diff options
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp')
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp | 577 |
1 files changed, 173 insertions, 404 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp index 623e9b2..1318b44 100644 --- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp +++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp @@ -1,4 +1,4 @@ -//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// +//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=// // // The LLVM Compiler Infrastructure // @@ -15,73 +15,147 @@ #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/STLExtras.h" -#include "RuntimeDyldImpl.h" +#include "RuntimeDyldMachO.h" using namespace llvm; using namespace llvm::object; namespace llvm { -bool RuntimeDyldMachO:: -resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, - unsigned Type, unsigned Size) { +void RuntimeDyldMachO::resolveRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend) { + bool isPCRel = (Type >> 24) & 1; + unsigned MachoType = (Type >> 28) & 0xf; + unsigned Size = 1 << ((Type >> 25) & 3); + + DEBUG(dbgs() << "resolveRelocation LocalAddress: " << format("%p", LocalAddress) + << " FinalAddress: " << format("%p", FinalAddress) + << " Value: " << format("%p", Value) + << " Addend: " << Addend + << " isPCRel: " << isPCRel + << " MachoType: " << MachoType + << " Size: " << Size + << "\n"); + // This just dispatches to the proper target specific routine. - switch (CPUType) { - default: assert(0 && "Unsupported CPU type!"); - case mach::CTM_x86_64: - return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, - isPCRel, Type, Size); - case mach::CTM_ARM: - return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, - isPCRel, Type, Size); + switch (Arch) { + default: llvm_unreachable("Unsupported CPU type!"); + case Triple::x86_64: + resolveX86_64Relocation(LocalAddress, + FinalAddress, + (uintptr_t)Value, + isPCRel, + MachoType, + Size, + Addend); + break; + case Triple::x86: + resolveI386Relocation(LocalAddress, + FinalAddress, + (uintptr_t)Value, + isPCRel, + Type, + Size, + Addend); + break; + case Triple::arm: // Fall through. + case Triple::thumb: + resolveARMRelocation(LocalAddress, + FinalAddress, + (uintptr_t)Value, + isPCRel, + MachoType, + Size, + Addend); + break; + } +} + +bool RuntimeDyldMachO:: +resolveI386Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend) { + if (isPCRel) + Value -= FinalAddress + 4; // see resolveX86_64Relocation + + switch (Type) { + default: + llvm_unreachable("Invalid relocation type!"); + case macho::RIT_Vanilla: { + uint8_t *p = LocalAddress; + uint64_t ValueToWrite = Value + Addend; + for (unsigned i = 0; i < Size; ++i) { + *p++ = (uint8_t)(ValueToWrite & 0xff); + ValueToWrite >>= 8; + } + } + case macho::RIT_Difference: + case macho::RIT_Generic_LocalDifference: + case macho::RIT_Generic_PreboundLazyPointer: + return Error("Relocation type not implemented yet!"); } - llvm_unreachable(""); } bool RuntimeDyldMachO:: -resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, - bool isPCRel, unsigned Type, - unsigned Size) { +resolveX86_64Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) // FIXME: It seems this value needs to be adjusted by 4 for an effective PC // address. Is that expected? Only for branches, perhaps? - Value -= Address + 4; + Value -= FinalAddress + 4; switch(Type) { default: llvm_unreachable("Invalid relocation type!"); + case macho::RIT_X86_64_Signed1: + case macho::RIT_X86_64_Signed2: + case macho::RIT_X86_64_Signed4: + case macho::RIT_X86_64_Signed: case macho::RIT_X86_64_Unsigned: case macho::RIT_X86_64_Branch: { + Value += Addend; // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)Address; + uint8_t *p = (uint8_t*)LocalAddress; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; } return false; } - case macho::RIT_X86_64_Signed: case macho::RIT_X86_64_GOTLoad: case macho::RIT_X86_64_GOT: case macho::RIT_X86_64_Subtractor: - case macho::RIT_X86_64_Signed1: - case macho::RIT_X86_64_Signed2: - case macho::RIT_X86_64_Signed4: case macho::RIT_X86_64_TLV: return Error("Relocation type not implemented yet!"); } - return false; } -bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, - bool isPCRel, unsigned Type, - unsigned Size) { +bool RuntimeDyldMachO:: +resolveARMRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) { - Value -= Address; + Value -= FinalAddress; // ARM PCRel relocations have an effective-PC offset of two instructions // (four bytes in Thumb mode, 8 bytes in ARM mode). // FIXME: For now, assume ARM mode. @@ -92,10 +166,9 @@ bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, default: llvm_unreachable("Invalid relocation type!"); case macho::RIT_Vanilla: { - llvm_unreachable("Invalid relocation type!"); // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)Address; + uint8_t *p = (uint8_t*)LocalAddress; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; @@ -105,7 +178,7 @@ bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, case macho::RIT_ARM_Branch24Bit: { // Mask the value into the target address. We know instructions are // 32-bit aligned, so we can do it all at once. - uint32_t *p = (uint32_t*)Address; + uint32_t *p = (uint32_t*)LocalAddress; // The low two bits of the value are not encoded. Value >>= 2; // Mask the value to 24 bits. @@ -131,388 +204,84 @@ bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, return false; } -bool RuntimeDyldMachO:: -loadSegment32(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { - InMemoryStruct<macho::SegmentLoadCommand> SegmentLC; - Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); - if (!SegmentLC) - return Error("unable to load segment load command"); - - for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { - InMemoryStruct<macho::Section> Sect; - Obj->ReadSection(*SegmentLCI, SectNum, Sect); - if (!Sect) - return Error("unable to load section: '" + Twine(SectNum) + "'"); - - // FIXME: For the time being, we're only loading text segments. - if (Sect->Flags != 0x80000400) - continue; - - // Address and names of symbols in the section. - typedef std::pair<uint64_t, StringRef> SymbolEntry; - SmallVector<SymbolEntry, 64> Symbols; - // Index of all the names, in this section or not. Used when we're - // dealing with relocation entries. - SmallVector<StringRef, 64> SymbolNames; - for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { - InMemoryStruct<macho::SymbolTableEntry> STE; - Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); - if (!STE) - return Error("unable to read symbol: '" + Twine(i) + "'"); - if (STE->SectionIndex > SegmentLC->NumSections) - return Error("invalid section index for symbol: '" + Twine(i) + "'"); - // Get the symbol name. - StringRef Name = Obj->getStringAtIndex(STE->StringIndex); - SymbolNames.push_back(Name); - - // Just skip symbols not defined in this section. - if ((unsigned)STE->SectionIndex - 1 != SectNum) - continue; - - // FIXME: Check the symbol type and flags. - if (STE->Type != 0xF) // external, defined in this section. - continue; - // Flags == 0x8 marks a thumb function for ARM, which is fine as it - // doesn't require any special handling here. - if (STE->Flags != 0x0 && STE->Flags != 0x8) - continue; - - // Remember the symbol. - Symbols.push_back(SymbolEntry(STE->Value, Name)); - - DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << - (Sect->Address + STE->Value) << "\n"); - } - // Sort the symbols by address, just in case they didn't come in that way. - array_pod_sort(Symbols.begin(), Symbols.end()); - - // If there weren't any functions (odd, but just in case...) - if (!Symbols.size()) - continue; - - // Extract the function data. - uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, - SegmentLC->FileSize).data(); - for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { - uint64_t StartOffset = Sect->Address + Symbols[i].first; - uint64_t EndOffset = Symbols[i + 1].first - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[i].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); - } - // The last symbol we do after since the end address is calculated - // differently because there is no next symbol to reference. - uint64_t StartOffset = Symbols[Symbols.size() - 1].first; - uint64_t EndOffset = Sect->Size - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[Symbols.size()-1].second, - Base + StartOffset, Base + EndOffset); - - // Now extract the relocation information for each function and process it. - for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { - InMemoryStruct<macho::RelocationEntry> RE; - Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); - if (RE->Word0 & macho::RF_Scattered) - return Error("NOT YET IMPLEMENTED: scattered relocations."); - // Word0 of the relocation is the offset into the section where the - // relocation should be applied. We need to translate that into an - // offset into a function since that's our atom. - uint32_t Offset = RE->Word0; - // Look for the function containing the address. This is used for JIT - // code, so the number of functions in section is almost always going - // to be very small (usually just one), so until we have use cases - // where that's not true, just use a trivial linear search. - unsigned SymbolNum; - unsigned NumSymbols = Symbols.size(); - assert(NumSymbols > 0 && Symbols[0].first <= Offset && - "No symbol containing relocation!"); - for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) - if (Symbols[SymbolNum + 1].first > Offset) - break; - // Adjust the offset to be relative to the symbol. - Offset -= Symbols[SymbolNum].first; - // Get the name of the symbol containing the relocation. - StringRef TargetName = SymbolNames[SymbolNum]; - - bool isExtern = (RE->Word1 >> 27) & 1; - // Figure out the source symbol of the relocation. If isExtern is true, - // this relocation references the symbol table, otherwise it references - // a section in the same object, numbered from 1 through NumSections - // (SectionBases is [0, NumSections-1]). - // FIXME: Some targets (ARM) use internal relocations even for - // externally visible symbols, if the definition is in the same - // file as the reference. We need to convert those back to by-name - // references. We can resolve the address based on the section - // offset and see if we have a symbol at that address. If we do, - // use that; otherwise, puke. - if (!isExtern) - return Error("Internal relocations not supported."); - uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value - StringRef SourceName = SymbolNames[SourceNum]; - - // FIXME: Get the relocation addend from the target address. - - // Now store the relocation information. Associate it with the source - // symbol. - Relocations[SourceName].push_back(RelocationEntry(TargetName, - Offset, - RE->Word1, - 0 /*Addend*/)); - DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset - << " from '" << SourceName << "(Word1: " - << format("0x%x", RE->Word1) << ")\n"); - } - } - return false; -} - - -bool RuntimeDyldMachO:: -loadSegment64(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { - InMemoryStruct<macho::Segment64LoadCommand> Segment64LC; - Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); - if (!Segment64LC) - return Error("unable to load segment load command"); - - for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { - InMemoryStruct<macho::Section64> Sect; - Obj->ReadSection64(*SegmentLCI, SectNum, Sect); - if (!Sect) - return Error("unable to load section: '" + Twine(SectNum) + "'"); - - // FIXME: For the time being, we're only loading text segments. - if (Sect->Flags != 0x80000400) - continue; - - // Address and names of symbols in the section. - typedef std::pair<uint64_t, StringRef> SymbolEntry; - SmallVector<SymbolEntry, 64> Symbols; - // Index of all the names, in this section or not. Used when we're - // dealing with relocation entries. - SmallVector<StringRef, 64> SymbolNames; - for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { - InMemoryStruct<macho::Symbol64TableEntry> STE; - Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); - if (!STE) - return Error("unable to read symbol: '" + Twine(i) + "'"); - if (STE->SectionIndex > Segment64LC->NumSections) - return Error("invalid section index for symbol: '" + Twine(i) + "'"); - // Get the symbol name. - StringRef Name = Obj->getStringAtIndex(STE->StringIndex); - SymbolNames.push_back(Name); - - // Just skip symbols not defined in this section. - if ((unsigned)STE->SectionIndex - 1 != SectNum) - continue; - - // FIXME: Check the symbol type and flags. - if (STE->Type != 0xF) // external, defined in this section. - continue; - if (STE->Flags != 0x0) - continue; - - // Remember the symbol. - Symbols.push_back(SymbolEntry(STE->Value, Name)); - - DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << - (Sect->Address + STE->Value) << "\n"); +void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel, + const ObjectFile &Obj, + ObjSectionToIDMap &ObjSectionToID, + LocalSymbolMap &Symbols, + StubMap &Stubs) { + + uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL); + RelocationValueRef Value; + SectionEntry &Section = Sections[Rel.SectionID]; + uint8_t *Target = Section.Address + Rel.Offset; + + bool isExtern = (RelType >> 27) & 1; + if (isExtern) { + StringRef TargetName; + const SymbolRef &Symbol = Rel.Symbol; + Symbol.getName(TargetName); + // First look the symbol in object file symbols. + LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data()); + if (lsi != Symbols.end()) { + Value.SectionID = lsi->second.first; + Value.Addend = lsi->second.second; + } else { + // Second look the symbol in global symbol table. + StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data()); + if (gsi != SymbolTable.end()) { + Value.SectionID = gsi->second.first; + Value.Addend = gsi->second.second; + } else + Value.SymbolName = TargetName.data(); } - // Sort the symbols by address, just in case they didn't come in that way. - array_pod_sort(Symbols.begin(), Symbols.end()); - - // If there weren't any functions (odd, but just in case...) - if (!Symbols.size()) - continue; - - // Extract the function data. - uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, - Segment64LC->FileSize).data(); - for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { - uint64_t StartOffset = Sect->Address + Symbols[i].first; - uint64_t EndOffset = Symbols[i + 1].first - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[i].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); + } else { + error_code err; + uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF); + section_iterator si = Obj.begin_sections(), + se = Obj.end_sections(); + for (uint8_t i = 1; i < sectionIndex; i++) { + error_code err; + si.increment(err); + if (si == se) + break; } - // The last symbol we do after since the end address is calculated - // differently because there is no next symbol to reference. - uint64_t StartOffset = Symbols[Symbols.size() - 1].first; - uint64_t EndOffset = Sect->Size - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[Symbols.size()-1].second, - Base + StartOffset, Base + EndOffset); - - // Now extract the relocation information for each function and process it. - for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { - InMemoryStruct<macho::RelocationEntry> RE; - Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); - if (RE->Word0 & macho::RF_Scattered) - return Error("NOT YET IMPLEMENTED: scattered relocations."); - // Word0 of the relocation is the offset into the section where the - // relocation should be applied. We need to translate that into an - // offset into a function since that's our atom. - uint32_t Offset = RE->Word0; - // Look for the function containing the address. This is used for JIT - // code, so the number of functions in section is almost always going - // to be very small (usually just one), so until we have use cases - // where that's not true, just use a trivial linear search. - unsigned SymbolNum; - unsigned NumSymbols = Symbols.size(); - assert(NumSymbols > 0 && Symbols[0].first <= Offset && - "No symbol containing relocation!"); - for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) - if (Symbols[SymbolNum + 1].first > Offset) - break; - // Adjust the offset to be relative to the symbol. - Offset -= Symbols[SymbolNum].first; - // Get the name of the symbol containing the relocation. - StringRef TargetName = SymbolNames[SymbolNum]; - - bool isExtern = (RE->Word1 >> 27) & 1; - // Figure out the source symbol of the relocation. If isExtern is true, - // this relocation references the symbol table, otherwise it references - // a section in the same object, numbered from 1 through NumSections - // (SectionBases is [0, NumSections-1]). - if (!isExtern) - return Error("Internal relocations not supported."); - uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value - StringRef SourceName = SymbolNames[SourceNum]; - - // FIXME: Get the relocation addend from the target address. - - // Now store the relocation information. Associate it with the source - // symbol. - Relocations[SourceName].push_back(RelocationEntry(TargetName, - Offset, - RE->Word1, - 0 /*Addend*/)); - DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset - << " from '" << SourceName << "(Word1: " - << format("0x%x", RE->Word1) << ")\n"); + assert(si != se && "No section containing relocation!"); + Value.SectionID = findOrEmitSection(*si, true, ObjSectionToID); + Value.Addend = *(const intptr_t *)Target; + if (Value.Addend) { + // The MachO addend is offset from the current section, we need set it + // as offset from destination section + Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress; } } - return false; -} - -bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) { - // If the linker is in an error state, don't do anything. - if (hasError()) - return true; - // Load the Mach-O wrapper object. - std::string ErrorStr; - OwningPtr<MachOObject> Obj( - MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); - if (!Obj) - return Error("unable to load object: '" + ErrorStr + "'"); - - // Get the CPU type information from the header. - const macho::Header &Header = Obj->getHeader(); - - // FIXME: Error checking that the loaded object is compatible with - // the system we're running on. - CPUType = Header.CPUType; - CPUSubtype = Header.CPUSubtype; - // Validate that the load commands match what we expect. - const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, - *DysymtabLCI = 0; - for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { - const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); - switch (LCI.Command.Type) { - case macho::LCT_Segment: - case macho::LCT_Segment64: - if (SegmentLCI) - return Error("unexpected input object (multiple segments)"); - SegmentLCI = &LCI; - break; - case macho::LCT_Symtab: - if (SymtabLCI) - return Error("unexpected input object (multiple symbol tables)"); - SymtabLCI = &LCI; - break; - case macho::LCT_Dysymtab: - if (DysymtabLCI) - return Error("unexpected input object (multiple symbol tables)"); - DysymtabLCI = &LCI; - break; - default: - return Error("unexpected input object (unexpected load command"); + if (Arch == Triple::arm && RelType == macho::RIT_ARM_Branch24Bit) { + // This is an ARM branch relocation, need to use a stub function. + + // Look up for existing stub. + StubMap::const_iterator i = Stubs.find(Value); + if (i != Stubs.end()) + resolveRelocation(Target, (uint64_t)Target, + (uint64_t)Section.Address + i->second, + RelType, 0); + else { + // Create a new stub function. + Stubs[Value] = Section.StubOffset; + uint8_t *StubTargetAddr = createStubFunction(Section.Address + + Section.StubOffset); + AddRelocation(Value, Rel.SectionID, StubTargetAddr - Section.Address, + macho::RIT_Vanilla); + resolveRelocation(Target, (uint64_t)Target, + (uint64_t)Section.Address + Section.StubOffset, + RelType, 0); + Section.StubOffset += getMaxStubSize(); } - } - - if (!SymtabLCI) - return Error("no symbol table found in object"); - if (!SegmentLCI) - return Error("no symbol table found in object"); - - // Read and register the symbol table data. - InMemoryStruct<macho::SymtabLoadCommand> SymtabLC; - Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); - if (!SymtabLC) - return Error("unable to load symbol table load command"); - Obj->RegisterStringTable(*SymtabLC); - - // Read the dynamic link-edit information, if present (not present in static - // objects). - if (DysymtabLCI) { - InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC; - Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); - if (!DysymtabLC) - return Error("unable to load dynamic link-exit load command"); - - // FIXME: We don't support anything interesting yet. -// if (DysymtabLC->LocalSymbolsIndex != 0) -// return Error("NOT YET IMPLEMENTED: local symbol entries"); -// if (DysymtabLC->ExternalSymbolsIndex != 0) -// return Error("NOT YET IMPLEMENTED: non-external symbol entries"); -// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) -// return Error("NOT YET IMPLEMENTED: undefined symbol entries"); - } - - // Load the segment load command. - if (SegmentLCI->Command.Type == macho::LCT_Segment) { - if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) - return true; - } else { - if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) - return true; - } - - return false; + } else + AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType); } -// Assign an address to a symbol name and resolve all the relocations -// associated with it. -void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { - // Assign the address in our symbol table. - SymbolTable[Name] = Addr; - - RelocationList &Relocs = Relocations[Name]; - for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { - RelocationEntry &RE = Relocs[i]; - uint8_t *Target = SymbolTable[RE.Target] + RE.Offset; - bool isPCRel = (RE.Data >> 24) & 1; - unsigned Type = (RE.Data >> 28) & 0xf; - unsigned Size = 1 << ((RE.Data >> 25) & 3); - - DEBUG(dbgs() << "Resolving relocation at '" << RE.Target - << "' + " << RE.Offset << " (" << format("%p", Target) << ")" - << " from '" << Name << " (" << format("%p", Addr) << ")" - << "(" << (isPCRel ? "pcrel" : "absolute") - << ", type: " << Type << ", Size: " << Size << ").\n"); - - resolveRelocation(Target, Addr, isPCRel, Type, Size); - RE.isResolved = true; - } -} -bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) { +bool RuntimeDyldMachO::isCompatibleFormat(const MemoryBuffer *InputBuffer) const { StringRef Magic = InputBuffer->getBuffer().slice(0, 4); if (Magic == "\xFE\xED\xFA\xCE") return true; if (Magic == "\xCE\xFA\xED\xFE") return true; |