We will
+ // use the MethodIDs map to get the registered ID for each function.
+ LoadedObjectMap[ObjData] = Functions;
+}
+
+void IntelJITEventListener::NotifyFreeingObject(const ObjectImage &Obj) {
+ // Get the address of the object image for use as a unique identifier
+ const void* ObjData = Obj.getData().data();
+
+ // Get the object's function list from LoadedObjectMap
+ ObjectMap::iterator OI = LoadedObjectMap.find(ObjData);
+ if (OI == LoadedObjectMap.end())
+ return;
+ MethodAddressVector& Functions = OI->second;
+
+ // Walk the function list, unregistering each function
+ for (MethodAddressVector::iterator FI = Functions.begin(),
+ FE = Functions.end();
+ FI != FE;
+ ++FI) {
+ void* FnStart = const_cast<void*>(*FI);
+ MethodIDMap::iterator MI = MethodIDs.find(FnStart);
+ if (MI != MethodIDs.end()) {
+ Wrapper->iJIT_NotifyEvent(iJVM_EVENT_TYPE_METHOD_UNLOAD_START,
+ &MI->second);
+ MethodIDs.erase(MI);
+ }
+ }
+
+ // Erase the object from LoadedObjectMap
+ LoadedObjectMap.erase(OI);
+}
+
+} // anonymous namespace.
+
+namespace llvm {
+JITEventListener *JITEventListener::createIntelJITEventListener() {
+ return new IntelJITEventListener(new IntelJITEventsWrapper);
+}
+
+// for testing
+JITEventListener *JITEventListener::createIntelJITEventListener(
+ IntelJITEventsWrapper* TestImpl) {
+ return new IntelJITEventListener(TestImpl);
+}
+
+} // namespace llvm
+
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h
new file mode 100644
index 0000000..3d9ff535
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventsWrapper.h
@@ -0,0 +1,96 @@
+//===-- IntelJITEventsWrapper.h - Intel JIT Events API Wrapper --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a wrapper for the Intel JIT Events API. It allows for the
+// implementation of the jitprofiling library to be swapped with an alternative
+// implementation (for testing). To include this file, you must have the
+// jitprofiling.h header available; it is available in Intel(R) VTune(TM)
+// Amplifier XE 2011.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef INTEL_JIT_EVENTS_WRAPPER_H
+#define INTEL_JIT_EVENTS_WRAPPER_H
+
+#include "jitprofiling.h"
+
+namespace llvm {
+
+class IntelJITEventsWrapper {
+ // Function pointer types for testing implementation of Intel jitprofiling
+ // library
+ typedef int (*NotifyEventPtr)(iJIT_JVM_EVENT, void*);
+ typedef void (*RegisterCallbackExPtr)(void *, iJIT_ModeChangedEx );
+ typedef iJIT_IsProfilingActiveFlags (*IsProfilingActivePtr)(void);
+ typedef void (*FinalizeThreadPtr)(void);
+ typedef void (*FinalizeProcessPtr)(void);
+ typedef unsigned int (*GetNewMethodIDPtr)(void);
+
+ NotifyEventPtr NotifyEventFunc;
+ RegisterCallbackExPtr RegisterCallbackExFunc;
+ IsProfilingActivePtr IsProfilingActiveFunc;
+ GetNewMethodIDPtr GetNewMethodIDFunc;
+
+public:
+ bool isAmplifierRunning() {
+ return iJIT_IsProfilingActive() == iJIT_SAMPLING_ON;
+ }
+
+ IntelJITEventsWrapper()
+ : NotifyEventFunc(::iJIT_NotifyEvent),
+ RegisterCallbackExFunc(::iJIT_RegisterCallbackEx),
+ IsProfilingActiveFunc(::iJIT_IsProfilingActive),
+ GetNewMethodIDFunc(::iJIT_GetNewMethodID) {
+ }
+
+ IntelJITEventsWrapper(NotifyEventPtr NotifyEventImpl,
+ RegisterCallbackExPtr RegisterCallbackExImpl,
+ IsProfilingActivePtr IsProfilingActiveImpl,
+ FinalizeThreadPtr FinalizeThreadImpl,
+ FinalizeProcessPtr FinalizeProcessImpl,
+ GetNewMethodIDPtr GetNewMethodIDImpl)
+ : NotifyEventFunc(NotifyEventImpl),
+ RegisterCallbackExFunc(RegisterCallbackExImpl),
+ IsProfilingActiveFunc(IsProfilingActiveImpl),
+ GetNewMethodIDFunc(GetNewMethodIDImpl) {
+ }
+
+ // Sends an event anncouncing that a function has been emitted
+ // return values are event-specific. See Intel documentation for details.
+ int iJIT_NotifyEvent(iJIT_JVM_EVENT EventType, void *EventSpecificData) {
+ if (!NotifyEventFunc)
+ return -1;
+ return NotifyEventFunc(EventType, EventSpecificData);
+ }
+
+ // Registers a callback function to receive notice of profiling state changes
+ void iJIT_RegisterCallbackEx(void *UserData,
+ iJIT_ModeChangedEx NewModeCallBackFuncEx) {
+ if (RegisterCallbackExFunc)
+ RegisterCallbackExFunc(UserData, NewModeCallBackFuncEx);
+ }
+
+ // Returns the current profiler mode
+ iJIT_IsProfilingActiveFlags iJIT_IsProfilingActive(void) {
+ if (!IsProfilingActiveFunc)
+ return iJIT_NOTHING_RUNNING;
+ return IsProfilingActiveFunc();
+ }
+
+ // Generates a locally unique method ID for use in code registration
+ unsigned int iJIT_GetNewMethodID(void) {
+ if (!GetNewMethodIDFunc)
+ return -1;
+ return GetNewMethodIDFunc();
+ }
+};
+
+} //namespace llvm
+
+#endif //INTEL_JIT_EVENTS_WRAPPER_H
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h
new file mode 100644
index 0000000..1f029fb
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_config.h
@@ -0,0 +1,454 @@
+/*===-- ittnotify_config.h - JIT Profiling API internal config-----*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file provides Intel(R) Performance Analyzer JIT (Just-In-Time)
+ * Profiling API internal config.
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#ifndef _ITTNOTIFY_CONFIG_H_
+#define _ITTNOTIFY_CONFIG_H_
+
+/** @cond exclude_from_documentation */
+#ifndef ITT_OS_WIN
+# define ITT_OS_WIN 1
+#endif /* ITT_OS_WIN */
+
+#ifndef ITT_OS_LINUX
+# define ITT_OS_LINUX 2
+#endif /* ITT_OS_LINUX */
+
+#ifndef ITT_OS_MAC
+# define ITT_OS_MAC 3
+#endif /* ITT_OS_MAC */
+
+#ifndef ITT_OS
+# if defined WIN32 || defined _WIN32
+# define ITT_OS ITT_OS_WIN
+# elif defined( __APPLE__ ) && defined( __MACH__ )
+# define ITT_OS ITT_OS_MAC
+# else
+# define ITT_OS ITT_OS_LINUX
+# endif
+#endif /* ITT_OS */
+
+#ifndef ITT_PLATFORM_WIN
+# define ITT_PLATFORM_WIN 1
+#endif /* ITT_PLATFORM_WIN */
+
+#ifndef ITT_PLATFORM_POSIX
+# define ITT_PLATFORM_POSIX 2
+#endif /* ITT_PLATFORM_POSIX */
+
+#ifndef ITT_PLATFORM
+# if ITT_OS==ITT_OS_WIN
+# define ITT_PLATFORM ITT_PLATFORM_WIN
+# else
+# define ITT_PLATFORM ITT_PLATFORM_POSIX
+# endif /* _WIN32 */
+#endif /* ITT_PLATFORM */
+
+#if defined(_UNICODE) && !defined(UNICODE)
+#define UNICODE
+#endif
+
+#include <stddef.h>
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#include <tchar.h>
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <stdint.h>
+#if defined(UNICODE) || defined(_UNICODE)
+#include <wchar.h>
+#endif /* UNICODE || _UNICODE */
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+#ifndef CDECL
+# if ITT_PLATFORM==ITT_PLATFORM_WIN
+# define CDECL __cdecl
+# else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define CDECL /* not actual on x86_64 platform */
+# else /* _M_X64 || _M_AMD64 || __x86_64__ */
+# define CDECL __attribute__ ((cdecl))
+# endif /* _M_X64 || _M_AMD64 || __x86_64__ */
+# endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#endif /* CDECL */
+
+#ifndef STDCALL
+# if ITT_PLATFORM==ITT_PLATFORM_WIN
+# define STDCALL __stdcall
+# else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define STDCALL /* not supported on x86_64 platform */
+# else /* _M_X64 || _M_AMD64 || __x86_64__ */
+# define STDCALL __attribute__ ((stdcall))
+# endif /* _M_X64 || _M_AMD64 || __x86_64__ */
+# endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#endif /* STDCALL */
+
+#define ITTAPI CDECL
+#define LIBITTAPI CDECL
+
+/* TODO: Temporary for compatibility! */
+#define ITTAPI_CALL CDECL
+#define LIBITTAPI_CALL CDECL
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+/* use __forceinline (VC++ specific) */
+#define ITT_INLINE __forceinline
+#define ITT_INLINE_ATTRIBUTE /* nothing */
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+/*
+ * Generally, functions are not inlined unless optimization is specified.
+ * For functions declared inline, this attribute inlines the function even
+ * if no optimization level was specified.
+ */
+#ifdef __STRICT_ANSI__
+#define ITT_INLINE static
+#else /* __STRICT_ANSI__ */
+#define ITT_INLINE static inline
+#endif /* __STRICT_ANSI__ */
+#define ITT_INLINE_ATTRIBUTE __attribute__ ((always_inline))
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+/** @endcond */
+
+#ifndef ITT_ARCH_IA32
+# define ITT_ARCH_IA32 1
+#endif /* ITT_ARCH_IA32 */
+
+#ifndef ITT_ARCH_IA32E
+# define ITT_ARCH_IA32E 2
+#endif /* ITT_ARCH_IA32E */
+
+#ifndef ITT_ARCH_IA64
+# define ITT_ARCH_IA64 3
+#endif /* ITT_ARCH_IA64 */
+
+#ifndef ITT_ARCH
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define ITT_ARCH ITT_ARCH_IA32E
+# elif defined _M_IA64 || defined __ia64
+# define ITT_ARCH ITT_ARCH_IA64
+# else
+# define ITT_ARCH ITT_ARCH_IA32
+# endif
+#endif
+
+#ifdef __cplusplus
+# define ITT_EXTERN_C extern "C"
+#else
+# define ITT_EXTERN_C /* nothing */
+#endif /* __cplusplus */
+
+#define ITT_TO_STR_AUX(x) #x
+#define ITT_TO_STR(x) ITT_TO_STR_AUX(x)
+
+#define __ITT_BUILD_ASSERT(expr, suffix) do { \
+ static char __itt_build_check_##suffix[(expr) ? 1 : -1]; \
+ __itt_build_check_##suffix[0] = 0; \
+} while(0)
+#define _ITT_BUILD_ASSERT(expr, suffix) __ITT_BUILD_ASSERT((expr), suffix)
+#define ITT_BUILD_ASSERT(expr) _ITT_BUILD_ASSERT((expr), __LINE__)
+
+#define ITT_MAGIC { 0xED, 0xAB, 0xAB, 0xEC, 0x0D, 0xEE, 0xDA, 0x30 }
+
+/* Replace with snapshot date YYYYMMDD for promotion build. */
+#define API_VERSION_BUILD 20111111
+
+#ifndef API_VERSION_NUM
+#define API_VERSION_NUM 0.0.0
+#endif /* API_VERSION_NUM */
+
+#define API_VERSION "ITT-API-Version " ITT_TO_STR(API_VERSION_NUM) \
+ " (" ITT_TO_STR(API_VERSION_BUILD) ")"
+
+/* OS communication functions */
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#include <windows.h>
+typedef HMODULE lib_t;
+typedef DWORD TIDT;
+typedef CRITICAL_SECTION mutex_t;
+#define MUTEX_INITIALIZER { 0 }
+#define strong_alias(name, aliasname) /* empty for Windows */
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <dlfcn.h>
+#if defined(UNICODE) || defined(_UNICODE)
+#include <wchar.h>
+#endif /* UNICODE */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE 1 /* need for PTHREAD_MUTEX_RECURSIVE */
+#endif /* _GNU_SOURCE */
+#include <pthread.h>
+typedef void* lib_t;
+typedef pthread_t TIDT;
+typedef pthread_mutex_t mutex_t;
+#define MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER
+#define _strong_alias(name, aliasname) \
+ extern __typeof (name) aliasname __attribute__ ((alias (#name)));
+#define strong_alias(name, aliasname) _strong_alias(name, aliasname)
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#define __itt_get_proc(lib, name) GetProcAddress(lib, name)
+#define __itt_mutex_init(mutex) InitializeCriticalSection(mutex)
+#define __itt_mutex_lock(mutex) EnterCriticalSection(mutex)
+#define __itt_mutex_unlock(mutex) LeaveCriticalSection(mutex)
+#define __itt_load_lib(name) LoadLibraryA(name)
+#define __itt_unload_lib(handle) FreeLibrary(handle)
+#define __itt_system_error() (int)GetLastError()
+#define __itt_fstrcmp(s1, s2) lstrcmpA(s1, s2)
+#define __itt_fstrlen(s) lstrlenA(s)
+#define __itt_fstrcpyn(s1, s2, l) lstrcpynA(s1, s2, l)
+#define __itt_fstrdup(s) _strdup(s)
+#define __itt_thread_id() GetCurrentThreadId()
+#define __itt_thread_yield() SwitchToThread()
+#ifndef ITT_SIMPLE_INIT
+ITT_INLINE long
+__itt_interlocked_increment(volatile long* ptr) ITT_INLINE_ATTRIBUTE;
+ITT_INLINE long __itt_interlocked_increment(volatile long* ptr)
+{
+ return InterlockedIncrement(ptr);
+}
+#endif /* ITT_SIMPLE_INIT */
+#else /* ITT_PLATFORM!=ITT_PLATFORM_WIN */
+#define __itt_get_proc(lib, name) dlsym(lib, name)
+#define __itt_mutex_init(mutex) {\
+ pthread_mutexattr_t mutex_attr; \
+ int error_code = pthread_mutexattr_init(&mutex_attr); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutexattr_init", \
+ error_code); \
+ error_code = pthread_mutexattr_settype(&mutex_attr, \
+ PTHREAD_MUTEX_RECURSIVE); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutexattr_settype", \
+ error_code); \
+ error_code = pthread_mutex_init(mutex, &mutex_attr); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutex_init", \
+ error_code); \
+ error_code = pthread_mutexattr_destroy(&mutex_attr); \
+ if (error_code) \
+ __itt_report_error(__itt_error_system, "pthread_mutexattr_destroy", \
+ error_code); \
+}
+#define __itt_mutex_lock(mutex) pthread_mutex_lock(mutex)
+#define __itt_mutex_unlock(mutex) pthread_mutex_unlock(mutex)
+#define __itt_load_lib(name) dlopen(name, RTLD_LAZY)
+#define __itt_unload_lib(handle) dlclose(handle)
+#define __itt_system_error() errno
+#define __itt_fstrcmp(s1, s2) strcmp(s1, s2)
+#define __itt_fstrlen(s) strlen(s)
+#define __itt_fstrcpyn(s1, s2, l) strncpy(s1, s2, l)
+#define __itt_fstrdup(s) strdup(s)
+#define __itt_thread_id() pthread_self()
+#define __itt_thread_yield() sched_yield()
+#if ITT_ARCH==ITT_ARCH_IA64
+#ifdef __INTEL_COMPILER
+#define __TBB_machine_fetchadd4(addr, val) __fetchadd4_acq((void *)addr, val)
+#else /* __INTEL_COMPILER */
+/* TODO: Add Support for not Intel compilers for IA64 */
+#endif /* __INTEL_COMPILER */
+#else /* ITT_ARCH!=ITT_ARCH_IA64 */
+ITT_INLINE long
+__TBB_machine_fetchadd4(volatile void* ptr, long addend) ITT_INLINE_ATTRIBUTE;
+ITT_INLINE long __TBB_machine_fetchadd4(volatile void* ptr, long addend)
+{
+ long result;
+ __asm__ __volatile__("lock\nxadd %0,%1"
+ : "=r"(result),"=m"(*(long*)ptr)
+ : "0"(addend), "m"(*(long*)ptr)
+ : "memory");
+ return result;
+}
+#endif /* ITT_ARCH==ITT_ARCH_IA64 */
+#ifndef ITT_SIMPLE_INIT
+ITT_INLINE long
+__itt_interlocked_increment(volatile long* ptr) ITT_INLINE_ATTRIBUTE;
+ITT_INLINE long __itt_interlocked_increment(volatile long* ptr)
+{
+ return __TBB_machine_fetchadd4(ptr, 1) + 1L;
+}
+#endif /* ITT_SIMPLE_INIT */
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+typedef enum {
+ __itt_collection_normal = 0,
+ __itt_collection_paused = 1
+} __itt_collection_state;
+
+typedef enum {
+ __itt_thread_normal = 0,
+ __itt_thread_ignored = 1
+} __itt_thread_state;
+
+#pragma pack(push, 8)
+
+typedef struct ___itt_thread_info
+{
+ const char* nameA; /*!< Copy of original name in ASCII. */
+#if defined(UNICODE) || defined(_UNICODE)
+ const wchar_t* nameW; /*!< Copy of original name in UNICODE. */
+#else /* UNICODE || _UNICODE */
+ void* nameW;
+#endif /* UNICODE || _UNICODE */
+ TIDT tid;
+ __itt_thread_state state; /*!< Thread state (paused or normal) */
+ int extra1; /*!< Reserved to the runtime */
+ void* extra2; /*!< Reserved to the runtime */
+ struct ___itt_thread_info* next;
+} __itt_thread_info;
+
+#include "ittnotify_types.h" /* For __itt_group_id definition */
+
+typedef struct ___itt_api_info_20101001
+{
+ const char* name;
+ void** func_ptr;
+ void* init_func;
+ __itt_group_id group;
+} __itt_api_info_20101001;
+
+typedef struct ___itt_api_info
+{
+ const char* name;
+ void** func_ptr;
+ void* init_func;
+ void* null_func;
+ __itt_group_id group;
+} __itt_api_info;
+
+struct ___itt_domain;
+struct ___itt_string_handle;
+
+typedef struct ___itt_global
+{
+ unsigned char magic[8];
+ unsigned long version_major;
+ unsigned long version_minor;
+ unsigned long version_build;
+ volatile long api_initialized;
+ volatile long mutex_initialized;
+ volatile long atomic_counter;
+ mutex_t mutex;
+ lib_t lib;
+ void* error_handler;
+ const char** dll_path_ptr;
+ __itt_api_info* api_list_ptr;
+ struct ___itt_global* next;
+ /* Joinable structures below */
+ __itt_thread_info* thread_list;
+ struct ___itt_domain* domain_list;
+ struct ___itt_string_handle* string_list;
+ __itt_collection_state state;
+} __itt_global;
+
+#pragma pack(pop)
+
+#define NEW_THREAD_INFO_W(gptr,h,h_tail,t,s,n) { \
+ h = (__itt_thread_info*)malloc(sizeof(__itt_thread_info)); \
+ if (h != NULL) { \
+ h->tid = t; \
+ h->nameA = NULL; \
+ h->nameW = n ? _wcsdup(n) : NULL; \
+ h->state = s; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->thread_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_THREAD_INFO_A(gptr,h,h_tail,t,s,n) { \
+ h = (__itt_thread_info*)malloc(sizeof(__itt_thread_info)); \
+ if (h != NULL) { \
+ h->tid = t; \
+ h->nameA = n ? __itt_fstrdup(n) : NULL; \
+ h->nameW = NULL; \
+ h->state = s; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->thread_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_DOMAIN_W(gptr,h,h_tail,name) { \
+ h = (__itt_domain*)malloc(sizeof(__itt_domain)); \
+ if (h != NULL) { \
+ h->flags = 0; /* domain is disabled by default */ \
+ h->nameA = NULL; \
+ h->nameW = name ? _wcsdup(name) : NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->domain_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_DOMAIN_A(gptr,h,h_tail,name) { \
+ h = (__itt_domain*)malloc(sizeof(__itt_domain)); \
+ if (h != NULL) { \
+ h->flags = 0; /* domain is disabled by default */ \
+ h->nameA = name ? __itt_fstrdup(name) : NULL; \
+ h->nameW = NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->domain_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_STRING_HANDLE_W(gptr,h,h_tail,name) { \
+ h = (__itt_string_handle*)malloc(sizeof(__itt_string_handle)); \
+ if (h != NULL) { \
+ h->strA = NULL; \
+ h->strW = name ? _wcsdup(name) : NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->string_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#define NEW_STRING_HANDLE_A(gptr,h,h_tail,name) { \
+ h = (__itt_string_handle*)malloc(sizeof(__itt_string_handle)); \
+ if (h != NULL) { \
+ h->strA = name ? __itt_fstrdup(name) : NULL; \
+ h->strW = NULL; \
+ h->extra1 = 0; /* reserved */ \
+ h->extra2 = NULL; /* reserved */ \
+ h->next = NULL; \
+ if (h_tail == NULL) \
+ (gptr)->string_list = h; \
+ else \
+ h_tail->next = h; \
+ } \
+}
+
+#endif /* _ITTNOTIFY_CONFIG_H_ */
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h
new file mode 100644
index 0000000..5df752f
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/ittnotify_types.h
@@ -0,0 +1,70 @@
+/*===-- ittnotify_types.h - JIT Profiling API internal types--------*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#ifndef _ITTNOTIFY_TYPES_H_
+#define _ITTNOTIFY_TYPES_H_
+
+typedef enum ___itt_group_id
+{
+ __itt_group_none = 0,
+ __itt_group_legacy = 1<<0,
+ __itt_group_control = 1<<1,
+ __itt_group_thread = 1<<2,
+ __itt_group_mark = 1<<3,
+ __itt_group_sync = 1<<4,
+ __itt_group_fsync = 1<<5,
+ __itt_group_jit = 1<<6,
+ __itt_group_model = 1<<7,
+ __itt_group_splitter_min = 1<<7,
+ __itt_group_counter = 1<<8,
+ __itt_group_frame = 1<<9,
+ __itt_group_stitch = 1<<10,
+ __itt_group_heap = 1<<11,
+ __itt_group_splitter_max = 1<<12,
+ __itt_group_structure = 1<<12,
+ __itt_group_suppress = 1<<13,
+ __itt_group_all = -1
+} __itt_group_id;
+
+#pragma pack(push, 8)
+
+typedef struct ___itt_group_list
+{
+ __itt_group_id id;
+ const char* name;
+} __itt_group_list;
+
+#pragma pack(pop)
+
+#define ITT_GROUP_LIST(varname) \
+ static __itt_group_list varname[] = { \
+ { __itt_group_all, "all" }, \
+ { __itt_group_control, "control" }, \
+ { __itt_group_thread, "thread" }, \
+ { __itt_group_mark, "mark" }, \
+ { __itt_group_sync, "sync" }, \
+ { __itt_group_fsync, "fsync" }, \
+ { __itt_group_jit, "jit" }, \
+ { __itt_group_model, "model" }, \
+ { __itt_group_counter, "counter" }, \
+ { __itt_group_frame, "frame" }, \
+ { __itt_group_stitch, "stitch" }, \
+ { __itt_group_heap, "heap" }, \
+ { __itt_group_structure, "structure" }, \
+ { __itt_group_suppress, "suppress" }, \
+ { __itt_group_none, NULL } \
+ }
+
+#endif /* _ITTNOTIFY_TYPES_H_ */
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c
new file mode 100644
index 0000000..7b507de
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.c
@@ -0,0 +1,481 @@
+/*===-- jitprofiling.c - JIT (Just-In-Time) Profiling API----------*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file provides Intel(R) Performance Analyzer JIT (Just-In-Time)
+ * Profiling API implementation.
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#include "ittnotify_config.h"
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#include <windows.h>
+#pragma optimize("", off)
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <pthread.h>
+#include <dlfcn.h>
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#include <malloc.h>
+#include <stdlib.h>
+
+#include "jitprofiling.h"
+
+static const char rcsid[] = "\n@(#) $Revision: 243501 $\n";
+
+#define DLL_ENVIRONMENT_VAR "VS_PROFILER"
+
+#ifndef NEW_DLL_ENVIRONMENT_VAR
+#if ITT_ARCH==ITT_ARCH_IA32
+#define NEW_DLL_ENVIRONMENT_VAR "INTEL_JIT_PROFILER32"
+#else
+#define NEW_DLL_ENVIRONMENT_VAR "INTEL_JIT_PROFILER64"
+#endif
+#endif /* NEW_DLL_ENVIRONMENT_VAR */
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+#define DEFAULT_DLLNAME "JitPI.dll"
+HINSTANCE m_libHandle = NULL;
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+#define DEFAULT_DLLNAME "libJitPI.so"
+void* m_libHandle = NULL;
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+/* default location of JIT profiling agent on Android */
+#define ANDROID_JIT_AGENT_PATH "/data/intel/libittnotify.so"
+
+/* the function pointers */
+typedef unsigned int(*TPInitialize)(void);
+static TPInitialize FUNC_Initialize=NULL;
+
+typedef unsigned int(*TPNotify)(unsigned int, void*);
+static TPNotify FUNC_NotifyEvent=NULL;
+
+static iJIT_IsProfilingActiveFlags executionMode = iJIT_NOTHING_RUNNING;
+
+/* end collector dll part. */
+
+/* loadiJIT_Funcs() : this function is called just in the beginning
+ * and is responsible to load the functions from BistroJavaCollector.dll
+ * result:
+ * on success: the functions loads, iJIT_DLL_is_missing=0, return value = 1
+ * on failure: the functions are NULL, iJIT_DLL_is_missing=1, return value = 0
+ */
+static int loadiJIT_Funcs(void);
+
+/* global representing whether the BistroJavaCollector can't be loaded */
+static int iJIT_DLL_is_missing = 0;
+
+/* Virtual stack - the struct is used as a virtual stack for each thread.
+ * Every thread initializes with a stack of size INIT_TOP_STACK.
+ * Every method entry decreases from the current stack point,
+ * and when a thread stack reaches its top of stack (return from the global
+ * function), the top of stack and the current stack increase. Notice that
+ * when returning from a function the stack pointer is the address of
+ * the function return.
+*/
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+static DWORD threadLocalStorageHandle = 0;
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+static pthread_key_t threadLocalStorageHandle = (pthread_key_t)0;
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+#define INIT_TOP_Stack 10000
+
+typedef struct
+{
+ unsigned int TopStack;
+ unsigned int CurrentStack;
+} ThreadStack, *pThreadStack;
+
+/* end of virtual stack. */
+
+/*
+ * The function for reporting virtual-machine related events to VTune.
+ * Note: when reporting iJVM_EVENT_TYPE_ENTER_NIDS, there is no need to fill
+ * in the stack_id field in the iJIT_Method_NIDS structure, as VTune fills it.
+ * The return value in iJVM_EVENT_TYPE_ENTER_NIDS &&
+ * iJVM_EVENT_TYPE_LEAVE_NIDS events will be 0 in case of failure.
+ * in iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED event
+ * it will be -1 if EventSpecificData == 0 otherwise it will be 0.
+*/
+
+ITT_EXTERN_C int JITAPI
+iJIT_NotifyEvent(iJIT_JVM_EVENT event_type, void *EventSpecificData)
+{
+ int ReturnValue;
+
+ /*
+ * This section is for debugging outside of VTune.
+ * It creates the environment variables that indicates call graph mode.
+ * If running outside of VTune remove the remark.
+ *
+ *
+ * static int firstTime = 1;
+ * char DoCallGraph[12] = "DoCallGraph";
+ * if (firstTime)
+ * {
+ * firstTime = 0;
+ * SetEnvironmentVariable( "BISTRO_COLLECTORS_DO_CALLGRAPH", DoCallGraph);
+ * }
+ *
+ * end of section.
+ */
+
+ /* initialization part - the functions have not been loaded yet. This part
+ * will load the functions, and check if we are in Call Graph mode.
+ * (for special treatment).
+ */
+ if (!FUNC_NotifyEvent)
+ {
+ if (iJIT_DLL_is_missing)
+ return 0;
+
+ /* load the Function from the DLL */
+ if (!loadiJIT_Funcs())
+ return 0;
+
+ /* Call Graph initialization. */
+ }
+
+ /* If the event is method entry/exit, check that in the current mode
+ * VTune is allowed to receive it
+ */
+ if ((event_type == iJVM_EVENT_TYPE_ENTER_NIDS ||
+ event_type == iJVM_EVENT_TYPE_LEAVE_NIDS) &&
+ (executionMode != iJIT_CALLGRAPH_ON))
+ {
+ return 0;
+ }
+ /* This section is performed when method enter event occurs.
+ * It updates the virtual stack, or creates it if this is the first
+ * method entry in the thread. The stack pointer is decreased.
+ */
+ if (event_type == iJVM_EVENT_TYPE_ENTER_NIDS)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ pThreadStack threadStack =
+ (pThreadStack)TlsGetValue (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pThreadStack threadStack =
+ (pThreadStack)pthread_getspecific(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ /* check for use of reserved method IDs */
+ if ( ((piJIT_Method_NIDS) EventSpecificData)->method_id <= 999 )
+ return 0;
+
+ if (!threadStack)
+ {
+ /* initialize the stack. */
+ threadStack = (pThreadStack) calloc (sizeof(ThreadStack), 1);
+ threadStack->TopStack = INIT_TOP_Stack;
+ threadStack->CurrentStack = INIT_TOP_Stack;
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ TlsSetValue(threadLocalStorageHandle,(void*)threadStack);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_setspecific(threadLocalStorageHandle,(void*)threadStack);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+
+ /* decrease the stack. */
+ ((piJIT_Method_NIDS) EventSpecificData)->stack_id =
+ (threadStack->CurrentStack)--;
+ }
+
+ /* This section is performed when method leave event occurs
+ * It updates the virtual stack.
+ * Increases the stack pointer.
+ * If the stack pointer reached the top (left the global function)
+ * increase the pointer and the top pointer.
+ */
+ if (event_type == iJVM_EVENT_TYPE_LEAVE_NIDS)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ pThreadStack threadStack =
+ (pThreadStack)TlsGetValue (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pThreadStack threadStack =
+ (pThreadStack)pthread_getspecific(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ /* check for use of reserved method IDs */
+ if ( ((piJIT_Method_NIDS) EventSpecificData)->method_id <= 999 )
+ return 0;
+
+ if (!threadStack)
+ {
+ /* Error: first report in this thread is method exit */
+ exit (1);
+ }
+
+ ((piJIT_Method_NIDS) EventSpecificData)->stack_id =
+ ++(threadStack->CurrentStack) + 1;
+
+ if (((piJIT_Method_NIDS) EventSpecificData)->stack_id
+ > threadStack->TopStack)
+ ((piJIT_Method_NIDS) EventSpecificData)->stack_id =
+ (unsigned int)-1;
+ }
+
+ if (event_type == iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED)
+ {
+ /* check for use of reserved method IDs */
+ if ( ((piJIT_Method_Load) EventSpecificData)->method_id <= 999 )
+ return 0;
+ }
+
+ ReturnValue = (int)FUNC_NotifyEvent(event_type, EventSpecificData);
+
+ return ReturnValue;
+}
+
+/* The new mode call back routine */
+ITT_EXTERN_C void JITAPI
+iJIT_RegisterCallbackEx(void *userdata, iJIT_ModeChangedEx
+ NewModeCallBackFuncEx)
+{
+ /* is it already missing... or the load of functions from the DLL failed */
+ if (iJIT_DLL_is_missing || !loadiJIT_Funcs())
+ {
+ /* then do not bother with notifications */
+ NewModeCallBackFuncEx(userdata, iJIT_NO_NOTIFICATIONS);
+ /* Error: could not load JIT functions. */
+ return;
+ }
+ /* nothing to do with the callback */
+}
+
+/*
+ * This function allows the user to query in which mode, if at all,
+ *VTune is running
+ */
+ITT_EXTERN_C iJIT_IsProfilingActiveFlags JITAPI iJIT_IsProfilingActive()
+{
+ if (!iJIT_DLL_is_missing)
+ {
+ loadiJIT_Funcs();
+ }
+
+ return executionMode;
+}
+
+/* this function loads the collector dll (BistroJavaCollector)
+ * and the relevant functions.
+ * on success: all functions load, iJIT_DLL_is_missing = 0, return value = 1
+ * on failure: all functions are NULL, iJIT_DLL_is_missing = 1, return value = 0
+ */
+static int loadiJIT_Funcs()
+{
+ static int bDllWasLoaded = 0;
+ char *dllName = (char*)rcsid; /* !! Just to avoid unused code elimination */
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ DWORD dNameLength = 0;
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ if(bDllWasLoaded)
+ {
+ /* dll was already loaded, no need to do it for the second time */
+ return 1;
+ }
+
+ /* Assumes that the DLL will not be found */
+ iJIT_DLL_is_missing = 1;
+ FUNC_NotifyEvent = NULL;
+
+ if (m_libHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FreeLibrary(m_libHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ dlclose(m_libHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ m_libHandle = NULL;
+ }
+
+ /* Try to get the dll name from the environment */
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ dNameLength = GetEnvironmentVariableA(NEW_DLL_ENVIRONMENT_VAR, NULL, 0);
+ if (dNameLength)
+ {
+ DWORD envret = 0;
+ dllName = (char*)malloc(sizeof(char) * (dNameLength + 1));
+ envret = GetEnvironmentVariableA(NEW_DLL_ENVIRONMENT_VAR,
+ dllName, dNameLength);
+ if (envret)
+ {
+ /* Try to load the dll from the PATH... */
+ m_libHandle = LoadLibraryExA(dllName,
+ NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
+ }
+ free(dllName);
+ } else {
+ /* Try to use old VS_PROFILER variable */
+ dNameLength = GetEnvironmentVariableA(DLL_ENVIRONMENT_VAR, NULL, 0);
+ if (dNameLength)
+ {
+ DWORD envret = 0;
+ dllName = (char*)malloc(sizeof(char) * (dNameLength + 1));
+ envret = GetEnvironmentVariableA(DLL_ENVIRONMENT_VAR,
+ dllName, dNameLength);
+ if (envret)
+ {
+ /* Try to load the dll from the PATH... */
+ m_libHandle = LoadLibraryA(dllName);
+ }
+ free(dllName);
+ }
+ }
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ dllName = getenv(NEW_DLL_ENVIRONMENT_VAR);
+ if (!dllName)
+ dllName = getenv(DLL_ENVIRONMENT_VAR);
+#ifdef ANDROID
+ if (!dllName)
+ dllName = ANDROID_JIT_AGENT_PATH;
+#endif
+ if (dllName)
+ {
+ /* Try to load the dll from the PATH... */
+ m_libHandle = dlopen(dllName, RTLD_LAZY);
+ }
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+
+ if (!m_libHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ m_libHandle = LoadLibraryA(DEFAULT_DLLNAME);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ m_libHandle = dlopen(DEFAULT_DLLNAME, RTLD_LAZY);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+
+ /* if the dll wasn't loaded - exit. */
+ if (!m_libHandle)
+ {
+ iJIT_DLL_is_missing = 1; /* don't try to initialize
+ * JIT agent the second time
+ */
+ return 0;
+ }
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FUNC_NotifyEvent = (TPNotify)GetProcAddress(m_libHandle, "NotifyEvent");
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ FUNC_NotifyEvent = (TPNotify)dlsym(m_libHandle, "NotifyEvent");
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ if (!FUNC_NotifyEvent)
+ {
+ FUNC_Initialize = NULL;
+ return 0;
+ }
+
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FUNC_Initialize = (TPInitialize)GetProcAddress(m_libHandle, "Initialize");
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ FUNC_Initialize = (TPInitialize)dlsym(m_libHandle, "Initialize");
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ if (!FUNC_Initialize)
+ {
+ FUNC_NotifyEvent = NULL;
+ return 0;
+ }
+
+ executionMode = (iJIT_IsProfilingActiveFlags)FUNC_Initialize();
+
+ bDllWasLoaded = 1;
+ iJIT_DLL_is_missing = 0; /* DLL is ok. */
+
+ /*
+ * Call Graph mode: init the thread local storage
+ * (need to store the virtual stack there).
+ */
+ if ( executionMode == iJIT_CALLGRAPH_ON )
+ {
+ /* Allocate a thread local storage slot for the thread "stack" */
+ if (!threadLocalStorageHandle)
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ threadLocalStorageHandle = TlsAlloc();
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_key_create(&threadLocalStorageHandle, NULL);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+
+ return 1;
+}
+
+/*
+ * This function should be called by the user whenever a thread ends,
+ * to free the thread "virtual stack" storage
+ */
+ITT_EXTERN_C void JITAPI FinalizeThread()
+{
+ if (threadLocalStorageHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ pThreadStack threadStack =
+ (pThreadStack)TlsGetValue (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pThreadStack threadStack =
+ (pThreadStack)pthread_getspecific(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ if (threadStack)
+ {
+ free (threadStack);
+ threadStack = NULL;
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ TlsSetValue (threadLocalStorageHandle, threadStack);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_setspecific(threadLocalStorageHandle, threadStack);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ }
+ }
+}
+
+/*
+ * This function should be called by the user when the process ends,
+ * to free the local storage index
+*/
+ITT_EXTERN_C void JITAPI FinalizeProcess()
+{
+ if (m_libHandle)
+ {
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ FreeLibrary(m_libHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ dlclose(m_libHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ m_libHandle = NULL;
+ }
+
+ if (threadLocalStorageHandle)
+#if ITT_PLATFORM==ITT_PLATFORM_WIN
+ TlsFree (threadLocalStorageHandle);
+#else /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+ pthread_key_delete(threadLocalStorageHandle);
+#endif /* ITT_PLATFORM==ITT_PLATFORM_WIN */
+}
+
+/*
+ * This function should be called by the user for any method once.
+ * The function will return a unique method ID, the user should maintain
+ * the ID for each method
+ */
+ITT_EXTERN_C unsigned int JITAPI iJIT_GetNewMethodID()
+{
+ static unsigned int methodID = 0x100000;
+
+ if (methodID == 0)
+ return 0; /* ERROR : this is not a valid value */
+
+ return methodID++;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h
new file mode 100644
index 0000000..f08e287
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/IntelJITEvents/jitprofiling.h
@@ -0,0 +1,259 @@
+/*===-- jitprofiling.h - JIT Profiling API-------------------------*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file provides Intel(R) Performance Analyzer JIT (Just-In-Time)
+ * Profiling API declaration.
+ *
+ * NOTE: This file comes in a style different from the rest of LLVM
+ * source base since this is a piece of code shared from Intel(R)
+ * products. Please do not reformat / re-style this code to make
+ * subsequent merges and contributions from the original source base eaiser.
+ *
+ *===----------------------------------------------------------------------===*/
+#ifndef __JITPROFILING_H__
+#define __JITPROFILING_H__
+
+/*
+ * Various constants used by functions
+ */
+
+/* event notification */
+typedef enum iJIT_jvm_event
+{
+
+ /* shutdown */
+
+ /*
+ * Program exiting EventSpecificData NA
+ */
+ iJVM_EVENT_TYPE_SHUTDOWN = 2,
+
+ /* JIT profiling */
+
+ /*
+ * issued after method code jitted into memory but before code is executed
+ * EventSpecificData is an iJIT_Method_Load
+ */
+ iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED=13,
+
+ /* issued before unload. Method code will no longer be executed, but code
+ * and info are still in memory. The VTune profiler may capture method
+ * code only at this point EventSpecificData is iJIT_Method_Id
+ */
+ iJVM_EVENT_TYPE_METHOD_UNLOAD_START,
+
+ /* Method Profiling */
+
+ /* method name, Id and stack is supplied
+ * issued when a method is about to be entered EventSpecificData is
+ * iJIT_Method_NIDS
+ */
+ iJVM_EVENT_TYPE_ENTER_NIDS = 19,
+
+ /* method name, Id and stack is supplied
+ * issued when a method is about to be left EventSpecificData is
+ * iJIT_Method_NIDS
+ */
+ iJVM_EVENT_TYPE_LEAVE_NIDS
+} iJIT_JVM_EVENT;
+
+typedef enum _iJIT_ModeFlags
+{
+ /* No need to Notify VTune, since VTune is not running */
+ iJIT_NO_NOTIFICATIONS = 0x0000,
+
+ /* when turned on the jit must call
+ * iJIT_NotifyEvent
+ * (
+ * iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED,
+ * )
+ * for all the method already jitted
+ */
+ iJIT_BE_NOTIFY_ON_LOAD = 0x0001,
+
+ /* when turned on the jit must call
+ * iJIT_NotifyEvent
+ * (
+ * iJVM_EVENT_TYPE_METHOD_UNLOAD_FINISHED,
+ * ) for all the method that are unloaded
+ */
+ iJIT_BE_NOTIFY_ON_UNLOAD = 0x0002,
+
+ /* when turned on the jit must instrument all
+ * the currently jited code with calls on
+ * method entries
+ */
+ iJIT_BE_NOTIFY_ON_METHOD_ENTRY = 0x0004,
+
+ /* when turned on the jit must instrument all
+ * the currently jited code with calls
+ * on method exit
+ */
+ iJIT_BE_NOTIFY_ON_METHOD_EXIT = 0x0008
+
+} iJIT_ModeFlags;
+
+
+ /* Flags used by iJIT_IsProfilingActive() */
+typedef enum _iJIT_IsProfilingActiveFlags
+{
+ /* No profiler is running. Currently not used */
+ iJIT_NOTHING_RUNNING = 0x0000,
+
+ /* Sampling is running. This is the default value
+ * returned by iJIT_IsProfilingActive()
+ */
+ iJIT_SAMPLING_ON = 0x0001,
+
+ /* Call Graph is running */
+ iJIT_CALLGRAPH_ON = 0x0002
+
+} iJIT_IsProfilingActiveFlags;
+
+/* Enumerator for the environment of methods*/
+typedef enum _iJDEnvironmentType
+{
+ iJDE_JittingAPI = 2
+} iJDEnvironmentType;
+
+/**********************************
+ * Data structures for the events *
+ **********************************/
+
+/* structure for the events:
+ * iJVM_EVENT_TYPE_METHOD_UNLOAD_START
+ */
+
+typedef struct _iJIT_Method_Id
+{
+ /* Id of the method (same as the one passed in
+ * the iJIT_Method_Load struct
+ */
+ unsigned int method_id;
+
+} *piJIT_Method_Id, iJIT_Method_Id;
+
+
+/* structure for the events:
+ * iJVM_EVENT_TYPE_ENTER_NIDS,
+ * iJVM_EVENT_TYPE_LEAVE_NIDS,
+ * iJVM_EVENT_TYPE_EXCEPTION_OCCURRED_NIDS
+ */
+
+typedef struct _iJIT_Method_NIDS
+{
+ /* unique method ID */
+ unsigned int method_id;
+
+ /* NOTE: no need to fill this field, it's filled by VTune */
+ unsigned int stack_id;
+
+ /* method name (just the method, without the class) */
+ char* method_name;
+} *piJIT_Method_NIDS, iJIT_Method_NIDS;
+
+/* structures for the events:
+ * iJVM_EVENT_TYPE_METHOD_LOAD_FINISHED
+ */
+
+typedef struct _LineNumberInfo
+{
+ /* x86 Offset from the begining of the method*/
+ unsigned int Offset;
+
+ /* source line number from the begining of the source file */
+ unsigned int LineNumber;
+
+} *pLineNumberInfo, LineNumberInfo;
+
+typedef struct _iJIT_Method_Load
+{
+ /* unique method ID - can be any unique value, (except 0 - 999) */
+ unsigned int method_id;
+
+ /* method name (can be with or without the class and signature, in any case
+ * the class name will be added to it)
+ */
+ char* method_name;
+
+ /* virtual address of that method - This determines the method range for the
+ * iJVM_EVENT_TYPE_ENTER/LEAVE_METHOD_ADDR events
+ */
+ void* method_load_address;
+
+ /* Size in memory - Must be exact */
+ unsigned int method_size;
+
+ /* Line Table size in number of entries - Zero if none */
+ unsigned int line_number_size;
+
+ /* Pointer to the begining of the line numbers info array */
+ pLineNumberInfo line_number_table;
+
+ /* unique class ID */
+ unsigned int class_id;
+
+ /* class file name */
+ char* class_file_name;
+
+ /* source file name */
+ char* source_file_name;
+
+ /* bits supplied by the user for saving in the JIT file */
+ void* user_data;
+
+ /* the size of the user data buffer */
+ unsigned int user_data_size;
+
+ /* NOTE: no need to fill this field, it's filled by VTune */
+ iJDEnvironmentType env;
+
+} *piJIT_Method_Load, iJIT_Method_Load;
+
+/* API Functions */
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifndef CDECL
+# if defined WIN32 || defined _WIN32
+# define CDECL __cdecl
+# else /* defined WIN32 || defined _WIN32 */
+# if defined _M_X64 || defined _M_AMD64 || defined __x86_64__
+# define CDECL /* not actual on x86_64 platform */
+# else /* _M_X64 || _M_AMD64 || __x86_64__ */
+# define CDECL __attribute__ ((cdecl))
+# endif /* _M_X64 || _M_AMD64 || __x86_64__ */
+# endif /* defined WIN32 || defined _WIN32 */
+#endif /* CDECL */
+
+#define JITAPI CDECL
+
+/* called when the settings are changed with new settings */
+typedef void (*iJIT_ModeChangedEx)(void *UserData, iJIT_ModeFlags Flags);
+
+int JITAPI iJIT_NotifyEvent(iJIT_JVM_EVENT event_type, void *EventSpecificData);
+
+/* The new mode call back routine */
+void JITAPI iJIT_RegisterCallbackEx(void *userdata,
+ iJIT_ModeChangedEx NewModeCallBackFuncEx);
+
+iJIT_IsProfilingActiveFlags JITAPI iJIT_IsProfilingActive(void);
+
+void JITAPI FinalizeThread(void);
+
+void JITAPI FinalizeProcess(void);
+
+unsigned int JITAPI iJIT_GetNewMethodID(void);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __JITPROFILING_H__ */
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
new file mode 100644
index 0000000..526c04e
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -0,0 +1,1396 @@
+//===-- Execution.cpp - Implement code to simulate the program ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the actual instruction interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "interpreter"
+#include "Interpreter.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
+
+static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
+ cl::desc("make the interpreter print every volatile load and store"));
+
+//===----------------------------------------------------------------------===//
+// Various Helper Functions
+//===----------------------------------------------------------------------===//
+
+static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
+ SF.Values[V] = Val;
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
+ case Type::TY##TyID: \
+ Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
+ break
+
+static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(+, Float);
+ IMPLEMENT_BINARY_OPERATOR(+, Double);
+ default:
+ dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+}
+
+static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(-, Float);
+ IMPLEMENT_BINARY_OPERATOR(-, Double);
+ default:
+ dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+}
+
+static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(*, Float);
+ IMPLEMENT_BINARY_OPERATOR(*, Double);
+ default:
+ dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+}
+
+static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_BINARY_OPERATOR(/, Float);
+ IMPLEMENT_BINARY_OPERATOR(/, Double);
+ default:
+ dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+}
+
+static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::FloatTyID:
+ Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
+ break;
+ default:
+ dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+}
+
+#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
+ case Type::IntegerTyID: \
+ Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
+ break;
+
+// Handle pointers specially because they must be compared with only as much
+// width as the host has. We _do not_ want to be comparing 64 bit values when
+// running on a 32-bit target, otherwise the upper 32 bits might mess up
+// comparisons if they contain garbage.
+#define IMPLEMENT_POINTER_ICMP(OP) \
+ case Type::PointerTyID: \
+ Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
+ (void*)(intptr_t)Src2.PointerVal); \
+ break;
+
+static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(eq,Ty);
+ IMPLEMENT_POINTER_ICMP(==);
+ default:
+ dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ne,Ty);
+ IMPLEMENT_POINTER_ICMP(!=);
+ default:
+ dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ult,Ty);
+ IMPLEMENT_POINTER_ICMP(<);
+ default:
+ dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(slt,Ty);
+ IMPLEMENT_POINTER_ICMP(<);
+ default:
+ dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ugt,Ty);
+ IMPLEMENT_POINTER_ICMP(>);
+ default:
+ dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sgt,Ty);
+ IMPLEMENT_POINTER_ICMP(>);
+ default:
+ dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(ule,Ty);
+ IMPLEMENT_POINTER_ICMP(<=);
+ default:
+ dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sle,Ty);
+ IMPLEMENT_POINTER_ICMP(<=);
+ default:
+ dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(uge,Ty);
+ IMPLEMENT_POINTER_ICMP(>=);
+ default:
+ dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_INTEGER_ICMP(sge,Ty);
+ IMPLEMENT_POINTER_ICMP(>=);
+ default:
+ dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+void Interpreter::visitICmpInst(ICmpInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
+ case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
+ default:
+ dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
+ llvm_unreachable(0);
+ }
+
+ SetValue(&I, R, SF);
+}
+
+#define IMPLEMENT_FCMP(OP, TY) \
+ case Type::TY##TyID: \
+ Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
+ break
+
+static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(==, Float);
+ IMPLEMENT_FCMP(==, Double);
+ default:
+ dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(!=, Float);
+ IMPLEMENT_FCMP(!=, Double);
+
+ default:
+ dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(<=, Float);
+ IMPLEMENT_FCMP(<=, Double);
+ default:
+ dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(>=, Float);
+ IMPLEMENT_FCMP(>=, Double);
+ default:
+ dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(<, Float);
+ IMPLEMENT_FCMP(<, Double);
+ default:
+ dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ switch (Ty->getTypeID()) {
+ IMPLEMENT_FCMP(>, Float);
+ IMPLEMENT_FCMP(>, Double);
+ default:
+ dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+ return Dest;
+}
+
+#define IMPLEMENT_UNORDERED(TY, X,Y) \
+ if (TY->isFloatTy()) { \
+ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
+ Dest.IntVal = APInt(1,true); \
+ return Dest; \
+ } \
+ } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
+ Dest.IntVal = APInt(1,true); \
+ return Dest; \
+ }
+
+
+static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OEQ(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_ONE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OLE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OGE(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OLT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ IMPLEMENT_UNORDERED(Ty, Src1, Src2)
+ return executeFCMP_OGT(Src1, Src2, Ty);
+}
+
+static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ if (Ty->isFloatTy())
+ Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
+ Src2.FloatVal == Src2.FloatVal));
+ else
+ Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
+ Src2.DoubleVal == Src2.DoubleVal));
+ return Dest;
+}
+
+static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
+ Type *Ty) {
+ GenericValue Dest;
+ if (Ty->isFloatTy())
+ Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
+ Src2.FloatVal != Src2.FloatVal));
+ else
+ Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
+ Src2.DoubleVal != Src2.DoubleVal));
+ return Dest;
+}
+
+void Interpreter::visitFCmpInst(FCmpInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getPredicate()) {
+ case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
+ case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
+ case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
+ case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
+ default:
+ dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
+ llvm_unreachable(0);
+ }
+
+ SetValue(&I, R, SF);
+}
+
+static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
+ GenericValue Src2, Type *Ty) {
+ GenericValue Result;
+ switch (predicate) {
+ case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
+ case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
+ case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
+ case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
+ case FCmpInst::FCMP_FALSE: {
+ GenericValue Result;
+ Result.IntVal = APInt(1, false);
+ return Result;
+ }
+ case FCmpInst::FCMP_TRUE: {
+ GenericValue Result;
+ Result.IntVal = APInt(1, true);
+ return Result;
+ }
+ default:
+ dbgs() << "Unhandled Cmp predicate\n";
+ llvm_unreachable(0);
+ }
+}
+
+void Interpreter::visitBinaryOperator(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *Ty = I.getOperand(0)->getType();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue R; // Result
+
+ switch (I.getOpcode()) {
+ case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
+ case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
+ case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
+ case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
+ case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
+ case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
+ case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
+ case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
+ case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
+ case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
+ case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
+ case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
+ case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
+ case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
+ default:
+ dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
+ llvm_unreachable(0);
+ }
+
+ SetValue(&I, R, SF);
+}
+
+static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
+ GenericValue Src3) {
+ return Src1.IntVal == 0 ? Src3 : Src2;
+}
+
+void Interpreter::visitSelectInst(SelectInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
+ GenericValue R = executeSelectInst(Src1, Src2, Src3);
+ SetValue(&I, R, SF);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Terminator Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::exitCalled(GenericValue GV) {
+ // runAtExitHandlers() assumes there are no stack frames, but
+ // if exit() was called, then it had a stack frame. Blow away
+ // the stack before interpreting atexit handlers.
+ ECStack.clear();
+ runAtExitHandlers();
+ exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
+}
+
+/// Pop the last stack frame off of ECStack and then copy the result
+/// back into the result variable if we are not returning void. The
+/// result variable may be the ExitValue, or the Value of the calling
+/// CallInst if there was a previous stack frame. This method may
+/// invalidate any ECStack iterators you have. This method also takes
+/// care of switching to the normal destination BB, if we are returning
+/// from an invoke.
+///
+void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
+ GenericValue Result) {
+ // Pop the current stack frame.
+ ECStack.pop_back();
+
+ if (ECStack.empty()) { // Finished main. Put result into exit code...
+ if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
+ ExitValue = Result; // Capture the exit value of the program
+ } else {
+ memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
+ }
+ } else {
+ // If we have a previous stack frame, and we have a previous call,
+ // fill in the return value...
+ ExecutionContext &CallingSF = ECStack.back();
+ if (Instruction *I = CallingSF.Caller.getInstruction()) {
+ // Save result...
+ if (!CallingSF.Caller.getType()->isVoidTy())
+ SetValue(I, Result, CallingSF);
+ if (InvokeInst *II = dyn_cast<InvokeInst> (I))
+ SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
+ CallingSF.Caller = CallSite(); // We returned from the call...
+ }
+ }
+}
+
+void Interpreter::visitReturnInst(ReturnInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Type *RetTy = Type::getVoidTy(I.getContext());
+ GenericValue Result;
+
+ // Save away the return value... (if we are not 'ret void')
+ if (I.getNumOperands()) {
+ RetTy = I.getReturnValue()->getType();
+ Result = getOperandValue(I.getReturnValue(), SF);
+ }
+
+ popStackAndReturnValueToCaller(RetTy, Result);
+}
+
+void Interpreter::visitUnreachableInst(UnreachableInst &I) {
+ report_fatal_error("Program executed an 'unreachable' instruction!");
+}
+
+void Interpreter::visitBranchInst(BranchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ BasicBlock *Dest;
+
+ Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
+ if (!I.isUnconditional()) {
+ Value *Cond = I.getCondition();
+ if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
+ Dest = I.getSuccessor(1);
+ }
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+void Interpreter::visitSwitchInst(SwitchInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ Value* Cond = I.getCondition();
+ Type *ElTy = Cond->getType();
+ GenericValue CondVal = getOperandValue(Cond, SF);
+
+ // Check to see if any of the cases match...
+ BasicBlock *Dest = 0;
+ for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
+ IntegersSubset& Case = i.getCaseValueEx();
+ if (Case.isSingleNumber()) {
+ // FIXME: Currently work with ConstantInt based numbers.
+ const ConstantInt *CI = Case.getSingleNumber(0).toConstantInt();
+ GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
+ if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
+ Dest = cast<BasicBlock>(i.getCaseSuccessor());
+ break;
+ }
+ }
+ if (Case.isSingleNumbersOnly()) {
+ for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
+ // FIXME: Currently work with ConstantInt based numbers.
+ const ConstantInt *CI = Case.getSingleNumber(n).toConstantInt();
+ GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
+ if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
+ Dest = cast<BasicBlock>(i.getCaseSuccessor());
+ break;
+ }
+ }
+ } else
+ for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
+ IntegersSubset::Range r = Case.getItem(n);
+ // FIXME: Currently work with ConstantInt based numbers.
+ const ConstantInt *LowCI = r.getLow().toConstantInt();
+ const ConstantInt *HighCI = r.getHigh().toConstantInt();
+ GenericValue Low = getOperandValue(const_cast<ConstantInt*>(LowCI), SF);
+ GenericValue High = getOperandValue(const_cast<ConstantInt*>(HighCI), SF);
+ if (executeICMP_ULE(Low, CondVal, ElTy).IntVal != 0 &&
+ executeICMP_ULE(CondVal, High, ElTy).IntVal != 0) {
+ Dest = cast<BasicBlock>(i.getCaseSuccessor());
+ break;
+ }
+ }
+ }
+ if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
+ SwitchToNewBasicBlock(Dest, SF);
+}
+
+void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
+ SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
+}
+
+
+// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
+// This function handles the actual updating of block and instruction iterators
+// as well as execution of all of the PHI nodes in the destination block.
+//
+// This method does this because all of the PHI nodes must be executed
+// atomically, reading their inputs before any of the results are updated. Not
+// doing this can cause problems if the PHI nodes depend on other PHI nodes for
+// their inputs. If the input PHI node is updated before it is read, incorrect
+// results can happen. Thus we use a two phase approach.
+//
+void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
+ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
+ SF.CurBB = Dest; // Update CurBB to branch destination
+ SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
+
+ if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
+
+ // Loop over all of the PHI nodes in the current block, reading their inputs.
+ std::vector<GenericValue> ResultValues;
+
+ for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
+ // Search for the value corresponding to this previous bb...
+ int i = PN->getBasicBlockIndex(PrevBB);
+ assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
+ Value *IncomingValue = PN->getIncomingValue(i);
+
+ // Save the incoming value for this PHI node...
+ ResultValues.push_back(getOperandValue(IncomingValue, SF));
+ }
+
+ // Now loop over all of the PHI nodes setting their values...
+ SF.CurInst = SF.CurBB->begin();
+ for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
+ PHINode *PN = cast<PHINode>(SF.CurInst);
+ SetValue(PN, ResultValues[i], SF);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitAllocaInst(AllocaInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ Type *Ty = I.getType()->getElementType(); // Type to be allocated
+
+ // Get the number of elements being allocated by the array...
+ unsigned NumElements =
+ getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
+
+ unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
+
+ // Avoid malloc-ing zero bytes, use max()...
+ unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
+
+ // Allocate enough memory to hold the type...
+ void *Memory = malloc(MemToAlloc);
+
+ DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
+ << NumElements << " (Total: " << MemToAlloc << ") at "
+ << uintptr_t(Memory) << '\n');
+
+ GenericValue Result = PTOGV(Memory);
+ assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
+ SetValue(&I, Result, SF);
+
+ if (I.getOpcode() == Instruction::Alloca)
+ ECStack.back().Allocas.add(Memory);
+}
+
+// getElementOffset - The workhorse for getelementptr.
+//
+GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E,
+ ExecutionContext &SF) {
+ assert(Ptr->getType()->isPointerTy() &&
+ "Cannot getElementOffset of a nonpointer type!");
+
+ uint64_t Total = 0;
+
+ for (; I != E; ++I) {
+ if (StructType *STy = dyn_cast<StructType>(*I)) {
+ const StructLayout *SLO = TD.getStructLayout(STy);
+
+ const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
+ unsigned Index = unsigned(CPU->getZExtValue());
+
+ Total += SLO->getElementOffset(Index);
+ } else {
+ SequentialType *ST = cast<SequentialType>(*I);
+ // Get the index number for the array... which must be long type...
+ GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
+
+ int64_t Idx;
+ unsigned BitWidth =
+ cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
+ if (BitWidth == 32)
+ Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
+ else {
+ assert(BitWidth == 64 && "Invalid index type for getelementptr");
+ Idx = (int64_t)IdxGV.IntVal.getZExtValue();
+ }
+ Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
+ }
+ }
+
+ GenericValue Result;
+ Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
+ DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
+ return Result;
+}
+
+void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeGEPOperation(I.getPointerOperand(),
+ gep_type_begin(I), gep_type_end(I), SF), SF);
+}
+
+void Interpreter::visitLoadInst(LoadInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
+ GenericValue Result;
+ LoadValueFromMemory(Result, Ptr, I.getType());
+ SetValue(&I, Result, SF);
+ if (I.isVolatile() && PrintVolatile)
+ dbgs() << "Volatile load " << I;
+}
+
+void Interpreter::visitStoreInst(StoreInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Val = getOperandValue(I.getOperand(0), SF);
+ GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
+ StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
+ I.getOperand(0)->getType());
+ if (I.isVolatile() && PrintVolatile)
+ dbgs() << "Volatile store: " << I;
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous Instruction Implementations
+//===----------------------------------------------------------------------===//
+
+void Interpreter::visitCallSite(CallSite CS) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Check to see if this is an intrinsic function call...
+ Function *F = CS.getCalledFunction();
+ if (F && F->isDeclaration())
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::not_intrinsic:
+ break;
+ case Intrinsic::vastart: { // va_start
+ GenericValue ArgIndex;
+ ArgIndex.UIntPairVal.first = ECStack.size() - 1;
+ ArgIndex.UIntPairVal.second = 0;
+ SetValue(CS.getInstruction(), ArgIndex, SF);
+ return;
+ }
+ case Intrinsic::vaend: // va_end is a noop for the interpreter
+ return;
+ case Intrinsic::vacopy: // va_copy: dest = src
+ SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
+ return;
+ default:
+ // If it is an unknown intrinsic function, use the intrinsic lowering
+ // class to transform it into hopefully tasty LLVM code.
+ //
+ BasicBlock::iterator me(CS.getInstruction());
+ BasicBlock *Parent = CS.getInstruction()->getParent();
+ bool atBegin(Parent->begin() == me);
+ if (!atBegin)
+ --me;
+ IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
+
+ // Restore the CurInst pointer to the first instruction newly inserted, if
+ // any.
+ if (atBegin) {
+ SF.CurInst = Parent->begin();
+ } else {
+ SF.CurInst = me;
+ ++SF.CurInst;
+ }
+ return;
+ }
+
+
+ SF.Caller = CS;
+ std::vector<GenericValue> ArgVals;
+ const unsigned NumArgs = SF.Caller.arg_size();
+ ArgVals.reserve(NumArgs);
+ uint16_t pNum = 1;
+ for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
+ e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
+ Value *V = *i;
+ ArgVals.push_back(getOperandValue(V, SF));
+ }
+
+ // To handle indirect calls, we must get the pointer value from the argument
+ // and treat it as a function pointer.
+ GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
+ callFunction((Function*)GVTOP(SRC), ArgVals);
+}
+
+void Interpreter::visitShl(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
+ Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
+ else
+ Dest.IntVal = Src1.IntVal;
+
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitLShr(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
+ Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
+ else
+ Dest.IntVal = Src1.IntVal;
+
+ SetValue(&I, Dest, SF);
+}
+
+void Interpreter::visitAShr(BinaryOperator &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+ if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
+ Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
+ else
+ Dest.IntVal = Src1.IntVal;
+
+ SetValue(&I, Dest, SF);
+}
+
+GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.trunc(DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.sext(DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ IntegerType *DITy = cast<IntegerType>(DstTy);
+ unsigned DBitWidth = DITy->getBitWidth();
+ Dest.IntVal = Src.IntVal.zext(DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
+ "Invalid FPTrunc instruction");
+ Dest.FloatVal = (float) Src.DoubleVal;
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
+ "Invalid FPTrunc instruction");
+ Dest.DoubleVal = (double) Src.FloatVal;
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ Type *SrcTy = SrcVal->getType();
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ Type *SrcTy = SrcVal->getType();
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
+
+ if (SrcTy->getTypeID() == Type::FloatTyID)
+ Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
+ else
+ Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
+ return Dest;
+}
+
+GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
+
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
+ else
+ Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
+ return Dest;
+}
+
+GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
+
+ if (DstTy->getTypeID() == Type::FloatTyID)
+ Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
+ else
+ Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
+ return Dest;
+
+}
+
+GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
+
+ Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
+ return Dest;
+}
+
+GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
+
+ uint32_t PtrSize = TD.getPointerSizeInBits();
+ if (PtrSize != Src.IntVal.getBitWidth())
+ Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
+
+ Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
+ return Dest;
+}
+
+GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF) {
+
+ Type *SrcTy = SrcVal->getType();
+ GenericValue Dest, Src = getOperandValue(SrcVal, SF);
+ if (DstTy->isPointerTy()) {
+ assert(SrcTy->isPointerTy() && "Invalid BitCast");
+ Dest.PointerVal = Src.PointerVal;
+ } else if (DstTy->isIntegerTy()) {
+ if (SrcTy->isFloatTy()) {
+ Dest.IntVal = APInt::floatToBits(Src.FloatVal);
+ } else if (SrcTy->isDoubleTy()) {
+ Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
+ } else if (SrcTy->isIntegerTy()) {
+ Dest.IntVal = Src.IntVal;
+ } else
+ llvm_unreachable("Invalid BitCast");
+ } else if (DstTy->isFloatTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.FloatVal = Src.IntVal.bitsToFloat();
+ else
+ Dest.FloatVal = Src.FloatVal;
+ } else if (DstTy->isDoubleTy()) {
+ if (SrcTy->isIntegerTy())
+ Dest.DoubleVal = Src.IntVal.bitsToDouble();
+ else
+ Dest.DoubleVal = Src.DoubleVal;
+ } else
+ llvm_unreachable("Invalid Bitcast");
+
+ return Dest;
+}
+
+void Interpreter::visitTruncInst(TruncInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSExtInst(SExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitZExtInst(ZExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPTruncInst(FPTruncInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPExtInst(FPExtInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitUIToFPInst(UIToFPInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitSIToFPInst(SIToFPInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToUIInst(FPToUIInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitFPToSIInst(FPToSIInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+void Interpreter::visitBitCastInst(BitCastInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
+}
+
+#define IMPLEMENT_VAARG(TY) \
+ case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
+
+void Interpreter::visitVAArgInst(VAArgInst &I) {
+ ExecutionContext &SF = ECStack.back();
+
+ // Get the incoming valist parameter. LLI treats the valist as a
+ // (ec-stack-depth var-arg-index) pair.
+ GenericValue VAList = getOperandValue(I.getOperand(0), SF);
+ GenericValue Dest;
+ GenericValue Src = ECStack[VAList.UIntPairVal.first]
+ .VarArgs[VAList.UIntPairVal.second];
+ Type *Ty = I.getType();
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ Dest.IntVal = Src.IntVal;
+ break;
+ IMPLEMENT_VAARG(Pointer);
+ IMPLEMENT_VAARG(Float);
+ IMPLEMENT_VAARG(Double);
+ default:
+ dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
+
+ // Set the Value of this Instruction.
+ SetValue(&I, Dest, SF);
+
+ // Move the pointer to the next vararg.
+ ++VAList.UIntPairVal.second;
+}
+
+void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
+ ExecutionContext &SF = ECStack.back();
+ GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
+ GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
+ GenericValue Dest;
+
+ Type *Ty = I.getType();
+ const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
+
+ if(Src1.AggregateVal.size() > indx) {
+ switch (Ty->getTypeID()) {
+ default:
+ dbgs() << "Unhandled destination type for extractelement instruction: "
+ << *Ty << "\n";
+ llvm_unreachable(0);
+ break;
+ case Type::IntegerTyID:
+ Dest.IntVal = Src1.AggregateVal[indx].IntVal;
+ break;
+ case Type::FloatTyID:
+ Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
+ break;
+ case Type::DoubleTyID:
+ Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
+ break;
+ }
+ } else {
+ dbgs() << "Invalid index in extractelement instruction\n";
+ }
+
+ SetValue(&I, Dest, SF);
+}
+
+GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
+ ExecutionContext &SF) {
+ switch (CE->getOpcode()) {
+ case Instruction::Trunc:
+ return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::ZExt:
+ return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::SExt:
+ return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPTrunc:
+ return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPExt:
+ return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::UIToFP:
+ return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::SIToFP:
+ return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPToUI:
+ return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::FPToSI:
+ return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::PtrToInt:
+ return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::IntToPtr:
+ return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::BitCast:
+ return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
+ case Instruction::GetElementPtr:
+ return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
+ gep_type_end(CE), SF);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ return executeCmpInst(CE->getPredicate(),
+ getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ CE->getOperand(0)->getType());
+ case Instruction::Select:
+ return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
+ getOperandValue(CE->getOperand(1), SF),
+ getOperandValue(CE->getOperand(2), SF));
+ default :
+ break;
+ }
+
+ // The cases below here require a GenericValue parameter for the result
+ // so we initialize one, compute it and then return it.
+ GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
+ GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
+ GenericValue Dest;
+ Type * Ty = CE->getOperand(0)->getType();
+ switch (CE->getOpcode()) {
+ case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
+ case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
+ case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
+ case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
+ case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
+ case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
+ case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
+ case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
+ case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
+ case Instruction::Shl:
+ Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
+ break;
+ case Instruction::LShr:
+ Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
+ break;
+ case Instruction::AShr:
+ Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
+ break;
+ default:
+ dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
+ llvm_unreachable("Unhandled ConstantExpr");
+ }
+ return Dest;
+}
+
+GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ return getConstantExprValue(CE, SF);
+ } else if (Constant *CPV = dyn_cast<Constant>(V)) {
+ return getConstantValue(CPV);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ return PTOGV(getPointerToGlobal(GV));
+ } else {
+ return SF.Values[V];
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Dispatch and Execution Code
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// callFunction - Execute the specified function...
+//
+void Interpreter::callFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals) {
+ assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
+ ECStack.back().Caller.arg_size() == ArgVals.size()) &&
+ "Incorrect number of arguments passed into function call!");
+ // Make a new stack frame... and fill it in.
+ ECStack.push_back(ExecutionContext());
+ ExecutionContext &StackFrame = ECStack.back();
+ StackFrame.CurFunction = F;
+
+ // Special handling for external functions.
+ if (F->isDeclaration()) {
+ GenericValue Result = callExternalFunction (F, ArgVals);
+ // Simulate a 'ret' instruction of the appropriate type.
+ popStackAndReturnValueToCaller (F->getReturnType (), Result);
+ return;
+ }
+
+ // Get pointers to first LLVM BB & Instruction in function.
+ StackFrame.CurBB = F->begin();
+ StackFrame.CurInst = StackFrame.CurBB->begin();
+
+ // Run through the function arguments and initialize their values...
+ assert((ArgVals.size() == F->arg_size() ||
+ (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
+ "Invalid number of values passed to function invocation!");
+
+ // Handle non-varargs arguments...
+ unsigned i = 0;
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI, ++i)
+ SetValue(AI, ArgVals[i], StackFrame);
+
+ // Handle varargs arguments...
+ StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
+}
+
+
+void Interpreter::run() {
+ while (!ECStack.empty()) {
+ // Interpret a single instruction & increment the "PC".
+ ExecutionContext &SF = ECStack.back(); // Current stack frame
+ Instruction &I = *SF.CurInst++; // Increment before execute
+
+ // Track the number of dynamic instructions executed.
+ ++NumDynamicInsts;
+
+ DEBUG(dbgs() << "About to interpret: " << I);
+ visit(I); // Dispatch to one of the visit* methods...
+#if 0
+ // This is not safe, as visiting the instruction could lower it and free I.
+DEBUG(
+ if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
+ I.getType() != Type::VoidTy) {
+ dbgs() << " --> ";
+ const GenericValue &Val = SF.Values[&I];
+ switch (I.getType()->getTypeID()) {
+ default: llvm_unreachable("Invalid GenericValue Type");
+ case Type::VoidTyID: dbgs() << "void"; break;
+ case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
+ case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
+ case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
+ break;
+ case Type::IntegerTyID:
+ dbgs() << "i" << Val.IntVal.getBitWidth() << " "
+ << Val.IntVal.toStringUnsigned(10)
+ << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
+ break;
+ }
+ });
+#endif
+ }
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
new file mode 100644
index 0000000..bef4bbf
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
@@ -0,0 +1,484 @@
+//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains both code to deal with invoking "external" functions, but
+// also contains code that implements "exported" external functions.
+//
+// There are currently two mechanisms for handling external functions in the
+// Interpreter. The first is to implement lle_* wrapper functions that are
+// specific to well-known library functions which manually translate the
+// arguments from GenericValues and make the call. If such a wrapper does
+// not exist, and libffi is available, then the Interpreter will attempt to
+// invoke the function using libffi, after finding its address.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/Config/config.h" // Detect libffi
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Mutex.h"
+#include <cmath>
+#include <csignal>
+#include <cstdio>
+#include <cstring>
+#include <map>
+
+#ifdef HAVE_FFI_CALL
+#ifdef HAVE_FFI_H
+#include <ffi.h>
+#define USE_LIBFFI
+#elif HAVE_FFI_FFI_H
+#include <ffi/ffi.h>
+#define USE_LIBFFI
+#endif
+#endif
+
+using namespace llvm;
+
+static ManagedStatic<sys::Mutex> FunctionsLock;
+
+typedef GenericValue (*ExFunc)(FunctionType *,
+ const std::vector<GenericValue> &);
+static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
+static std::map<std::string, ExFunc> FuncNames;
+
+#ifdef USE_LIBFFI
+typedef void (*RawFunc)();
+static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
+#endif
+
+static Interpreter *TheInterpreter;
+
+static char getTypeID(Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return 'V';
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 1: return 'o';
+ case 8: return 'B';
+ case 16: return 'S';
+ case 32: return 'I';
+ case 64: return 'L';
+ default: return 'N';
+ }
+ case Type::FloatTyID: return 'F';
+ case Type::DoubleTyID: return 'D';
+ case Type::PointerTyID: return 'P';
+ case Type::FunctionTyID:return 'M';
+ case Type::StructTyID: return 'T';
+ case Type::ArrayTyID: return 'A';
+ default: return 'U';
+ }
+}
+
+// Try to find address of external function given a Function object.
+// Please note, that interpreter doesn't know how to assemble a
+// real call in general case (this is JIT job), that's why it assumes,
+// that all external functions has the same (and pretty "general") signature.
+// The typical example of such functions are "lle_X_" ones.
+static ExFunc lookupFunction(const Function *F) {
+ // Function not found, look it up... start by figuring out what the
+ // composite function name should be.
+ std::string ExtName = "lle_";
+ FunctionType *FT = F->getFunctionType();
+ for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
+ ExtName += getTypeID(FT->getContainedType(i));
+ ExtName += "_" + F->getName().str();
+
+ sys::ScopedLock Writer(*FunctionsLock);
+ ExFunc FnPtr = FuncNames[ExtName];
+ if (FnPtr == 0)
+ FnPtr = FuncNames["lle_X_" + F->getName().str()];
+ if (FnPtr == 0) // Try calling a generic function... if it exists...
+ FnPtr = (ExFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" +
+ F->getName().str());
+ if (FnPtr != 0)
+ ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
+ return FnPtr;
+}
+
+#ifdef USE_LIBFFI
+static ffi_type *ffiTypeFor(Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: return &ffi_type_void;
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 8: return &ffi_type_sint8;
+ case 16: return &ffi_type_sint16;
+ case 32: return &ffi_type_sint32;
+ case 64: return &ffi_type_sint64;
+ }
+ case Type::FloatTyID: return &ffi_type_float;
+ case Type::DoubleTyID: return &ffi_type_double;
+ case Type::PointerTyID: return &ffi_type_pointer;
+ default: break;
+ }
+ // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+ report_fatal_error("Type could not be mapped for use with libffi.");
+ return NULL;
+}
+
+static void *ffiValueFor(Type *Ty, const GenericValue &AV,
+ void *ArgDataPtr) {
+ switch (Ty->getTypeID()) {
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(Ty)->getBitWidth()) {
+ case 8: {
+ int8_t *I8Ptr = (int8_t *) ArgDataPtr;
+ *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 16: {
+ int16_t *I16Ptr = (int16_t *) ArgDataPtr;
+ *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 32: {
+ int32_t *I32Ptr = (int32_t *) ArgDataPtr;
+ *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ case 64: {
+ int64_t *I64Ptr = (int64_t *) ArgDataPtr;
+ *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
+ return ArgDataPtr;
+ }
+ }
+ case Type::FloatTyID: {
+ float *FloatPtr = (float *) ArgDataPtr;
+ *FloatPtr = AV.FloatVal;
+ return ArgDataPtr;
+ }
+ case Type::DoubleTyID: {
+ double *DoublePtr = (double *) ArgDataPtr;
+ *DoublePtr = AV.DoubleVal;
+ return ArgDataPtr;
+ }
+ case Type::PointerTyID: {
+ void **PtrPtr = (void **) ArgDataPtr;
+ *PtrPtr = GVTOP(AV);
+ return ArgDataPtr;
+ }
+ default: break;
+ }
+ // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+ report_fatal_error("Type value could not be mapped for use with libffi.");
+ return NULL;
+}
+
+static bool ffiInvoke(RawFunc Fn, Function *F,
+ const std::vector<GenericValue> &ArgVals,
+ const DataLayout *TD, GenericValue &Result) {
+ ffi_cif cif;
+ FunctionType *FTy = F->getFunctionType();
+ const unsigned NumArgs = F->arg_size();
+
+ // TODO: We don't have type information about the remaining arguments, because
+ // this information is never passed into ExecutionEngine::runFunction().
+ if (ArgVals.size() > NumArgs && F->isVarArg()) {
+ report_fatal_error("Calling external var arg function '" + F->getName()
+ + "' is not supported by the Interpreter.");
+ }
+
+ unsigned ArgBytes = 0;
+
+ std::vector<ffi_type*> args(NumArgs);
+ for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+ A != E; ++A) {
+ const unsigned ArgNo = A->getArgNo();
+ Type *ArgTy = FTy->getParamType(ArgNo);
+ args[ArgNo] = ffiTypeFor(ArgTy);
+ ArgBytes += TD->getTypeStoreSize(ArgTy);
+ }
+
+ SmallVector<uint8_t, 128> ArgData;
+ ArgData.resize(ArgBytes);
+ uint8_t *ArgDataPtr = ArgData.data();
+ SmallVector<void*, 16> values(NumArgs);
+ for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+ A != E; ++A) {
+ const unsigned ArgNo = A->getArgNo();
+ Type *ArgTy = FTy->getParamType(ArgNo);
+ values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
+ ArgDataPtr += TD->getTypeStoreSize(ArgTy);
+ }
+
+ Type *RetTy = FTy->getReturnType();
+ ffi_type *rtype = ffiTypeFor(RetTy);
+
+ if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
+ SmallVector<uint8_t, 128> ret;
+ if (RetTy->getTypeID() != Type::VoidTyID)
+ ret.resize(TD->getTypeStoreSize(RetTy));
+ ffi_call(&cif, Fn, ret.data(), values.data());
+ switch (RetTy->getTypeID()) {
+ case Type::IntegerTyID:
+ switch (cast<IntegerType>(RetTy)->getBitWidth()) {
+ case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
+ case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
+ case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
+ case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
+ }
+ break;
+ case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
+ case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
+ case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
+ default: break;
+ }
+ return true;
+ }
+
+ return false;
+}
+#endif // USE_LIBFFI
+
+GenericValue Interpreter::callExternalFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals) {
+ TheInterpreter = this;
+
+ FunctionsLock->acquire();
+
+ // Do a lookup to see if the function is in our cache... this should just be a
+ // deferred annotation!
+ std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
+ if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
+ : FI->second) {
+ FunctionsLock->release();
+ return Fn(F->getFunctionType(), ArgVals);
+ }
+
+#ifdef USE_LIBFFI
+ std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
+ RawFunc RawFn;
+ if (RF == RawFunctions->end()) {
+ RawFn = (RawFunc)(intptr_t)
+ sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
+ if (!RawFn)
+ RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
+ if (RawFn != 0)
+ RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
+ } else {
+ RawFn = RF->second;
+ }
+
+ FunctionsLock->release();
+
+ GenericValue Result;
+ if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
+ return Result;
+#endif // USE_LIBFFI
+
+ if (F->getName() == "__main")
+ errs() << "Tried to execute an unknown external function: "
+ << *F->getType() << " __main\n";
+ else
+ report_fatal_error("Tried to execute an unknown external function: " +
+ F->getName());
+#ifndef USE_LIBFFI
+ errs() << "Recompiling LLVM with --enable-libffi might help.\n";
+#endif
+ return GenericValue();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Functions "exported" to the running application...
+//
+
+// void atexit(Function*)
+static
+GenericValue lle_X_atexit(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ assert(Args.size() == 1);
+ TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
+ GenericValue GV;
+ GV.IntVal = 0;
+ return GV;
+}
+
+// void exit(int)
+static
+GenericValue lle_X_exit(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ TheInterpreter->exitCalled(Args[0]);
+ return GenericValue();
+}
+
+// void abort(void)
+static
+GenericValue lle_X_abort(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ //FIXME: should we report or raise here?
+ //report_fatal_error("Interpreted program raised SIGABRT");
+ raise (SIGABRT);
+ return GenericValue();
+}
+
+// int sprintf(char *, const char *, ...) - a very rough implementation to make
+// output useful.
+static
+GenericValue lle_X_sprintf(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ char *OutputBuffer = (char *)GVTOP(Args[0]);
+ const char *FmtStr = (const char *)GVTOP(Args[1]);
+ unsigned ArgNo = 2;
+
+ // printf should return # chars printed. This is completely incorrect, but
+ // close enough for now.
+ GenericValue GV;
+ GV.IntVal = APInt(32, strlen(FmtStr));
+ while (1) {
+ switch (*FmtStr) {
+ case 0: return GV; // Null terminator...
+ default: // Normal nonspecial character
+ sprintf(OutputBuffer++, "%c", *FmtStr++);
+ break;
+ case '\\': { // Handle escape codes
+ sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
+ FmtStr += 2; OutputBuffer += 2;
+ break;
+ }
+ case '%': { // Handle format specifiers
+ char FmtBuf[100] = "", Buffer[1000] = "";
+ char *FB = FmtBuf;
+ *FB++ = *FmtStr++;
+ char Last = *FB++ = *FmtStr++;
+ unsigned HowLong = 0;
+ while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
+ Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
+ Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
+ Last != 'p' && Last != 's' && Last != '%') {
+ if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
+ Last = *FB++ = *FmtStr++;
+ }
+ *FB = 0;
+
+ switch (Last) {
+ case '%':
+ memcpy(Buffer, "%", 2); break;
+ case 'c':
+ sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'd': case 'i':
+ case 'u': case 'o':
+ case 'x': case 'X':
+ if (HowLong >= 1) {
+ if (HowLong == 1 &&
+ TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
+ sizeof(long) < sizeof(int64_t)) {
+ // Make sure we use %lld with a 64 bit argument because we might be
+ // compiling LLI on a 32 bit compiler.
+ unsigned Size = strlen(FmtBuf);
+ FmtBuf[Size] = FmtBuf[Size-1];
+ FmtBuf[Size+1] = 0;
+ FmtBuf[Size-1] = 'l';
+ }
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
+ } else
+ sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
+ break;
+ case 'e': case 'E': case 'g': case 'G': case 'f':
+ sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
+ case 'p':
+ sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
+ case 's':
+ sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
+ default:
+ errs() << "<unknown printf code '" << *FmtStr << "'!>";
+ ArgNo++; break;
+ }
+ size_t Len = strlen(Buffer);
+ memcpy(OutputBuffer, Buffer, Len + 1);
+ OutputBuffer += Len;
+ }
+ break;
+ }
+ }
+}
+
+// int printf(const char *, ...) - a very rough implementation to make output
+// useful.
+static
+GenericValue lle_X_printf(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ char Buffer[10000];
+ std::vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV((void*)&Buffer[0]));
+ NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+ outs() << Buffer;
+ return GV;
+}
+
+// int sscanf(const char *format, ...);
+static
+GenericValue lle_X_sscanf(FunctionType *FT,
+ const std::vector<GenericValue> &args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ return GV;
+}
+
+// int scanf(const char *format, ...);
+static
+GenericValue lle_X_scanf(FunctionType *FT,
+ const std::vector<GenericValue> &args) {
+ assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
+
+ char *Args[10];
+ for (unsigned i = 0; i < args.size(); ++i)
+ Args[i] = (char*)GVTOP(args[i]);
+
+ GenericValue GV;
+ GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
+ Args[5], Args[6], Args[7], Args[8], Args[9]));
+ return GV;
+}
+
+// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
+// output useful.
+static
+GenericValue lle_X_fprintf(FunctionType *FT,
+ const std::vector<GenericValue> &Args) {
+ assert(Args.size() >= 2);
+ char Buffer[10000];
+ std::vector<GenericValue> NewArgs;
+ NewArgs.push_back(PTOGV(Buffer));
+ NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
+ GenericValue GV = lle_X_sprintf(FT, NewArgs);
+
+ fputs(Buffer, (FILE *) GVTOP(Args[0]));
+ return GV;
+}
+
+void Interpreter::initializeExternalFunctions() {
+ sys::ScopedLock Writer(*FunctionsLock);
+ FuncNames["lle_X_atexit"] = lle_X_atexit;
+ FuncNames["lle_X_exit"] = lle_X_exit;
+ FuncNames["lle_X_abort"] = lle_X_abort;
+
+ FuncNames["lle_X_printf"] = lle_X_printf;
+ FuncNames["lle_X_sprintf"] = lle_X_sprintf;
+ FuncNames["lle_X_sscanf"] = lle_X_sscanf;
+ FuncNames["lle_X_scanf"] = lle_X_scanf;
+ FuncNames["lle_X_fprintf"] = lle_X_fprintf;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
new file mode 100644
index 0000000..9ee9d94
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.cpp
@@ -0,0 +1,98 @@
+//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the top-level functionality for the LLVM interpreter.
+// This interpreter is designed to be a very simple, portable, inefficient
+// interpreter.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Interpreter.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include <cstring>
+using namespace llvm;
+
+namespace {
+
+static struct RegisterInterp {
+ RegisterInterp() { Interpreter::Register(); }
+} InterpRegistrator;
+
+}
+
+extern "C" void LLVMLinkInInterpreter() { }
+
+/// create - Create a new interpreter object. This can never fail.
+///
+ExecutionEngine *Interpreter::create(Module *M, std::string* ErrStr) {
+ // Tell this Module to materialize everything and release the GVMaterializer.
+ if (M->MaterializeAllPermanently(ErrStr))
+ // We got an error, just return 0
+ return 0;
+
+ return new Interpreter(M);
+}
+
+//===----------------------------------------------------------------------===//
+// Interpreter ctor - Initialize stuff
+//
+Interpreter::Interpreter(Module *M)
+ : ExecutionEngine(M), TD(M) {
+
+ memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
+ setDataLayout(&TD);
+ // Initialize the "backend"
+ initializeExecutionEngine();
+ initializeExternalFunctions();
+ emitGlobals();
+
+ IL = new IntrinsicLowering(TD);
+}
+
+Interpreter::~Interpreter() {
+ delete IL;
+}
+
+void Interpreter::runAtExitHandlers () {
+ while (!AtExitHandlers.empty()) {
+ callFunction(AtExitHandlers.back(), std::vector<GenericValue>());
+ AtExitHandlers.pop_back();
+ run();
+ }
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue
+Interpreter::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert (F && "Function *F was null at entry to run()");
+
+ // Try extra hard not to pass extra args to a function that isn't
+ // expecting them. C programmers frequently bend the rules and
+ // declare main() with fewer parameters than it actually gets
+ // passed, and the interpreter barfs if you pass a function more
+ // parameters than it is declared to take. This does not attempt to
+ // take into account gratuitous differences in declared types,
+ // though.
+ std::vector<GenericValue> ActualArgs;
+ const unsigned ArgCount = F->getFunctionType()->getNumParams();
+ for (unsigned i = 0; i < ArgCount; ++i)
+ ActualArgs.push_back(ArgValues[i]);
+
+ // Set up the function call.
+ callFunction(F, ActualArgs);
+
+ // Start executing the function.
+ run();
+
+ return ExitValue;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
new file mode 100644
index 0000000..2952d7e
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Interpreter.h
@@ -0,0 +1,248 @@
+//===-- Interpreter.h ------------------------------------------*- C++ -*--===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header file defines the interpreter structure
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLI_INTERPRETER_H
+#define LLI_INTERPRETER_H
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+namespace llvm {
+
+class IntrinsicLowering;
+struct FunctionInfo;
+template<typename T> class generic_gep_type_iterator;
+class ConstantExpr;
+typedef generic_gep_type_iterator<User::const_op_iterator> gep_type_iterator;
+
+
+// AllocaHolder - Object to track all of the blocks of memory allocated by
+// alloca. When the function returns, this object is popped off the execution
+// stack, which causes the dtor to be run, which frees all the alloca'd memory.
+//
+class AllocaHolder {
+ friend class AllocaHolderHandle;
+ std::vector<void*> Allocations;
+ unsigned RefCnt;
+public:
+ AllocaHolder() : RefCnt(0) {}
+ void add(void *mem) { Allocations.push_back(mem); }
+ ~AllocaHolder() {
+ for (unsigned i = 0; i < Allocations.size(); ++i)
+ free(Allocations[i]);
+ }
+};
+
+// AllocaHolderHandle gives AllocaHolder value semantics so we can stick it into
+// a vector...
+//
+class AllocaHolderHandle {
+ AllocaHolder *H;
+public:
+ AllocaHolderHandle() : H(new AllocaHolder()) { H->RefCnt++; }
+ AllocaHolderHandle(const AllocaHolderHandle &AH) : H(AH.H) { H->RefCnt++; }
+ ~AllocaHolderHandle() { if (--H->RefCnt == 0) delete H; }
+
+ void add(void *mem) { H->add(mem); }
+};
+
+typedef std::vector<GenericValue> ValuePlaneTy;
+
+// ExecutionContext struct - This struct represents one stack frame currently
+// executing.
+//
+struct ExecutionContext {
+ Function *CurFunction;// The currently executing function
+ BasicBlock *CurBB; // The currently executing BB
+ BasicBlock::iterator CurInst; // The next instruction to execute
+ std::map<Value *, GenericValue> Values; // LLVM values used in this invocation
+ std::vector<GenericValue> VarArgs; // Values passed through an ellipsis
+ CallSite Caller; // Holds the call that called subframes.
+ // NULL if main func or debugger invoked fn
+ AllocaHolderHandle Allocas; // Track memory allocated by alloca
+};
+
+// Interpreter - This class represents the entirety of the interpreter.
+//
+class Interpreter : public ExecutionEngine, public InstVisitor<Interpreter> {
+ GenericValue ExitValue; // The return value of the called function
+ DataLayout TD;
+ IntrinsicLowering *IL;
+
+ // The runtime stack of executing code. The top of the stack is the current
+ // function record.
+ std::vector<ExecutionContext> ECStack;
+
+ // AtExitHandlers - List of functions to call when the program exits,
+ // registered with the atexit() library function.
+ std::vector<Function*> AtExitHandlers;
+
+public:
+ explicit Interpreter(Module *M);
+ ~Interpreter();
+
+ /// runAtExitHandlers - Run any functions registered by the program's calls to
+ /// atexit(3), which we intercept and store in AtExitHandlers.
+ ///
+ void runAtExitHandlers();
+
+ static void Register() {
+ InterpCtor = create;
+ }
+
+ /// create - Create an interpreter ExecutionEngine. This can never fail.
+ ///
+ static ExecutionEngine *create(Module *M, std::string *ErrorStr = 0);
+
+ /// run - Start execution with the specified function and arguments.
+ ///
+ virtual GenericValue runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues);
+
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true) {
+ // FIXME: not implemented.
+ return 0;
+ }
+
+ /// recompileAndRelinkFunction - For the interpreter, functions are always
+ /// up-to-date.
+ ///
+ virtual void *recompileAndRelinkFunction(Function *F) {
+ return getPointerToFunction(F);
+ }
+
+ /// freeMachineCodeForFunction - The interpreter does not generate any code.
+ ///
+ void freeMachineCodeForFunction(Function *F) { }
+
+ // Methods used to execute code:
+ // Place a call on the stack
+ void callFunction(Function *F, const std::vector<GenericValue> &ArgVals);
+ void run(); // Execute instructions until nothing left to do
+
+ // Opcode Implementations
+ void visitReturnInst(ReturnInst &I);
+ void visitBranchInst(BranchInst &I);
+ void visitSwitchInst(SwitchInst &I);
+ void visitIndirectBrInst(IndirectBrInst &I);
+
+ void visitBinaryOperator(BinaryOperator &I);
+ void visitICmpInst(ICmpInst &I);
+ void visitFCmpInst(FCmpInst &I);
+ void visitAllocaInst(AllocaInst &I);
+ void visitLoadInst(LoadInst &I);
+ void visitStoreInst(StoreInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+ void visitPHINode(PHINode &PN) {
+ llvm_unreachable("PHI nodes already handled!");
+ }
+ void visitTruncInst(TruncInst &I);
+ void visitZExtInst(ZExtInst &I);
+ void visitSExtInst(SExtInst &I);
+ void visitFPTruncInst(FPTruncInst &I);
+ void visitFPExtInst(FPExtInst &I);
+ void visitUIToFPInst(UIToFPInst &I);
+ void visitSIToFPInst(SIToFPInst &I);
+ void visitFPToUIInst(FPToUIInst &I);
+ void visitFPToSIInst(FPToSIInst &I);
+ void visitPtrToIntInst(PtrToIntInst &I);
+ void visitIntToPtrInst(IntToPtrInst &I);
+ void visitBitCastInst(BitCastInst &I);
+ void visitSelectInst(SelectInst &I);
+
+
+ void visitCallSite(CallSite CS);
+ void visitCallInst(CallInst &I) { visitCallSite (CallSite (&I)); }
+ void visitInvokeInst(InvokeInst &I) { visitCallSite (CallSite (&I)); }
+ void visitUnreachableInst(UnreachableInst &I);
+
+ void visitShl(BinaryOperator &I);
+ void visitLShr(BinaryOperator &I);
+ void visitAShr(BinaryOperator &I);
+
+ void visitVAArgInst(VAArgInst &I);
+ void visitExtractElementInst(ExtractElementInst &I);
+ void visitInstruction(Instruction &I) {
+ errs() << I << "\n";
+ llvm_unreachable("Instruction not interpretable yet!");
+ }
+
+ GenericValue callExternalFunction(Function *F,
+ const std::vector<GenericValue> &ArgVals);
+ void exitCalled(GenericValue GV);
+
+ void addAtExitHandler(Function *F) {
+ AtExitHandlers.push_back(F);
+ }
+
+ GenericValue *getFirstVarArg () {
+ return &(ECStack.back ().VarArgs[0]);
+ }
+
+private: // Helper functions
+ GenericValue executeGEPOperation(Value *Ptr, gep_type_iterator I,
+ gep_type_iterator E, ExecutionContext &SF);
+
+ // SwitchToNewBasicBlock - Start execution in a new basic block and run any
+ // PHI nodes in the top of the block. This is used for intraprocedural
+ // control flow.
+ //
+ void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
+
+ void *getPointerToFunction(Function *F) { return (void*)F; }
+ void *getPointerToBasicBlock(BasicBlock *BB) { return (void*)BB; }
+
+ void initializeExecutionEngine() { }
+ void initializeExternalFunctions();
+ GenericValue getConstantExprValue(ConstantExpr *CE, ExecutionContext &SF);
+ GenericValue getOperandValue(Value *V, ExecutionContext &SF);
+ GenericValue executeTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeSExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeZExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPTruncInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPExtInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPToUIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeFPToSIInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeUIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeSIToFPInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executePtrToIntInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeIntToPtrInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeBitCastInst(Value *SrcVal, Type *DstTy,
+ ExecutionContext &SF);
+ GenericValue executeCastOperation(Instruction::CastOps opcode, Value *SrcVal,
+ Type *Ty, ExecutionContext &SF);
+ void popStackAndReturnValueToCaller(Type *RetTy, GenericValue Result);
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp
new file mode 100644
index 0000000..53ea0a2
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp
@@ -0,0 +1,848 @@
+//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tool implements a just-in-time compiler for LLVM, allowing direct
+// execution of LLVM bitcode in an efficient manner.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineCodeInfo.h"
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Target/TargetJITInfo.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+#ifdef __APPLE__
+// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
+// of atexit). It passes the address of linker generated symbol __dso_handle
+// to the function.
+// This configuration change happened at version 5330.
+# include <AvailabilityMacros.h>
+# if defined(MAC_OS_X_VERSION_10_4) && \
+ ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
+ (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
+ __APPLE_CC__ >= 5330))
+# ifndef HAVE___DSO_HANDLE
+# define HAVE___DSO_HANDLE 1
+# endif
+# endif
+#endif
+
+#if HAVE___DSO_HANDLE
+extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
+#endif
+
+namespace {
+
+static struct RegisterJIT {
+ RegisterJIT() { JIT::Register(); }
+} JITRegistrator;
+
+}
+
+extern "C" void LLVMLinkInJIT() {
+}
+
+// Determine whether we can register EH tables.
+#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
+ !defined(__USING_SJLJ_EXCEPTIONS__))
+#define HAVE_EHTABLE_SUPPORT 1
+#else
+#define HAVE_EHTABLE_SUPPORT 0
+#endif
+
+#if HAVE_EHTABLE_SUPPORT
+
+// libgcc defines the __register_frame function to dynamically register new
+// dwarf frames for exception handling. This functionality is not portable
+// across compilers and is only provided by GCC. We use the __register_frame
+// function here so that code generated by the JIT cooperates with the unwinding
+// runtime of libgcc. When JITting with exception handling enable, LLVM
+// generates dwarf frames and registers it to libgcc with __register_frame.
+//
+// The __register_frame function works with Linux.
+//
+// Unfortunately, this functionality seems to be in libgcc after the unwinding
+// library of libgcc for darwin was written. The code for darwin overwrites the
+// value updated by __register_frame with a value fetched with "keymgr".
+// "keymgr" is an obsolete functionality, which should be rewritten some day.
+// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
+// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
+// values of an opaque key, used by libgcc to find dwarf tables.
+
+extern "C" void __register_frame(void*);
+extern "C" void __deregister_frame(void*);
+
+#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
+# define USE_KEYMGR 1
+#else
+# define USE_KEYMGR 0
+#endif
+
+#if USE_KEYMGR
+
+namespace {
+
+// LibgccObject - This is the structure defined in libgcc. There is no #include
+// provided for this structure, so we also define it here. libgcc calls it
+// "struct object". The structure is undocumented in libgcc.
+struct LibgccObject {
+ void *unused1;
+ void *unused2;
+ void *unused3;
+
+ /// frame - Pointer to the exception table.
+ void *frame;
+
+ /// encoding - The encoding of the object?
+ union {
+ struct {
+ unsigned long sorted : 1;
+ unsigned long from_array : 1;
+ unsigned long mixed_encoding : 1;
+ unsigned long encoding : 8;
+ unsigned long count : 21;
+ } b;
+ size_t i;
+ } encoding;
+
+ /// fde_end - libgcc defines this field only if some macro is defined. We
+ /// include this field even if it may not there, to make libgcc happy.
+ char *fde_end;
+
+ /// next - At least we know it's a chained list!
+ struct LibgccObject *next;
+};
+
+// "kemgr" stuff. Apparently, all frame tables are stored there.
+extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
+extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
+#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
+
+/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
+/// probably contains all dwarf tables that are loaded.
+struct LibgccObjectInfo {
+
+ /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
+ ///
+ struct LibgccObject* seenObjects;
+
+ /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
+ ///
+ struct LibgccObject* unseenObjects;
+
+ unsigned unused[2];
+};
+
+/// darwin_register_frame - Since __register_frame does not work with darwin's
+/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
+/// "Dwarf2 object list" key.
+void DarwinRegisterFrame(void* FrameBegin) {
+ // Get the key.
+ LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
+ _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
+ assert(LOI && "This should be preallocated by the runtime");
+
+ // Allocate a new LibgccObject to represent this frame. Deallocation of this
+ // object may be impossible: since darwin code in libgcc was written after
+ // the ability to dynamically register frames, things may crash if we
+ // deallocate it.
+ struct LibgccObject* ob = (struct LibgccObject*)
+ malloc(sizeof(struct LibgccObject));
+
+ // Do like libgcc for the values of the field.
+ ob->unused1 = (void *)-1;
+ ob->unused2 = 0;
+ ob->unused3 = 0;
+ ob->frame = FrameBegin;
+ ob->encoding.i = 0;
+ ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
+
+ // Put the info on both places, as libgcc uses the first or the second
+ // field. Note that we rely on having two pointers here. If fde_end was a
+ // char, things would get complicated.
+ ob->fde_end = (char*)LOI->unseenObjects;
+ ob->next = LOI->unseenObjects;
+
+ // Update the key's unseenObjects list.
+ LOI->unseenObjects = ob;
+
+ // Finally update the "key". Apparently, libgcc requires it.
+ _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
+ LOI);
+
+}
+
+}
+#endif // __APPLE__
+#endif // HAVE_EHTABLE_SUPPORT
+
+/// createJIT - This is the factory method for creating a JIT for the current
+/// machine, it does not fall back to the interpreter. This takes ownership
+/// of the module.
+ExecutionEngine *JIT::createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM) {
+ // Try to register the program as a source of symbols to resolve against.
+ //
+ // FIXME: Don't do this here.
+ sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
+
+ // If the target supports JIT code generation, create the JIT.
+ if (TargetJITInfo *TJ = TM->getJITInfo()) {
+ return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
+ } else {
+ if (ErrorStr)
+ *ErrorStr = "target does not support JIT code generation";
+ return 0;
+ }
+}
+
+namespace {
+/// This class supports the global getPointerToNamedFunction(), which allows
+/// bugpoint or gdb users to search for a function by name without any context.
+class JitPool {
+ SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT.
+ mutable sys::Mutex Lock;
+public:
+ void Add(JIT *jit) {
+ MutexGuard guard(Lock);
+ JITs.insert(jit);
+ }
+ void Remove(JIT *jit) {
+ MutexGuard guard(Lock);
+ JITs.erase(jit);
+ }
+ void *getPointerToNamedFunction(const char *Name) const {
+ MutexGuard guard(Lock);
+ assert(JITs.size() != 0 && "No Jit registered");
+ //search function in every instance of JIT
+ for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
+ end = JITs.end();
+ Jit != end; ++Jit) {
+ if (Function *F = (*Jit)->FindFunctionNamed(Name))
+ return (*Jit)->getPointerToFunction(F);
+ }
+ // The function is not available : fallback on the first created (will
+ // search in symbol of the current program/library)
+ return (*JITs.begin())->getPointerToNamedFunction(Name);
+ }
+};
+ManagedStatic<JitPool> AllJits;
+}
+extern "C" {
+ // getPointerToNamedFunction - This function is used as a global wrapper to
+ // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
+ // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
+ // need to resolve function(s) that are being mis-codegenerated, so we need to
+ // resolve their addresses at runtime, and this is the way to do it.
+ void *getPointerToNamedFunction(const char *Name) {
+ return AllJits->getPointerToNamedFunction(Name);
+ }
+}
+
+JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
+ JITMemoryManager *jmm, bool GVsWithCode)
+ : ExecutionEngine(M), TM(tm), TJI(tji),
+ JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
+ AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
+ setDataLayout(TM.getDataLayout());
+
+ jitstate = new JITState(M);
+
+ // Initialize JCE
+ JCE = createEmitter(*this, JMM, TM);
+
+ // Register in global list of all JITs.
+ AllJits->Add(this);
+
+ // Add target data
+ MutexGuard locked(lock);
+ FunctionPassManager &PM = jitstate->getPM(locked);
+ PM.add(new DataLayout(*TM.getDataLayout()));
+
+ // Turn the machine code intermediate representation into bytes in memory that
+ // may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
+ report_fatal_error("Target does not support machine code emission!");
+ }
+
+ // Register routine for informing unwinding runtime about new EH frames
+#if HAVE_EHTABLE_SUPPORT
+#if USE_KEYMGR
+ struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
+ _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
+
+ // The key is created on demand, and libgcc creates it the first time an
+ // exception occurs. Since we need the key to register frames, we create
+ // it now.
+ if (!LOI)
+ LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
+ _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
+ InstallExceptionTableRegister(DarwinRegisterFrame);
+ // Not sure about how to deregister on Darwin.
+#else
+ InstallExceptionTableRegister(__register_frame);
+ InstallExceptionTableDeregister(__deregister_frame);
+#endif // __APPLE__
+#endif // HAVE_EHTABLE_SUPPORT
+
+ // Initialize passes.
+ PM.doInitialization();
+}
+
+JIT::~JIT() {
+ // Unregister all exception tables registered by this JIT.
+ DeregisterAllTables();
+ // Cleanup.
+ AllJits->Remove(this);
+ delete jitstate;
+ delete JCE;
+ // JMM is a ownership of JCE, so we no need delete JMM here.
+ delete &TM;
+}
+
+/// addModule - Add a new Module to the JIT. If we previously removed the last
+/// Module, we need re-initialize jitstate with a valid Module.
+void JIT::addModule(Module *M) {
+ MutexGuard locked(lock);
+
+ if (Modules.empty()) {
+ assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
+
+ jitstate = new JITState(M);
+
+ FunctionPassManager &PM = jitstate->getPM(locked);
+ PM.add(new DataLayout(*TM.getDataLayout()));
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
+ report_fatal_error("Target does not support machine code emission!");
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+ }
+
+ ExecutionEngine::addModule(M);
+}
+
+/// removeModule - If we are removing the last Module, invalidate the jitstate
+/// since the PassManager it contains references a released Module.
+bool JIT::removeModule(Module *M) {
+ bool result = ExecutionEngine::removeModule(M);
+
+ MutexGuard locked(lock);
+
+ if (jitstate && jitstate->getModule() == M) {
+ delete jitstate;
+ jitstate = 0;
+ }
+
+ if (!jitstate && !Modules.empty()) {
+ jitstate = new JITState(Modules[0]);
+
+ FunctionPassManager &PM = jitstate->getPM(locked);
+ PM.add(new DataLayout(*TM.getDataLayout()));
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
+ report_fatal_error("Target does not support machine code emission!");
+ }
+
+ // Initialize passes.
+ PM.doInitialization();
+ }
+ return result;
+}
+
+/// run - Start execution with the specified function and arguments.
+///
+GenericValue JIT::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ FunctionType *FTy = F->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() == ArgValues.size() ||
+ (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
+ "Wrong number of arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
+ switch (ArgValues.size()) {
+ case 3:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy() &&
+ FTy->getParamType(2)->isPointerTy()) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy()) {
+ int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getParamType(0)->isIntegerTy(32)) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ if (FTy->getParamType(0)->isPointerTy()) {
+ GenericValue rv;
+ int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0])));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: llvm_unreachable("Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
+ else
+ llvm_unreachable("Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ llvm_unreachable("long double not supported yet");
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ // Okay, this is not one of our quick and easy cases. Because we don't have a
+ // full FFI, we have to codegen a nullary stub function that just calls the
+ // function we are interested in, passing in constants for all of the
+ // arguments. Make this function and return.
+
+ // First, create the function.
+ FunctionType *STy=FunctionType::get(RetTy, false);
+ Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
+ F->getParent());
+
+ // Insert a basic block.
+ BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
+
+ // Convert all of the GenericValue arguments over to constants. Note that we
+ // currently don't support varargs.
+ SmallVector<Value*, 8> Args;
+ for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
+ Constant *C = 0;
+ Type *ArgTy = FTy->getParamType(i);
+ const GenericValue &AV = ArgValues[i];
+ switch (ArgTy->getTypeID()) {
+ default: llvm_unreachable("Unknown argument type for function call!");
+ case Type::IntegerTyID:
+ C = ConstantInt::get(F->getContext(), AV.IntVal);
+ break;
+ case Type::FloatTyID:
+ C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
+ break;
+ case Type::DoubleTyID:
+ C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
+ break;
+ case Type::PPC_FP128TyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ C = ConstantFP::get(F->getContext(), APFloat(ArgTy->getFltSemantics(),
+ AV.IntVal));
+ break;
+ case Type::PointerTyID:
+ void *ArgPtr = GVTOP(AV);
+ if (sizeof(void*) == 4)
+ C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
+ (int)(intptr_t)ArgPtr);
+ else
+ C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
+ (intptr_t)ArgPtr);
+ // Cast the integer to pointer
+ C = ConstantExpr::getIntToPtr(C, ArgTy);
+ break;
+ }
+ Args.push_back(C);
+ }
+
+ CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
+ TheCall->setCallingConv(F->getCallingConv());
+ TheCall->setTailCall();
+ if (!TheCall->getType()->isVoidTy())
+ // Return result of the call.
+ ReturnInst::Create(F->getContext(), TheCall, StubBB);
+ else
+ ReturnInst::Create(F->getContext(), StubBB); // Just return void.
+
+ // Finally, call our nullary stub function.
+ GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
+ // Erase it, since no other function can have a reference to it.
+ Stub->eraseFromParent();
+ // And return the result.
+ return Result;
+}
+
+void JIT::RegisterJITEventListener(JITEventListener *L) {
+ if (L == NULL)
+ return;
+ MutexGuard locked(lock);
+ EventListeners.push_back(L);
+}
+void JIT::UnregisterJITEventListener(JITEventListener *L) {
+ if (L == NULL)
+ return;
+ MutexGuard locked(lock);
+ std::vector<JITEventListener*>::reverse_iterator I=
+ std::find(EventListeners.rbegin(), EventListeners.rend(), L);
+ if (I != EventListeners.rend()) {
+ std::swap(*I, EventListeners.back());
+ EventListeners.pop_back();
+ }
+}
+void JIT::NotifyFunctionEmitted(
+ const Function &F,
+ void *Code, size_t Size,
+ const JITEvent_EmittedFunctionDetails &Details) {
+ MutexGuard locked(lock);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
+ }
+}
+
+void JIT::NotifyFreeingMachineCode(void *OldPtr) {
+ MutexGuard locked(lock);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
+ }
+}
+
+/// runJITOnFunction - Run the FunctionPassManager full of
+/// just-in-time compilation passes on F, hopefully filling in
+/// GlobalAddress[F] with the address of F's machine code.
+///
+void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
+ MutexGuard locked(lock);
+
+ class MCIListener : public JITEventListener {
+ MachineCodeInfo *const MCI;
+ public:
+ MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
+ virtual void NotifyFunctionEmitted(const Function &,
+ void *Code, size_t Size,
+ const EmittedFunctionDetails &) {
+ MCI->setAddress(Code);
+ MCI->setSize(Size);
+ }
+ };
+ MCIListener MCIL(MCI);
+ if (MCI)
+ RegisterJITEventListener(&MCIL);
+
+ runJITOnFunctionUnlocked(F, locked);
+
+ if (MCI)
+ UnregisterJITEventListener(&MCIL);
+}
+
+void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
+ assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
+
+ jitTheFunction(F, locked);
+
+ // If the function referred to another function that had not yet been
+ // read from bitcode, and we are jitting non-lazily, emit it now.
+ while (!jitstate->getPendingFunctions(locked).empty()) {
+ Function *PF = jitstate->getPendingFunctions(locked).back();
+ jitstate->getPendingFunctions(locked).pop_back();
+
+ assert(!PF->hasAvailableExternallyLinkage() &&
+ "Externally-defined function should not be in pending list.");
+
+ jitTheFunction(PF, locked);
+
+ // Now that the function has been jitted, ask the JITEmitter to rewrite
+ // the stub with real address of the function.
+ updateFunctionStub(PF);
+ }
+}
+
+void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
+ isAlreadyCodeGenerating = true;
+ jitstate->getPM(locked).run(*F);
+ isAlreadyCodeGenerating = false;
+
+ // clear basic block addresses after this function is done
+ getBasicBlockAddressMap(locked).clear();
+}
+
+/// getPointerToFunction - This method is used to get the address of the
+/// specified function, compiling it if necessary.
+///
+void *JIT::getPointerToFunction(Function *F) {
+
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr; // Check if function already code gen'd
+
+ MutexGuard locked(lock);
+
+ // Now that this thread owns the lock, make sure we read in the function if it
+ // exists in this Module.
+ std::string ErrorMsg;
+ if (F->Materialize(&ErrorMsg)) {
+ report_fatal_error("Error reading function '" + F->getName()+
+ "' from bitcode file: " + ErrorMsg);
+ }
+
+ // ... and check if another thread has already code gen'd the function.
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr;
+
+ if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
+ bool AbortOnFailure = !F->hasExternalWeakLinkage();
+ void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
+ addGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ runJITOnFunctionUnlocked(F, locked);
+
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ return Addr;
+}
+
+void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
+ MutexGuard locked(lock);
+
+ BasicBlockAddressMapTy::iterator I =
+ getBasicBlockAddressMap(locked).find(BB);
+ if (I == getBasicBlockAddressMap(locked).end()) {
+ getBasicBlockAddressMap(locked)[BB] = Addr;
+ } else {
+ // ignore repeats: some BBs can be split into few MBBs?
+ }
+}
+
+void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
+ MutexGuard locked(lock);
+ getBasicBlockAddressMap(locked).erase(BB);
+}
+
+void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
+ // make sure it's function is compiled by JIT
+ (void)getPointerToFunction(BB->getParent());
+
+ // resolve basic block address
+ MutexGuard locked(lock);
+
+ BasicBlockAddressMapTy::iterator I =
+ getBasicBlockAddressMap(locked).find(BB);
+ if (I != getBasicBlockAddressMap(locked).end()) {
+ return I->second;
+ } else {
+ llvm_unreachable("JIT does not have BB address for address-of-label, was"
+ " it eliminated by optimizer?");
+ }
+}
+
+void *JIT::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure){
+ if (!isSymbolSearchingDisabled()) {
+ void *ptr = JMM->getPointerToNamedFunction(Name, false);
+ if (ptr)
+ return ptr;
+ }
+
+ /// If a LazyFunctionCreator is installed, use it to get/create the function.
+ if (LazyFunctionCreator)
+ if (void *RP = LazyFunctionCreator(Name))
+ return RP;
+
+ if (AbortOnFailure) {
+ report_fatal_error("Program used external function '"+Name+
+ "' which could not be resolved!");
+ }
+ return 0;
+}
+
+
+/// getOrEmitGlobalVariable - Return the address of the specified global
+/// variable, possibly emitting it to memory if needed. This is used by the
+/// Emitter.
+void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
+ MutexGuard locked(lock);
+
+ void *Ptr = getPointerToGlobalIfAvailable(GV);
+ if (Ptr) return Ptr;
+
+ // If the global is external, just remember the address.
+ if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
+#if HAVE___DSO_HANDLE
+ if (GV->getName() == "__dso_handle")
+ return (void*)&__dso_handle;
+#endif
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
+ if (Ptr == 0) {
+ report_fatal_error("Could not resolve external global address: "
+ +GV->getName());
+ }
+ addGlobalMapping(GV, Ptr);
+ } else {
+ // If the global hasn't been emitted to memory yet, allocate space and
+ // emit it into memory.
+ Ptr = getMemoryForGV(GV);
+ addGlobalMapping(GV, Ptr);
+ EmitGlobalVariable(GV); // Initialize the variable.
+ }
+ return Ptr;
+}
+
+/// recompileAndRelinkFunction - This method is used to force a function
+/// which has already been compiled, to be compiled again, possibly
+/// after it has been modified. Then the entry to the old copy is overwritten
+/// with a branch to the new copy. If there was no old copy, this acts
+/// just like JIT::getPointerToFunction().
+///
+void *JIT::recompileAndRelinkFunction(Function *F) {
+ void *OldAddr = getPointerToGlobalIfAvailable(F);
+
+ // If it's not already compiled there is no reason to patch it up.
+ if (OldAddr == 0) { return getPointerToFunction(F); }
+
+ // Delete the old function mapping.
+ addGlobalMapping(F, 0);
+
+ // Recodegen the function
+ runJITOnFunction(F);
+
+ // Update state, forward the old function to the new function.
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr && "Code generation didn't add function to GlobalAddress table!");
+ TJI.replaceMachineCodeForFunction(OldAddr, Addr);
+ return Addr;
+}
+
+/// getMemoryForGV - This method abstracts memory allocation of global
+/// variable so that the JIT can allocate thread local variables depending
+/// on the target.
+///
+char* JIT::getMemoryForGV(const GlobalVariable* GV) {
+ char *Ptr;
+
+ // GlobalVariable's which are not "constant" will cause trouble in a server
+ // situation. It's returned in the same block of memory as code which may
+ // not be writable.
+ if (isGVCompilationDisabled() && !GV->isConstant()) {
+ report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
+ }
+
+ // Some applications require globals and code to live together, so they may
+ // be allocated into the same buffer, but in general globals are allocated
+ // through the memory manager which puts them near the code but not in the
+ // same buffer.
+ Type *GlobalType = GV->getType()->getElementType();
+ size_t S = getDataLayout()->getTypeAllocSize(GlobalType);
+ size_t A = getDataLayout()->getPreferredAlignment(GV);
+ if (GV->isThreadLocal()) {
+ MutexGuard locked(lock);
+ Ptr = TJI.allocateThreadLocalMemory(S);
+ } else if (TJI.allocateSeparateGVMemory()) {
+ if (A <= 8) {
+ Ptr = (char*)malloc(S);
+ } else {
+ // Allocate S+A bytes of memory, then use an aligned pointer within that
+ // space.
+ Ptr = (char*)malloc(S+A);
+ unsigned MisAligned = ((intptr_t)Ptr & (A-1));
+ Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
+ }
+ } else if (AllocateGVsWithCode) {
+ Ptr = (char*)JCE->allocateSpace(S, A);
+ } else {
+ Ptr = (char*)JCE->allocateGlobal(S, A);
+ }
+ return Ptr;
+}
+
+void JIT::addPendingFunction(Function *F) {
+ MutexGuard locked(lock);
+ jitstate->getPendingFunctions(locked).push_back(F);
+}
+
+
+JITEventListener::~JITEventListener() {}
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h
new file mode 100644
index 0000000..2ae155b
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h
@@ -0,0 +1,226 @@
+//===-- JIT.h - Class definition for the JIT --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the top-level JIT data structure.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef JIT_H
+#define JIT_H
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/PassManager.h"
+#include "llvm/Support/ValueHandle.h"
+
+namespace llvm {
+
+class Function;
+struct JITEvent_EmittedFunctionDetails;
+class MachineCodeEmitter;
+class MachineCodeInfo;
+class TargetJITInfo;
+class TargetMachine;
+
+class JITState {
+private:
+ FunctionPassManager PM; // Passes to compile a function
+ Module *M; // Module used to create the PM
+
+ /// PendingFunctions - Functions which have not been code generated yet, but
+ /// were called from a function being code generated.
+ std::vector<AssertingVH<Function> > PendingFunctions;
+
+public:
+ explicit JITState(Module *M) : PM(M), M(M) {}
+
+ FunctionPassManager &getPM(const MutexGuard &L) {
+ return PM;
+ }
+
+ Module *getModule() const { return M; }
+ std::vector<AssertingVH<Function> > &getPendingFunctions(const MutexGuard &L){
+ return PendingFunctions;
+ }
+};
+
+
+class JIT : public ExecutionEngine {
+ /// types
+ typedef ValueMap<const BasicBlock *, void *>
+ BasicBlockAddressMapTy;
+ /// data
+ TargetMachine &TM; // The current target we are compiling to
+ TargetJITInfo &TJI; // The JITInfo for the target we are compiling to
+ JITCodeEmitter *JCE; // JCE object
+ JITMemoryManager *JMM;
+ std::vector<JITEventListener*> EventListeners;
+
+ /// AllocateGVsWithCode - Some applications require that global variables and
+ /// code be allocated into the same region of memory, in which case this flag
+ /// should be set to true. Doing so breaks freeMachineCodeForFunction.
+ bool AllocateGVsWithCode;
+
+ /// True while the JIT is generating code. Used to assert against recursive
+ /// entry.
+ bool isAlreadyCodeGenerating;
+
+ JITState *jitstate;
+
+ /// BasicBlockAddressMap - A mapping between LLVM basic blocks and their
+ /// actualized version, only filled for basic blocks that have their address
+ /// taken.
+ BasicBlockAddressMapTy BasicBlockAddressMap;
+
+
+ JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
+ JITMemoryManager *JMM, bool AllocateGVsWithCode);
+public:
+ ~JIT();
+
+ static void Register() {
+ JITCtor = createJIT;
+ }
+
+ /// getJITInfo - Return the target JIT information structure.
+ ///
+ TargetJITInfo &getJITInfo() const { return TJI; }
+
+ /// create - Create an return a new JIT compiler if there is one available
+ /// for the current target. Otherwise, return null.
+ ///
+ static ExecutionEngine *create(Module *M,
+ std::string *Err,
+ JITMemoryManager *JMM,
+ CodeGenOpt::Level OptLevel =
+ CodeGenOpt::Default,
+ bool GVsWithCode = true,
+ Reloc::Model RM = Reloc::Default,
+ CodeModel::Model CMM = CodeModel::JITDefault) {
+ return ExecutionEngine::createJIT(M, Err, JMM, OptLevel, GVsWithCode,
+ RM, CMM);
+ }
+
+ virtual void addModule(Module *M);
+
+ /// removeModule - Remove a Module from the list of modules. Returns true if
+ /// M is found.
+ virtual bool removeModule(Module *M);
+
+ /// runFunction - Start execution with the specified function and arguments.
+ ///
+ virtual GenericValue runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues);
+
+ /// getPointerToNamedFunction - This method returns the address of the
+ /// specified function by using the MemoryManager. As such it is only
+ /// useful for resolving library symbols, not code generated symbols.
+ ///
+ /// If AbortOnFailure is false and no function with the given name is
+ /// found, this function silently returns a null pointer. Otherwise,
+ /// it prints a message to stderr and aborts.
+ ///
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+
+ // CompilationCallback - Invoked the first time that a call site is found,
+ // which causes lazy compilation of the target function.
+ //
+ static void CompilationCallback();
+
+ /// getPointerToFunction - This returns the address of the specified function,
+ /// compiling it if necessary.
+ ///
+ void *getPointerToFunction(Function *F);
+
+ /// addPointerToBasicBlock - Adds address of the specific basic block.
+ void addPointerToBasicBlock(const BasicBlock *BB, void *Addr);
+
+ /// clearPointerToBasicBlock - Removes address of specific basic block.
+ void clearPointerToBasicBlock(const BasicBlock *BB);
+
+ /// getPointerToBasicBlock - This returns the address of the specified basic
+ /// block, assuming function is compiled.
+ void *getPointerToBasicBlock(BasicBlock *BB);
+
+ /// getOrEmitGlobalVariable - Return the address of the specified global
+ /// variable, possibly emitting it to memory if needed. This is used by the
+ /// Emitter.
+ void *getOrEmitGlobalVariable(const GlobalVariable *GV);
+
+ /// getPointerToFunctionOrStub - If the specified function has been
+ /// code-gen'd, return a pointer to the function. If not, compile it, or use
+ /// a stub to implement lazy compilation if available.
+ ///
+ void *getPointerToFunctionOrStub(Function *F);
+
+ /// recompileAndRelinkFunction - This method is used to force a function
+ /// which has already been compiled, to be compiled again, possibly
+ /// after it has been modified. Then the entry to the old copy is overwritten
+ /// with a branch to the new copy. If there was no old copy, this acts
+ /// just like JIT::getPointerToFunction().
+ ///
+ void *recompileAndRelinkFunction(Function *F);
+
+ /// freeMachineCodeForFunction - deallocate memory used to code-generate this
+ /// Function.
+ ///
+ void freeMachineCodeForFunction(Function *F);
+
+ /// addPendingFunction - while jitting non-lazily, a called but non-codegen'd
+ /// function was encountered. Add it to a pending list to be processed after
+ /// the current function.
+ ///
+ void addPendingFunction(Function *F);
+
+ /// getCodeEmitter - Return the code emitter this JIT is emitting into.
+ ///
+ JITCodeEmitter *getCodeEmitter() const { return JCE; }
+
+ static ExecutionEngine *createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM);
+
+ // Run the JIT on F and return information about the generated code
+ void runJITOnFunction(Function *F, MachineCodeInfo *MCI = 0);
+
+ virtual void RegisterJITEventListener(JITEventListener *L);
+ virtual void UnregisterJITEventListener(JITEventListener *L);
+ /// These functions correspond to the methods on JITEventListener. They
+ /// iterate over the registered listeners and call the corresponding method on
+ /// each.
+ void NotifyFunctionEmitted(
+ const Function &F, void *Code, size_t Size,
+ const JITEvent_EmittedFunctionDetails &Details);
+ void NotifyFreeingMachineCode(void *OldPtr);
+
+ BasicBlockAddressMapTy &
+ getBasicBlockAddressMap(const MutexGuard &) {
+ return BasicBlockAddressMap;
+ }
+
+
+private:
+ static JITCodeEmitter *createEmitter(JIT &J, JITMemoryManager *JMM,
+ TargetMachine &tm);
+ void runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked);
+ void updateFunctionStub(Function *F);
+ void jitTheFunction(Function *F, const MutexGuard &locked);
+
+protected:
+
+ /// getMemoryforGV - Allocate memory for a global variable.
+ virtual char* getMemoryForGV(const GlobalVariable* GV);
+
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
new file mode 100644
index 0000000..35d2b8b
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
@@ -0,0 +1,596 @@
+//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITDwarfEmitter object that is used by the JIT to
+// write dwarf tables to memory.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JITDwarfEmitter.h"
+#include "JIT.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MachineLocation.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetFrameLowering.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {}
+
+
+unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
+ JITCodeEmitter& jce,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction,
+ unsigned char* &EHFramePtr) {
+ assert(MMI && "MachineModuleInfo not registered!");
+
+ const TargetMachine& TM = F.getTarget();
+ TD = TM.getDataLayout();
+ stackGrowthDirection = TM.getFrameLowering()->getStackGrowthDirection();
+ RI = TM.getRegisterInfo();
+ MAI = TM.getMCAsmInfo();
+ JCE = &jce;
+
+ unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
+ EndFunction);
+
+ unsigned char* Result = 0;
+
+ const std::vector<const Function *> Personalities = MMI->getPersonalities();
+ EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
+
+ Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
+ StartFunction, EndFunction, ExceptionTable);
+
+ return Result;
+}
+
+
+void
+JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
+ const std::vector<MachineMove> &Moves) const {
+ unsigned PointerSize = TD->getPointerSize();
+ int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
+ PointerSize : -PointerSize;
+ MCSymbol *BaseLabel = 0;
+
+ for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
+ const MachineMove &Move = Moves[i];
+ MCSymbol *Label = Move.getLabel();
+
+ // Throw out move if the label is invalid.
+ if (Label && (*JCE->getLabelLocations())[Label] == 0)
+ continue;
+
+ intptr_t LabelPtr = 0;
+ if (Label) LabelPtr = JCE->getLabelAddress(Label);
+
+ const MachineLocation &Dst = Move.getDestination();
+ const MachineLocation &Src = Move.getSource();
+
+ // Advance row if new location.
+ if (BaseLabelPtr && Label && BaseLabel != Label) {
+ JCE->emitByte(dwarf::DW_CFA_advance_loc4);
+ JCE->emitInt32(LabelPtr - BaseLabelPtr);
+
+ BaseLabel = Label;
+ BaseLabelPtr = LabelPtr;
+ }
+
+ // If advancing cfa.
+ if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
+ if (!Src.isReg()) {
+ if (Src.getReg() == MachineLocation::VirtualFP) {
+ JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
+ } else {
+ JCE->emitByte(dwarf::DW_CFA_def_cfa);
+ JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
+ }
+
+ JCE->emitULEB128Bytes(-Src.getOffset());
+ } else {
+ llvm_unreachable("Machine move not supported yet.");
+ }
+ } else if (Src.isReg() &&
+ Src.getReg() == MachineLocation::VirtualFP) {
+ if (Dst.isReg()) {
+ JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
+ JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
+ } else {
+ llvm_unreachable("Machine move not supported yet.");
+ }
+ } else {
+ unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
+ int Offset = Dst.getOffset() / stackGrowth;
+
+ if (Offset < 0) {
+ JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
+ JCE->emitULEB128Bytes(Reg);
+ JCE->emitSLEB128Bytes(Offset);
+ } else if (Reg < 64) {
+ JCE->emitByte(dwarf::DW_CFA_offset + Reg);
+ JCE->emitULEB128Bytes(Offset);
+ } else {
+ JCE->emitByte(dwarf::DW_CFA_offset_extended);
+ JCE->emitULEB128Bytes(Reg);
+ JCE->emitULEB128Bytes(Offset);
+ }
+ }
+ }
+}
+
+/// SharedTypeIds - How many leading type ids two landing pads have in common.
+static unsigned SharedTypeIds(const LandingPadInfo *L,
+ const LandingPadInfo *R) {
+ const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
+ unsigned LSize = LIds.size(), RSize = RIds.size();
+ unsigned MinSize = LSize < RSize ? LSize : RSize;
+ unsigned Count = 0;
+
+ for (; Count != MinSize; ++Count)
+ if (LIds[Count] != RIds[Count])
+ return Count;
+
+ return Count;
+}
+
+
+/// PadLT - Order landing pads lexicographically by type id.
+static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
+ const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
+ unsigned LSize = LIds.size(), RSize = RIds.size();
+ unsigned MinSize = LSize < RSize ? LSize : RSize;
+
+ for (unsigned i = 0; i != MinSize; ++i)
+ if (LIds[i] != RIds[i])
+ return LIds[i] < RIds[i];
+
+ return LSize < RSize;
+}
+
+namespace {
+
+/// ActionEntry - Structure describing an entry in the actions table.
+struct ActionEntry {
+ int ValueForTypeID; // The value to write - may not be equal to the type id.
+ int NextAction;
+ struct ActionEntry *Previous;
+};
+
+/// PadRange - Structure holding a try-range and the associated landing pad.
+struct PadRange {
+ // The index of the landing pad.
+ unsigned PadIndex;
+ // The index of the begin and end labels in the landing pad's label lists.
+ unsigned RangeIndex;
+};
+
+typedef DenseMap<MCSymbol*, PadRange> RangeMapType;
+
+/// CallSiteEntry - Structure describing an entry in the call-site table.
+struct CallSiteEntry {
+ MCSymbol *BeginLabel; // zero indicates the start of the function.
+ MCSymbol *EndLabel; // zero indicates the end of the function.
+ MCSymbol *PadLabel; // zero indicates that there is no landing pad.
+ unsigned Action;
+};
+
+}
+
+unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction) const {
+ assert(MMI && "MachineModuleInfo not registered!");
+
+ // Map all labels and get rid of any dead landing pads.
+ MMI->TidyLandingPads(JCE->getLabelLocations());
+
+ const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
+ const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
+ const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
+ if (PadInfos.empty()) return 0;
+
+ // Sort the landing pads in order of their type ids. This is used to fold
+ // duplicate actions.
+ SmallVector<const LandingPadInfo *, 64> LandingPads;
+ LandingPads.reserve(PadInfos.size());
+ for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
+ LandingPads.push_back(&PadInfos[i]);
+ std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
+
+ // Negative type ids index into FilterIds, positive type ids index into
+ // TypeInfos. The value written for a positive type id is just the type
+ // id itself. For a negative type id, however, the value written is the
+ // (negative) byte offset of the corresponding FilterIds entry. The byte
+ // offset is usually equal to the type id, because the FilterIds entries
+ // are written using a variable width encoding which outputs one byte per
+ // entry as long as the value written is not too large, but can differ.
+ // This kind of complication does not occur for positive type ids because
+ // type infos are output using a fixed width encoding.
+ // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
+ SmallVector<int, 16> FilterOffsets;
+ FilterOffsets.reserve(FilterIds.size());
+ int Offset = -1;
+ for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
+ E = FilterIds.end(); I != E; ++I) {
+ FilterOffsets.push_back(Offset);
+ Offset -= MCAsmInfo::getULEB128Size(*I);
+ }
+
+ // Compute the actions table and gather the first action index for each
+ // landing pad site.
+ SmallVector<ActionEntry, 32> Actions;
+ SmallVector<unsigned, 64> FirstActions;
+ FirstActions.reserve(LandingPads.size());
+
+ int FirstAction = 0;
+ unsigned SizeActions = 0;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LP = LandingPads[i];
+ const std::vector<int> &TypeIds = LP->TypeIds;
+ const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
+ unsigned SizeSiteActions = 0;
+
+ if (NumShared < TypeIds.size()) {
+ unsigned SizeAction = 0;
+ ActionEntry *PrevAction = 0;
+
+ if (NumShared) {
+ const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
+ assert(Actions.size());
+ PrevAction = &Actions.back();
+ SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
+ MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ for (unsigned j = NumShared; j != SizePrevIds; ++j) {
+ SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction += -PrevAction->NextAction;
+ PrevAction = PrevAction->Previous;
+ }
+ }
+
+ // Compute the actions.
+ for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
+ int TypeID = TypeIds[I];
+ assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
+ int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
+ unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
+
+ int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
+ SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
+ SizeSiteActions += SizeAction;
+
+ ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
+ Actions.push_back(Action);
+
+ PrevAction = &Actions.back();
+ }
+
+ // Record the first action of the landing pad site.
+ FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
+ } // else identical - re-use previous FirstAction
+
+ FirstActions.push_back(FirstAction);
+
+ // Compute this sites contribution to size.
+ SizeActions += SizeSiteActions;
+ }
+
+ // Compute the call-site table. Entries must be ordered by address.
+ SmallVector<CallSiteEntry, 64> CallSites;
+
+ RangeMapType PadMap;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LandingPad = LandingPads[i];
+ for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
+ MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
+ assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
+ PadRange P = { i, j };
+ PadMap[BeginLabel] = P;
+ }
+ }
+
+ bool MayThrow = false;
+ MCSymbol *LastLabel = 0;
+ for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
+ I != E; ++I) {
+ for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
+ MI != E; ++MI) {
+ if (!MI->isLabel()) {
+ MayThrow |= MI->isCall();
+ continue;
+ }
+
+ MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
+ assert(BeginLabel && "Invalid label!");
+
+ if (BeginLabel == LastLabel)
+ MayThrow = false;
+
+ RangeMapType::iterator L = PadMap.find(BeginLabel);
+
+ if (L == PadMap.end())
+ continue;
+
+ PadRange P = L->second;
+ const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
+
+ assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
+ "Inconsistent landing pad map!");
+
+ // If some instruction between the previous try-range and this one may
+ // throw, create a call-site entry with no landing pad for the region
+ // between the try-ranges.
+ if (MayThrow) {
+ CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
+ CallSites.push_back(Site);
+ }
+
+ LastLabel = LandingPad->EndLabels[P.RangeIndex];
+ CallSiteEntry Site = {BeginLabel, LastLabel,
+ LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
+
+ assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
+ "Invalid landing pad!");
+
+ // Try to merge with the previous call-site.
+ if (CallSites.size()) {
+ CallSiteEntry &Prev = CallSites.back();
+ if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
+ // Extend the range of the previous entry.
+ Prev.EndLabel = Site.EndLabel;
+ continue;
+ }
+ }
+
+ // Otherwise, create a new call-site.
+ CallSites.push_back(Site);
+ }
+ }
+ // If some instruction between the previous try-range and the end of the
+ // function may throw, create a call-site entry with no landing pad for the
+ // region following the try-range.
+ if (MayThrow) {
+ CallSiteEntry Site = {LastLabel, 0, 0, 0};
+ CallSites.push_back(Site);
+ }
+
+ // Final tallies.
+ unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
+ sizeof(int32_t) + // Site length.
+ sizeof(int32_t)); // Landing pad.
+ for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
+ SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
+
+ unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
+
+ unsigned TypeOffset = sizeof(int8_t) + // Call site format
+ // Call-site table length
+ MCAsmInfo::getULEB128Size(SizeSites) +
+ SizeSites + SizeActions + SizeTypes;
+
+ // Begin the exception table.
+ JCE->emitAlignmentWithFill(4, 0);
+ // Asm->EOL("Padding");
+
+ unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
+
+ // Emit the header.
+ JCE->emitByte(dwarf::DW_EH_PE_omit);
+ // Asm->EOL("LPStart format (DW_EH_PE_omit)");
+ JCE->emitByte(dwarf::DW_EH_PE_absptr);
+ // Asm->EOL("TType format (DW_EH_PE_absptr)");
+ JCE->emitULEB128Bytes(TypeOffset);
+ // Asm->EOL("TType base offset");
+ JCE->emitByte(dwarf::DW_EH_PE_udata4);
+ // Asm->EOL("Call site format (DW_EH_PE_udata4)");
+ JCE->emitULEB128Bytes(SizeSites);
+ // Asm->EOL("Call-site table length");
+
+ // Emit the landing pad site information.
+ for (unsigned i = 0; i < CallSites.size(); ++i) {
+ CallSiteEntry &S = CallSites[i];
+ intptr_t BeginLabelPtr = 0;
+ intptr_t EndLabelPtr = 0;
+
+ if (!S.BeginLabel) {
+ BeginLabelPtr = (intptr_t)StartFunction;
+ JCE->emitInt32(0);
+ } else {
+ BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
+ JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
+ }
+
+ // Asm->EOL("Region start");
+
+ if (!S.EndLabel)
+ EndLabelPtr = (intptr_t)EndFunction;
+ else
+ EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
+
+ JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
+ //Asm->EOL("Region length");
+
+ if (!S.PadLabel) {
+ JCE->emitInt32(0);
+ } else {
+ unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
+ JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
+ }
+ // Asm->EOL("Landing pad");
+
+ JCE->emitULEB128Bytes(S.Action);
+ // Asm->EOL("Action");
+ }
+
+ // Emit the actions.
+ for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
+ ActionEntry &Action = Actions[I];
+
+ JCE->emitSLEB128Bytes(Action.ValueForTypeID);
+ //Asm->EOL("TypeInfo index");
+ JCE->emitSLEB128Bytes(Action.NextAction);
+ //Asm->EOL("Next action");
+ }
+
+ // Emit the type ids.
+ for (unsigned M = TypeInfos.size(); M; --M) {
+ const GlobalVariable *GV = TypeInfos[M - 1];
+
+ if (GV) {
+ if (TD->getPointerSize() == sizeof(int32_t))
+ JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
+ else
+ JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
+ } else {
+ if (TD->getPointerSize() == sizeof(int32_t))
+ JCE->emitInt32(0);
+ else
+ JCE->emitInt64(0);
+ }
+ // Asm->EOL("TypeInfo");
+ }
+
+ // Emit the filter typeids.
+ for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
+ unsigned TypeID = FilterIds[j];
+ JCE->emitULEB128Bytes(TypeID);
+ //Asm->EOL("Filter TypeInfo index");
+ }
+
+ JCE->emitAlignmentWithFill(4, 0);
+
+ return DwarfExceptionTable;
+}
+
+unsigned char*
+JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
+ unsigned PointerSize = TD->getPointerSize();
+ int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ?
+ PointerSize : -PointerSize;
+
+ unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
+ // EH Common Frame header
+ JCE->allocateSpace(4, 0);
+ unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
+ JCE->emitInt32((int)0);
+ JCE->emitByte(dwarf::DW_CIE_VERSION);
+ JCE->emitString(Personality ? "zPLR" : "zR");
+ JCE->emitULEB128Bytes(1);
+ JCE->emitSLEB128Bytes(stackGrowth);
+ JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
+
+ if (Personality) {
+ // Augmentation Size: 3 small ULEBs of one byte each, and the personality
+ // function which size is PointerSize.
+ JCE->emitULEB128Bytes(3 + PointerSize);
+
+ // We set the encoding of the personality as direct encoding because we use
+ // the function pointer. The encoding is not relative because the current
+ // PC value may be bigger than the personality function pointer.
+ if (PointerSize == 4) {
+ JCE->emitByte(dwarf::DW_EH_PE_sdata4);
+ JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
+ } else {
+ JCE->emitByte(dwarf::DW_EH_PE_sdata8);
+ JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
+ }
+
+ // LSDA encoding: This must match the encoding used in EmitEHFrame ()
+ if (PointerSize == 4)
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
+ else
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8);
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
+ } else {
+ JCE->emitULEB128Bytes(1);
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
+ }
+
+ EmitFrameMoves(0, MAI->getInitialFrameState());
+
+ JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
+
+ JCE->emitInt32At((uintptr_t*)StartCommonPtr,
+ (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
+ FrameCommonBeginPtr));
+
+ return StartCommonPtr;
+}
+
+
+unsigned char*
+JITDwarfEmitter::EmitEHFrame(const Function* Personality,
+ unsigned char* StartCommonPtr,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction,
+ unsigned char* ExceptionTable) const {
+ unsigned PointerSize = TD->getPointerSize();
+
+ // EH frame header.
+ unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
+ JCE->allocateSpace(4, 0);
+ unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
+ // FDE CIE Offset
+ JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
+ JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
+ JCE->emitInt32(EndFunction - StartFunction);
+
+ // If there is a personality and landing pads then point to the language
+ // specific data area in the exception table.
+ if (Personality) {
+ JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);
+
+ if (PointerSize == 4) {
+ if (!MMI->getLandingPads().empty())
+ JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
+ else
+ JCE->emitInt32((int)0);
+ } else {
+ if (!MMI->getLandingPads().empty())
+ JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
+ else
+ JCE->emitInt64((int)0);
+ }
+ } else {
+ JCE->emitULEB128Bytes(0);
+ }
+
+ // Indicate locations of function specific callee saved registers in
+ // frame.
+ EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
+
+ JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
+
+ // Indicate the size of the table
+ JCE->emitInt32At((uintptr_t*)StartEHPtr,
+ (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
+ StartEHPtr));
+
+ // Double zeroes for the unwind runtime
+ if (PointerSize == 8) {
+ JCE->emitInt64(0);
+ JCE->emitInt64(0);
+ } else {
+ JCE->emitInt32(0);
+ JCE->emitInt32(0);
+ }
+
+ return StartEHPtr;
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h
new file mode 100644
index 0000000..98ac340
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h
@@ -0,0 +1,77 @@
+//===------ JITDwarfEmitter.h - Write dwarf tables into memory ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITDwarfEmitter object that is used by the JIT to
+// write dwarf tables to memory.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
+#define LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
+
+#include "llvm/Support/DataTypes.h"
+#include <vector>
+
+namespace llvm {
+
+class Function;
+class JIT;
+class JITCodeEmitter;
+class MachineFunction;
+class MachineModuleInfo;
+class MachineMove;
+class MCAsmInfo;
+class DataLayout;
+class TargetMachine;
+class TargetRegisterInfo;
+
+class JITDwarfEmitter {
+ const DataLayout* TD;
+ JITCodeEmitter* JCE;
+ const TargetRegisterInfo* RI;
+ const MCAsmInfo *MAI;
+ MachineModuleInfo* MMI;
+ JIT& Jit;
+ bool stackGrowthDirection;
+
+ unsigned char* EmitExceptionTable(MachineFunction* MF,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction) const;
+
+ void EmitFrameMoves(intptr_t BaseLabelPtr,
+ const std::vector<MachineMove> &Moves) const;
+
+ unsigned char* EmitCommonEHFrame(const Function* Personality) const;
+
+ unsigned char* EmitEHFrame(const Function* Personality,
+ unsigned char* StartBufferPtr,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction,
+ unsigned char* ExceptionTable) const;
+
+public:
+
+ JITDwarfEmitter(JIT& jit);
+
+ unsigned char* EmitDwarfTable(MachineFunction& F,
+ JITCodeEmitter& JCE,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction,
+ unsigned char* &EHFramePtr);
+
+
+ void setModuleInfo(MachineModuleInfo* Info) {
+ MMI = Info;
+ }
+};
+
+
+} // end namespace llvm
+
+#endif // LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp
new file mode 100644
index 0000000..c273876
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp
@@ -0,0 +1,1301 @@
+//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a MachineCodeEmitter object that is used by the JIT to
+// write machine code to memory and remember where relocatable values are.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "JIT.h"
+#include "JITDwarfEmitter.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/ValueMap.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineCodeInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRelocation.h"
+#include "llvm/DebugInfo.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Disassembler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/Memory.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetJITInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include <algorithm>
+#ifndef NDEBUG
+#include <iomanip>
+#endif
+using namespace llvm;
+
+STATISTIC(NumBytes, "Number of bytes of machine code compiled");
+STATISTIC(NumRelos, "Number of relocations applied");
+STATISTIC(NumRetries, "Number of retries with more memory");
+
+
+// A declaration may stop being a declaration once it's fully read from bitcode.
+// This function returns true if F is fully read and is still a declaration.
+static bool isNonGhostDeclaration(const Function *F) {
+ return F->isDeclaration() && !F->isMaterializable();
+}
+
+//===----------------------------------------------------------------------===//
+// JIT lazy compilation code.
+//
+namespace {
+ class JITEmitter;
+ class JITResolverState;
+
+ template<typename ValueTy>
+ struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
+ typedef JITResolverState *ExtraData;
+ static void onRAUW(JITResolverState *, Value *Old, Value *New) {
+ llvm_unreachable("The JIT doesn't know how to handle a"
+ " RAUW on a value it has emitted.");
+ }
+ };
+
+ struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
+ typedef JITResolverState *ExtraData;
+ static void onDelete(JITResolverState *JRS, Function *F);
+ };
+
+ class JITResolverState {
+ public:
+ typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
+ FunctionToLazyStubMapTy;
+ typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
+ typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
+ CallSiteValueMapConfig> FunctionToCallSitesMapTy;
+ typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
+ private:
+ /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
+ /// particular function so that we can reuse them if necessary.
+ FunctionToLazyStubMapTy FunctionToLazyStubMap;
+
+ /// CallSiteToFunctionMap - Keep track of the function that each lazy call
+ /// site corresponds to, and vice versa.
+ CallSiteToFunctionMapTy CallSiteToFunctionMap;
+ FunctionToCallSitesMapTy FunctionToCallSitesMap;
+
+ /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
+ /// particular GlobalVariable so that we can reuse them if necessary.
+ GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
+
+#ifndef NDEBUG
+ /// Instance of the JIT this ResolverState serves.
+ JIT *TheJIT;
+#endif
+
+ public:
+ JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
+ FunctionToCallSitesMap(this) {
+#ifndef NDEBUG
+ TheJIT = jit;
+#endif
+ }
+
+ FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
+ const MutexGuard& locked) {
+ assert(locked.holds(TheJIT->lock));
+ return FunctionToLazyStubMap;
+ }
+
+ GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
+ assert(lck.holds(TheJIT->lock));
+ return GlobalToIndirectSymMap;
+ }
+
+ std::pair<void *, Function *> LookupFunctionFromCallSite(
+ const MutexGuard &locked, void *CallSite) const {
+ assert(locked.holds(TheJIT->lock));
+
+ // The address given to us for the stub may not be exactly right, it
+ // might be a little bit after the stub. As such, use upper_bound to
+ // find it.
+ CallSiteToFunctionMapTy::const_iterator I =
+ CallSiteToFunctionMap.upper_bound(CallSite);
+ assert(I != CallSiteToFunctionMap.begin() &&
+ "This is not a known call site!");
+ --I;
+ return *I;
+ }
+
+ void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
+ assert(locked.holds(TheJIT->lock));
+
+ bool Inserted = CallSiteToFunctionMap.insert(
+ std::make_pair(CallSite, F)).second;
+ (void)Inserted;
+ assert(Inserted && "Pair was already in CallSiteToFunctionMap");
+ FunctionToCallSitesMap[F].insert(CallSite);
+ }
+
+ void EraseAllCallSitesForPrelocked(Function *F);
+
+ // Erases _all_ call sites regardless of their function. This is used to
+ // unregister the stub addresses from the StubToResolverMap in
+ // ~JITResolver().
+ void EraseAllCallSitesPrelocked();
+ };
+
+ /// JITResolver - Keep track of, and resolve, call sites for functions that
+ /// have not yet been compiled.
+ class JITResolver {
+ typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
+ typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
+ typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
+
+ /// LazyResolverFn - The target lazy resolver function that we actually
+ /// rewrite instructions to use.
+ TargetJITInfo::LazyResolverFn LazyResolverFn;
+
+ JITResolverState state;
+
+ /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
+ /// for external functions. TODO: Of course, external functions don't need
+ /// a lazy stub. It's actually here to make it more likely that far calls
+ /// succeed, but no single stub can guarantee that. I'll remove this in a
+ /// subsequent checkin when I actually fix far calls.
+ std::map<void*, void*> ExternalFnToStubMap;
+
+ /// revGOTMap - map addresses to indexes in the GOT
+ std::map<void*, unsigned> revGOTMap;
+ unsigned nextGOTIndex;
+
+ JITEmitter &JE;
+
+ /// Instance of JIT corresponding to this Resolver.
+ JIT *TheJIT;
+
+ public:
+ explicit JITResolver(JIT &jit, JITEmitter &je)
+ : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
+ LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
+ }
+
+ ~JITResolver();
+
+ /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
+ /// lazy-compilation stub if it has already been created.
+ void *getLazyFunctionStubIfAvailable(Function *F);
+
+ /// getLazyFunctionStub - This returns a pointer to a function's
+ /// lazy-compilation stub, creating one on demand as needed.
+ void *getLazyFunctionStub(Function *F);
+
+ /// getExternalFunctionStub - Return a stub for the function at the
+ /// specified address, created lazily on demand.
+ void *getExternalFunctionStub(void *FnAddr);
+
+ /// getGlobalValueIndirectSym - Return an indirect symbol containing the
+ /// specified GV address.
+ void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
+
+ /// getGOTIndexForAddress - Return a new or existing index in the GOT for
+ /// an address. This function only manages slots, it does not manage the
+ /// contents of the slots or the memory associated with the GOT.
+ unsigned getGOTIndexForAddr(void *addr);
+
+ /// JITCompilerFn - This function is called to resolve a stub to a compiled
+ /// address. If the LLVM Function corresponding to the stub has not yet
+ /// been compiled, this function compiles it first.
+ static void *JITCompilerFn(void *Stub);
+ };
+
+ class StubToResolverMapTy {
+ /// Map a stub address to a specific instance of a JITResolver so that
+ /// lazily-compiled functions can find the right resolver to use.
+ ///
+ /// Guarded by Lock.
+ std::map<void*, JITResolver*> Map;
+
+ /// Guards Map from concurrent accesses.
+ mutable sys::Mutex Lock;
+
+ public:
+ /// Registers a Stub to be resolved by Resolver.
+ void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
+ MutexGuard guard(Lock);
+ Map.insert(std::make_pair(Stub, Resolver));
+ }
+ /// Unregisters the Stub when it's invalidated.
+ void UnregisterStubResolver(void *Stub) {
+ MutexGuard guard(Lock);
+ Map.erase(Stub);
+ }
+ /// Returns the JITResolver instance that owns the Stub.
+ JITResolver *getResolverFromStub(void *Stub) const {
+ MutexGuard guard(Lock);
+ // The address given to us for the stub may not be exactly right, it might
+ // be a little bit after the stub. As such, use upper_bound to find it.
+ // This is the same trick as in LookupFunctionFromCallSite from
+ // JITResolverState.
+ std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
+ assert(I != Map.begin() && "This is not a known stub!");
+ --I;
+ return I->second;
+ }
+ /// True if any stubs refer to the given resolver. Only used in an assert().
+ /// O(N)
+ bool ResolverHasStubs(JITResolver* Resolver) const {
+ MutexGuard guard(Lock);
+ for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
+ E = Map.end(); I != E; ++I) {
+ if (I->second == Resolver)
+ return true;
+ }
+ return false;
+ }
+ };
+ /// This needs to be static so that a lazy call stub can access it with no
+ /// context except the address of the stub.
+ ManagedStatic<StubToResolverMapTy> StubToResolverMap;
+
+ /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
+ /// used to output functions to memory for execution.
+ class JITEmitter : public JITCodeEmitter {
+ JITMemoryManager *MemMgr;
+
+ // When outputting a function stub in the context of some other function, we
+ // save BufferBegin/BufferEnd/CurBufferPtr here.
+ uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
+
+ // When reattempting to JIT a function after running out of space, we store
+ // the estimated size of the function we're trying to JIT here, so we can
+ // ask the memory manager for at least this much space. When we
+ // successfully emit the function, we reset this back to zero.
+ uintptr_t SizeEstimate;
+
+ /// Relocations - These are the relocations that the function needs, as
+ /// emitted.
+ std::vector<MachineRelocation> Relocations;
+
+ /// MBBLocations - This vector is a mapping from MBB ID's to their address.
+ /// It is filled in by the StartMachineBasicBlock callback and queried by
+ /// the getMachineBasicBlockAddress callback.
+ std::vector<uintptr_t> MBBLocations;
+
+ /// ConstantPool - The constant pool for the current function.
+ ///
+ MachineConstantPool *ConstantPool;
+
+ /// ConstantPoolBase - A pointer to the first entry in the constant pool.
+ ///
+ void *ConstantPoolBase;
+
+ /// ConstPoolAddresses - Addresses of individual constant pool entries.
+ ///
+ SmallVector<uintptr_t, 8> ConstPoolAddresses;
+
+ /// JumpTable - The jump tables for the current function.
+ ///
+ MachineJumpTableInfo *JumpTable;
+
+ /// JumpTableBase - A pointer to the first entry in the jump table.
+ ///
+ void *JumpTableBase;
+
+ /// Resolver - This contains info about the currently resolved functions.
+ JITResolver Resolver;
+
+ /// DE - The dwarf emitter for the jit.
+ OwningPtr<JITDwarfEmitter> DE;
+
+ /// LabelLocations - This vector is a mapping from Label ID's to their
+ /// address.
+ DenseMap<MCSymbol*, uintptr_t> LabelLocations;
+
+ /// MMI - Machine module info for exception informations
+ MachineModuleInfo* MMI;
+
+ // CurFn - The llvm function being emitted. Only valid during
+ // finishFunction().
+ const Function *CurFn;
+
+ /// Information about emitted code, which is passed to the
+ /// JITEventListeners. This is reset in startFunction and used in
+ /// finishFunction.
+ JITEvent_EmittedFunctionDetails EmissionDetails;
+
+ struct EmittedCode {
+ void *FunctionBody; // Beginning of the function's allocation.
+ void *Code; // The address the function's code actually starts at.
+ void *ExceptionTable;
+ EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
+ };
+ struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
+ typedef JITEmitter *ExtraData;
+ static void onDelete(JITEmitter *, const Function*);
+ static void onRAUW(JITEmitter *, const Function*, const Function*);
+ };
+ ValueMap<const Function *, EmittedCode,
+ EmittedFunctionConfig> EmittedFunctions;
+
+ DebugLoc PrevDL;
+
+ /// Instance of the JIT
+ JIT *TheJIT;
+
+ bool JITExceptionHandling;
+
+ public:
+ JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
+ : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
+ EmittedFunctions(this), TheJIT(&jit),
+ JITExceptionHandling(TM.Options.JITExceptionHandling) {
+ MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
+ if (jit.getJITInfo().needsGOT()) {
+ MemMgr->AllocateGOT();
+ DEBUG(dbgs() << "JIT is managing a GOT\n");
+ }
+
+ if (JITExceptionHandling) {
+ DE.reset(new JITDwarfEmitter(jit));
+ }
+ }
+ ~JITEmitter() {
+ delete MemMgr;
+ }
+
+ JITResolver &getJITResolver() { return Resolver; }
+
+ virtual void startFunction(MachineFunction &F);
+ virtual bool finishFunction(MachineFunction &F);
+
+ void emitConstantPool(MachineConstantPool *MCP);
+ void initJumpTableInfo(MachineJumpTableInfo *MJTI);
+ void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
+
+ void startGVStub(const GlobalValue* GV,
+ unsigned StubSize, unsigned Alignment = 1);
+ void startGVStub(void *Buffer, unsigned StubSize);
+ void finishGVStub();
+ virtual void *allocIndirectGV(const GlobalValue *GV,
+ const uint8_t *Buffer, size_t Size,
+ unsigned Alignment);
+
+ /// allocateSpace - Reserves space in the current block if any, or
+ /// allocate a new one of the given size.
+ virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
+
+ /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
+ /// this method does not allocate memory in the current output buffer,
+ /// because a global may live longer than the current function.
+ virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
+
+ virtual void addRelocation(const MachineRelocation &MR) {
+ Relocations.push_back(MR);
+ }
+
+ virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
+ if (MBBLocations.size() <= (unsigned)MBB->getNumber())
+ MBBLocations.resize((MBB->getNumber()+1)*2);
+ MBBLocations[MBB->getNumber()] = getCurrentPCValue();
+ if (MBB->hasAddressTaken())
+ TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
+ (void*)getCurrentPCValue());
+ DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
+ << (void*) getCurrentPCValue() << "]\n");
+ }
+
+ virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
+ virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
+
+ virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
+ assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
+ MBBLocations[MBB->getNumber()] && "MBB not emitted!");
+ return MBBLocations[MBB->getNumber()];
+ }
+
+ /// retryWithMoreMemory - Log a retry and deallocate all memory for the
+ /// given function. Increase the minimum allocation size so that we get
+ /// more memory next time.
+ void retryWithMoreMemory(MachineFunction &F);
+
+ /// deallocateMemForFunction - Deallocate all memory for the specified
+ /// function body.
+ void deallocateMemForFunction(const Function *F);
+
+ virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
+
+ virtual void emitLabel(MCSymbol *Label) {
+ LabelLocations[Label] = getCurrentPCValue();
+ }
+
+ virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
+ return &LabelLocations;
+ }
+
+ virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
+ assert(LabelLocations.count(Label) && "Label not emitted!");
+ return LabelLocations.find(Label)->second;
+ }
+
+ virtual void setModuleInfo(MachineModuleInfo* Info) {
+ MMI = Info;
+ if (DE.get()) DE->setModuleInfo(Info);
+ }
+
+ private:
+ void *getPointerToGlobal(GlobalValue *GV, void *Reference,
+ bool MayNeedFarStub);
+ void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
+ };
+}
+
+void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
+ JRS->EraseAllCallSitesForPrelocked(F);
+}
+
+void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
+ FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
+ if (F2C == FunctionToCallSitesMap.end())
+ return;
+ StubToResolverMapTy &S2RMap = *StubToResolverMap;
+ for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
+ E = F2C->second.end(); I != E; ++I) {
+ S2RMap.UnregisterStubResolver(*I);
+ bool Erased = CallSiteToFunctionMap.erase(*I);
+ (void)Erased;
+ assert(Erased && "Missing call site->function mapping");
+ }
+ FunctionToCallSitesMap.erase(F2C);
+}
+
+void JITResolverState::EraseAllCallSitesPrelocked() {
+ StubToResolverMapTy &S2RMap = *StubToResolverMap;
+ for (CallSiteToFunctionMapTy::const_iterator
+ I = CallSiteToFunctionMap.begin(),
+ E = CallSiteToFunctionMap.end(); I != E; ++I) {
+ S2RMap.UnregisterStubResolver(I->first);
+ }
+ CallSiteToFunctionMap.clear();
+ FunctionToCallSitesMap.clear();
+}
+
+JITResolver::~JITResolver() {
+ // No need to lock because we're in the destructor, and state isn't shared.
+ state.EraseAllCallSitesPrelocked();
+ assert(!StubToResolverMap->ResolverHasStubs(this) &&
+ "Resolver destroyed with stubs still alive.");
+}
+
+/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
+/// if it has already been created.
+void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
+ MutexGuard locked(TheJIT->lock);
+
+ // If we already have a stub for this function, recycle it.
+ return state.getFunctionToLazyStubMap(locked).lookup(F);
+}
+
+/// getFunctionStub - This returns a pointer to a function stub, creating
+/// one on demand as needed.
+void *JITResolver::getLazyFunctionStub(Function *F) {
+ MutexGuard locked(TheJIT->lock);
+
+ // If we already have a lazy stub for this function, recycle it.
+ void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
+ if (Stub) return Stub;
+
+ // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
+ // must resolve the symbol now.
+ void *Actual = TheJIT->isCompilingLazily()
+ ? (void *)(intptr_t)LazyResolverFn : (void *)0;
+
+ // If this is an external declaration, attempt to resolve the address now
+ // to place in the stub.
+ if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
+ Actual = TheJIT->getPointerToFunction(F);
+
+ // If we resolved the symbol to a null address (eg. a weak external)
+ // don't emit a stub. Return a null pointer to the application.
+ if (!Actual) return 0;
+ }
+
+ TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
+ JE.startGVStub(F, SL.Size, SL.Alignment);
+ // Codegen a new stub, calling the lazy resolver or the actual address of the
+ // external function, if it was resolved.
+ Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
+ JE.finishGVStub();
+
+ if (Actual != (void*)(intptr_t)LazyResolverFn) {
+ // If we are getting the stub for an external function, we really want the
+ // address of the stub in the GlobalAddressMap for the JIT, not the address
+ // of the external function.
+ TheJIT->updateGlobalMapping(F, Stub);
+ }
+
+ DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
+ << F->getName() << "'\n");
+
+ if (TheJIT->isCompilingLazily()) {
+ // Register this JITResolver as the one corresponding to this call site so
+ // JITCompilerFn will be able to find it.
+ StubToResolverMap->RegisterStubResolver(Stub, this);
+
+ // Finally, keep track of the stub-to-Function mapping so that the
+ // JITCompilerFn knows which function to compile!
+ state.AddCallSite(locked, Stub, F);
+ } else if (!Actual) {
+ // If we are JIT'ing non-lazily but need to call a function that does not
+ // exist yet, add it to the JIT's work list so that we can fill in the
+ // stub address later.
+ assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
+ "'Actual' should have been set above.");
+ TheJIT->addPendingFunction(F);
+ }
+
+ return Stub;
+}
+
+/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
+/// GV address.
+void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
+ MutexGuard locked(TheJIT->lock);
+
+ // If we already have a stub for this global variable, recycle it.
+ void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
+ if (IndirectSym) return IndirectSym;
+
+ // Otherwise, codegen a new indirect symbol.
+ IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
+ JE);
+
+ DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
+ << "] for GV '" << GV->getName() << "'\n");
+
+ return IndirectSym;
+}
+
+/// getExternalFunctionStub - Return a stub for the function at the
+/// specified address, created lazily on demand.
+void *JITResolver::getExternalFunctionStub(void *FnAddr) {
+ // If we already have a stub for this function, recycle it.
+ void *&Stub = ExternalFnToStubMap[FnAddr];
+ if (Stub) return Stub;
+
+ TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
+ JE.startGVStub(0, SL.Size, SL.Alignment);
+ Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
+ JE.finishGVStub();
+
+ DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
+ << "] for external function at '" << FnAddr << "'\n");
+ return Stub;
+}
+
+unsigned JITResolver::getGOTIndexForAddr(void* addr) {
+ unsigned idx = revGOTMap[addr];
+ if (!idx) {
+ idx = ++nextGOTIndex;
+ revGOTMap[addr] = idx;
+ DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
+ << addr << "]\n");
+ }
+ return idx;
+}
+
+/// JITCompilerFn - This function is called when a lazy compilation stub has
+/// been entered. It looks up which function this stub corresponds to, compiles
+/// it if necessary, then returns the resultant function pointer.
+void *JITResolver::JITCompilerFn(void *Stub) {
+ JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
+ assert(JR && "Unable to find the corresponding JITResolver to the call site");
+
+ Function* F = 0;
+ void* ActualPtr = 0;
+
+ {
+ // Only lock for getting the Function. The call getPointerToFunction made
+ // in this function might trigger function materializing, which requires
+ // JIT lock to be unlocked.
+ MutexGuard locked(JR->TheJIT->lock);
+
+ // The address given to us for the stub may not be exactly right, it might
+ // be a little bit after the stub. As such, use upper_bound to find it.
+ std::pair<void*, Function*> I =
+ JR->state.LookupFunctionFromCallSite(locked, Stub);
+ F = I.second;
+ ActualPtr = I.first;
+ }
+
+ // If we have already code generated the function, just return the address.
+ void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
+
+ if (!Result) {
+ // Otherwise we don't have it, do lazy compilation now.
+
+ // If lazy compilation is disabled, emit a useful error message and abort.
+ if (!JR->TheJIT->isCompilingLazily()) {
+ report_fatal_error("LLVM JIT requested to do lazy compilation of"
+ " function '"
+ + F->getName() + "' when lazy compiles are disabled!");
+ }
+
+ DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
+ << "' In stub ptr = " << Stub << " actual ptr = "
+ << ActualPtr << "\n");
+ (void)ActualPtr;
+
+ Result = JR->TheJIT->getPointerToFunction(F);
+ }
+
+ // Reacquire the lock to update the GOT map.
+ MutexGuard locked(JR->TheJIT->lock);
+
+ // We might like to remove the call site from the CallSiteToFunction map, but
+ // we can't do that! Multiple threads could be stuck, waiting to acquire the
+ // lock above. As soon as the 1st function finishes compiling the function,
+ // the next one will be released, and needs to be able to find the function it
+ // needs to call.
+
+ // FIXME: We could rewrite all references to this stub if we knew them.
+
+ // What we will do is set the compiled function address to map to the
+ // same GOT entry as the stub so that later clients may update the GOT
+ // if they see it still using the stub address.
+ // Note: this is done so the Resolver doesn't have to manage GOT memory
+ // Do this without allocating map space if the target isn't using a GOT
+ if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
+ JR->revGOTMap[Result] = JR->revGOTMap[Stub];
+
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// JITEmitter code.
+//
+void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
+ bool MayNeedFarStub) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return TheJIT->getOrEmitGlobalVariable(GV);
+
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+ return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
+
+ // If we have already compiled the function, return a pointer to its body.
+ Function *F = cast<Function>(V);
+
+ void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
+ if (FnStub) {
+ // Return the function stub if it's already created. We do this first so
+ // that we're returning the same address for the function as any previous
+ // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
+ // close enough to call.
+ return FnStub;
+ }
+
+ // If we know the target can handle arbitrary-distance calls, try to
+ // return a direct pointer.
+ if (!MayNeedFarStub) {
+ // If we have code, go ahead and return that.
+ void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
+ if (ResultPtr) return ResultPtr;
+
+ // If this is an external function pointer, we can force the JIT to
+ // 'compile' it, which really just adds it to the map.
+ if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
+ return TheJIT->getPointerToFunction(F);
+ }
+
+ // Otherwise, we may need a to emit a stub, and, conservatively, we always do
+ // so. Note that it's possible to return null from getLazyFunctionStub in the
+ // case of a weak extern that fails to resolve.
+ return Resolver.getLazyFunctionStub(F);
+}
+
+void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
+ // Make sure GV is emitted first, and create a stub containing the fully
+ // resolved address.
+ void *GVAddress = getPointerToGlobal(V, Reference, false);
+ void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
+ return StubAddr;
+}
+
+void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
+ if (DL.isUnknown()) return;
+ if (!BeforePrintingInsn) return;
+
+ const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
+
+ if (DL.getScope(Context) != 0 && PrevDL != DL) {
+ JITEvent_EmittedFunctionDetails::LineStart NextLine;
+ NextLine.Address = getCurrentPCValue();
+ NextLine.Loc = DL;
+ EmissionDetails.LineStarts.push_back(NextLine);
+ }
+
+ PrevDL = DL;
+}
+
+static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
+ const DataLayout *TD) {
+ const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
+ if (Constants.empty()) return 0;
+
+ unsigned Size = 0;
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
+ MachineConstantPoolEntry CPE = Constants[i];
+ unsigned AlignMask = CPE.getAlignment() - 1;
+ Size = (Size + AlignMask) & ~AlignMask;
+ Type *Ty = CPE.getType();
+ Size += TD->getTypeAllocSize(Ty);
+ }
+ return Size;
+}
+
+void JITEmitter::startFunction(MachineFunction &F) {
+ DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
+ << F.getName() << "\n");
+
+ uintptr_t ActualSize = 0;
+ // Set the memory writable, if it's not already
+ MemMgr->setMemoryWritable();
+
+ if (SizeEstimate > 0) {
+ // SizeEstimate will be non-zero on reallocation attempts.
+ ActualSize = SizeEstimate;
+ }
+
+ BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
+ ActualSize);
+ BufferEnd = BufferBegin+ActualSize;
+ EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
+
+ // Ensure the constant pool/jump table info is at least 4-byte aligned.
+ emitAlignment(16);
+
+ emitConstantPool(F.getConstantPool());
+ if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
+ initJumpTableInfo(MJTI);
+
+ // About to start emitting the machine code for the function.
+ emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
+ TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
+ EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
+
+ MBBLocations.clear();
+
+ EmissionDetails.MF = &F;
+ EmissionDetails.LineStarts.clear();
+}
+
+bool JITEmitter::finishFunction(MachineFunction &F) {
+ if (CurBufferPtr == BufferEnd) {
+ // We must call endFunctionBody before retrying, because
+ // deallocateMemForFunction requires it.
+ MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
+ retryWithMoreMemory(F);
+ return true;
+ }
+
+ if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
+ emitJumpTableInfo(MJTI);
+
+ // FnStart is the start of the text, not the start of the constant pool and
+ // other per-function data.
+ uint8_t *FnStart =
+ (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
+
+ // FnEnd is the end of the function's machine code.
+ uint8_t *FnEnd = CurBufferPtr;
+
+ if (!Relocations.empty()) {
+ CurFn = F.getFunction();
+ NumRelos += Relocations.size();
+
+ // Resolve the relocations to concrete pointers.
+ for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
+ MachineRelocation &MR = Relocations[i];
+ void *ResultPtr = 0;
+ if (!MR.letTargetResolve()) {
+ if (MR.isExternalSymbol()) {
+ ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
+ false);
+ DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
+ << ResultPtr << "]\n");
+
+ // If the target REALLY wants a stub for this function, emit it now.
+ if (MR.mayNeedFarStub()) {
+ ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
+ }
+ } else if (MR.isGlobalValue()) {
+ ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
+ BufferBegin+MR.getMachineCodeOffset(),
+ MR.mayNeedFarStub());
+ } else if (MR.isIndirectSymbol()) {
+ ResultPtr = getPointerToGVIndirectSym(
+ MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
+ } else if (MR.isBasicBlock()) {
+ ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
+ } else if (MR.isConstantPoolIndex()) {
+ ResultPtr =
+ (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
+ } else {
+ assert(MR.isJumpTableIndex());
+ ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
+ }
+
+ MR.setResultPointer(ResultPtr);
+ }
+
+ // if we are managing the GOT and the relocation wants an index,
+ // give it one
+ if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
+ unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
+ MR.setGOTIndex(idx);
+ if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
+ DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
+ << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
+ << "\n");
+ ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
+ }
+ }
+ }
+
+ CurFn = 0;
+ TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
+ Relocations.size(), MemMgr->getGOTBase());
+ }
+
+ // Update the GOT entry for F to point to the new code.
+ if (MemMgr->isManagingGOT()) {
+ unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
+ if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
+ DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
+ << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
+ << "\n");
+ ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
+ }
+ }
+
+ // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
+ // global variables that were referenced in the relocations.
+ MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
+
+ if (CurBufferPtr == BufferEnd) {
+ retryWithMoreMemory(F);
+ return true;
+ } else {
+ // Now that we've succeeded in emitting the function, reset the
+ // SizeEstimate back down to zero.
+ SizeEstimate = 0;
+ }
+
+ BufferBegin = CurBufferPtr = 0;
+ NumBytes += FnEnd-FnStart;
+
+ // Invalidate the icache if necessary.
+ sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
+
+ TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
+ EmissionDetails);
+
+ // Reset the previous debug location.
+ PrevDL = DebugLoc();
+
+ DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
+ << "] Function: " << F.getName()
+ << ": " << (FnEnd-FnStart) << " bytes of text, "
+ << Relocations.size() << " relocations\n");
+
+ Relocations.clear();
+ ConstPoolAddresses.clear();
+
+ // Mark code region readable and executable if it's not so already.
+ MemMgr->setMemoryExecutable();
+
+ DEBUG({
+ if (sys::hasDisassembler()) {
+ dbgs() << "JIT: Disassembled code:\n";
+ dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
+ (uintptr_t)FnStart);
+ } else {
+ dbgs() << "JIT: Binary code:\n";
+ uint8_t* q = FnStart;
+ for (int i = 0; q < FnEnd; q += 4, ++i) {
+ if (i == 4)
+ i = 0;
+ if (i == 0)
+ dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
+ bool Done = false;
+ for (int j = 3; j >= 0; --j) {
+ if (q + j >= FnEnd)
+ Done = true;
+ else
+ dbgs() << (unsigned short)q[j];
+ }
+ if (Done)
+ break;
+ dbgs() << ' ';
+ if (i == 3)
+ dbgs() << '\n';
+ }
+ dbgs()<< '\n';
+ }
+ });
+
+ if (JITExceptionHandling) {
+ uintptr_t ActualSize = 0;
+ SavedBufferBegin = BufferBegin;
+ SavedBufferEnd = BufferEnd;
+ SavedCurBufferPtr = CurBufferPtr;
+ uint8_t *FrameRegister;
+
+ while (true) {
+ BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
+ ActualSize);
+ BufferEnd = BufferBegin+ActualSize;
+ EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
+ uint8_t *EhStart;
+ FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, EhStart);
+
+ // If the buffer was large enough to hold the table then we are done.
+ if (CurBufferPtr != BufferEnd)
+ break;
+
+ // Try again with twice as much space.
+ ActualSize = (CurBufferPtr - BufferBegin) * 2;
+ MemMgr->deallocateExceptionTable(BufferBegin);
+ }
+ MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
+ FrameRegister);
+ BufferBegin = SavedBufferBegin;
+ BufferEnd = SavedBufferEnd;
+ CurBufferPtr = SavedCurBufferPtr;
+
+ if (JITExceptionHandling) {
+ TheJIT->RegisterTable(F.getFunction(), FrameRegister);
+ }
+ }
+
+ if (MMI)
+ MMI->EndFunction();
+
+ return false;
+}
+
+void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
+ DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
+ Relocations.clear(); // Clear the old relocations or we'll reapply them.
+ ConstPoolAddresses.clear();
+ ++NumRetries;
+ deallocateMemForFunction(F.getFunction());
+ // Try again with at least twice as much free space.
+ SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
+
+ for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
+ if (MBB->hasAddressTaken())
+ TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
+ }
+}
+
+/// deallocateMemForFunction - Deallocate all memory for the specified
+/// function body. Also drop any references the function has to stubs.
+/// May be called while the Function is being destroyed inside ~Value().
+void JITEmitter::deallocateMemForFunction(const Function *F) {
+ ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
+ Emitted = EmittedFunctions.find(F);
+ if (Emitted != EmittedFunctions.end()) {
+ MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
+ MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
+ TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
+
+ EmittedFunctions.erase(Emitted);
+ }
+
+ if (JITExceptionHandling) {
+ TheJIT->DeregisterTable(F);
+ }
+}
+
+
+void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
+ if (BufferBegin)
+ return JITCodeEmitter::allocateSpace(Size, Alignment);
+
+ // create a new memory block if there is no active one.
+ // care must be taken so that BufferBegin is invalidated when a
+ // block is trimmed
+ BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
+ BufferEnd = BufferBegin+Size;
+ return CurBufferPtr;
+}
+
+void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
+ // Delegate this call through the memory manager.
+ return MemMgr->allocateGlobal(Size, Alignment);
+}
+
+void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
+ if (TheJIT->getJITInfo().hasCustomConstantPool())
+ return;
+
+ const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
+ if (Constants.empty()) return;
+
+ unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
+ unsigned Align = MCP->getConstantPoolAlignment();
+ ConstantPoolBase = allocateSpace(Size, Align);
+ ConstantPool = MCP;
+
+ if (ConstantPoolBase == 0) return; // Buffer overflow.
+
+ DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
+ << "] (size: " << Size << ", alignment: " << Align << ")\n");
+
+ // Initialize the memory for all of the constant pool entries.
+ unsigned Offset = 0;
+ for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
+ MachineConstantPoolEntry CPE = Constants[i];
+ unsigned AlignMask = CPE.getAlignment() - 1;
+ Offset = (Offset + AlignMask) & ~AlignMask;
+
+ uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
+ ConstPoolAddresses.push_back(CAddr);
+ if (CPE.isMachineConstantPoolEntry()) {
+ // FIXME: add support to lower machine constant pool values into bytes!
+ report_fatal_error("Initialize memory with machine specific constant pool"
+ "entry has not been implemented!");
+ }
+ TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
+ DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
+ dbgs().write_hex(CAddr) << "]\n");
+
+ Type *Ty = CPE.Val.ConstVal->getType();
+ Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
+ }
+}
+
+void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
+ if (TheJIT->getJITInfo().hasCustomJumpTables())
+ return;
+ if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
+ return;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ if (JT.empty()) return;
+
+ unsigned NumEntries = 0;
+ for (unsigned i = 0, e = JT.size(); i != e; ++i)
+ NumEntries += JT[i].MBBs.size();
+
+ unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
+
+ // Just allocate space for all the jump tables now. We will fix up the actual
+ // MBB entries in the tables after we emit the code for each block, since then
+ // we will know the final locations of the MBBs in memory.
+ JumpTable = MJTI;
+ JumpTableBase = allocateSpace(NumEntries * EntrySize,
+ MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
+}
+
+void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
+ if (TheJIT->getJITInfo().hasCustomJumpTables())
+ return;
+
+ const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+ if (JT.empty() || JumpTableBase == 0) return;
+
+
+ switch (MJTI->getEntryKind()) {
+ case MachineJumpTableInfo::EK_Inline:
+ return;
+ case MachineJumpTableInfo::EK_BlockAddress: {
+ // EK_BlockAddress - Each entry is a plain address of block, e.g.:
+ // .word LBB123
+ assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
+ "Cross JIT'ing?");
+
+ // For each jump table, map each target in the jump table to the address of
+ // an emitted MachineBasicBlock.
+ intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
+
+ for (unsigned i = 0, e = JT.size(); i != e; ++i) {
+ const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
+ // Store the address of the basic block for this jump table slot in the
+ // memory we allocated for the jump table in 'initJumpTableInfo'
+ for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
+ *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
+ }
+ break;
+ }
+
+ case MachineJumpTableInfo::EK_Custom32:
+ case MachineJumpTableInfo::EK_GPRel32BlockAddress:
+ case MachineJumpTableInfo::EK_LabelDifference32: {
+ assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
+ // For each jump table, place the offset from the beginning of the table
+ // to the target address.
+ int *SlotPtr = (int*)JumpTableBase;
+
+ for (unsigned i = 0, e = JT.size(); i != e; ++i) {
+ const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
+ // Store the offset of the basic block for this jump table slot in the
+ // memory we allocated for the jump table in 'initJumpTableInfo'
+ uintptr_t Base = (uintptr_t)SlotPtr;
+ for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
+ uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
+ /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
+ *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
+ }
+ }
+ break;
+ }
+ case MachineJumpTableInfo::EK_GPRel64BlockAddress:
+ llvm_unreachable(
+ "JT Info emission not implemented for GPRel64BlockAddress yet.");
+ }
+}
+
+void JITEmitter::startGVStub(const GlobalValue* GV,
+ unsigned StubSize, unsigned Alignment) {
+ SavedBufferBegin = BufferBegin;
+ SavedBufferEnd = BufferEnd;
+ SavedCurBufferPtr = CurBufferPtr;
+
+ BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
+ BufferEnd = BufferBegin+StubSize+1;
+}
+
+void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
+ SavedBufferBegin = BufferBegin;
+ SavedBufferEnd = BufferEnd;
+ SavedCurBufferPtr = CurBufferPtr;
+
+ BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
+ BufferEnd = BufferBegin+StubSize+1;
+}
+
+void JITEmitter::finishGVStub() {
+ assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
+ NumBytes += getCurrentPCOffset();
+ BufferBegin = SavedBufferBegin;
+ BufferEnd = SavedBufferEnd;
+ CurBufferPtr = SavedCurBufferPtr;
+}
+
+void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
+ const uint8_t *Buffer, size_t Size,
+ unsigned Alignment) {
+ uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
+ memcpy(IndGV, Buffer, Size);
+ return IndGV;
+}
+
+// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
+// in the constant pool that was last emitted with the 'emitConstantPool'
+// method.
+//
+uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
+ assert(ConstantNum < ConstantPool->getConstants().size() &&
+ "Invalid ConstantPoolIndex!");
+ return ConstPoolAddresses[ConstantNum];
+}
+
+// getJumpTableEntryAddress - Return the address of the JumpTable with index
+// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
+//
+uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
+ const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
+ assert(Index < JT.size() && "Invalid jump table index!");
+
+ unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
+
+ unsigned Offset = 0;
+ for (unsigned i = 0; i < Index; ++i)
+ Offset += JT[i].MBBs.size();
+
+ Offset *= EntrySize;
+
+ return (uintptr_t)((char *)JumpTableBase + Offset);
+}
+
+void JITEmitter::EmittedFunctionConfig::onDelete(
+ JITEmitter *Emitter, const Function *F) {
+ Emitter->deallocateMemForFunction(F);
+}
+void JITEmitter::EmittedFunctionConfig::onRAUW(
+ JITEmitter *, const Function*, const Function*) {
+ llvm_unreachable("The JIT doesn't know how to handle a"
+ " RAUW on a value it has emitted.");
+}
+
+
+//===----------------------------------------------------------------------===//
+// Public interface to this file
+//===----------------------------------------------------------------------===//
+
+JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
+ TargetMachine &tm) {
+ return new JITEmitter(jit, JMM, tm);
+}
+
+// getPointerToFunctionOrStub - If the specified function has been
+// code-gen'd, return a pointer to the function. If not, compile it, or use
+// a stub to implement lazy compilation if available.
+//
+void *JIT::getPointerToFunctionOrStub(Function *F) {
+ // If we have already code generated the function, just return the address.
+ if (void *Addr = getPointerToGlobalIfAvailable(F))
+ return Addr;
+
+ // Get a stub if the target supports it.
+ JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
+ return JE->getJITResolver().getLazyFunctionStub(F);
+}
+
+void JIT::updateFunctionStub(Function *F) {
+ // Get the empty stub we generated earlier.
+ JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
+ void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
+ void *Addr = getPointerToGlobalIfAvailable(F);
+ assert(Addr != Stub && "Function must have non-stub address to be updated.");
+
+ // Tell the target jit info to rewrite the stub at the specified address,
+ // rather than creating a new one.
+ TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
+ JE->startGVStub(Stub, layout.Size);
+ getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
+ JE->finishGVStub();
+}
+
+/// freeMachineCodeForFunction - release machine code memory for given Function.
+///
+void JIT::freeMachineCodeForFunction(Function *F) {
+ // Delete translation for this from the ExecutionEngine, so it will get
+ // retranslated next time it is used.
+ updateGlobalMapping(F, 0);
+
+ // Free the actual memory for the function body and related stuff.
+ static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
new file mode 100644
index 0000000..66aeb77
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp
@@ -0,0 +1,932 @@
+//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DefaultJITMemoryManager class.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "jit"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Config/config.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Memory.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <climits>
+#include <cstring>
+#include <vector>
+
+#if defined(__linux__)
+#if defined(HAVE_SYS_STAT_H)
+#include <sys/stat.h>
+#endif
+#include <fcntl.h>
+#include <unistd.h>
+#endif
+
+using namespace llvm;
+
+STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
+
+JITMemoryManager::~JITMemoryManager() {}
+
+//===----------------------------------------------------------------------===//
+// Memory Block Implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+ /// MemoryRangeHeader - For a range of memory, this is the header that we put
+ /// on the block of memory. It is carefully crafted to be one word of memory.
+ /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
+ /// which starts with this.
+ struct FreeRangeHeader;
+ struct MemoryRangeHeader {
+ /// ThisAllocated - This is true if this block is currently allocated. If
+ /// not, this can be converted to a FreeRangeHeader.
+ unsigned ThisAllocated : 1;
+
+ /// PrevAllocated - Keep track of whether the block immediately before us is
+ /// allocated. If not, the word immediately before this header is the size
+ /// of the previous block.
+ unsigned PrevAllocated : 1;
+
+ /// BlockSize - This is the size in bytes of this memory block,
+ /// including this header.
+ uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
+
+
+ /// getBlockAfter - Return the memory block immediately after this one.
+ ///
+ MemoryRangeHeader &getBlockAfter() const {
+ return *reinterpret_cast<MemoryRangeHeader *>(
+ reinterpret_cast<char*>(
+ const_cast<MemoryRangeHeader *>(this))+BlockSize);
+ }
+
+ /// getFreeBlockBefore - If the block before this one is free, return it,
+ /// otherwise return null.
+ FreeRangeHeader *getFreeBlockBefore() const {
+ if (PrevAllocated) return 0;
+ intptr_t PrevSize = reinterpret_cast<intptr_t *>(
+ const_cast<MemoryRangeHeader *>(this))[-1];
+ return reinterpret_cast<FreeRangeHeader *>(
+ reinterpret_cast<char*>(
+ const_cast<MemoryRangeHeader *>(this))-PrevSize);
+ }
+
+ /// FreeBlock - Turn an allocated block into a free block, adjusting
+ /// bits in the object headers, and adding an end of region memory block.
+ FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
+
+ /// TrimAllocationToSize - If this allocated block is significantly larger
+ /// than NewSize, split it into two pieces (where the former is NewSize
+ /// bytes, including the header), and add the new block to the free list.
+ FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
+ uint64_t NewSize);
+ };
+
+ /// FreeRangeHeader - For a memory block that isn't already allocated, this
+ /// keeps track of the current block and has a pointer to the next free block.
+ /// Free blocks are kept on a circularly linked list.
+ struct FreeRangeHeader : public MemoryRangeHeader {
+ FreeRangeHeader *Prev;
+ FreeRangeHeader *Next;
+
+ /// getMinBlockSize - Get the minimum size for a memory block. Blocks
+ /// smaller than this size cannot be created.
+ static unsigned getMinBlockSize() {
+ return sizeof(FreeRangeHeader)+sizeof(intptr_t);
+ }
+
+ /// SetEndOfBlockSizeMarker - The word at the end of every free block is
+ /// known to be the size of the free block. Set it for this block.
+ void SetEndOfBlockSizeMarker() {
+ void *EndOfBlock = (char*)this + BlockSize;
+ ((intptr_t *)EndOfBlock)[-1] = BlockSize;
+ }
+
+ FreeRangeHeader *RemoveFromFreeList() {
+ assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
+ Next->Prev = Prev;
+ return Prev->Next = Next;
+ }
+
+ void AddToFreeList(FreeRangeHeader *FreeList) {
+ Next = FreeList;
+ Prev = FreeList->Prev;
+ Prev->Next = this;
+ Next->Prev = this;
+ }
+
+ /// GrowBlock - The block after this block just got deallocated. Merge it
+ /// into the current block.
+ void GrowBlock(uintptr_t NewSize);
+
+ /// AllocateBlock - Mark this entire block allocated, updating freelists
+ /// etc. This returns a pointer to the circular free-list.
+ FreeRangeHeader *AllocateBlock();
+ };
+}
+
+
+/// AllocateBlock - Mark this entire block allocated, updating freelists
+/// etc. This returns a pointer to the circular free-list.
+FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
+ assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
+ "Cannot allocate an allocated block!");
+ // Mark this block allocated.
+ ThisAllocated = 1;
+ getBlockAfter().PrevAllocated = 1;
+
+ // Remove it from the free list.
+ return RemoveFromFreeList();
+}
+
+/// FreeBlock - Turn an allocated block into a free block, adjusting
+/// bits in the object headers, and adding an end of region memory block.
+/// If possible, coalesce this block with neighboring blocks. Return the
+/// FreeRangeHeader to allocate from.
+FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
+ MemoryRangeHeader *FollowingBlock = &getBlockAfter();
+ assert(ThisAllocated && "This block is already free!");
+ assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
+
+ FreeRangeHeader *FreeListToReturn = FreeList;
+
+ // If the block after this one is free, merge it into this block.
+ if (!FollowingBlock->ThisAllocated) {
+ FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
+ // "FreeList" always needs to be a valid free block. If we're about to
+ // coalesce with it, update our notion of what the free list is.
+ if (&FollowingFreeBlock == FreeList) {
+ FreeList = FollowingFreeBlock.Next;
+ FreeListToReturn = 0;
+ assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
+ }
+ FollowingFreeBlock.RemoveFromFreeList();
+
+ // Include the following block into this one.
+ BlockSize += FollowingFreeBlock.BlockSize;
+ FollowingBlock = &FollowingFreeBlock.getBlockAfter();
+
+ // Tell the block after the block we are coalescing that this block is
+ // allocated.
+ FollowingBlock->PrevAllocated = 1;
+ }
+
+ assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
+
+ if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
+ PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
+ return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
+ }
+
+ // Otherwise, mark this block free.
+ FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
+ FollowingBlock->PrevAllocated = 0;
+ FreeBlock.ThisAllocated = 0;
+
+ // Link this into the linked list of free blocks.
+ FreeBlock.AddToFreeList(FreeList);
+
+ // Add a marker at the end of the block, indicating the size of this free
+ // block.
+ FreeBlock.SetEndOfBlockSizeMarker();
+ return FreeListToReturn ? FreeListToReturn : &FreeBlock;
+}
+
+/// GrowBlock - The block after this block just got deallocated. Merge it
+/// into the current block.
+void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
+ assert(NewSize > BlockSize && "Not growing block?");
+ BlockSize = NewSize;
+ SetEndOfBlockSizeMarker();
+ getBlockAfter().PrevAllocated = 0;
+}
+
+/// TrimAllocationToSize - If this allocated block is significantly larger
+/// than NewSize, split it into two pieces (where the former is NewSize
+/// bytes, including the header), and add the new block to the free list.
+FreeRangeHeader *MemoryRangeHeader::
+TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
+ assert(ThisAllocated && getBlockAfter().PrevAllocated &&
+ "Cannot deallocate part of an allocated block!");
+
+ // Don't allow blocks to be trimmed below minimum required size
+ NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
+
+ // Round up size for alignment of header.
+ unsigned HeaderAlign = __alignof(FreeRangeHeader);
+ NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
+
+ // Size is now the size of the block we will remove from the start of the
+ // current block.
+ assert(NewSize <= BlockSize &&
+ "Allocating more space from this block than exists!");
+
+ // If splitting this block will cause the remainder to be too small, do not
+ // split the block.
+ if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
+ return FreeList;
+
+ // Otherwise, we splice the required number of bytes out of this block, form
+ // a new block immediately after it, then mark this block allocated.
+ MemoryRangeHeader &FormerNextBlock = getBlockAfter();
+
+ // Change the size of this block.
+ BlockSize = NewSize;
+
+ // Get the new block we just sliced out and turn it into a free block.
+ FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
+ NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
+ NewNextBlock.ThisAllocated = 0;
+ NewNextBlock.PrevAllocated = 1;
+ NewNextBlock.SetEndOfBlockSizeMarker();
+ FormerNextBlock.PrevAllocated = 0;
+ NewNextBlock.AddToFreeList(FreeList);
+ return &NewNextBlock;
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Block Implementation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+ class DefaultJITMemoryManager;
+
+ class JITSlabAllocator : public SlabAllocator {
+ DefaultJITMemoryManager &JMM;
+ public:
+ JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
+ virtual ~JITSlabAllocator() { }
+ virtual MemSlab *Allocate(size_t Size);
+ virtual void Deallocate(MemSlab *Slab);
+ };
+
+ /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
+ /// This splits a large block of MAP_NORESERVE'd memory into two
+ /// sections, one for function stubs, one for the functions themselves. We
+ /// have to do this because we may need to emit a function stub while in the
+ /// middle of emitting a function, and we don't know how large the function we
+ /// are emitting is.
+ class DefaultJITMemoryManager : public JITMemoryManager {
+
+ // Whether to poison freed memory.
+ bool PoisonMemory;
+
+ /// LastSlab - This points to the last slab allocated and is used as the
+ /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
+ /// stubs, data, and code contiguously in memory. In general, however, this
+ /// is not possible because the NearBlock parameter is ignored on Windows
+ /// platforms and even on Unix it works on a best-effort pasis.
+ sys::MemoryBlock LastSlab;
+
+ // Memory slabs allocated by the JIT. We refer to them as slabs so we don't
+ // confuse them with the blocks of memory described above.
+ std::vector<sys::MemoryBlock> CodeSlabs;
+ JITSlabAllocator BumpSlabAllocator;
+ BumpPtrAllocator StubAllocator;
+ BumpPtrAllocator DataAllocator;
+
+ // Circular list of free blocks.
+ FreeRangeHeader *FreeMemoryList;
+
+ // When emitting code into a memory block, this is the block.
+ MemoryRangeHeader *CurBlock;
+
+ uint8_t *GOTBase; // Target Specific reserved memory
+ public:
+ DefaultJITMemoryManager();
+ ~DefaultJITMemoryManager();
+
+ /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
+ /// last slab it allocated, so that subsequent allocations follow it.
+ sys::MemoryBlock allocateNewSlab(size_t size);
+
+ /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
+ /// least this much unless more is requested.
+ static const size_t DefaultCodeSlabSize;
+
+ /// DefaultSlabSize - Allocate data into slabs of this size unless we get
+ /// an allocation above SizeThreshold.
+ static const size_t DefaultSlabSize;
+
+ /// DefaultSizeThreshold - For any allocation larger than this threshold, we
+ /// should allocate a separate slab.
+ static const size_t DefaultSizeThreshold;
+
+ /// getPointerToNamedFunction - This method returns the address of the
+ /// specified function by using the dlsym function call.
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+
+ void AllocateGOT();
+
+ // Testing methods.
+ virtual bool CheckInvariants(std::string &ErrorStr);
+ size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
+ size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
+ size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
+ unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
+ unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
+ unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
+
+ /// startFunctionBody - When a function starts, allocate a block of free
+ /// executable memory, returning a pointer to it and its actual size.
+ uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
+
+ FreeRangeHeader* candidateBlock = FreeMemoryList;
+ FreeRangeHeader* head = FreeMemoryList;
+ FreeRangeHeader* iter = head->Next;
+
+ uintptr_t largest = candidateBlock->BlockSize;
+
+ // Search for the largest free block
+ while (iter != head) {
+ if (iter->BlockSize > largest) {
+ largest = iter->BlockSize;
+ candidateBlock = iter;
+ }
+ iter = iter->Next;
+ }
+
+ largest = largest - sizeof(MemoryRangeHeader);
+
+ // If this block isn't big enough for the allocation desired, allocate
+ // another block of memory and add it to the free list.
+ if (largest < ActualSize ||
+ largest <= FreeRangeHeader::getMinBlockSize()) {
+ DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
+ candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
+ }
+
+ // Select this candidate block for allocation
+ CurBlock = candidateBlock;
+
+ // Allocate the entire memory block.
+ FreeMemoryList = candidateBlock->AllocateBlock();
+ ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
+ return (uint8_t *)(CurBlock + 1);
+ }
+
+ /// allocateNewCodeSlab - Helper method to allocate a new slab of code
+ /// memory from the OS and add it to the free list. Returns the new
+ /// FreeRangeHeader at the base of the slab.
+ FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
+ // If the user needs at least MinSize free memory, then we account for
+ // two MemoryRangeHeaders: the one in the user's block, and the one at the
+ // end of the slab.
+ size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
+ size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
+ sys::MemoryBlock B = allocateNewSlab(SlabSize);
+ CodeSlabs.push_back(B);
+ char *MemBase = (char*)(B.base());
+
+ // Put a tiny allocated block at the end of the memory chunk, so when
+ // FreeBlock calls getBlockAfter it doesn't fall off the end.
+ MemoryRangeHeader *EndBlock =
+ (MemoryRangeHeader*)(MemBase + B.size()) - 1;
+ EndBlock->ThisAllocated = 1;
+ EndBlock->PrevAllocated = 0;
+ EndBlock->BlockSize = sizeof(MemoryRangeHeader);
+
+ // Start out with a vast new block of free memory.
+ FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
+ NewBlock->ThisAllocated = 0;
+ // Make sure getFreeBlockBefore doesn't look into unmapped memory.
+ NewBlock->PrevAllocated = 1;
+ NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
+ NewBlock->SetEndOfBlockSizeMarker();
+ NewBlock->AddToFreeList(FreeMemoryList);
+
+ assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
+ "The block was too small!");
+ return NewBlock;
+ }
+
+ /// endFunctionBody - The function F is now allocated, and takes the memory
+ /// in the range [FunctionStart,FunctionEnd).
+ void endFunctionBody(const Function *F, uint8_t *FunctionStart,
+ uint8_t *FunctionEnd) {
+ assert(FunctionEnd > FunctionStart);
+ assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
+ "Mismatched function start/end!");
+
+ uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
+
+ // Release the memory at the end of this block that isn't needed.
+ FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
+ }
+
+ /// allocateSpace - Allocate a memory block of the given size. This method
+ /// cannot be called between calls to startFunctionBody and endFunctionBody.
+ uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
+ CurBlock = FreeMemoryList;
+ FreeMemoryList = FreeMemoryList->AllocateBlock();
+
+ uint8_t *result = (uint8_t *)(CurBlock + 1);
+
+ if (Alignment == 0) Alignment = 1;
+ result = (uint8_t*)(((intptr_t)result+Alignment-1) &
+ ~(intptr_t)(Alignment-1));
+
+ uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
+ FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
+
+ return result;
+ }
+
+ /// allocateStub - Allocate memory for a function stub.
+ uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
+ unsigned Alignment) {
+ return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
+ }
+
+ /// allocateGlobal - Allocate memory for a global.
+ uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
+ return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
+ }
+
+ /// allocateCodeSection - Allocate memory for a code section.
+ uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID) {
+ // Grow the required block size to account for the block header
+ Size += sizeof(*CurBlock);
+
+ // FIXME: Alignement handling.
+ FreeRangeHeader* candidateBlock = FreeMemoryList;
+ FreeRangeHeader* head = FreeMemoryList;
+ FreeRangeHeader* iter = head->Next;
+
+ uintptr_t largest = candidateBlock->BlockSize;
+
+ // Search for the largest free block.
+ while (iter != head) {
+ if (iter->BlockSize > largest) {
+ largest = iter->BlockSize;
+ candidateBlock = iter;
+ }
+ iter = iter->Next;
+ }
+
+ largest = largest - sizeof(MemoryRangeHeader);
+
+ // If this block isn't big enough for the allocation desired, allocate
+ // another block of memory and add it to the free list.
+ if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
+ DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
+ candidateBlock = allocateNewCodeSlab((size_t)Size);
+ }
+
+ // Select this candidate block for allocation
+ CurBlock = candidateBlock;
+
+ // Allocate the entire memory block.
+ FreeMemoryList = candidateBlock->AllocateBlock();
+ // Release the memory at the end of this block that isn't needed.
+ FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
+ return (uint8_t *)(CurBlock + 1);
+ }
+
+ /// allocateDataSection - Allocate memory for a data section.
+ uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
+ unsigned SectionID, bool IsReadOnly) {
+ return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
+ }
+
+ bool applyPermissions(std::string *ErrMsg) {
+ return false;
+ }
+
+ /// startExceptionTable - Use startFunctionBody to allocate memory for the
+ /// function's exception table.
+ uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
+ return startFunctionBody(F, ActualSize);
+ }
+
+ /// endExceptionTable - The exception table of F is now allocated,
+ /// and takes the memory in the range [TableStart,TableEnd).
+ void endExceptionTable(const Function *F, uint8_t *TableStart,
+ uint8_t *TableEnd, uint8_t* FrameRegister) {
+ assert(TableEnd > TableStart);
+ assert(TableStart == (uint8_t *)(CurBlock+1) &&
+ "Mismatched table start/end!");
+
+ uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
+
+ // Release the memory at the end of this block that isn't needed.
+ FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
+ }
+
+ uint8_t *getGOTBase() const {
+ return GOTBase;
+ }
+
+ void deallocateBlock(void *Block) {
+ // Find the block that is allocated for this function.
+ MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
+ assert(MemRange->ThisAllocated && "Block isn't allocated!");
+
+ // Fill the buffer with garbage!
+ if (PoisonMemory) {
+ memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
+ }
+
+ // Free the memory.
+ FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
+ }
+
+ /// deallocateFunctionBody - Deallocate all memory for the specified
+ /// function body.
+ void deallocateFunctionBody(void *Body) {
+ if (Body) deallocateBlock(Body);
+ }
+
+ /// deallocateExceptionTable - Deallocate memory for the specified
+ /// exception table.
+ void deallocateExceptionTable(void *ET) {
+ if (ET) deallocateBlock(ET);
+ }
+
+ /// setMemoryWritable - When code generation is in progress,
+ /// the code pages may need permissions changed.
+ void setMemoryWritable()
+ {
+ for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
+ sys::Memory::setWritable(CodeSlabs[i]);
+ }
+ /// setMemoryExecutable - When code generation is done and we're ready to
+ /// start execution, the code pages may need permissions changed.
+ void setMemoryExecutable()
+ {
+ for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
+ sys::Memory::setExecutable(CodeSlabs[i]);
+ }
+
+ /// setPoisonMemory - Controls whether we write garbage over freed memory.
+ ///
+ void setPoisonMemory(bool poison) {
+ PoisonMemory = poison;
+ }
+ };
+}
+
+MemSlab *JITSlabAllocator::Allocate(size_t Size) {
+ sys::MemoryBlock B = JMM.allocateNewSlab(Size);
+ MemSlab *Slab = (MemSlab*)B.base();
+ Slab->Size = B.size();
+ Slab->NextPtr = 0;
+ return Slab;
+}
+
+void JITSlabAllocator::Deallocate(MemSlab *Slab) {
+ sys::MemoryBlock B(Slab, Slab->Size);
+ sys::Memory::ReleaseRWX(B);
+}
+
+DefaultJITMemoryManager::DefaultJITMemoryManager()
+ :
+#ifdef NDEBUG
+ PoisonMemory(false),
+#else
+ PoisonMemory(true),
+#endif
+ LastSlab(0, 0),
+ BumpSlabAllocator(*this),
+ StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
+ DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
+
+ // Allocate space for code.
+ sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
+ CodeSlabs.push_back(MemBlock);
+ uint8_t *MemBase = (uint8_t*)MemBlock.base();
+
+ // We set up the memory chunk with 4 mem regions, like this:
+ // [ START
+ // [ Free #0 ] -> Large space to allocate functions from.
+ // [ Allocated #1 ] -> Tiny space to separate regions.
+ // [ Free #2 ] -> Tiny space so there is always at least 1 free block.
+ // [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
+ // END ]
+ //
+ // The last three blocks are never deallocated or touched.
+
+ // Add MemoryRangeHeader to the end of the memory region, indicating that
+ // the space after the block of memory is allocated. This is block #3.
+ MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
+ Mem3->ThisAllocated = 1;
+ Mem3->PrevAllocated = 0;
+ Mem3->BlockSize = sizeof(MemoryRangeHeader);
+
+ /// Add a tiny free region so that the free list always has one entry.
+ FreeRangeHeader *Mem2 =
+ (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
+ Mem2->ThisAllocated = 0;
+ Mem2->PrevAllocated = 1;
+ Mem2->BlockSize = FreeRangeHeader::getMinBlockSize();
+ Mem2->SetEndOfBlockSizeMarker();
+ Mem2->Prev = Mem2; // Mem2 *is* the free list for now.
+ Mem2->Next = Mem2;
+
+ /// Add a tiny allocated region so that Mem2 is never coalesced away.
+ MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
+ Mem1->ThisAllocated = 1;
+ Mem1->PrevAllocated = 0;
+ Mem1->BlockSize = sizeof(MemoryRangeHeader);
+
+ // Add a FreeRangeHeader to the start of the function body region, indicating
+ // that the space is free. Mark the previous block allocated so we never look
+ // at it.
+ FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
+ Mem0->ThisAllocated = 0;
+ Mem0->PrevAllocated = 1;
+ Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
+ Mem0->SetEndOfBlockSizeMarker();
+ Mem0->AddToFreeList(Mem2);
+
+ // Start out with the freelist pointing to Mem0.
+ FreeMemoryList = Mem0;
+
+ GOTBase = NULL;
+}
+
+void DefaultJITMemoryManager::AllocateGOT() {
+ assert(GOTBase == 0 && "Cannot allocate the got multiple times");
+ GOTBase = new uint8_t[sizeof(void*) * 8192];
+ HasGOT = true;
+}
+
+DefaultJITMemoryManager::~DefaultJITMemoryManager() {
+ for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
+ sys::Memory::ReleaseRWX(CodeSlabs[i]);
+
+ delete[] GOTBase;
+}
+
+sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
+ // Allocate a new block close to the last one.
+ std::string ErrMsg;
+ sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
+ sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
+ if (B.base() == 0) {
+ report_fatal_error("Allocation failed when allocating new memory in the"
+ " JIT\n" + Twine(ErrMsg));
+ }
+ LastSlab = B;
+ ++NumSlabs;
+ // Initialize the slab to garbage when debugging.
+ if (PoisonMemory) {
+ memset(B.base(), 0xCD, B.size());
+ }
+ return B;
+}
+
+/// CheckInvariants - For testing only. Return "" if all internal invariants
+/// are preserved, and a helpful error message otherwise. For free and
+/// allocated blocks, make sure that adding BlockSize gives a valid block.
+/// For free blocks, make sure they're in the free list and that their end of
+/// block size marker is correct. This function should return an error before
+/// accessing bad memory. This function is defined here instead of in
+/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
+/// implementation details of DefaultJITMemoryManager.
+bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
+ raw_string_ostream Err(ErrorStr);
+
+ // Construct a the set of FreeRangeHeader pointers so we can query it
+ // efficiently.
+ llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
+ FreeRangeHeader* FreeHead = FreeMemoryList;
+ FreeRangeHeader* FreeRange = FreeHead;
+
+ do {
+ // Check that the free range pointer is in the blocks we've allocated.
+ bool Found = false;
+ for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
+ E = CodeSlabs.end(); I != E && !Found; ++I) {
+ char *Start = (char*)I->base();
+ char *End = Start + I->size();
+ Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
+ }
+ if (!Found) {
+ Err << "Corrupt free list; points to " << FreeRange;
+ return false;
+ }
+
+ if (FreeRange->Next->Prev != FreeRange) {
+ Err << "Next and Prev pointers do not match.";
+ return false;
+ }
+
+ // Otherwise, add it to the set.
+ FreeHdrSet.insert(FreeRange);
+ FreeRange = FreeRange->Next;
+ } while (FreeRange != FreeHead);
+
+ // Go over each block, and look at each MemoryRangeHeader.
+ for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
+ E = CodeSlabs.end(); I != E; ++I) {
+ char *Start = (char*)I->base();
+ char *End = Start + I->size();
+
+ // Check each memory range.
+ for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
+ Start <= (char*)Hdr && (char*)Hdr < End;
+ Hdr = &Hdr->getBlockAfter()) {
+ if (Hdr->ThisAllocated == 0) {
+ // Check that this range is in the free list.
+ if (!FreeHdrSet.count(Hdr)) {
+ Err << "Found free header at " << Hdr << " that is not in free list.";
+ return false;
+ }
+
+ // Now make sure the size marker at the end of the block is correct.
+ uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
+ if (!(Start <= (char*)Marker && (char*)Marker < End)) {
+ Err << "Block size in header points out of current MemoryBlock.";
+ return false;
+ }
+ if (Hdr->BlockSize != *Marker) {
+ Err << "End of block size marker (" << *Marker << ") "
+ << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
+ return false;
+ }
+ }
+
+ if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
+ Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
+ << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
+ return false;
+ } else if (!LastHdr && !Hdr->PrevAllocated) {
+ Err << "The first header should have PrevAllocated true.";
+ return false;
+ }
+
+ // Remember the last header.
+ LastHdr = Hdr;
+ }
+ }
+
+ // All invariants are preserved.
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// getPointerToNamedFunction() implementation.
+//===----------------------------------------------------------------------===//
+
+// AtExitHandlers - List of functions to call when the program exits,
+// registered with the atexit() library function.
+static std::vector<void (*)()> AtExitHandlers;
+
+/// runAtExitHandlers - Run any functions registered by the program's
+/// calls to atexit(3), which we intercept and store in
+/// AtExitHandlers.
+///
+static void runAtExitHandlers() {
+ while (!AtExitHandlers.empty()) {
+ void (*Fn)() = AtExitHandlers.back();
+ AtExitHandlers.pop_back();
+ Fn();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Function stubs that are invoked instead of certain library calls
+//
+// Force the following functions to be linked in to anything that uses the
+// JIT. This is a hack designed to work around the all-too-clever Glibc
+// strategy of making these functions work differently when inlined vs. when
+// not inlined, and hiding their real definitions in a separate archive file
+// that the dynamic linker can't see. For more info, search for
+// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
+#if defined(__linux__)
+/* stat functions are redirecting to __xstat with a version number. On x86-64
+ * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
+ * available as an exported symbol, so we have to add it explicitly.
+ */
+namespace {
+class StatSymbols {
+public:
+ StatSymbols() {
+ sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
+ sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
+ sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
+ sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
+ sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
+ sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
+ sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
+ sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
+ sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
+ sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
+ sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
+ }
+};
+}
+static StatSymbols initStatSymbols;
+#endif // __linux__
+
+// jit_exit - Used to intercept the "exit" library call.
+static void jit_exit(int Status) {
+ runAtExitHandlers(); // Run atexit handlers...
+ exit(Status);
+}
+
+// jit_atexit - Used to intercept the "atexit" library call.
+static int jit_atexit(void (*Fn)()) {
+ AtExitHandlers.push_back(Fn); // Take note of atexit handler...
+ return 0; // Always successful
+}
+
+static int jit_noop() {
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+//
+/// getPointerToNamedFunction - This method returns the address of the specified
+/// function by using the dynamic loader interface. As such it is only useful
+/// for resolving library symbols, not code generated symbols.
+///
+void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure) {
+ // Check to see if this is one of the functions we want to intercept. Note,
+ // we cast to intptr_t here to silence a -pedantic warning that complains
+ // about casting a function pointer to a normal pointer.
+ if (Name == "exit") return (void*)(intptr_t)&jit_exit;
+ if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
+
+ // We should not invoke parent's ctors/dtors from generated main()!
+ // On Mingw and Cygwin, the symbol __main is resolved to
+ // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
+ // (and register wrong callee's dtors with atexit(3)).
+ // We expect ExecutionEngine::runStaticConstructorsDestructors()
+ // is called before ExecutionEngine::runFunctionAsMain() is called.
+ if (Name == "__main") return (void*)(intptr_t)&jit_noop;
+
+ const char *NameStr = Name.c_str();
+ // If this is an asm specifier, skip the sentinal.
+ if (NameStr[0] == 1) ++NameStr;
+
+ // If it's an external function, look it up in the process image...
+ void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
+ if (Ptr) return Ptr;
+
+ // If it wasn't found and if it starts with an underscore ('_') character,
+ // try again without the underscore.
+ if (NameStr[0] == '_') {
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
+ if (Ptr) return Ptr;
+ }
+
+ // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These
+ // are references to hidden visibility symbols that dlsym cannot resolve.
+ // If we have one of these, strip off $LDBLStub and try again.
+#if defined(__APPLE__) && defined(__ppc__)
+ if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
+ memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
+ // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
+ // This mirrors logic in libSystemStubs.a.
+ std::string Prefix = std::string(Name.begin(), Name.end()-9);
+ if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
+ return Ptr;
+ if (void *Ptr = getPointerToNamedFunction(Prefix, false))
+ return Ptr;
+ }
+#endif
+
+ if (AbortOnFailure) {
+ report_fatal_error("Program used external function '"+Name+
+ "' which could not be resolved!");
+ }
+ return 0;
+}
+
+
+
+JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
+ return new DefaultJITMemoryManager();
+}
+
+// Allocate memory for code in 512K slabs.
+const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
+
+// Allocate globals and stubs in slabs of 64K. (probably 16 pages)
+const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
+
+// Waste at most 16K at the end of each bump slab. (probably 4 pages)
+const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
new file mode 100644
index 0000000..fee10e1
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.cpp
@@ -0,0 +1,336 @@
+//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCJIT.h"
+#include "llvm/ExecutionEngine/GenericValue.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/ExecutionEngine/MCJIT.h"
+#include "llvm/ExecutionEngine/ObjectBuffer.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/MutexGuard.h"
+
+using namespace llvm;
+
+namespace {
+
+static struct RegisterJIT {
+ RegisterJIT() { MCJIT::Register(); }
+} JITRegistrator;
+
+}
+
+extern "C" void LLVMLinkInMCJIT() {
+}
+
+ExecutionEngine *MCJIT::createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM) {
+ // Try to register the program as a source of symbols to resolve against.
+ //
+ // FIXME: Don't do this here.
+ sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
+
+ return new MCJIT(M, TM, JMM, GVsWithCode);
+}
+
+MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
+ bool AllocateGVsWithCode)
+ : ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(MM), Dyld(MM),
+ isCompiled(false), M(m) {
+
+ setDataLayout(TM->getDataLayout());
+}
+
+MCJIT::~MCJIT() {
+ if (LoadedObject)
+ NotifyFreeingObject(*LoadedObject.get());
+ delete MemMgr;
+ delete TM;
+}
+
+void MCJIT::emitObject(Module *m) {
+ /// Currently, MCJIT only supports a single module and the module passed to
+ /// this function call is expected to be the contained module. The module
+ /// is passed as a parameter here to prepare for multiple module support in
+ /// the future.
+ assert(M == m);
+
+ // Get a thread lock to make sure we aren't trying to compile multiple times
+ MutexGuard locked(lock);
+
+ // FIXME: Track compilation state on a per-module basis when multiple modules
+ // are supported.
+ // Re-compilation is not supported
+ if (isCompiled)
+ return;
+
+ PassManager PM;
+
+ PM.add(new DataLayout(*TM->getDataLayout()));
+
+ // The RuntimeDyld will take ownership of this shortly
+ OwningPtr<ObjectBufferStream> Buffer(new ObjectBufferStream());
+
+ // Turn the machine code intermediate representation into bytes in memory
+ // that may be executed.
+ if (TM->addPassesToEmitMC(PM, Ctx, Buffer->getOStream(), false)) {
+ report_fatal_error("Target does not support MC emission!");
+ }
+
+ // Initialize passes.
+ PM.run(*m);
+ // Flush the output buffer to get the generated code into memory
+ Buffer->flush();
+
+ // Load the object into the dynamic linker.
+ // handing off ownership of the buffer
+ LoadedObject.reset(Dyld.loadObject(Buffer.take()));
+ if (!LoadedObject)
+ report_fatal_error(Dyld.getErrorString());
+
+ // Resolve any relocations.
+ Dyld.resolveRelocations();
+
+ // FIXME: Make this optional, maybe even move it to a JIT event listener
+ LoadedObject->registerWithDebugger();
+
+ NotifyObjectEmitted(*LoadedObject);
+
+ // FIXME: Add support for per-module compilation state
+ isCompiled = true;
+}
+
+// FIXME: Add a parameter to identify which object is being finalized when
+// MCJIT supports multiple modules.
+// FIXME: Provide a way to separate code emission, relocations and page
+// protection in the interface.
+void MCJIT::finalizeObject() {
+ // If the module hasn't been compiled, just do that.
+ if (!isCompiled) {
+ // If the call to Dyld.resolveRelocations() is removed from emitObject()
+ // we'll need to do that here.
+ emitObject(M);
+
+ // Set page permissions.
+ MemMgr->applyPermissions();
+
+ return;
+ }
+
+ // Resolve any relocations.
+ Dyld.resolveRelocations();
+
+ // Set page permissions.
+ MemMgr->applyPermissions();
+}
+
+void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
+ report_fatal_error("not yet implemented");
+}
+
+void *MCJIT::getPointerToFunction(Function *F) {
+ // FIXME: This should really return a uint64_t since it's a pointer in the
+ // target address space, not our local address space. That's part of the
+ // ExecutionEngine interface, though. Fix that when the old JIT finally
+ // dies.
+
+ // FIXME: Add support for per-module compilation state
+ if (!isCompiled)
+ emitObject(M);
+
+ if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
+ bool AbortOnFailure = !F->hasExternalWeakLinkage();
+ void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
+ addGlobalMapping(F, Addr);
+ return Addr;
+ }
+
+ // FIXME: Should the Dyld be retaining module information? Probably not.
+ // FIXME: Should we be using the mangler for this? Probably.
+ //
+ // This is the accessor for the target address, so make sure to check the
+ // load address of the symbol, not the local address.
+ StringRef BaseName = F->getName();
+ if (BaseName[0] == '\1')
+ return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1));
+ return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ + BaseName).str());
+}
+
+void *MCJIT::recompileAndRelinkFunction(Function *F) {
+ report_fatal_error("not yet implemented");
+}
+
+void MCJIT::freeMachineCodeForFunction(Function *F) {
+ report_fatal_error("not yet implemented");
+}
+
+GenericValue MCJIT::runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues) {
+ assert(F && "Function *F was null at entry to run()");
+
+ void *FPtr = getPointerToFunction(F);
+ assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
+ FunctionType *FTy = F->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+
+ assert((FTy->getNumParams() == ArgValues.size() ||
+ (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
+ "Wrong number of arguments passed into function!");
+ assert(FTy->getNumParams() == ArgValues.size() &&
+ "This doesn't support passing arguments through varargs (yet)!");
+
+ // Handle some common cases first. These cases correspond to common `main'
+ // prototypes.
+ if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
+ switch (ArgValues.size()) {
+ case 3:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy() &&
+ FTy->getParamType(2)->isPointerTy()) {
+ int (*PF)(int, char **, const char **) =
+ (int(*)(int, char **, const char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1]),
+ (const char **)GVTOP(ArgValues[2])));
+ return rv;
+ }
+ break;
+ case 2:
+ if (FTy->getParamType(0)->isIntegerTy(32) &&
+ FTy->getParamType(1)->isPointerTy()) {
+ int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
+
+ // Call the function.
+ GenericValue rv;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
+ (char **)GVTOP(ArgValues[1])));
+ return rv;
+ }
+ break;
+ case 1:
+ if (FTy->getNumParams() == 1 &&
+ FTy->getParamType(0)->isIntegerTy(32)) {
+ GenericValue rv;
+ int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
+ rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
+ return rv;
+ }
+ break;
+ }
+ }
+
+ // Handle cases where no arguments are passed first.
+ if (ArgValues.empty()) {
+ GenericValue rv;
+ switch (RetTy->getTypeID()) {
+ default: llvm_unreachable("Unknown return type for function call!");
+ case Type::IntegerTyID: {
+ unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
+ if (BitWidth == 1)
+ rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 8)
+ rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 16)
+ rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 32)
+ rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
+ else if (BitWidth <= 64)
+ rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
+ else
+ llvm_unreachable("Integer types > 64 bits not supported");
+ return rv;
+ }
+ case Type::VoidTyID:
+ rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
+ return rv;
+ case Type::FloatTyID:
+ rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::DoubleTyID:
+ rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
+ return rv;
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ llvm_unreachable("long double not supported yet");
+ case Type::PointerTyID:
+ return PTOGV(((void*(*)())(intptr_t)FPtr)());
+ }
+ }
+
+ llvm_unreachable("Full-featured argument passing not supported yet!");
+}
+
+void *MCJIT::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure) {
+ // FIXME: Add support for per-module compilation state
+ if (!isCompiled)
+ emitObject(M);
+
+ if (!isSymbolSearchingDisabled() && MemMgr) {
+ void *ptr = MemMgr->getPointerToNamedFunction(Name, false);
+ if (ptr)
+ return ptr;
+ }
+
+ /// If a LazyFunctionCreator is installed, use it to get/create the function.
+ if (LazyFunctionCreator)
+ if (void *RP = LazyFunctionCreator(Name))
+ return RP;
+
+ if (AbortOnFailure) {
+ report_fatal_error("Program used external function '"+Name+
+ "' which could not be resolved!");
+ }
+ return 0;
+}
+
+void MCJIT::RegisterJITEventListener(JITEventListener *L) {
+ if (L == NULL)
+ return;
+ MutexGuard locked(lock);
+ EventListeners.push_back(L);
+}
+void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
+ if (L == NULL)
+ return;
+ MutexGuard locked(lock);
+ SmallVector<JITEventListener*, 2>::reverse_iterator I=
+ std::find(EventListeners.rbegin(), EventListeners.rend(), L);
+ if (I != EventListeners.rend()) {
+ std::swap(*I, EventListeners.back());
+ EventListeners.pop_back();
+ }
+}
+void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
+ MutexGuard locked(lock);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyObjectEmitted(Obj);
+ }
+}
+void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
+ MutexGuard locked(lock);
+ for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
+ EventListeners[I]->NotifyFreeingObject(Obj);
+ }
+}
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
new file mode 100644
index 0000000..283a8e5
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/MCJIT.h
@@ -0,0 +1,113 @@
+//===-- MCJIT.h - Class definition for the MCJIT ----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_H
+#define LLVM_LIB_EXECUTIONENGINE_MCJIT_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "llvm/PassManager.h"
+
+namespace llvm {
+
+class ObjectImage;
+
+// FIXME: This makes all kinds of horrible assumptions for the time being,
+// like only having one module, not needing to worry about multi-threading,
+// blah blah. Purely in get-it-up-and-limping mode for now.
+
+class MCJIT : public ExecutionEngine {
+ MCJIT(Module *M, TargetMachine *tm, RTDyldMemoryManager *MemMgr,
+ bool AllocateGVsWithCode);
+
+ TargetMachine *TM;
+ MCContext *Ctx;
+ RTDyldMemoryManager *MemMgr;
+ RuntimeDyld Dyld;
+ SmallVector<JITEventListener*, 2> EventListeners;
+
+ // FIXME: Add support for multiple modules
+ bool isCompiled;
+ Module *M;
+ OwningPtr<ObjectImage> LoadedObject;
+
+public:
+ ~MCJIT();
+
+ /// @name ExecutionEngine interface implementation
+ /// @{
+
+ virtual void finalizeObject();
+
+ virtual void *getPointerToBasicBlock(BasicBlock *BB);
+
+ virtual void *getPointerToFunction(Function *F);
+
+ virtual void *recompileAndRelinkFunction(Function *F);
+
+ virtual void freeMachineCodeForFunction(Function *F);
+
+ virtual GenericValue runFunction(Function *F,
+ const std::vector<GenericValue> &ArgValues);
+
+ /// getPointerToNamedFunction - This method returns the address of the
+ /// specified function by using the dlsym function call. As such it is only
+ /// useful for resolving library symbols, not code generated symbols.
+ ///
+ /// If AbortOnFailure is false and no function with the given name is
+ /// found, this function silently returns a null pointer. Otherwise,
+ /// it prints a message to stderr and aborts.
+ ///
+ virtual void *getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure = true);
+
+ /// mapSectionAddress - map a section to its target address space value.
+ /// Map the address of a JIT section as returned from the memory manager
+ /// to the address in the target process as the running code will see it.
+ /// This is the address which will be used for relocation resolution.
+ virtual void mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ Dyld.mapSectionAddress(LocalAddress, TargetAddress);
+ }
+
+ virtual void RegisterJITEventListener(JITEventListener *L);
+ virtual void UnregisterJITEventListener(JITEventListener *L);
+
+ /// @}
+ /// @name (Private) Registration Interfaces
+ /// @{
+
+ static void Register() {
+ MCJITCtor = createJIT;
+ }
+
+ static ExecutionEngine *createJIT(Module *M,
+ std::string *ErrorStr,
+ JITMemoryManager *JMM,
+ bool GVsWithCode,
+ TargetMachine *TM);
+
+ // @}
+
+protected:
+ /// emitObject -- Generate a JITed object in memory from the specified module
+ /// Currently, MCJIT only supports a single module and the module passed to
+ /// this function call is expected to be the contained module. The module
+ /// is passed as a parameter here to prepare for multiple module support in
+ /// the future.
+ void emitObject(Module *M);
+
+ void NotifyObjectEmitted(const ObjectImage& Obj);
+ void NotifyFreeingObject(const ObjectImage& Obj);
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
new file mode 100644
index 0000000..fa35acd
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/MCJIT/SectionMemoryManager.cpp
@@ -0,0 +1,226 @@
+//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the section-based memory manager used by the MCJIT
+// execution engine and RuntimeDyld
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/SectionMemoryManager.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/MathExtras.h"
+
+#ifdef __linux__
+ // These includes used by SectionMemoryManager::getPointerToNamedFunction()
+ // for Glibc trickery. See comments in this function for more information.
+ #ifdef HAVE_SYS_STAT_H
+ #include <sys/stat.h>
+ #endif
+ #include <fcntl.h>
+ #include <unistd.h>
+#endif
+
+namespace llvm {
+
+uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size,
+ unsigned Alignment,
+ unsigned SectionID,
+ bool IsReadOnly) {
+ if (IsReadOnly)
+ return allocateSection(RODataMem, Size, Alignment);
+ return allocateSection(RWDataMem, Size, Alignment);
+}
+
+uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size,
+ unsigned Alignment,
+ unsigned SectionID) {
+ return allocateSection(CodeMem, Size, Alignment);
+}
+
+uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup,
+ uintptr_t Size,
+ unsigned Alignment) {
+ if (!Alignment)
+ Alignment = 16;
+
+ assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two.");
+
+ uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1);
+ uintptr_t Addr = 0;
+
+ // Look in the list of free memory regions and use a block there if one
+ // is available.
+ for (int i = 0, e = MemGroup.FreeMem.size(); i != e; ++i) {
+ sys::MemoryBlock &MB = MemGroup.FreeMem[i];
+ if (MB.size() >= RequiredSize) {
+ Addr = (uintptr_t)MB.base();
+ uintptr_t EndOfBlock = Addr + MB.size();
+ // Align the address.
+ Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
+ // Store cutted free memory block.
+ MemGroup.FreeMem[i] = sys::MemoryBlock((void*)(Addr + Size),
+ EndOfBlock - Addr - Size);
+ return (uint8_t*)Addr;
+ }
+ }
+
+ // No pre-allocated free block was large enough. Allocate a new memory region.
+ // Note that all sections get allocated as read-write. The permissions will
+ // be updated later based on memory group.
+ //
+ // FIXME: It would be useful to define a default allocation size (or add
+ // it as a constructor parameter) to minimize the number of allocations.
+ //
+ // FIXME: Initialize the Near member for each memory group to avoid
+ // interleaving.
+ error_code ec;
+ sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize,
+ &MemGroup.Near,
+ sys::Memory::MF_READ |
+ sys::Memory::MF_WRITE,
+ ec);
+ if (ec) {
+ // FIXME: Add error propogation to the interface.
+ return NULL;
+ }
+
+ // Save this address as the basis for our next request
+ MemGroup.Near = MB;
+
+ MemGroup.AllocatedMem.push_back(MB);
+ Addr = (uintptr_t)MB.base();
+ uintptr_t EndOfBlock = Addr + MB.size();
+
+ // Align the address.
+ Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
+
+ // The allocateMappedMemory may allocate much more memory than we need. In
+ // this case, we store the unused memory as a free memory block.
+ unsigned FreeSize = EndOfBlock-Addr-Size;
+ if (FreeSize > 16)
+ MemGroup.FreeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize));
+
+ // Return aligned address
+ return (uint8_t*)Addr;
+}
+
+bool SectionMemoryManager::applyPermissions(std::string *ErrMsg)
+{
+ // FIXME: Should in-progress permissions be reverted if an error occurs?
+ error_code ec;
+
+ // Make code memory executable.
+ ec = applyMemoryGroupPermissions(CodeMem,
+ sys::Memory::MF_READ | sys::Memory::MF_EXEC);
+ if (ec) {
+ if (ErrMsg) {
+ *ErrMsg = ec.message();
+ }
+ return true;
+ }
+
+ // Make read-only data memory read-only.
+ ec = applyMemoryGroupPermissions(RODataMem,
+ sys::Memory::MF_READ | sys::Memory::MF_EXEC);
+ if (ec) {
+ if (ErrMsg) {
+ *ErrMsg = ec.message();
+ }
+ return true;
+ }
+
+ // Read-write data memory already has the correct permissions
+
+ return false;
+}
+
+error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup,
+ unsigned Permissions) {
+
+ for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) {
+ error_code ec;
+ ec = sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i],
+ Permissions);
+ if (ec) {
+ return ec;
+ }
+ }
+
+ return error_code::success();
+}
+
+void SectionMemoryManager::invalidateInstructionCache() {
+ for (int i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::InvalidateInstructionCache(CodeMem.AllocatedMem[i].base(),
+ CodeMem.AllocatedMem[i].size());
+}
+
+static int jit_noop() {
+ return 0;
+}
+
+void *SectionMemoryManager::getPointerToNamedFunction(const std::string &Name,
+ bool AbortOnFailure) {
+#if defined(__linux__)
+ //===--------------------------------------------------------------------===//
+ // Function stubs that are invoked instead of certain library calls
+ //
+ // Force the following functions to be linked in to anything that uses the
+ // JIT. This is a hack designed to work around the all-too-clever Glibc
+ // strategy of making these functions work differently when inlined vs. when
+ // not inlined, and hiding their real definitions in a separate archive file
+ // that the dynamic linker can't see. For more info, search for
+ // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
+ if (Name == "stat") return (void*)(intptr_t)&stat;
+ if (Name == "fstat") return (void*)(intptr_t)&fstat;
+ if (Name == "lstat") return (void*)(intptr_t)&lstat;
+ if (Name == "stat64") return (void*)(intptr_t)&stat64;
+ if (Name == "fstat64") return (void*)(intptr_t)&fstat64;
+ if (Name == "lstat64") return (void*)(intptr_t)&lstat64;
+ if (Name == "atexit") return (void*)(intptr_t)&atexit;
+ if (Name == "mknod") return (void*)(intptr_t)&mknod;
+#endif // __linux__
+
+ // We should not invoke parent's ctors/dtors from generated main()!
+ // On Mingw and Cygwin, the symbol __main is resolved to
+ // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
+ // (and register wrong callee's dtors with atexit(3)).
+ // We expect ExecutionEngine::runStaticConstructorsDestructors()
+ // is called before ExecutionEngine::runFunctionAsMain() is called.
+ if (Name == "__main") return (void*)(intptr_t)&jit_noop;
+
+ const char *NameStr = Name.c_str();
+ void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
+ if (Ptr) return Ptr;
+
+ // If it wasn't found and if it starts with an underscore ('_') character,
+ // try again without the underscore.
+ if (NameStr[0] == '_') {
+ Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
+ if (Ptr) return Ptr;
+ }
+
+ if (AbortOnFailure)
+ report_fatal_error("Program used external function '" + Name +
+ "' which could not be resolved!");
+ return 0;
+}
+
+SectionMemoryManager::~SectionMemoryManager() {
+ for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]);
+ for (unsigned i = 0, e = RWDataMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(RWDataMem.AllocatedMem[i]);
+ for (unsigned i = 0, e = RODataMem.AllocatedMem.size(); i != e; ++i)
+ sys::Memory::releaseMappedMemory(RODataMem.AllocatedMem[i]);
+}
+
+} // namespace llvm
+
diff --git a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp
new file mode 100644
index 0000000..38867ec
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp
@@ -0,0 +1,177 @@
+//===-- OProfileJITEventListener.cpp - Tell OProfile about JITted code ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITEventListener object that uses OProfileWrapper to tell
+// oprofile about JITted functions, including source line information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Config/config.h"
+#include "llvm/ExecutionEngine/JITEventListener.h"
+
+#define DEBUG_TYPE "oprofile-jit-event-listener"
+#include "llvm/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/ExecutionEngine/OProfileWrapper.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Errno.h"
+#include "EventListenerCommon.h"
+
+#include <dirent.h>
+#include <fcntl.h>
+
+using namespace llvm;
+using namespace llvm::jitprofiling;
+
+namespace {
+
+class OProfileJITEventListener : public JITEventListener {
+ OProfileWrapper& Wrapper;
+
+ void initialize();
+
+public:
+ OProfileJITEventListener(OProfileWrapper& LibraryWrapper)
+ : Wrapper(LibraryWrapper) {
+ initialize();
+ }
+
+ ~OProfileJITEventListener();
+
+ virtual void NotifyFunctionEmitted(const Function &F,
+ void *FnStart, size_t FnSize,
+ const JITEvent_EmittedFunctionDetails &Details);
+
+ virtual void NotifyFreeingMachineCode(void *OldPtr);
+};
+
+void OProfileJITEventListener::initialize() {
+ if (!Wrapper.op_open_agent()) {
+ const std::string err_str = sys::StrError();
+ DEBUG(dbgs() << "Failed to connect to OProfile agent: " << err_str << "\n");
+ } else {
+ DEBUG(dbgs() << "Connected to OProfile agent.\n");
+ }
+}
+
+OProfileJITEventListener::~OProfileJITEventListener() {
+ if (Wrapper.isAgentAvailable()) {
+ if (Wrapper.op_close_agent() == -1) {
+ const std::string err_str = sys::StrError();
+ DEBUG(dbgs() << "Failed to disconnect from OProfile agent: "
+ << err_str << "\n");
+ } else {
+ DEBUG(dbgs() << "Disconnected from OProfile agent.\n");
+ }
+ }
+}
+
+static debug_line_info LineStartToOProfileFormat(
+ const MachineFunction &MF, FilenameCache &Filenames,
+ uintptr_t Address, DebugLoc Loc) {
+ debug_line_info Result;
+ Result.vma = Address;
+ Result.lineno = Loc.getLine();
+ Result.filename = Filenames.getFilename(
+ Loc.getScope(MF.getFunction()->getContext()));
+ DEBUG(dbgs() << "Mapping " << reinterpret_cast<void*>(Result.vma) << " to "
+ << Result.filename << ":" << Result.lineno << "\n");
+ return Result;
+}
+
+// Adds the just-emitted function to the symbol table.
+void OProfileJITEventListener::NotifyFunctionEmitted(
+ const Function &F, void *FnStart, size_t FnSize,
+ const JITEvent_EmittedFunctionDetails &Details) {
+ assert(F.hasName() && FnStart != 0 && "Bad symbol to add");
+ if (Wrapper.op_write_native_code(F.getName().data(),
+ reinterpret_cast<uint64_t>(FnStart),
+ FnStart, FnSize) == -1) {
+ DEBUG(dbgs() << "Failed to tell OProfile about native function "
+ << F.getName() << " at ["
+ << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
+ return;
+ }
+
+ if (!Details.LineStarts.empty()) {
+ // Now we convert the line number information from the address/DebugLoc
+ // format in Details to the address/filename/lineno format that OProfile
+ // expects. Note that OProfile 0.9.4 has a bug that causes it to ignore
+ // line numbers for addresses above 4G.
+ FilenameCache Filenames;
+ std::vector<debug_line_info> LineInfo;
+ LineInfo.reserve(1 + Details.LineStarts.size());
+
+ DebugLoc FirstLoc = Details.LineStarts[0].Loc;
+ assert(!FirstLoc.isUnknown()
+ && "LineStarts should not contain unknown DebugLocs");
+ MDNode *FirstLocScope = FirstLoc.getScope(F.getContext());
+ DISubprogram FunctionDI = getDISubprogram(FirstLocScope);
+ if (FunctionDI.Verify()) {
+ // If we have debug info for the function itself, use that as the line
+ // number of the first several instructions. Otherwise, after filling
+ // LineInfo, we'll adjust the address of the first line number to point at
+ // the start of the function.
+ debug_line_info line_info;
+ line_info.vma = reinterpret_cast<uintptr_t>(FnStart);
+ line_info.lineno = FunctionDI.getLineNumber();
+ line_info.filename = Filenames.getFilename(FirstLocScope);
+ LineInfo.push_back(line_info);
+ }
+
+ for (std::vector<EmittedFunctionDetails::LineStart>::const_iterator
+ I = Details.LineStarts.begin(), E = Details.LineStarts.end();
+ I != E; ++I) {
+ LineInfo.push_back(LineStartToOProfileFormat(
+ *Details.MF, Filenames, I->Address, I->Loc));
+ }
+
+ // In case the function didn't have line info of its own, adjust the first
+ // line info's address to include the start of the function.
+ LineInfo[0].vma = reinterpret_cast<uintptr_t>(FnStart);
+
+ if (Wrapper.op_write_debug_line_info(FnStart, LineInfo.size(),
+ &*LineInfo.begin()) == -1) {
+ DEBUG(dbgs()
+ << "Failed to tell OProfile about line numbers for native function "
+ << F.getName() << " at ["
+ << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n");
+ }
+ }
+}
+
+// Removes the being-deleted function from the symbol table.
+void OProfileJITEventListener::NotifyFreeingMachineCode(void *FnStart) {
+ assert(FnStart && "Invalid function pointer");
+ if (Wrapper.op_unload_native_code(reinterpret_cast<uint64_t>(FnStart)) == -1) {
+ DEBUG(dbgs()
+ << "Failed to tell OProfile about unload of native function at "
+ << FnStart << "\n");
+ }
+}
+
+} // anonymous namespace.
+
+namespace llvm {
+JITEventListener *JITEventListener::createOProfileJITEventListener() {
+ static OwningPtr<OProfileWrapper> JITProfilingWrapper(new OProfileWrapper);
+ return new OProfileJITEventListener(*JITProfilingWrapper);
+}
+
+// for testing
+JITEventListener *JITEventListener::createOProfileJITEventListener(
+ OProfileWrapper* TestImpl) {
+ return new OProfileJITEventListener(*TestImpl);
+}
+
+} // namespace llvm
+
diff --git a/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp
new file mode 100644
index 0000000..7c0d395
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/OProfileJIT/OProfileWrapper.cpp
@@ -0,0 +1,264 @@
+//===-- OProfileWrapper.cpp - OProfile JIT API Wrapper implementation -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interface in OProfileWrapper.h. It is responsible
+// for loading the opagent dynamic library when the first call to an op_
+// function occurs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/OProfileWrapper.h"
+
+#define DEBUG_TYPE "oprofile-wrapper"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/MutexGuard.h"
+#include "llvm/ADT/SmallString.h"
+
+#include <sstream>
+#include <cstring>
+#include <stddef.h>
+#include <dirent.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
+
+namespace {
+
+// Global mutex to ensure a single thread initializes oprofile agent.
+llvm::sys::Mutex OProfileInitializationMutex;
+
+} // anonymous namespace
+
+namespace llvm {
+
+OProfileWrapper::OProfileWrapper()
+: Agent(0),
+ OpenAgentFunc(0),
+ CloseAgentFunc(0),
+ WriteNativeCodeFunc(0),
+ WriteDebugLineInfoFunc(0),
+ UnloadNativeCodeFunc(0),
+ MajorVersionFunc(0),
+ MinorVersionFunc(0),
+ IsOProfileRunningFunc(0),
+ Initialized(false) {
+}
+
+bool OProfileWrapper::initialize() {
+ using namespace llvm;
+ using namespace llvm::sys;
+
+ MutexGuard Guard(OProfileInitializationMutex);
+
+ if (Initialized)
+ return OpenAgentFunc != 0;
+
+ Initialized = true;
+
+ // If the oprofile daemon is not running, don't load the opagent library
+ if (!isOProfileRunning()) {
+ DEBUG(dbgs() << "OProfile daemon is not detected.\n");
+ return false;
+ }
+
+ std::string error;
+ if(!DynamicLibrary::LoadLibraryPermanently("libopagent.so", &error)) {
+ DEBUG(dbgs()
+ << "OProfile connector library libopagent.so could not be loaded: "
+ << error << "\n");
+ }
+
+ // Get the addresses of the opagent functions
+ OpenAgentFunc = (op_open_agent_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_open_agent");
+ CloseAgentFunc = (op_close_agent_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_close_agent");
+ WriteNativeCodeFunc = (op_write_native_code_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_write_native_code");
+ WriteDebugLineInfoFunc = (op_write_debug_line_info_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_write_debug_line_info");
+ UnloadNativeCodeFunc = (op_unload_native_code_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_unload_native_code");
+ MajorVersionFunc = (op_major_version_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_major_version");
+ MinorVersionFunc = (op_major_version_ptr_t)(intptr_t)
+ DynamicLibrary::SearchForAddressOfSymbol("op_minor_version");
+
+ // With missing functions, we can do nothing
+ if (!OpenAgentFunc
+ || !CloseAgentFunc
+ || !WriteNativeCodeFunc
+ || !WriteDebugLineInfoFunc
+ || !UnloadNativeCodeFunc) {
+ OpenAgentFunc = 0;
+ CloseAgentFunc = 0;
+ WriteNativeCodeFunc = 0;
+ WriteDebugLineInfoFunc = 0;
+ UnloadNativeCodeFunc = 0;
+ return false;
+ }
+
+ return true;
+}
+
+bool OProfileWrapper::isOProfileRunning() {
+ if (IsOProfileRunningFunc != 0)
+ return IsOProfileRunningFunc();
+ return checkForOProfileProcEntry();
+}
+
+bool OProfileWrapper::checkForOProfileProcEntry() {
+ DIR* ProcDir;
+
+ ProcDir = opendir("/proc");
+ if (!ProcDir)
+ return false;
+
+ // Walk the /proc tree looking for the oprofile daemon
+ struct dirent* Entry;
+ while (0 != (Entry = readdir(ProcDir))) {
+ if (Entry->d_type == DT_DIR) {
+ // Build a path from the current entry name
+ SmallString<256> CmdLineFName;
+ raw_svector_ostream(CmdLineFName) << "/proc/" << Entry->d_name
+ << "/cmdline";
+
+ // Open the cmdline file
+ int CmdLineFD = open(CmdLineFName.c_str(), S_IRUSR);
+ if (CmdLineFD != -1) {
+ char ExeName[PATH_MAX+1];
+ char* BaseName = 0;
+
+ // Read the cmdline file
+ ssize_t NumRead = read(CmdLineFD, ExeName, PATH_MAX+1);
+ close(CmdLineFD);
+ ssize_t Idx = 0;
+
+ // Find the terminator for the first string
+ while (Idx < NumRead-1 && ExeName[Idx] != 0) {
+ Idx++;
+ }
+
+ // Go back to the last non-null character
+ Idx--;
+
+ // Find the last path separator in the first string
+ while (Idx > 0) {
+ if (ExeName[Idx] == '/') {
+ BaseName = ExeName + Idx + 1;
+ break;
+ }
+ Idx--;
+ }
+
+ // Test this to see if it is the oprofile daemon
+ if (BaseName != 0 && !strcmp("oprofiled", BaseName)) {
+ // If it is, we're done
+ closedir(ProcDir);
+ return true;
+ }
+ }
+ }
+ }
+
+ // We've looked through all the files and didn't find the daemon
+ closedir(ProcDir);
+ return false;
+}
+
+bool OProfileWrapper::op_open_agent() {
+ if (!Initialized)
+ initialize();
+
+ if (OpenAgentFunc != 0) {
+ Agent = OpenAgentFunc();
+ return Agent != 0;
+ }
+
+ return false;
+}
+
+int OProfileWrapper::op_close_agent() {
+ if (!Initialized)
+ initialize();
+
+ int ret = -1;
+ if (Agent && CloseAgentFunc) {
+ ret = CloseAgentFunc(Agent);
+ if (ret == 0) {
+ Agent = 0;
+ }
+ }
+ return ret;
+}
+
+bool OProfileWrapper::isAgentAvailable() {
+ return Agent != 0;
+}
+
+int OProfileWrapper::op_write_native_code(const char* Name,
+ uint64_t Addr,
+ void const* Code,
+ const unsigned int Size) {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && WriteNativeCodeFunc)
+ return WriteNativeCodeFunc(Agent, Name, Addr, Code, Size);
+
+ return -1;
+}
+
+int OProfileWrapper::op_write_debug_line_info(
+ void const* Code,
+ size_t NumEntries,
+ struct debug_line_info const* Info) {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && WriteDebugLineInfoFunc)
+ return WriteDebugLineInfoFunc(Agent, Code, NumEntries, Info);
+
+ return -1;
+}
+
+int OProfileWrapper::op_major_version() {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && MajorVersionFunc)
+ return MajorVersionFunc();
+
+ return -1;
+}
+
+int OProfileWrapper::op_minor_version() {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && MinorVersionFunc)
+ return MinorVersionFunc();
+
+ return -1;
+}
+
+int OProfileWrapper::op_unload_native_code(uint64_t Addr) {
+ if (!Initialized)
+ initialize();
+
+ if (Agent && UnloadNativeCodeFunc)
+ return UnloadNativeCodeFunc(Agent, Addr);
+
+ return -1;
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp
new file mode 100644
index 0000000..603c526
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/GDBRegistrar.cpp
@@ -0,0 +1,214 @@
+//===-- GDBRegistrar.cpp - Registers objects with GDB ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JITRegistrar.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/Support/MutexGuard.h"
+
+using namespace llvm;
+
+// This must be kept in sync with gdb/gdb/jit.h .
+extern "C" {
+
+ typedef enum {
+ JIT_NOACTION = 0,
+ JIT_REGISTER_FN,
+ JIT_UNREGISTER_FN
+ } jit_actions_t;
+
+ struct jit_code_entry {
+ struct jit_code_entry *next_entry;
+ struct jit_code_entry *prev_entry;
+ const char *symfile_addr;
+ uint64_t symfile_size;
+ };
+
+ struct jit_descriptor {
+ uint32_t version;
+ // This should be jit_actions_t, but we want to be specific about the
+ // bit-width.
+ uint32_t action_flag;
+ struct jit_code_entry *relevant_entry;
+ struct jit_code_entry *first_entry;
+ };
+
+ // We put information about the JITed function in this global, which the
+ // debugger reads. Make sure to specify the version statically, because the
+ // debugger checks the version before we can set it during runtime.
+ struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
+
+ // Debuggers puts a breakpoint in this function.
+ LLVM_ATTRIBUTE_NOINLINE void __jit_debug_register_code() { }
+
+}
+
+namespace {
+
+// Buffer for an in-memory object file in executable memory
+typedef llvm::DenseMap< const char*,
+ std::pair<std::size_t, jit_code_entry*> >
+ RegisteredObjectBufferMap;
+
+/// Global access point for the JIT debugging interface designed for use with a
+/// singleton toolbox. Handles thread-safe registration and deregistration of
+/// object files that are in executable memory managed by the client of this
+/// class.
+class GDBJITRegistrar : public JITRegistrar {
+ /// A map of in-memory object files that have been registered with the
+ /// JIT interface.
+ RegisteredObjectBufferMap ObjectBufferMap;
+
+public:
+ /// Instantiates the JIT service.
+ GDBJITRegistrar() : ObjectBufferMap() {}
+
+ /// Unregisters each object that was previously registered and releases all
+ /// internal resources.
+ virtual ~GDBJITRegistrar();
+
+ /// Creates an entry in the JIT registry for the buffer @p Object,
+ /// which must contain an object file in executable memory with any
+ /// debug information for the debugger.
+ void registerObject(const ObjectBuffer &Object);
+
+ /// Removes the internal registration of @p Object, and
+ /// frees associated resources.
+ /// Returns true if @p Object was found in ObjectBufferMap.
+ bool deregisterObject(const ObjectBuffer &Object);
+
+private:
+ /// Deregister the debug info for the given object file from the debugger
+ /// and delete any temporary copies. This private method does not remove
+ /// the function from Map so that it can be called while iterating over Map.
+ void deregisterObjectInternal(RegisteredObjectBufferMap::iterator I);
+};
+
+/// Lock used to serialize all jit registration events, since they
+/// modify global variables.
+llvm::sys::Mutex JITDebugLock;
+
+/// Acquire the lock and do the registration.
+void NotifyDebugger(jit_code_entry* JITCodeEntry) {
+ llvm::MutexGuard locked(JITDebugLock);
+ __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
+
+ // Insert this entry at the head of the list.
+ JITCodeEntry->prev_entry = NULL;
+ jit_code_entry* NextEntry = __jit_debug_descriptor.first_entry;
+ JITCodeEntry->next_entry = NextEntry;
+ if (NextEntry != NULL) {
+ NextEntry->prev_entry = JITCodeEntry;
+ }
+ __jit_debug_descriptor.first_entry = JITCodeEntry;
+ __jit_debug_descriptor.relevant_entry = JITCodeEntry;
+ __jit_debug_register_code();
+}
+
+GDBJITRegistrar::~GDBJITRegistrar() {
+ // Free all registered object files.
+ for (RegisteredObjectBufferMap::iterator I = ObjectBufferMap.begin(), E = ObjectBufferMap.end();
+ I != E; ++I) {
+ // Call the private method that doesn't update the map so our iterator
+ // doesn't break.
+ deregisterObjectInternal(I);
+ }
+ ObjectBufferMap.clear();
+}
+
+void GDBJITRegistrar::registerObject(const ObjectBuffer &Object) {
+
+ const char *Buffer = Object.getBufferStart();
+ size_t Size = Object.getBufferSize();
+
+ assert(Buffer && "Attempt to register a null object with a debugger.");
+ assert(ObjectBufferMap.find(Buffer) == ObjectBufferMap.end() &&
+ "Second attempt to perform debug registration.");
+ jit_code_entry* JITCodeEntry = new jit_code_entry();
+
+ if (JITCodeEntry == 0) {
+ llvm::report_fatal_error(
+ "Allocation failed when registering a JIT entry!\n");
+ }
+ else {
+ JITCodeEntry->symfile_addr = Buffer;
+ JITCodeEntry->symfile_size = Size;
+
+ ObjectBufferMap[Buffer] = std::make_pair(Size, JITCodeEntry);
+ NotifyDebugger(JITCodeEntry);
+ }
+}
+
+bool GDBJITRegistrar::deregisterObject(const ObjectBuffer& Object) {
+ const char *Buffer = Object.getBufferStart();
+ RegisteredObjectBufferMap::iterator I = ObjectBufferMap.find(Buffer);
+
+ if (I != ObjectBufferMap.end()) {
+ deregisterObjectInternal(I);
+ ObjectBufferMap.erase(I);
+ return true;
+ }
+ return false;
+}
+
+void GDBJITRegistrar::deregisterObjectInternal(
+ RegisteredObjectBufferMap::iterator I) {
+
+ jit_code_entry*& JITCodeEntry = I->second.second;
+
+ // Acquire the lock and do the unregistration.
+ {
+ llvm::MutexGuard locked(JITDebugLock);
+ __jit_debug_descriptor.action_flag = JIT_UNREGISTER_FN;
+
+ // Remove the jit_code_entry from the linked list.
+ jit_code_entry* PrevEntry = JITCodeEntry->prev_entry;
+ jit_code_entry* NextEntry = JITCodeEntry->next_entry;
+
+ if (NextEntry) {
+ NextEntry->prev_entry = PrevEntry;
+ }
+ if (PrevEntry) {
+ PrevEntry->next_entry = NextEntry;
+ }
+ else {
+ assert(__jit_debug_descriptor.first_entry == JITCodeEntry);
+ __jit_debug_descriptor.first_entry = NextEntry;
+ }
+
+ // Tell the debugger which entry we removed, and unregister the code.
+ __jit_debug_descriptor.relevant_entry = JITCodeEntry;
+ __jit_debug_register_code();
+ }
+
+ delete JITCodeEntry;
+ JITCodeEntry = NULL;
+}
+
+} // end namespace
+
+namespace llvm {
+
+JITRegistrar& JITRegistrar::getGDBRegistrar() {
+ static GDBJITRegistrar* sRegistrar = NULL;
+ if (sRegistrar == NULL) {
+ // The mutex is here so that it won't slow down access once the registrar
+ // is instantiated
+ llvm::MutexGuard locked(JITDebugLock);
+ // Check again to be sure another thread didn't create this while we waited
+ if (sRegistrar == NULL) {
+ sRegistrar = new GDBJITRegistrar;
+ }
+ }
+ return *sRegistrar;
+}
+
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h
new file mode 100644
index 0000000..69e9dbe
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/JITRegistrar.h
@@ -0,0 +1,43 @@
+//===-- JITRegistrar.h - Registers objects with a debugger ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_EXECUTION_ENGINE_JIT_REGISTRAR_H
+#define LLVM_EXECUTION_ENGINE_JIT_REGISTRAR_H
+
+#include "llvm/ExecutionEngine/ObjectBuffer.h"
+
+namespace llvm {
+
+/// Global access point for the JIT debugging interface.
+class JITRegistrar {
+public:
+ /// Instantiates the JIT service.
+ JITRegistrar() {}
+
+ /// Unregisters each object that was previously registered and releases all
+ /// internal resources.
+ virtual ~JITRegistrar() {}
+
+ /// Creates an entry in the JIT registry for the buffer @p Object,
+ /// which must contain an object file in executable memory with any
+ /// debug information for the debugger.
+ virtual void registerObject(const ObjectBuffer &Object) = 0;
+
+ /// Removes the internal registration of @p Object, and
+ /// frees associated resources.
+ /// Returns true if @p Object was previously registered.
+ virtual bool deregisterObject(const ObjectBuffer &Object) = 0;
+
+ /// Returns a reference to a GDB JIT registrar singleton
+ static JITRegistrar& getGDBRegistrar();
+};
+
+} // end namespace llvm
+
+#endif // LLVM_EXECUTION_ENGINE_JIT_REGISTRAR_H
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h
new file mode 100644
index 0000000..89350cc
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/ObjectImageCommon.h
@@ -0,0 +1,78 @@
+//===-- ObjectImageCommon.h - Format independent executuable object image -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares a file format independent ObjectImage class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
+#define LLVM_RUNTIMEDYLD_OBJECTIMAGECOMMON_H
+
+#include "llvm/ExecutionEngine/ObjectBuffer.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/Object/ObjectFile.h"
+
+namespace llvm {
+
+class ObjectImageCommon : public ObjectImage {
+ ObjectImageCommon(); // = delete
+ ObjectImageCommon(const ObjectImageCommon &other); // = delete
+
+protected:
+ object::ObjectFile *ObjFile;
+
+ // This form of the constructor allows subclasses to use
+ // format-specific subclasses of ObjectFile directly
+ ObjectImageCommon(ObjectBuffer *Input, object::ObjectFile *Obj)
+ : ObjectImage(Input), // saves Input as Buffer and takes ownership
+ ObjFile(Obj)
+ {
+ }
+
+public:
+ ObjectImageCommon(ObjectBuffer* Input)
+ : ObjectImage(Input) // saves Input as Buffer and takes ownership
+ {
+ ObjFile = object::ObjectFile::createObjectFile(Buffer->getMemBuffer());
+ }
+ virtual ~ObjectImageCommon() { delete ObjFile; }
+
+ virtual object::symbol_iterator begin_symbols() const
+ { return ObjFile->begin_symbols(); }
+ virtual object::symbol_iterator end_symbols() const
+ { return ObjFile->end_symbols(); }
+
+ virtual object::section_iterator begin_sections() const
+ { return ObjFile->begin_sections(); }
+ virtual object::section_iterator end_sections() const
+ { return ObjFile->end_sections(); }
+
+ virtual /* Triple::ArchType */ unsigned getArch() const
+ { return ObjFile->getArch(); }
+
+ virtual StringRef getData() const { return ObjFile->getData(); }
+
+ virtual object::ObjectFile* getObjectFile() const { return ObjFile; }
+
+ // Subclasses can override these methods to update the image with loaded
+ // addresses for sections and common symbols
+ virtual void updateSectionAddress(const object::SectionRef &Sec,
+ uint64_t Addr) {}
+ virtual void updateSymbolAddress(const object::SymbolRef &Sym, uint64_t Addr)
+ {}
+
+ // Subclasses can override these methods to provide JIT debugging support
+ virtual void registerWithDebugger() {}
+ virtual void deregisterWithDebugger() {}
+};
+
+} // end namespace llvm
+
+#endif // LLVM_RUNTIMEDYLD_OBJECT_IMAGE_H
+
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
new file mode 100644
index 0000000..409b25f
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
@@ -0,0 +1,537 @@
+//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dyld"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "ObjectImageCommon.h"
+#include "RuntimeDyldELF.h"
+#include "RuntimeDyldImpl.h"
+#include "RuntimeDyldMachO.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Path.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+// Empty out-of-line virtual destructor as the key function.
+RTDyldMemoryManager::~RTDyldMemoryManager() {}
+RuntimeDyldImpl::~RuntimeDyldImpl() {}
+
+namespace llvm {
+
+// Resolve the relocations for all symbols we currently know about.
+void RuntimeDyldImpl::resolveRelocations() {
+ // First, resolve relocations associated with external symbols.
+ resolveExternalSymbols();
+
+ // Just iterate over the sections we have and resolve all the relocations
+ // in them. Gross overkill, but it gets the job done.
+ for (int i = 0, e = Sections.size(); i != e; ++i) {
+ uint64_t Addr = Sections[i].LoadAddress;
+ DEBUG(dbgs() << "Resolving relocations Section #" << i
+ << "\t" << format("%p", (uint8_t *)Addr)
+ << "\n");
+ resolveRelocationList(Relocations[i], Addr);
+ }
+}
+
+void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
+ if (Sections[i].Address == LocalAddress) {
+ reassignSectionAddress(i, TargetAddress);
+ return;
+ }
+ }
+ llvm_unreachable("Attempting to remap address of unknown section!");
+}
+
+// Subclasses can implement this method to create specialized image instances.
+// The caller owns the pointer that is returned.
+ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
+ return new ObjectImageCommon(InputBuffer);
+}
+
+ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
+ OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
+ if (!obj)
+ report_fatal_error("Unable to create object image from memory buffer!");
+
+ Arch = (Triple::ArchType)obj->getArch();
+
+ // Symbols found in this object
+ StringMap<SymbolLoc> LocalSymbols;
+ // Used sections from the object file
+ ObjSectionToIDMap LocalSections;
+
+ // Common symbols requiring allocation, with their sizes and alignments
+ CommonSymbolMap CommonSymbols;
+ // Maximum required total memory to allocate all common symbols
+ uint64_t CommonSize = 0;
+
+ error_code err;
+ // Parse symbols
+ DEBUG(dbgs() << "Parse symbols:\n");
+ for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
+ i != e; i.increment(err)) {
+ Check(err);
+ object::SymbolRef::Type SymType;
+ StringRef Name;
+ Check(i->getType(SymType));
+ Check(i->getName(Name));
+
+ uint32_t flags;
+ Check(i->getFlags(flags));
+
+ bool isCommon = flags & SymbolRef::SF_Common;
+ if (isCommon) {
+ // Add the common symbols to a list. We'll allocate them all below.
+ uint64_t Align = getCommonSymbolAlignment(*i);
+ uint64_t Size = 0;
+ Check(i->getSize(Size));
+ CommonSize += Size + Align;
+ CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
+ } else {
+ if (SymType == object::SymbolRef::ST_Function ||
+ SymType == object::SymbolRef::ST_Data ||
+ SymType == object::SymbolRef::ST_Unknown) {
+ uint64_t FileOffset;
+ StringRef SectionData;
+ bool IsCode;
+ section_iterator si = obj->end_sections();
+ Check(i->getFileOffset(FileOffset));
+ Check(i->getSection(si));
+ if (si == obj->end_sections()) continue;
+ Check(si->getContents(SectionData));
+ Check(si->isText(IsCode));
+ const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
+ (uintptr_t)FileOffset;
+ uintptr_t SectOffset = (uintptr_t)(SymPtr -
+ (const uint8_t*)SectionData.begin());
+ unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
+ LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
+ DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
+ << " flags: " << flags
+ << " SID: " << SectionID
+ << " Offset: " << format("%p", SectOffset));
+ GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
+ }
+ }
+ DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
+ }
+
+ // Allocate common symbols
+ if (CommonSize != 0)
+ emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
+
+ // Parse and process relocations
+ DEBUG(dbgs() << "Parse relocations:\n");
+ for (section_iterator si = obj->begin_sections(),
+ se = obj->end_sections(); si != se; si.increment(err)) {
+ Check(err);
+ bool isFirstRelocation = true;
+ unsigned SectionID = 0;
+ StubMap Stubs;
+
+ for (relocation_iterator i = si->begin_relocations(),
+ e = si->end_relocations(); i != e; i.increment(err)) {
+ Check(err);
+
+ // If it's the first relocation in this section, find its SectionID
+ if (isFirstRelocation) {
+ SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
+ DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
+ isFirstRelocation = false;
+ }
+
+ ObjRelocationInfo RI;
+ RI.SectionID = SectionID;
+ Check(i->getAdditionalInfo(RI.AdditionalInfo));
+ Check(i->getOffset(RI.Offset));
+ Check(i->getSymbol(RI.Symbol));
+ Check(i->getType(RI.Type));
+
+ DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
+ << " Offset: " << format("%p", (uintptr_t)RI.Offset)
+ << " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
+ << "\n");
+ processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
+ }
+ }
+
+ return obj.take();
+}
+
+void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
+ const CommonSymbolMap &CommonSymbols,
+ uint64_t TotalSize,
+ SymbolTableMap &SymbolTable) {
+ // Allocate memory for the section
+ unsigned SectionID = Sections.size();
+ uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
+ SectionID, false);
+ if (!Addr)
+ report_fatal_error("Unable to allocate memory for common symbols!");
+ uint64_t Offset = 0;
+ Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
+ memset(Addr, 0, TotalSize);
+
+ DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
+ << " new addr: " << format("%p", Addr)
+ << " DataSize: " << TotalSize
+ << "\n");
+
+ // Assign the address of each symbol
+ for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
+ itEnd = CommonSymbols.end(); it != itEnd; it++) {
+ uint64_t Size = it->second.first;
+ uint64_t Align = it->second.second;
+ StringRef Name;
+ it->first.getName(Name);
+ if (Align) {
+ // This symbol has an alignment requirement.
+ uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
+ Addr += AlignOffset;
+ Offset += AlignOffset;
+ DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
+ format("%p\n", Addr));
+ }
+ Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
+ SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
+ Offset += Size;
+ Addr += Size;
+ }
+}
+
+unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
+ const SectionRef &Section,
+ bool IsCode) {
+
+ unsigned StubBufSize = 0,
+ StubSize = getMaxStubSize();
+ error_code err;
+ if (StubSize > 0) {
+ for (relocation_iterator i = Section.begin_relocations(),
+ e = Section.end_relocations(); i != e; i.increment(err), Check(err))
+ StubBufSize += StubSize;
+ }
+ StringRef data;
+ uint64_t Alignment64;
+ Check(Section.getContents(data));
+ Check(Section.getAlignment(Alignment64));
+
+ unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
+ bool IsRequired;
+ bool IsVirtual;
+ bool IsZeroInit;
+ bool IsReadOnly;
+ uint64_t DataSize;
+ StringRef Name;
+ Check(Section.isRequiredForExecution(IsRequired));
+ Check(Section.isVirtual(IsVirtual));
+ Check(Section.isZeroInit(IsZeroInit));
+ Check(Section.isReadOnlyData(IsReadOnly));
+ Check(Section.getSize(DataSize));
+ Check(Section.getName(Name));
+
+ unsigned Allocate;
+ unsigned SectionID = Sections.size();
+ uint8_t *Addr;
+ const char *pData = 0;
+
+ // Some sections, such as debug info, don't need to be loaded for execution.
+ // Leave those where they are.
+ if (IsRequired) {
+ Allocate = DataSize + StubBufSize;
+ Addr = IsCode
+ ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
+ : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
+ if (!Addr)
+ report_fatal_error("Unable to allocate section memory!");
+
+ // Virtual sections have no data in the object image, so leave pData = 0
+ if (!IsVirtual)
+ pData = data.data();
+
+ // Zero-initialize or copy the data from the image
+ if (IsZeroInit || IsVirtual)
+ memset(Addr, 0, DataSize);
+ else
+ memcpy(Addr, pData, DataSize);
+
+ DEBUG(dbgs() << "emitSection SectionID: " << SectionID
+ << " Name: " << Name
+ << " obj addr: " << format("%p", pData)
+ << " new addr: " << format("%p", Addr)
+ << " DataSize: " << DataSize
+ << " StubBufSize: " << StubBufSize
+ << " Allocate: " << Allocate
+ << "\n");
+ Obj.updateSectionAddress(Section, (uint64_t)Addr);
+ }
+ else {
+ // Even if we didn't load the section, we need to record an entry for it
+ // to handle later processing (and by 'handle' I mean don't do anything
+ // with these sections).
+ Allocate = 0;
+ Addr = 0;
+ DEBUG(dbgs() << "emitSection SectionID: " << SectionID
+ << " Name: " << Name
+ << " obj addr: " << format("%p", data.data())
+ << " new addr: 0"
+ << " DataSize: " << DataSize
+ << " StubBufSize: " << StubBufSize
+ << " Allocate: " << Allocate
+ << "\n");
+ }
+
+ Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
+ (uintptr_t)pData));
+ return SectionID;
+}
+
+unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
+ const SectionRef &Section,
+ bool IsCode,
+ ObjSectionToIDMap &LocalSections) {
+
+ unsigned SectionID = 0;
+ ObjSectionToIDMap::iterator i = LocalSections.find(Section);
+ if (i != LocalSections.end())
+ SectionID = i->second;
+ else {
+ SectionID = emitSection(Obj, Section, IsCode);
+ LocalSections[Section] = SectionID;
+ }
+ return SectionID;
+}
+
+void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
+ unsigned SectionID) {
+ Relocations[SectionID].push_back(RE);
+}
+
+void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
+ StringRef SymbolName) {
+ // Relocation by symbol. If the symbol is found in the global symbol table,
+ // create an appropriate section relocation. Otherwise, add it to
+ // ExternalSymbolRelocations.
+ SymbolTableMap::const_iterator Loc =
+ GlobalSymbolTable.find(SymbolName);
+ if (Loc == GlobalSymbolTable.end()) {
+ ExternalSymbolRelocations[SymbolName].push_back(RE);
+ } else {
+ // Copy the RE since we want to modify its addend.
+ RelocationEntry RECopy = RE;
+ RECopy.Addend += Loc->second.second;
+ Relocations[Loc->second.first].push_back(RECopy);
+ }
+}
+
+uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
+ if (Arch == Triple::arm) {
+ // TODO: There is only ARM far stub now. We should add the Thumb stub,
+ // and stubs for branches Thumb - ARM and ARM - Thumb.
+ uint32_t *StubAddr = (uint32_t*)Addr;
+ *StubAddr = 0xe51ff004; // ldr pc,<label>
+ return (uint8_t*)++StubAddr;
+ } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
+ uint32_t *StubAddr = (uint32_t*)Addr;
+ // 0: 3c190000 lui t9,%hi(addr).
+ // 4: 27390000 addiu t9,t9,%lo(addr).
+ // 8: 03200008 jr t9.
+ // c: 00000000 nop.
+ const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
+ const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
+
+ *StubAddr = LuiT9Instr;
+ StubAddr++;
+ *StubAddr = AdduiT9Instr;
+ StubAddr++;
+ *StubAddr = JrT9Instr;
+ StubAddr++;
+ *StubAddr = NopInstr;
+ return Addr;
+ } else if (Arch == Triple::ppc64) {
+ // PowerPC64 stub: the address points to a function descriptor
+ // instead of the function itself. Load the function address
+ // on r11 and sets it to control register. Also loads the function
+ // TOC in r2 and environment pointer to r11.
+ writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
+ writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
+ writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
+ writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
+ writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
+ writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
+ writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
+ writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
+ writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
+ writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
+ writeInt32BE(Addr+40, 0x4E800420); // bctr
+
+ return Addr;
+ }
+ return Addr;
+}
+
+// Assign an address to a symbol name and resolve all the relocations
+// associated with it.
+void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
+ uint64_t Addr) {
+ // The address to use for relocation resolution is not
+ // the address of the local section buffer. We must be doing
+ // a remote execution environment of some sort. Relocations can't
+ // be applied until all the sections have been moved. The client must
+ // trigger this with a call to MCJIT::finalize() or
+ // RuntimeDyld::resolveRelocations().
+ //
+ // Addr is a uint64_t because we can't assume the pointer width
+ // of the target is the same as that of the host. Just use a generic
+ // "big enough" type.
+ Sections[SectionID].LoadAddress = Addr;
+}
+
+void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
+ uint64_t Value) {
+ // Ignore relocations for sections that were not loaded
+ if (Sections[RE.SectionID].Address != 0) {
+ DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
+ << " + " << RE.Offset << " ("
+ << format("%p", Sections[RE.SectionID].Address + RE.Offset) << ")"
+ << " RelType: " << RE.RelType
+ << " Addend: " << RE.Addend
+ << "\n");
+
+ resolveRelocation(Sections[RE.SectionID], RE.Offset,
+ Value, RE.RelType, RE.Addend);
+ }
+}
+
+void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
+ uint64_t Value) {
+ for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
+ resolveRelocationEntry(Relocs[i], Value);
+ }
+}
+
+void RuntimeDyldImpl::resolveExternalSymbols() {
+ StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
+ e = ExternalSymbolRelocations.end();
+ for (; i != e; i++) {
+ StringRef Name = i->first();
+ RelocationList &Relocs = i->second;
+ SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
+ if (Loc == GlobalSymbolTable.end()) {
+ if (Name.size() == 0) {
+ // This is an absolute symbol, use an address of zero.
+ DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
+ resolveRelocationList(Relocs, 0);
+ } else {
+ // This is an external symbol, try to get its address from
+ // MemoryManager.
+ uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
+ true);
+ DEBUG(dbgs() << "Resolving relocations Name: " << Name
+ << "\t" << format("%p", Addr)
+ << "\n");
+ resolveRelocationList(Relocs, (uintptr_t)Addr);
+ }
+ } else {
+ report_fatal_error("Expected external symbol");
+ }
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// RuntimeDyld class implementation
+RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
+ // FIXME: There's a potential issue lurking here if a single instance of
+ // RuntimeDyld is used to load multiple objects. The current implementation
+ // associates a single memory manager with a RuntimeDyld instance. Even
+ // though the public class spawns a new 'impl' instance for each load,
+ // they share a single memory manager. This can become a problem when page
+ // permissions are applied.
+ Dyld = 0;
+ MM = mm;
+}
+
+RuntimeDyld::~RuntimeDyld() {
+ delete Dyld;
+}
+
+ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
+ if (!Dyld) {
+ sys::LLVMFileType type = sys::IdentifyFileType(
+ InputBuffer->getBufferStart(),
+ static_cast<unsigned>(InputBuffer->getBufferSize()));
+ switch (type) {
+ case sys::ELF_Relocatable_FileType:
+ case sys::ELF_Executable_FileType:
+ case sys::ELF_SharedObject_FileType:
+ case sys::ELF_Core_FileType:
+ Dyld = new RuntimeDyldELF(MM);
+ break;
+ case sys::Mach_O_Object_FileType:
+ case sys::Mach_O_Executable_FileType:
+ case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
+ case sys::Mach_O_Core_FileType:
+ case sys::Mach_O_PreloadExecutable_FileType:
+ case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
+ case sys::Mach_O_DynamicLinker_FileType:
+ case sys::Mach_O_Bundle_FileType:
+ case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
+ case sys::Mach_O_DSYMCompanion_FileType:
+ Dyld = new RuntimeDyldMachO(MM);
+ break;
+ case sys::Unknown_FileType:
+ case sys::Bitcode_FileType:
+ case sys::Archive_FileType:
+ case sys::COFF_FileType:
+ report_fatal_error("Incompatible object format!");
+ }
+ } else {
+ if (!Dyld->isCompatibleFormat(InputBuffer))
+ report_fatal_error("Incompatible object format!");
+ }
+
+ return Dyld->loadObject(InputBuffer);
+}
+
+void *RuntimeDyld::getSymbolAddress(StringRef Name) {
+ return Dyld->getSymbolAddress(Name);
+}
+
+uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
+ return Dyld->getSymbolLoadAddress(Name);
+}
+
+void RuntimeDyld::resolveRelocations() {
+ Dyld->resolveRelocations();
+}
+
+void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
+ uint64_t Addr) {
+ Dyld->reassignSectionAddress(SectionID, Addr);
+}
+
+void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
+ uint64_t TargetAddress) {
+ Dyld->mapSectionAddress(LocalAddress, TargetAddress);
+}
+
+StringRef RuntimeDyld::getErrorString() {
+ return Dyld->getErrorString();
+}
+
+} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
new file mode 100644
index 0000000..b8537b1
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -0,0 +1,851 @@
+//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of ELF support for the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dyld"
+#include "RuntimeDyldELF.h"
+#include "JITRegistrar.h"
+#include "ObjectImageCommon.h"
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ExecutionEngine/ObjectBuffer.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/Object/ELF.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/ELF.h"
+using namespace llvm;
+using namespace llvm::object;
+
+namespace {
+
+static inline
+error_code check(error_code Err) {
+ if (Err) {
+ report_fatal_error(Err.message());
+ }
+ return Err;
+}
+
+template<class ELFT>
+class DyldELFObject
+ : public ELFObjectFile<ELFT> {
+ LLVM_ELF_IMPORT_TYPES(ELFT)
+
+ typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
+ typedef Elf_Sym_Impl<ELFT> Elf_Sym;
+ typedef
+ Elf_Rel_Impl<ELFT, false> Elf_Rel;
+ typedef
+ Elf_Rel_Impl<ELFT, true> Elf_Rela;
+
+ typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
+
+ typedef typename ELFDataTypeTypedefHelper<
+ ELFT>::value_type addr_type;
+
+public:
+ DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
+
+ void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
+ void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
+
+ // Methods for type inquiry through isa, cast and dyn_cast
+ static inline bool classof(const Binary *v) {
+ return (isa<ELFObjectFile<ELFT> >(v)
+ && classof(cast<ELFObjectFile
+ <ELFT> >(v)));
+ }
+ static inline bool classof(
+ const ELFObjectFile<ELFT> *v) {
+ return v->isDyldType();
+ }
+};
+
+template<class ELFT>
+class ELFObjectImage : public ObjectImageCommon {
+ protected:
+ DyldELFObject<ELFT> *DyldObj;
+ bool Registered;
+
+ public:
+ ELFObjectImage(ObjectBuffer *Input,
+ DyldELFObject<ELFT> *Obj)
+ : ObjectImageCommon(Input, Obj),
+ DyldObj(Obj),
+ Registered(false) {}
+
+ virtual ~ELFObjectImage() {
+ if (Registered)
+ deregisterWithDebugger();
+ }
+
+ // Subclasses can override these methods to update the image with loaded
+ // addresses for sections and common symbols
+ virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
+ {
+ DyldObj->updateSectionAddress(Sec, Addr);
+ }
+
+ virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
+ {
+ DyldObj->updateSymbolAddress(Sym, Addr);
+ }
+
+ virtual void registerWithDebugger()
+ {
+ JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
+ Registered = true;
+ }
+ virtual void deregisterWithDebugger()
+ {
+ JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
+ }
+};
+
+// The MemoryBuffer passed into this constructor is just a wrapper around the
+// actual memory. Ultimately, the Binary parent class will take ownership of
+// this MemoryBuffer object but not the underlying memory.
+template<class ELFT>
+DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
+ : ELFObjectFile<ELFT>(Wrapper, ec) {
+ this->isDyldELFObject = true;
+}
+
+template<class ELFT>
+void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
+ uint64_t Addr) {
+ DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+ Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
+ reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ shdr->sh_addr = static_cast<addr_type>(Addr);
+}
+
+template<class ELFT>
+void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
+ uint64_t Addr) {
+
+ Elf_Sym *sym = const_cast<Elf_Sym*>(
+ ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ sym->st_value = static_cast<addr_type>(Addr);
+}
+
+} // namespace
+
+namespace llvm {
+
+ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
+ if (Buffer->getBufferSize() < ELF::EI_NIDENT)
+ llvm_unreachable("Unexpected ELF object size");
+ std::pair<unsigned char, unsigned char> Ident = std::make_pair(
+ (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
+ (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
+ error_code ec;
+
+ if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
+ DyldELFObject<ELFType<support::little, 4, false> > *Obj =
+ new DyldELFObject<ELFType<support::little, 4, false> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
+ }
+ else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
+ DyldELFObject<ELFType<support::big, 4, false> > *Obj =
+ new DyldELFObject<ELFType<support::big, 4, false> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
+ }
+ else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
+ DyldELFObject<ELFType<support::big, 8, true> > *Obj =
+ new DyldELFObject<ELFType<support::big, 8, true> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
+ }
+ else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
+ DyldELFObject<ELFType<support::little, 8, true> > *Obj =
+ new DyldELFObject<ELFType<support::little, 8, true> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
+ }
+ else
+ llvm_unreachable("Unexpected ELF format");
+}
+
+RuntimeDyldELF::~RuntimeDyldELF() {
+}
+
+void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_X86_64_64: {
+ uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+ *Target = Value + Addend;
+ DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
+ << " at " << format("%p\n",Target));
+ break;
+ }
+ case ELF::R_X86_64_32:
+ case ELF::R_X86_64_32S: {
+ Value += Addend;
+ assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
+ (Type == ELF::R_X86_64_32S &&
+ ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
+ uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ *Target = TruncatedAddr;
+ DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
+ << " at " << format("%p\n",Target));
+ break;
+ }
+ case ELF::R_X86_64_PC32: {
+ // Get the placeholder value from the generated object since
+ // a previous relocation attempt may have overwritten the loaded version
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
+ + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+ int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
+ assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
+ int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
+ *Target = TruncOffset;
+ break;
+ }
+ }
+}
+
+void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend) {
+ switch (Type) {
+ case ELF::R_386_32: {
+ // Get the placeholder value from the generated object since
+ // a previous relocation attempt may have overwritten the loaded version
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
+ + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ *Target = *Placeholder + Value + Addend;
+ break;
+ }
+ case ELF::R_386_PC32: {
+ // Get the placeholder value from the generated object since
+ // a previous relocation attempt may have overwritten the loaded version
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
+ + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+ uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
+ *Target = RealOffset;
+ break;
+ }
+ default:
+ // There are other relocation types, but it appears these are the
+ // only ones currently used by the LLVM ELF object writer
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend) {
+ // TODO: Add Thumb relocations.
+ uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+ uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+ Value += Addend;
+
+ DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
+ << Section.Address + Offset
+ << " FinalAddress: " << format("%p",FinalAddress)
+ << " Value: " << format("%x",Value)
+ << " Type: " << format("%x",Type)
+ << " Addend: " << format("%x",Addend)
+ << "\n");
+
+ switch(Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+
+ // Write a 32bit value to relocation address, taking into account the
+ // implicit addend encoded in the target.
+ case ELF::R_ARM_TARGET1 :
+ case ELF::R_ARM_ABS32 :
+ *TargetPtr += Value;
+ break;
+
+ // Write first 16 bit of 32 bit value to the mov instruction.
+ // Last 4 bit should be shifted.
+ case ELF::R_ARM_MOVW_ABS_NC :
+ // We are not expecting any other addend in the relocation address.
+ // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
+ // non-contiguous fields.
+ assert((*TargetPtr & 0x000F0FFF) == 0);
+ Value = Value & 0xFFFF;
+ *TargetPtr |= Value & 0xFFF;
+ *TargetPtr |= ((Value >> 12) & 0xF) << 16;
+ break;
+
+ // Write last 16 bit of 32 bit value to the mov instruction.
+ // Last 4 bit should be shifted.
+ case ELF::R_ARM_MOVT_ABS :
+ // We are not expecting any other addend in the relocation address.
+ // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
+ assert((*TargetPtr & 0x000F0FFF) == 0);
+ Value = (Value >> 16) & 0xFFFF;
+ *TargetPtr |= Value & 0xFFF;
+ *TargetPtr |= ((Value >> 12) & 0xF) << 16;
+ break;
+
+ // Write 24 bit relative value to the branch instruction.
+ case ELF::R_ARM_PC24 : // Fall through.
+ case ELF::R_ARM_CALL : // Fall through.
+ case ELF::R_ARM_JUMP24 :
+ int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
+ RelValue = (RelValue & 0x03FFFFFC) >> 2;
+ *TargetPtr &= 0xFF000000;
+ *TargetPtr |= RelValue;
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend) {
+ uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+ Value += Addend;
+
+ DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
+ << Section.Address + Offset
+ << " FinalAddress: "
+ << format("%p",Section.LoadAddress + Offset)
+ << " Value: " << format("%x",Value)
+ << " Type: " << format("%x",Type)
+ << " Addend: " << format("%x",Addend)
+ << "\n");
+
+ switch(Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+ break;
+ case ELF::R_MIPS_32:
+ *TargetPtr = Value + (*TargetPtr);
+ break;
+ case ELF::R_MIPS_26:
+ *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
+ break;
+ case ELF::R_MIPS_HI16:
+ // Get the higher 16-bits. Also add 1 if bit 15 is 1.
+ Value += ((*TargetPtr) & 0x0000ffff) << 16;
+ *TargetPtr = ((*TargetPtr) & 0xffff0000) |
+ (((Value + 0x8000) >> 16) & 0xffff);
+ break;
+ case ELF::R_MIPS_LO16:
+ Value += ((*TargetPtr) & 0x0000ffff);
+ *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
+ break;
+ }
+}
+
+// Return the .TOC. section address to R_PPC64_TOC relocations.
+uint64_t RuntimeDyldELF::findPPC64TOC() const {
+ // The TOC consists of sections .got, .toc, .tocbss, .plt in that
+ // order. The TOC starts where the first of these sections starts.
+ SectionList::const_iterator it = Sections.begin();
+ SectionList::const_iterator ite = Sections.end();
+ for (; it != ite; ++it) {
+ if (it->Name == ".got" ||
+ it->Name == ".toc" ||
+ it->Name == ".tocbss" ||
+ it->Name == ".plt")
+ break;
+ }
+ if (it == ite) {
+ // This may happen for
+ // * references to TOC base base (sym@toc, .odp relocation) without
+ // a .toc directive.
+ // In this case just use the first section (which is usually
+ // the .odp) since the code won't reference the .toc base
+ // directly.
+ it = Sections.begin();
+ }
+ assert (it != ite);
+ // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
+ // thus permitting a full 64 Kbytes segment.
+ return it->LoadAddress + 0x8000;
+}
+
+// Returns the sections and offset associated with the ODP entry referenced
+// by Symbol.
+void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel) {
+ // Get the ELF symbol value (st_value) to compare with Relocation offset in
+ // .opd entries
+
+ error_code err;
+ for (section_iterator si = Obj.begin_sections(),
+ se = Obj.end_sections(); si != se; si.increment(err)) {
+ StringRef SectionName;
+ check(si->getName(SectionName));
+ if (SectionName != ".opd")
+ continue;
+
+ for (relocation_iterator i = si->begin_relocations(),
+ e = si->end_relocations(); i != e;) {
+ check(err);
+
+ // The R_PPC64_ADDR64 relocation indicates the first field
+ // of a .opd entry
+ uint64_t TypeFunc;
+ check(i->getType(TypeFunc));
+ if (TypeFunc != ELF::R_PPC64_ADDR64) {
+ i.increment(err);
+ continue;
+ }
+
+ SymbolRef TargetSymbol;
+ uint64_t TargetSymbolOffset;
+ int64_t TargetAdditionalInfo;
+ check(i->getSymbol(TargetSymbol));
+ check(i->getOffset(TargetSymbolOffset));
+ check(i->getAdditionalInfo(TargetAdditionalInfo));
+
+ i = i.increment(err);
+ if (i == e)
+ break;
+ check(err);
+
+ // Just check if following relocation is a R_PPC64_TOC
+ uint64_t TypeTOC;
+ check(i->getType(TypeTOC));
+ if (TypeTOC != ELF::R_PPC64_TOC)
+ continue;
+
+ // Finally compares the Symbol value and the target symbol offset
+ // to check if this .opd entry refers to the symbol the relocation
+ // points to.
+ if (Rel.Addend != (intptr_t)TargetSymbolOffset)
+ continue;
+
+ section_iterator tsi(Obj.end_sections());
+ check(TargetSymbol.getSection(tsi));
+ Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
+ Rel.Addend = (intptr_t)TargetAdditionalInfo;
+ return;
+ }
+ }
+ llvm_unreachable("Attempting to get address of ODP entry!");
+}
+
+// Relocation masks following the #lo(value), #hi(value), #higher(value),
+// and #highest(value) macros defined in section 4.5.1. Relocation Types
+// in PPC-elf64abi document.
+//
+static inline
+uint16_t applyPPClo (uint64_t value)
+{
+ return value & 0xffff;
+}
+
+static inline
+uint16_t applyPPChi (uint64_t value)
+{
+ return (value >> 16) & 0xffff;
+}
+
+static inline
+uint16_t applyPPChigher (uint64_t value)
+{
+ return (value >> 32) & 0xffff;
+}
+
+static inline
+uint16_t applyPPChighest (uint64_t value)
+{
+ return (value >> 48) & 0xffff;
+}
+
+void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ uint8_t* LocalAddress = Section.Address + Offset;
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_PPC64_ADDR16_LO :
+ writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HI :
+ writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHER :
+ writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHEST :
+ writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR14 : {
+ assert(((Value + Addend) & 3) == 0);
+ // Preserve the AA/LK bits in the branch instruction
+ uint8_t aalk = *(LocalAddress+3);
+ writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
+ } break;
+ case ELF::R_PPC64_ADDR32 : {
+ int32_t Result = static_cast<int32_t>(Value + Addend);
+ if (SignExtend32<32>(Result) != Result)
+ llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
+ writeInt32BE(LocalAddress, Result);
+ } break;
+ case ELF::R_PPC64_REL24 : {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<24>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL24 overflow");
+ // Generates a 'bl <address>' instruction
+ writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
+ } break;
+ case ELF::R_PPC64_REL32 : {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<32>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL32 overflow");
+ writeInt32BE(LocalAddress, delta);
+ } break;
+ case ELF::R_PPC64_ADDR64 :
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ case ELF::R_PPC64_TOC :
+ writeInt64BE(LocalAddress, findPPC64TOC());
+ break;
+ case ELF::R_PPC64_TOC16 : {
+ uint64_t TOCStart = findPPC64TOC();
+ Value = applyPPClo((Value + Addend) - TOCStart);
+ writeInt16BE(LocalAddress, applyPPClo(Value));
+ } break;
+ case ELF::R_PPC64_TOC16_DS : {
+ uint64_t TOCStart = findPPC64TOC();
+ Value = ((Value + Addend) - TOCStart);
+ writeInt16BE(LocalAddress, applyPPClo(Value));
+ } break;
+ }
+}
+
+void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ switch (Arch) {
+ case Triple::x86_64:
+ resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::x86:
+ resolveX86Relocation(Section, Offset,
+ (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::arm: // Fall through.
+ case Triple::thumb:
+ resolveARMRelocation(Section, Offset,
+ (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::mips: // Fall through.
+ case Triple::mipsel:
+ resolveMIPSRelocation(Section, Offset,
+ (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::ppc64:
+ resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ default: llvm_unreachable("Unsupported CPU type!");
+ }
+}
+
+void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
+ ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ const SymbolTableMap &Symbols,
+ StubMap &Stubs) {
+
+ uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
+ intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
+ const SymbolRef &Symbol = Rel.Symbol;
+
+ // Obtain the symbol name which is referenced in the relocation
+ StringRef TargetName;
+ Symbol.getName(TargetName);
+ DEBUG(dbgs() << "\t\tRelType: " << RelType
+ << " Addend: " << Addend
+ << " TargetName: " << TargetName
+ << "\n");
+ RelocationValueRef Value;
+ // First search for the symbol in the local symbol table
+ SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
+ SymbolRef::Type SymType;
+ Symbol.getType(SymType);
+ if (lsi != Symbols.end()) {
+ Value.SectionID = lsi->second.first;
+ Value.Addend = lsi->second.second;
+ } else {
+ // Search for the symbol in the global symbol table
+ SymbolTableMap::const_iterator gsi =
+ GlobalSymbolTable.find(TargetName.data());
+ if (gsi != GlobalSymbolTable.end()) {
+ Value.SectionID = gsi->second.first;
+ Value.Addend = gsi->second.second;
+ } else {
+ switch (SymType) {
+ case SymbolRef::ST_Debug: {
+ // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+ // and can be changed by another developers. Maybe best way is add
+ // a new symbol type ST_Section to SymbolRef and use it.
+ section_iterator si(Obj.end_sections());
+ Symbol.getSection(si);
+ if (si == Obj.end_sections())
+ llvm_unreachable("Symbol section not found, bad object file format!");
+ DEBUG(dbgs() << "\t\tThis is section symbol\n");
+ // Default to 'true' in case isText fails (though it never does).
+ bool isCode = true;
+ si->isText(isCode);
+ Value.SectionID = findOrEmitSection(Obj,
+ (*si),
+ isCode,
+ ObjSectionToID);
+ Value.Addend = Addend;
+ break;
+ }
+ case SymbolRef::ST_Unknown: {
+ Value.SymbolName = TargetName.data();
+ Value.Addend = Addend;
+ break;
+ }
+ default:
+ llvm_unreachable("Unresolved symbol type!");
+ break;
+ }
+ }
+ }
+ DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
+ << " Rel.Offset: " << Rel.Offset
+ << "\n");
+ if (Arch == Triple::arm &&
+ (RelType == ELF::R_ARM_PC24 ||
+ RelType == ELF::R_ARM_CALL ||
+ RelType == ELF::R_ARM_JUMP24)) {
+ // This is an ARM branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
+ SectionEntry &Section = Sections[Rel.SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+ RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
+ ELF::R_ARM_ABS32, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
+ RelType == ELF::R_MIPS_26) {
+ // This is an Mips branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
+ SectionEntry &Section = Sections[Rel.SectionID];
+ uint8_t *Target = Section.Address + Rel.Offset;
+ uint32_t *TargetAddress = (uint32_t *)Target;
+
+ // Extract the addend from the instruction.
+ uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
+
+ Value.Addend += Addend;
+
+ // Look up for existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+
+ // Creating Hi and Lo relocations for the filled stub instructions.
+ RelocationEntry REHi(Rel.SectionID,
+ StubTargetAddr - Section.Address,
+ ELF::R_MIPS_HI16, Value.Addend);
+ RelocationEntry RELo(Rel.SectionID,
+ StubTargetAddr - Section.Address + 4,
+ ELF::R_MIPS_LO16, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REHi, Value.SymbolName);
+ addRelocationForSymbol(RELo, Value.SymbolName);
+ } else {
+ addRelocationForSection(REHi, Value.SectionID);
+ addRelocationForSection(RELo, Value.SectionID);
+ }
+
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else if (Arch == Triple::ppc64) {
+ if (RelType == ELF::R_PPC64_REL24) {
+ // A PPC branch relocation will need a stub function if the target is
+ // an external symbol (Symbol::ST_Unknown) or if the target address
+ // is not within the signed 24-bits branch address.
+ SectionEntry &Section = Sections[Rel.SectionID];
+ uint8_t *Target = Section.Address + Rel.Offset;
+ bool RangeOverflow = false;
+ if (SymType != SymbolRef::ST_Unknown) {
+ // A function call may points to the .opd entry, so the final symbol value
+ // in calculated based in the relocation values in .opd section.
+ findOPDEntrySection(Obj, ObjSectionToID, Value);
+ uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
+ int32_t delta = static_cast<int32_t>(Target - RelocTarget);
+ // If it is within 24-bits branch range, just set the branch target
+ if (SignExtend32<24>(delta) == delta) {
+ RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else {
+ RangeOverflow = true;
+ }
+ }
+ if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
+ // It is an external symbol (SymbolRef::ST_Unknown) or within a range
+ // larger than 24-bits.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ // Symbol function stub already created, just relocate to it
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+ RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
+ ELF::R_PPC64_ADDR64, Value.Addend);
+
+ // Generates the 64-bits address loads as exemplified in section
+ // 4.5.1 in PPC64 ELF ABI.
+ RelocationEntry REhst(Rel.SectionID,
+ StubTargetAddr - Section.Address + 2,
+ ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
+ RelocationEntry REhr(Rel.SectionID,
+ StubTargetAddr - Section.Address + 6,
+ ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
+ RelocationEntry REh(Rel.SectionID,
+ StubTargetAddr - Section.Address + 14,
+ ELF::R_PPC64_ADDR16_HI, Value.Addend);
+ RelocationEntry REl(Rel.SectionID,
+ StubTargetAddr - Section.Address + 18,
+ ELF::R_PPC64_ADDR16_LO, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REhst, Value.SymbolName);
+ addRelocationForSymbol(REhr, Value.SymbolName);
+ addRelocationForSymbol(REh, Value.SymbolName);
+ addRelocationForSymbol(REl, Value.SymbolName);
+ } else {
+ addRelocationForSection(REhst, Value.SectionID);
+ addRelocationForSection(REhr, Value.SectionID);
+ addRelocationForSection(REh, Value.SectionID);
+ addRelocationForSection(REl, Value.SectionID);
+ }
+
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ if (SymType == SymbolRef::ST_Unknown)
+ // Restore the TOC for external calls
+ writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
+ Section.StubOffset += getMaxStubSize();
+ }
+ }
+ } else {
+ RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ // Extra check to avoid relocation againt empty symbols (usually
+ // the R_PPC64_TOC).
+ if (Value.SymbolName && !TargetName.empty())
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+ } else {
+ RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+}
+
+unsigned RuntimeDyldELF::getCommonSymbolAlignment(const SymbolRef &Sym) {
+ // In ELF, the value of an SHN_COMMON symbol is its alignment requirement.
+ uint64_t Align;
+ Check(Sym.getValue(Align));
+ return Align;
+}
+
+bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
+ if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
+ return false;
+ return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
+}
+} // namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
new file mode 100644
index 0000000..07e704b
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h
@@ -0,0 +1,97 @@
+//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// ELF support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_ELF_H
+#define LLVM_RUNTIME_DYLD_ELF_H
+
+#include "RuntimeDyldImpl.h"
+
+using namespace llvm;
+
+namespace llvm {
+
+namespace {
+ // Helper for extensive error checking in debug builds.
+ error_code Check(error_code Err) {
+ if (Err) {
+ report_fatal_error(Err.message());
+ }
+ return Err;
+ }
+} // end anonymous namespace
+
+class RuntimeDyldELF : public RuntimeDyldImpl {
+protected:
+ void resolveX86_64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend);
+
+ void resolveX86Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend);
+
+ void resolveARMRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend);
+
+ void resolveMIPSRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend);
+
+ void resolvePPC64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend);
+
+ virtual void resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend);
+
+ virtual void processRelocationRef(const ObjRelocationInfo &Rel,
+ ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ const SymbolTableMap &Symbols,
+ StubMap &Stubs);
+
+ unsigned getCommonSymbolAlignment(const SymbolRef &Sym);
+
+ virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer);
+
+ uint64_t findPPC64TOC() const;
+ void findOPDEntrySection(ObjectImage &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel);
+
+public:
+ RuntimeDyldELF(RTDyldMemoryManager *mm)
+ : RuntimeDyldImpl(mm) {}
+
+ virtual ~RuntimeDyldELF();
+
+ bool isCompatibleFormat(const ObjectBuffer *Buffer) const;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
new file mode 100644
index 0000000..f100994
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h
@@ -0,0 +1,344 @@
+//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Interface for the implementations of runtime dynamic linker facilities.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_IMPL_H
+#define LLVM_RUNTIME_DYLD_IMPL_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/ExecutionEngine/RuntimeDyld.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/SwapByteOrder.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/system_error.h"
+#include <map>
+
+using namespace llvm;
+using namespace llvm::object;
+
+namespace llvm {
+
+class ObjectBuffer;
+class Twine;
+
+
+/// SectionEntry - represents a section emitted into memory by the dynamic
+/// linker.
+class SectionEntry {
+public:
+ /// Name - section name.
+ StringRef Name;
+
+ /// Address - address in the linker's memory where the section resides.
+ uint8_t *Address;
+
+ /// Size - section size.
+ size_t Size;
+
+ /// LoadAddress - the address of the section in the target process's memory.
+ /// Used for situations in which JIT-ed code is being executed in the address
+ /// space of a separate process. If the code executes in the same address
+ /// space where it was JIT-ed, this just equals Address.
+ uint64_t LoadAddress;
+
+ /// StubOffset - used for architectures with stub functions for far
+ /// relocations (like ARM).
+ uintptr_t StubOffset;
+
+ /// ObjAddress - address of the section in the in-memory object file. Used
+ /// for calculating relocations in some object formats (like MachO).
+ uintptr_t ObjAddress;
+
+ SectionEntry(StringRef name, uint8_t *address, size_t size,
+ uintptr_t stubOffset, uintptr_t objAddress)
+ : Name(name), Address(address), Size(size), LoadAddress((uintptr_t)address),
+ StubOffset(stubOffset), ObjAddress(objAddress) {}
+};
+
+/// RelocationEntry - used to represent relocations internally in the dynamic
+/// linker.
+class RelocationEntry {
+public:
+ /// SectionID - the section this relocation points to.
+ unsigned SectionID;
+
+ /// Offset - offset into the section.
+ uintptr_t Offset;
+
+ /// RelType - relocation type.
+ uint32_t RelType;
+
+ /// Addend - the relocation addend encoded in the instruction itself. Also
+ /// used to make a relocation section relative instead of symbol relative.
+ intptr_t Addend;
+
+ RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
+ : SectionID(id), Offset(offset), RelType(type), Addend(addend) {}
+};
+
+/// ObjRelocationInfo - relocation information as read from the object file.
+/// Used to pass around data taken from object::RelocationRef, together with
+/// the section to which the relocation points (represented by a SectionID).
+class ObjRelocationInfo {
+public:
+ unsigned SectionID;
+ uint64_t Offset;
+ SymbolRef Symbol;
+ uint64_t Type;
+ int64_t AdditionalInfo;
+};
+
+class RelocationValueRef {
+public:
+ unsigned SectionID;
+ intptr_t Addend;
+ const char *SymbolName;
+ RelocationValueRef(): SectionID(0), Addend(0), SymbolName(0) {}
+
+ inline bool operator==(const RelocationValueRef &Other) const {
+ return std::memcmp(this, &Other, sizeof(RelocationValueRef)) == 0;
+ }
+ inline bool operator <(const RelocationValueRef &Other) const {
+ return std::memcmp(this, &Other, sizeof(RelocationValueRef)) < 0;
+ }
+};
+
+class RuntimeDyldImpl {
+protected:
+ // The MemoryManager to load objects into.
+ RTDyldMemoryManager *MemMgr;
+
+ // A list of all sections emitted by the dynamic linker. These sections are
+ // referenced in the code by means of their index in this list - SectionID.
+ typedef SmallVector<SectionEntry, 64> SectionList;
+ SectionList Sections;
+
+ // Keep a map of sections from object file to the SectionID which
+ // references it.
+ typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
+
+ // A global symbol table for symbols from all loaded modules. Maps the
+ // symbol name to a (SectionID, offset in section) pair.
+ typedef std::pair<unsigned, uintptr_t> SymbolLoc;
+ typedef StringMap<SymbolLoc> SymbolTableMap;
+ SymbolTableMap GlobalSymbolTable;
+
+ // Pair representing the size and alignment requirement for a common symbol.
+ typedef std::pair<unsigned, unsigned> CommonSymbolInfo;
+ // Keep a map of common symbols to their info pairs
+ typedef std::map<SymbolRef, CommonSymbolInfo> CommonSymbolMap;
+
+ // For each symbol, keep a list of relocations based on it. Anytime
+ // its address is reassigned (the JIT re-compiled the function, e.g.),
+ // the relocations get re-resolved.
+ // The symbol (or section) the relocation is sourced from is the Key
+ // in the relocation list where it's stored.
+ typedef SmallVector<RelocationEntry, 64> RelocationList;
+ // Relocations to sections already loaded. Indexed by SectionID which is the
+ // source of the address. The target where the address will be written is
+ // SectionID/Offset in the relocation itself.
+ DenseMap<unsigned, RelocationList> Relocations;
+
+ // Relocations to external symbols that are not yet resolved. Symbols are
+ // external when they aren't found in the global symbol table of all loaded
+ // modules. This map is indexed by symbol name.
+ StringMap<RelocationList> ExternalSymbolRelocations;
+
+ typedef std::map<RelocationValueRef, uintptr_t> StubMap;
+
+ Triple::ArchType Arch;
+
+ inline unsigned getMaxStubSize() {
+ if (Arch == Triple::arm || Arch == Triple::thumb)
+ return 8; // 32-bit instruction and 32-bit address
+ else if (Arch == Triple::mipsel || Arch == Triple::mips)
+ return 16;
+ else if (Arch == Triple::ppc64)
+ return 44;
+ else
+ return 0;
+ }
+
+ bool HasError;
+ std::string ErrorStr;
+
+ // Set the error state and record an error string.
+ bool Error(const Twine &Msg) {
+ ErrorStr = Msg.str();
+ HasError = true;
+ return true;
+ }
+
+ uint64_t getSectionLoadAddress(unsigned SectionID) {
+ return Sections[SectionID].LoadAddress;
+ }
+
+ uint8_t *getSectionAddress(unsigned SectionID) {
+ return (uint8_t*)Sections[SectionID].Address;
+ }
+
+ // Subclasses can override this method to get the alignment requirement of
+ // a common symbol. Returns no alignment requirement if not implemented.
+ virtual unsigned getCommonSymbolAlignment(const SymbolRef &Sym) {
+ return 0;
+ }
+
+
+ void writeInt16BE(uint8_t *Addr, uint16_t Value) {
+ if (sys::isLittleEndianHost())
+ Value = sys::SwapByteOrder(Value);
+ *Addr = (Value >> 8) & 0xFF;
+ *(Addr+1) = Value & 0xFF;
+ }
+
+ void writeInt32BE(uint8_t *Addr, uint32_t Value) {
+ if (sys::isLittleEndianHost())
+ Value = sys::SwapByteOrder(Value);
+ *Addr = (Value >> 24) & 0xFF;
+ *(Addr+1) = (Value >> 16) & 0xFF;
+ *(Addr+2) = (Value >> 8) & 0xFF;
+ *(Addr+3) = Value & 0xFF;
+ }
+
+ void writeInt64BE(uint8_t *Addr, uint64_t Value) {
+ if (sys::isLittleEndianHost())
+ Value = sys::SwapByteOrder(Value);
+ *Addr = (Value >> 56) & 0xFF;
+ *(Addr+1) = (Value >> 48) & 0xFF;
+ *(Addr+2) = (Value >> 40) & 0xFF;
+ *(Addr+3) = (Value >> 32) & 0xFF;
+ *(Addr+4) = (Value >> 24) & 0xFF;
+ *(Addr+5) = (Value >> 16) & 0xFF;
+ *(Addr+6) = (Value >> 8) & 0xFF;
+ *(Addr+7) = Value & 0xFF;
+ }
+
+ /// \brief Given the common symbols discovered in the object file, emit a
+ /// new section for them and update the symbol mappings in the object and
+ /// symbol table.
+ void emitCommonSymbols(ObjectImage &Obj,
+ const CommonSymbolMap &CommonSymbols,
+ uint64_t TotalSize,
+ SymbolTableMap &SymbolTable);
+
+ /// \brief Emits section data from the object file to the MemoryManager.
+ /// \param IsCode if it's true then allocateCodeSection() will be
+ /// used for emits, else allocateDataSection() will be used.
+ /// \return SectionID.
+ unsigned emitSection(ObjectImage &Obj,
+ const SectionRef &Section,
+ bool IsCode);
+
+ /// \brief Find Section in LocalSections. If the secton is not found - emit
+ /// it and store in LocalSections.
+ /// \param IsCode if it's true then allocateCodeSection() will be
+ /// used for emmits, else allocateDataSection() will be used.
+ /// \return SectionID.
+ unsigned findOrEmitSection(ObjectImage &Obj,
+ const SectionRef &Section,
+ bool IsCode,
+ ObjSectionToIDMap &LocalSections);
+
+ // \brief Add a relocation entry that uses the given section.
+ void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
+
+ // \brief Add a relocation entry that uses the given symbol. This symbol may
+ // be found in the global symbol table, or it may be external.
+ void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
+
+ /// \brief Emits long jump instruction to Addr.
+ /// \return Pointer to the memory area for emitting target address.
+ uint8_t* createStubFunction(uint8_t *Addr);
+
+ /// \brief Resolves relocations from Relocs list with address from Value.
+ void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
+ void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value);
+
+ /// \brief A object file specific relocation resolver
+ /// \param Section The section where the relocation is being applied
+ /// \param Offset The offset into the section for this relocation
+ /// \param Value Target symbol address to apply the relocation action
+ /// \param Type object file specific relocation type
+ /// \param Addend A constant addend used to compute the value to be stored
+ /// into the relocatable field
+ virtual void resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) = 0;
+
+ /// \brief Parses the object file relocation and stores it to Relocations
+ /// or SymbolRelocations (this depends on the object file type).
+ virtual void processRelocationRef(const ObjRelocationInfo &Rel,
+ ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ const SymbolTableMap &Symbols,
+ StubMap &Stubs) = 0;
+
+ /// \brief Resolve relocations to external symbols.
+ void resolveExternalSymbols();
+ virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer);
+public:
+ RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {}
+
+ virtual ~RuntimeDyldImpl();
+
+ ObjectImage *loadObject(ObjectBuffer *InputBuffer);
+
+ void *getSymbolAddress(StringRef Name) {
+ // FIXME: Just look up as a function for now. Overly simple of course.
+ // Work in progress.
+ if (GlobalSymbolTable.find(Name) == GlobalSymbolTable.end())
+ return 0;
+ SymbolLoc Loc = GlobalSymbolTable.lookup(Name);
+ return getSectionAddress(Loc.first) + Loc.second;
+ }
+
+ uint64_t getSymbolLoadAddress(StringRef Name) {
+ // FIXME: Just look up as a function for now. Overly simple of course.
+ // Work in progress.
+ if (GlobalSymbolTable.find(Name) == GlobalSymbolTable.end())
+ return 0;
+ SymbolLoc Loc = GlobalSymbolTable.lookup(Name);
+ return getSectionLoadAddress(Loc.first) + Loc.second;
+ }
+
+ void resolveRelocations();
+
+ void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
+
+ void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
+
+ // Is the linker in an error state?
+ bool hasError() { return HasError; }
+
+ // Mark the error condition as handled and continue.
+ void clearError() { HasError = false; }
+
+ // Get the error message.
+ StringRef getErrorString() { return ErrorStr; }
+
+ virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const = 0;
+};
+
+} // end namespace llvm
+
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
new file mode 100644
index 0000000..bcc3df1
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp
@@ -0,0 +1,311 @@
+//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dyld"
+#include "RuntimeDyldMachO.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+using namespace llvm;
+using namespace llvm::object;
+
+namespace llvm {
+
+void RuntimeDyldMachO::resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ uint8_t *LocalAddress = Section.Address + Offset;
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+ bool isPCRel = (Type >> 24) & 1;
+ unsigned MachoType = (Type >> 28) & 0xf;
+ unsigned Size = 1 << ((Type >> 25) & 3);
+
+ DEBUG(dbgs() << "resolveRelocation LocalAddress: "
+ << format("%p", LocalAddress)
+ << " FinalAddress: " << format("%p", FinalAddress)
+ << " Value: " << format("%p", Value)
+ << " Addend: " << Addend
+ << " isPCRel: " << isPCRel
+ << " MachoType: " << MachoType
+ << " Size: " << Size
+ << "\n");
+
+ // This just dispatches to the proper target specific routine.
+ switch (Arch) {
+ default: llvm_unreachable("Unsupported CPU type!");
+ case Triple::x86_64:
+ resolveX86_64Relocation(LocalAddress,
+ FinalAddress,
+ (uintptr_t)Value,
+ isPCRel,
+ MachoType,
+ Size,
+ Addend);
+ break;
+ case Triple::x86:
+ resolveI386Relocation(LocalAddress,
+ FinalAddress,
+ (uintptr_t)Value,
+ isPCRel,
+ MachoType,
+ Size,
+ Addend);
+ break;
+ case Triple::arm: // Fall through.
+ case Triple::thumb:
+ resolveARMRelocation(LocalAddress,
+ FinalAddress,
+ (uintptr_t)Value,
+ isPCRel,
+ MachoType,
+ Size,
+ Addend);
+ break;
+ }
+}
+
+bool RuntimeDyldMachO::resolveI386Relocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend) {
+ if (isPCRel)
+ Value -= FinalAddress + 4; // see resolveX86_64Relocation
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Invalid relocation type!");
+ case macho::RIT_Vanilla: {
+ uint8_t *p = LocalAddress;
+ uint64_t ValueToWrite = Value + Addend;
+ for (unsigned i = 0; i < Size; ++i) {
+ *p++ = (uint8_t)(ValueToWrite & 0xff);
+ ValueToWrite >>= 8;
+ }
+ return false;
+ }
+ case macho::RIT_Difference:
+ case macho::RIT_Generic_LocalDifference:
+ case macho::RIT_Generic_PreboundLazyPointer:
+ return Error("Relocation type not implemented yet!");
+ }
+}
+
+bool RuntimeDyldMachO::resolveX86_64Relocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend) {
+ // If the relocation is PC-relative, the value to be encoded is the
+ // pointer difference.
+ if (isPCRel)
+ // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
+ // address. Is that expected? Only for branches, perhaps?
+ Value -= FinalAddress + 4;
+
+ switch(Type) {
+ default:
+ llvm_unreachable("Invalid relocation type!");
+ case macho::RIT_X86_64_Signed1:
+ case macho::RIT_X86_64_Signed2:
+ case macho::RIT_X86_64_Signed4:
+ case macho::RIT_X86_64_Signed:
+ case macho::RIT_X86_64_Unsigned:
+ case macho::RIT_X86_64_Branch: {
+ Value += Addend;
+ // Mask in the target value a byte at a time (we don't have an alignment
+ // guarantee for the target address, so this is safest).
+ uint8_t *p = (uint8_t*)LocalAddress;
+ for (unsigned i = 0; i < Size; ++i) {
+ *p++ = (uint8_t)Value;
+ Value >>= 8;
+ }
+ return false;
+ }
+ case macho::RIT_X86_64_GOTLoad:
+ case macho::RIT_X86_64_GOT:
+ case macho::RIT_X86_64_Subtractor:
+ case macho::RIT_X86_64_TLV:
+ return Error("Relocation type not implemented yet!");
+ }
+}
+
+bool RuntimeDyldMachO::resolveARMRelocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend) {
+ // If the relocation is PC-relative, the value to be encoded is the
+ // pointer difference.
+ if (isPCRel) {
+ Value -= FinalAddress;
+ // ARM PCRel relocations have an effective-PC offset of two instructions
+ // (four bytes in Thumb mode, 8 bytes in ARM mode).
+ // FIXME: For now, assume ARM mode.
+ Value -= 8;
+ }
+
+ switch(Type) {
+ default:
+ llvm_unreachable("Invalid relocation type!");
+ case macho::RIT_Vanilla: {
+ // Mask in the target value a byte at a time (we don't have an alignment
+ // guarantee for the target address, so this is safest).
+ uint8_t *p = (uint8_t*)LocalAddress;
+ for (unsigned i = 0; i < Size; ++i) {
+ *p++ = (uint8_t)Value;
+ Value >>= 8;
+ }
+ break;
+ }
+ case macho::RIT_ARM_Branch24Bit: {
+ // Mask the value into the target address. We know instructions are
+ // 32-bit aligned, so we can do it all at once.
+ uint32_t *p = (uint32_t*)LocalAddress;
+ // The low two bits of the value are not encoded.
+ Value >>= 2;
+ // Mask the value to 24 bits.
+ Value &= 0xffffff;
+ // FIXME: If the destination is a Thumb function (and the instruction
+ // is a non-predicated BL instruction), we need to change it to a BLX
+ // instruction instead.
+
+ // Insert the value into the instruction.
+ *p = (*p & ~0xffffff) | Value;
+ break;
+ }
+ case macho::RIT_ARM_ThumbBranch22Bit:
+ case macho::RIT_ARM_ThumbBranch32Bit:
+ case macho::RIT_ARM_Half:
+ case macho::RIT_ARM_HalfDifference:
+ case macho::RIT_Pair:
+ case macho::RIT_Difference:
+ case macho::RIT_ARM_LocalDifference:
+ case macho::RIT_ARM_PreboundLazyPointer:
+ return Error("Relocation type not implemented yet!");
+ }
+ return false;
+}
+
+void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel,
+ ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ const SymbolTableMap &Symbols,
+ StubMap &Stubs) {
+
+ uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL);
+ RelocationValueRef Value;
+ SectionEntry &Section = Sections[Rel.SectionID];
+
+ bool isExtern = (RelType >> 27) & 1;
+ if (isExtern) {
+ // Obtain the symbol name which is referenced in the relocation
+ StringRef TargetName;
+ const SymbolRef &Symbol = Rel.Symbol;
+ Symbol.getName(TargetName);
+ // First search for the symbol in the local symbol table
+ SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
+ if (lsi != Symbols.end()) {
+ Value.SectionID = lsi->second.first;
+ Value.Addend = lsi->second.second;
+ } else {
+ // Search for the symbol in the global symbol table
+ SymbolTableMap::const_iterator gsi = GlobalSymbolTable.find(TargetName.data());
+ if (gsi != GlobalSymbolTable.end()) {
+ Value.SectionID = gsi->second.first;
+ Value.Addend = gsi->second.second;
+ } else
+ Value.SymbolName = TargetName.data();
+ }
+ } else {
+ error_code err;
+ uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF);
+ section_iterator si = Obj.begin_sections(),
+ se = Obj.end_sections();
+ for (uint8_t i = 1; i < sectionIndex; i++) {
+ error_code err;
+ si.increment(err);
+ if (si == se)
+ break;
+ }
+ assert(si != se && "No section containing relocation!");
+ Value.SectionID = findOrEmitSection(Obj, *si, true, ObjSectionToID);
+ Value.Addend = 0;
+ // FIXME: The size and type of the relocation determines if we can
+ // encode an Addend in the target location itself, and if so, how many
+ // bytes we should read in order to get it. We don't yet support doing
+ // that, and just assuming it's sizeof(intptr_t) is blatantly wrong.
+ //Value.Addend = *(const intptr_t *)Target;
+ if (Value.Addend) {
+ // The MachO addend is an offset from the current section. We need it
+ // to be an offset from the destination section
+ Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress;
+ }
+ }
+
+ if (Arch == Triple::arm && (RelType & 0xf) == macho::RIT_ARM_Branch24Bit) {
+ // This is an ARM branch relocation, need to use a stub function.
+
+ // Look up for existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end())
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + i->second,
+ RelType, 0);
+ else {
+ // Create a new stub function.
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+ RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
+ macho::RIT_Vanilla, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ resolveRelocation(Section, Rel.Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else {
+ RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+}
+
+
+bool RuntimeDyldMachO::isCompatibleFormat(
+ const ObjectBuffer *InputBuffer) const {
+ if (InputBuffer->getBufferSize() < 4)
+ return false;
+ StringRef Magic(InputBuffer->getBufferStart(), 4);
+ if (Magic == "\xFE\xED\xFA\xCE") return true;
+ if (Magic == "\xCE\xFA\xED\xFE") return true;
+ if (Magic == "\xFE\xED\xFA\xCF") return true;
+ if (Magic == "\xCF\xFA\xED\xFE") return true;
+ return false;
+}
+
+} // end namespace llvm
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
new file mode 100644
index 0000000..62d8487
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h
@@ -0,0 +1,71 @@
+//===-- RuntimeDyldMachO.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-=//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MachO support for MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_RUNTIME_DYLD_MACHO_H
+#define LLVM_RUNTIME_DYLD_MACHO_H
+
+#include "RuntimeDyldImpl.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/Object/MachOObject.h"
+#include "llvm/Support/Format.h"
+
+using namespace llvm;
+using namespace llvm::object;
+
+
+namespace llvm {
+class RuntimeDyldMachO : public RuntimeDyldImpl {
+protected:
+ bool resolveI386Relocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend);
+ bool resolveX86_64Relocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend);
+ bool resolveARMRelocation(uint8_t *LocalAddress,
+ uint64_t FinalAddress,
+ uint64_t Value,
+ bool isPCRel,
+ unsigned Type,
+ unsigned Size,
+ int64_t Addend);
+
+ virtual void processRelocationRef(const ObjRelocationInfo &Rel,
+ ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ const SymbolTableMap &Symbols,
+ StubMap &Stubs);
+
+public:
+ virtual void resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend);
+
+ RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {}
+
+ bool isCompatibleFormat(const ObjectBuffer *Buffer) const;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp
new file mode 100644
index 0000000..ca4330f
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/TargetSelect.cpp
@@ -0,0 +1,99 @@
+//===-- TargetSelect.cpp - Target Chooser Code ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This just asks the TargetRegistry for the appropriate target to use, and
+// allows the user to specify a specific one on the commandline with -march=x,
+// -mcpu=y, and -mattr=a,-b,+c. Clients should initialize targets prior to
+// calling selectTarget().
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ExecutionEngine/ExecutionEngine.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/SubtargetFeature.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+TargetMachine *EngineBuilder::selectTarget() {
+ Triple TT;
+
+ // MCJIT can generate code for remote targets, but the old JIT and Interpreter
+ // must use the host architecture.
+ if (UseMCJIT && WhichEngine != EngineKind::Interpreter && M)
+ TT.setTriple(M->getTargetTriple());
+
+ return selectTarget(TT, MArch, MCPU, MAttrs);
+}
+
+/// selectTarget - Pick a target either via -march or by guessing the native
+/// arch. Add any CPU features specified via -mcpu or -mattr.
+TargetMachine *EngineBuilder::selectTarget(const Triple &TargetTriple,
+ StringRef MArch,
+ StringRef MCPU,
+ const SmallVectorImpl<std::string>& MAttrs) {
+ Triple TheTriple(TargetTriple);
+ if (TheTriple.getTriple().empty())
+ TheTriple.setTriple(sys::getProcessTriple());
+
+ // Adjust the triple to match what the user requested.
+ const Target *TheTarget = 0;
+ if (!MArch.empty()) {
+ for (TargetRegistry::iterator it = TargetRegistry::begin(),
+ ie = TargetRegistry::end(); it != ie; ++it) {
+ if (MArch == it->getName()) {
+ TheTarget = &*it;
+ break;
+ }
+ }
+
+ if (!TheTarget) {
+ if (ErrorStr)
+ *ErrorStr = "No available targets are compatible with this -march, "
+ "see -version for the available targets.\n";
+ return 0;
+ }
+
+ // Adjust the triple to match (if known), otherwise stick with the
+ // requested/host triple.
+ Triple::ArchType Type = Triple::getArchTypeForLLVMName(MArch);
+ if (Type != Triple::UnknownArch)
+ TheTriple.setArch(Type);
+ } else {
+ std::string Error;
+ TheTarget = TargetRegistry::lookupTarget(TheTriple.getTriple(), Error);
+ if (TheTarget == 0) {
+ if (ErrorStr)
+ *ErrorStr = Error;
+ return 0;
+ }
+ }
+
+ // Package up features to be passed to target/subtarget
+ std::string FeaturesStr;
+ if (!MAttrs.empty()) {
+ SubtargetFeatures Features;
+ for (unsigned i = 0; i != MAttrs.size(); ++i)
+ Features.AddFeature(MAttrs[i]);
+ FeaturesStr = Features.getString();
+ }
+
+ // Allocate a target...
+ TargetMachine *Target = TheTarget->createTargetMachine(TheTriple.getTriple(),
+ MCPU, FeaturesStr,
+ Options,
+ RelocModel, CMModel,
+ OptLevel);
+ assert(Target && "Could not allocate target machine!");
+ return Target;
+}
OpenPOWER on IntegriCloud