summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp1086
1 files changed, 1086 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
new file mode 100644
index 0000000..d4d84d3
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -0,0 +1,1086 @@
+//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of ELF support for the MC-JIT runtime dynamic linker.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "dyld"
+#include "RuntimeDyldELF.h"
+#include "JITRegistrar.h"
+#include "ObjectImageCommon.h"
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ExecutionEngine/ObjectBuffer.h"
+#include "llvm/ExecutionEngine/ObjectImage.h"
+#include "llvm/Object/ELF.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Support/ELF.h"
+using namespace llvm;
+using namespace llvm::object;
+
+namespace {
+
+static inline
+error_code check(error_code Err) {
+ if (Err) {
+ report_fatal_error(Err.message());
+ }
+ return Err;
+}
+
+template<class ELFT>
+class DyldELFObject
+ : public ELFObjectFile<ELFT> {
+ LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
+
+ typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
+ typedef Elf_Sym_Impl<ELFT> Elf_Sym;
+ typedef
+ Elf_Rel_Impl<ELFT, false> Elf_Rel;
+ typedef
+ Elf_Rel_Impl<ELFT, true> Elf_Rela;
+
+ typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
+
+ typedef typename ELFDataTypeTypedefHelper<
+ ELFT>::value_type addr_type;
+
+public:
+ DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
+
+ void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
+ void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
+
+ // Methods for type inquiry through isa, cast and dyn_cast
+ static inline bool classof(const Binary *v) {
+ return (isa<ELFObjectFile<ELFT> >(v)
+ && classof(cast<ELFObjectFile
+ <ELFT> >(v)));
+ }
+ static inline bool classof(
+ const ELFObjectFile<ELFT> *v) {
+ return v->isDyldType();
+ }
+};
+
+template<class ELFT>
+class ELFObjectImage : public ObjectImageCommon {
+ protected:
+ DyldELFObject<ELFT> *DyldObj;
+ bool Registered;
+
+ public:
+ ELFObjectImage(ObjectBuffer *Input,
+ DyldELFObject<ELFT> *Obj)
+ : ObjectImageCommon(Input, Obj),
+ DyldObj(Obj),
+ Registered(false) {}
+
+ virtual ~ELFObjectImage() {
+ if (Registered)
+ deregisterWithDebugger();
+ }
+
+ // Subclasses can override these methods to update the image with loaded
+ // addresses for sections and common symbols
+ virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
+ {
+ DyldObj->updateSectionAddress(Sec, Addr);
+ }
+
+ virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
+ {
+ DyldObj->updateSymbolAddress(Sym, Addr);
+ }
+
+ virtual void registerWithDebugger()
+ {
+ JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
+ Registered = true;
+ }
+ virtual void deregisterWithDebugger()
+ {
+ JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
+ }
+};
+
+// The MemoryBuffer passed into this constructor is just a wrapper around the
+// actual memory. Ultimately, the Binary parent class will take ownership of
+// this MemoryBuffer object but not the underlying memory.
+template<class ELFT>
+DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
+ : ELFObjectFile<ELFT>(Wrapper, ec) {
+ this->isDyldELFObject = true;
+}
+
+template<class ELFT>
+void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
+ uint64_t Addr) {
+ DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
+ Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
+ reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ shdr->sh_addr = static_cast<addr_type>(Addr);
+}
+
+template<class ELFT>
+void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
+ uint64_t Addr) {
+
+ Elf_Sym *sym = const_cast<Elf_Sym*>(
+ ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
+
+ // This assumes the address passed in matches the target address bitness
+ // The template-based type cast handles everything else.
+ sym->st_value = static_cast<addr_type>(Addr);
+}
+
+} // namespace
+
+namespace llvm {
+
+StringRef RuntimeDyldELF::getEHFrameSection() {
+ for (int i = 0, e = Sections.size(); i != e; ++i) {
+ if (Sections[i].Name == ".eh_frame")
+ return StringRef((const char*)Sections[i].Address, Sections[i].Size);
+ }
+ return StringRef();
+}
+
+ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
+ if (Buffer->getBufferSize() < ELF::EI_NIDENT)
+ llvm_unreachable("Unexpected ELF object size");
+ std::pair<unsigned char, unsigned char> Ident = std::make_pair(
+ (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
+ (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
+ error_code ec;
+
+ if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
+ DyldELFObject<ELFType<support::little, 4, false> > *Obj =
+ new DyldELFObject<ELFType<support::little, 4, false> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
+ }
+ else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
+ DyldELFObject<ELFType<support::big, 4, false> > *Obj =
+ new DyldELFObject<ELFType<support::big, 4, false> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
+ }
+ else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
+ DyldELFObject<ELFType<support::big, 8, true> > *Obj =
+ new DyldELFObject<ELFType<support::big, 8, true> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
+ }
+ else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
+ DyldELFObject<ELFType<support::little, 8, true> > *Obj =
+ new DyldELFObject<ELFType<support::little, 8, true> >(
+ Buffer->getMemBuffer(), ec);
+ return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
+ }
+ else
+ llvm_unreachable("Unexpected ELF format");
+}
+
+RuntimeDyldELF::~RuntimeDyldELF() {
+}
+
+void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_X86_64_64: {
+ uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+ *Target = Value + Addend;
+ DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
+ << " at " << format("%p\n",Target));
+ break;
+ }
+ case ELF::R_X86_64_32:
+ case ELF::R_X86_64_32S: {
+ Value += Addend;
+ assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
+ (Type == ELF::R_X86_64_32S &&
+ ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
+ uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ *Target = TruncatedAddr;
+ DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
+ << " at " << format("%p\n",Target));
+ break;
+ }
+ case ELF::R_X86_64_PC32: {
+ // Get the placeholder value from the generated object since
+ // a previous relocation attempt may have overwritten the loaded version
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
+ + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+ int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
+ assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
+ int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
+ *Target = TruncOffset;
+ break;
+ }
+ }
+}
+
+void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend) {
+ switch (Type) {
+ case ELF::R_386_32: {
+ // Get the placeholder value from the generated object since
+ // a previous relocation attempt may have overwritten the loaded version
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
+ + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ *Target = *Placeholder + Value + Addend;
+ break;
+ }
+ case ELF::R_386_PC32: {
+ // Get the placeholder value from the generated object since
+ // a previous relocation attempt may have overwritten the loaded version
+ uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
+ + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+ uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
+ *Target = RealOffset;
+ break;
+ }
+ default:
+ // There are other relocation types, but it appears these are the
+ // only ones currently used by the LLVM ELF object writer
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
+
+ DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
+ << format("%llx", Section.Address + Offset)
+ << " FinalAddress: 0x" << format("%llx",FinalAddress)
+ << " Value: 0x" << format("%llx",Value)
+ << " Type: 0x" << format("%x",Type)
+ << " Addend: 0x" << format("%llx",Addend)
+ << "\n");
+
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_AARCH64_ABS64: {
+ uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+ *TargetPtr = Value + Addend;
+ break;
+ }
+ case ELF::R_AARCH64_PREL32: { // test-shift.ll (.eh_frame)
+ uint64_t Result = Value + Addend - FinalAddress;
+ assert(static_cast<int64_t>(Result) >= INT32_MIN &&
+ static_cast<int64_t>(Result) <= UINT32_MAX);
+ *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
+ break;
+ }
+ case ELF::R_AARCH64_CALL26: // fallthrough
+ case ELF::R_AARCH64_JUMP26: {
+ // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
+ // calculation.
+ uint64_t BranchImm = Value + Addend - FinalAddress;
+
+ // "Check that -2^27 <= result < 2^27".
+ assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
+ static_cast<int64_t>(BranchImm) < (1LL << 27));
+ // Immediate goes in bits 25:0 of B and BL.
+ *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G3: {
+ uint64_t Result = Value + Addend;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= Result >> (48 - 5);
+ // Shift is "lsl #48", in bits 22:21
+ *TargetPtr |= 3 << 21;
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
+ uint64_t Result = Value + Addend;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
+ // Shift is "lsl #32", in bits 22:21
+ *TargetPtr |= 2 << 21;
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
+ uint64_t Result = Value + Addend;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
+ // Shift is "lsl #16", in bits 22:21
+ *TargetPtr |= 1 << 21;
+ break;
+ }
+ case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
+ uint64_t Result = Value + Addend;
+ // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
+ *TargetPtr |= ((Result & 0xffffU) << 5);
+ // Shift is "lsl #0", in bits 22:21. No action needed.
+ break;
+ }
+ }
+}
+
+void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend) {
+ // TODO: Add Thumb relocations.
+ uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+ uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+ Value += Addend;
+
+ DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
+ << Section.Address + Offset
+ << " FinalAddress: " << format("%p",FinalAddress)
+ << " Value: " << format("%x",Value)
+ << " Type: " << format("%x",Type)
+ << " Addend: " << format("%x",Addend)
+ << "\n");
+
+ switch(Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+
+ // Write a 32bit value to relocation address, taking into account the
+ // implicit addend encoded in the target.
+ case ELF::R_ARM_TARGET1 :
+ case ELF::R_ARM_ABS32 :
+ *TargetPtr += Value;
+ break;
+
+ // Write first 16 bit of 32 bit value to the mov instruction.
+ // Last 4 bit should be shifted.
+ case ELF::R_ARM_MOVW_ABS_NC :
+ // We are not expecting any other addend in the relocation address.
+ // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
+ // non-contiguous fields.
+ assert((*TargetPtr & 0x000F0FFF) == 0);
+ Value = Value & 0xFFFF;
+ *TargetPtr |= Value & 0xFFF;
+ *TargetPtr |= ((Value >> 12) & 0xF) << 16;
+ break;
+
+ // Write last 16 bit of 32 bit value to the mov instruction.
+ // Last 4 bit should be shifted.
+ case ELF::R_ARM_MOVT_ABS :
+ // We are not expecting any other addend in the relocation address.
+ // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
+ assert((*TargetPtr & 0x000F0FFF) == 0);
+ Value = (Value >> 16) & 0xFFFF;
+ *TargetPtr |= Value & 0xFFF;
+ *TargetPtr |= ((Value >> 12) & 0xF) << 16;
+ break;
+
+ // Write 24 bit relative value to the branch instruction.
+ case ELF::R_ARM_PC24 : // Fall through.
+ case ELF::R_ARM_CALL : // Fall through.
+ case ELF::R_ARM_JUMP24 :
+ int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
+ RelValue = (RelValue & 0x03FFFFFC) >> 2;
+ *TargetPtr &= 0xFF000000;
+ *TargetPtr |= RelValue;
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint32_t Value,
+ uint32_t Type,
+ int32_t Addend) {
+ uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+ Value += Addend;
+
+ DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
+ << Section.Address + Offset
+ << " FinalAddress: "
+ << format("%p",Section.LoadAddress + Offset)
+ << " Value: " << format("%x",Value)
+ << " Type: " << format("%x",Type)
+ << " Addend: " << format("%x",Addend)
+ << "\n");
+
+ switch(Type) {
+ default:
+ llvm_unreachable("Not implemented relocation type!");
+ break;
+ case ELF::R_MIPS_32:
+ *TargetPtr = Value + (*TargetPtr);
+ break;
+ case ELF::R_MIPS_26:
+ *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
+ break;
+ case ELF::R_MIPS_HI16:
+ // Get the higher 16-bits. Also add 1 if bit 15 is 1.
+ Value += ((*TargetPtr) & 0x0000ffff) << 16;
+ *TargetPtr = ((*TargetPtr) & 0xffff0000) |
+ (((Value + 0x8000) >> 16) & 0xffff);
+ break;
+ case ELF::R_MIPS_LO16:
+ Value += ((*TargetPtr) & 0x0000ffff);
+ *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
+ break;
+ }
+}
+
+// Return the .TOC. section address to R_PPC64_TOC relocations.
+uint64_t RuntimeDyldELF::findPPC64TOC() const {
+ // The TOC consists of sections .got, .toc, .tocbss, .plt in that
+ // order. The TOC starts where the first of these sections starts.
+ SectionList::const_iterator it = Sections.begin();
+ SectionList::const_iterator ite = Sections.end();
+ for (; it != ite; ++it) {
+ if (it->Name == ".got" ||
+ it->Name == ".toc" ||
+ it->Name == ".tocbss" ||
+ it->Name == ".plt")
+ break;
+ }
+ if (it == ite) {
+ // This may happen for
+ // * references to TOC base base (sym@toc, .odp relocation) without
+ // a .toc directive.
+ // In this case just use the first section (which is usually
+ // the .odp) since the code won't reference the .toc base
+ // directly.
+ it = Sections.begin();
+ }
+ assert (it != ite);
+ // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
+ // thus permitting a full 64 Kbytes segment.
+ return it->LoadAddress + 0x8000;
+}
+
+// Returns the sections and offset associated with the ODP entry referenced
+// by Symbol.
+void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel) {
+ // Get the ELF symbol value (st_value) to compare with Relocation offset in
+ // .opd entries
+
+ error_code err;
+ for (section_iterator si = Obj.begin_sections(),
+ se = Obj.end_sections(); si != se; si.increment(err)) {
+ StringRef SectionName;
+ check(si->getName(SectionName));
+ if (SectionName != ".opd")
+ continue;
+
+ for (relocation_iterator i = si->begin_relocations(),
+ e = si->end_relocations(); i != e;) {
+ check(err);
+
+ // The R_PPC64_ADDR64 relocation indicates the first field
+ // of a .opd entry
+ uint64_t TypeFunc;
+ check(i->getType(TypeFunc));
+ if (TypeFunc != ELF::R_PPC64_ADDR64) {
+ i.increment(err);
+ continue;
+ }
+
+ SymbolRef TargetSymbol;
+ uint64_t TargetSymbolOffset;
+ int64_t TargetAdditionalInfo;
+ check(i->getSymbol(TargetSymbol));
+ check(i->getOffset(TargetSymbolOffset));
+ check(i->getAdditionalInfo(TargetAdditionalInfo));
+
+ i = i.increment(err);
+ if (i == e)
+ break;
+ check(err);
+
+ // Just check if following relocation is a R_PPC64_TOC
+ uint64_t TypeTOC;
+ check(i->getType(TypeTOC));
+ if (TypeTOC != ELF::R_PPC64_TOC)
+ continue;
+
+ // Finally compares the Symbol value and the target symbol offset
+ // to check if this .opd entry refers to the symbol the relocation
+ // points to.
+ if (Rel.Addend != (intptr_t)TargetSymbolOffset)
+ continue;
+
+ section_iterator tsi(Obj.end_sections());
+ check(TargetSymbol.getSection(tsi));
+ Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
+ Rel.Addend = (intptr_t)TargetAdditionalInfo;
+ return;
+ }
+ }
+ llvm_unreachable("Attempting to get address of ODP entry!");
+}
+
+// Relocation masks following the #lo(value), #hi(value), #higher(value),
+// and #highest(value) macros defined in section 4.5.1. Relocation Types
+// in PPC-elf64abi document.
+//
+static inline
+uint16_t applyPPClo (uint64_t value)
+{
+ return value & 0xffff;
+}
+
+static inline
+uint16_t applyPPChi (uint64_t value)
+{
+ return (value >> 16) & 0xffff;
+}
+
+static inline
+uint16_t applyPPChigher (uint64_t value)
+{
+ return (value >> 32) & 0xffff;
+}
+
+static inline
+uint16_t applyPPChighest (uint64_t value)
+{
+ return (value >> 48) & 0xffff;
+}
+
+void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ uint8_t* LocalAddress = Section.Address + Offset;
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_PPC64_ADDR16_LO :
+ writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HI :
+ writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHER :
+ writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHEST :
+ writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR14 : {
+ assert(((Value + Addend) & 3) == 0);
+ // Preserve the AA/LK bits in the branch instruction
+ uint8_t aalk = *(LocalAddress+3);
+ writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
+ } break;
+ case ELF::R_PPC64_ADDR32 : {
+ int32_t Result = static_cast<int32_t>(Value + Addend);
+ if (SignExtend32<32>(Result) != Result)
+ llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
+ writeInt32BE(LocalAddress, Result);
+ } break;
+ case ELF::R_PPC64_REL24 : {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<24>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL24 overflow");
+ // Generates a 'bl <address>' instruction
+ writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
+ } break;
+ case ELF::R_PPC64_REL32 : {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
+ if (SignExtend32<32>(delta) != delta)
+ llvm_unreachable("Relocation R_PPC64_REL32 overflow");
+ writeInt32BE(LocalAddress, delta);
+ } break;
+ case ELF::R_PPC64_REL64: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt64BE(LocalAddress, Delta);
+ } break;
+ case ELF::R_PPC64_ADDR64 :
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ case ELF::R_PPC64_TOC :
+ writeInt64BE(LocalAddress, findPPC64TOC());
+ break;
+ case ELF::R_PPC64_TOC16 : {
+ uint64_t TOCStart = findPPC64TOC();
+ Value = applyPPClo((Value + Addend) - TOCStart);
+ writeInt16BE(LocalAddress, applyPPClo(Value));
+ } break;
+ case ELF::R_PPC64_TOC16_DS : {
+ uint64_t TOCStart = findPPC64TOC();
+ Value = ((Value + Addend) - TOCStart);
+ writeInt16BE(LocalAddress, applyPPClo(Value));
+ } break;
+ }
+}
+
+void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ uint8_t *LocalAddress = Section.Address + Offset;
+ switch (Type) {
+ default:
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
+ case ELF::R_390_PC16DBL:
+ case ELF::R_390_PLT16DBL: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
+ writeInt16BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32DBL:
+ case ELF::R_390_PLT32DBL: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
+ writeInt32BE(LocalAddress, Delta / 2);
+ break;
+ }
+ case ELF::R_390_PC32: {
+ int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
+ assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
+ writeInt32BE(LocalAddress, Delta);
+ break;
+ }
+ case ELF::R_390_64:
+ writeInt64BE(LocalAddress, Value + Addend);
+ break;
+ }
+}
+
+void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
+ uint64_t Value) {
+ const SectionEntry &Section = Sections[RE.SectionID];
+ return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend);
+}
+
+void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
+ uint64_t Offset,
+ uint64_t Value,
+ uint32_t Type,
+ int64_t Addend) {
+ switch (Arch) {
+ case Triple::x86_64:
+ resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::x86:
+ resolveX86Relocation(Section, Offset,
+ (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::aarch64:
+ resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::arm: // Fall through.
+ case Triple::thumb:
+ resolveARMRelocation(Section, Offset,
+ (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::mips: // Fall through.
+ case Triple::mipsel:
+ resolveMIPSRelocation(Section, Offset,
+ (uint32_t)(Value & 0xffffffffL), Type,
+ (uint32_t)(Addend & 0xffffffffL));
+ break;
+ case Triple::ppc64:
+ resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
+ break;
+ case Triple::systemz:
+ resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
+ break;
+ default: llvm_unreachable("Unsupported CPU type!");
+ }
+}
+
+void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
+ RelocationRef RelI,
+ ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID,
+ const SymbolTableMap &Symbols,
+ StubMap &Stubs) {
+ uint64_t RelType;
+ Check(RelI.getType(RelType));
+ int64_t Addend;
+ Check(RelI.getAdditionalInfo(Addend));
+ SymbolRef Symbol;
+ Check(RelI.getSymbol(Symbol));
+
+ // Obtain the symbol name which is referenced in the relocation
+ StringRef TargetName;
+ Symbol.getName(TargetName);
+ DEBUG(dbgs() << "\t\tRelType: " << RelType
+ << " Addend: " << Addend
+ << " TargetName: " << TargetName
+ << "\n");
+ RelocationValueRef Value;
+ // First search for the symbol in the local symbol table
+ SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
+ SymbolRef::Type SymType;
+ Symbol.getType(SymType);
+ if (lsi != Symbols.end()) {
+ Value.SectionID = lsi->second.first;
+ Value.Addend = lsi->second.second + Addend;
+ } else {
+ // Search for the symbol in the global symbol table
+ SymbolTableMap::const_iterator gsi =
+ GlobalSymbolTable.find(TargetName.data());
+ if (gsi != GlobalSymbolTable.end()) {
+ Value.SectionID = gsi->second.first;
+ Value.Addend = gsi->second.second + Addend;
+ } else {
+ switch (SymType) {
+ case SymbolRef::ST_Debug: {
+ // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+ // and can be changed by another developers. Maybe best way is add
+ // a new symbol type ST_Section to SymbolRef and use it.
+ section_iterator si(Obj.end_sections());
+ Symbol.getSection(si);
+ if (si == Obj.end_sections())
+ llvm_unreachable("Symbol section not found, bad object file format!");
+ DEBUG(dbgs() << "\t\tThis is section symbol\n");
+ // Default to 'true' in case isText fails (though it never does).
+ bool isCode = true;
+ si->isText(isCode);
+ Value.SectionID = findOrEmitSection(Obj,
+ (*si),
+ isCode,
+ ObjSectionToID);
+ Value.Addend = Addend;
+ break;
+ }
+ case SymbolRef::ST_Unknown: {
+ Value.SymbolName = TargetName.data();
+ Value.Addend = Addend;
+ break;
+ }
+ default:
+ llvm_unreachable("Unresolved symbol type!");
+ break;
+ }
+ }
+ }
+ uint64_t Offset;
+ Check(RelI.getOffset(Offset));
+
+ DEBUG(dbgs() << "\t\tSectionID: " << SectionID
+ << " Offset: " << Offset
+ << "\n");
+ if (Arch == Triple::aarch64 &&
+ (RelType == ELF::R_AARCH64_CALL26 ||
+ RelType == ELF::R_AARCH64_JUMP26)) {
+ // This is an AArch64 branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+
+ RelocationEntry REmovz_g3(SectionID,
+ StubTargetAddr - Section.Address,
+ ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
+ RelocationEntry REmovk_g2(SectionID,
+ StubTargetAddr - Section.Address + 4,
+ ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
+ RelocationEntry REmovk_g1(SectionID,
+ StubTargetAddr - Section.Address + 8,
+ ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
+ RelocationEntry REmovk_g0(SectionID,
+ StubTargetAddr - Section.Address + 12,
+ ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REmovz_g3, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g2, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g1, Value.SymbolName);
+ addRelocationForSymbol(REmovk_g0, Value.SymbolName);
+ } else {
+ addRelocationForSection(REmovz_g3, Value.SectionID);
+ addRelocationForSection(REmovk_g2, Value.SectionID);
+ addRelocationForSection(REmovk_g1, Value.SectionID);
+ addRelocationForSection(REmovk_g0, Value.SectionID);
+ }
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else if (Arch == Triple::arm &&
+ (RelType == ELF::R_ARM_PC24 ||
+ RelType == ELF::R_ARM_CALL ||
+ RelType == ELF::R_ARM_JUMP24)) {
+ // This is an ARM branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
+ ELF::R_ARM_ABS32, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
+ RelType == ELF::R_MIPS_26) {
+ // This is an Mips branch relocation, need to use a stub function.
+ DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
+ SectionEntry &Section = Sections[SectionID];
+ uint8_t *Target = Section.Address + Offset;
+ uint32_t *TargetAddress = (uint32_t *)Target;
+
+ // Extract the addend from the instruction.
+ uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
+
+ Value.Addend += Addend;
+
+ // Look up for existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+
+ // Creating Hi and Lo relocations for the filled stub instructions.
+ RelocationEntry REHi(SectionID,
+ StubTargetAddr - Section.Address,
+ ELF::R_MIPS_HI16, Value.Addend);
+ RelocationEntry RELo(SectionID,
+ StubTargetAddr - Section.Address + 4,
+ ELF::R_MIPS_LO16, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REHi, Value.SymbolName);
+ addRelocationForSymbol(RELo, Value.SymbolName);
+ } else {
+ addRelocationForSection(REHi, Value.SectionID);
+ addRelocationForSection(RELo, Value.SectionID);
+ }
+
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ Section.StubOffset += getMaxStubSize();
+ }
+ } else if (Arch == Triple::ppc64) {
+ if (RelType == ELF::R_PPC64_REL24) {
+ // A PPC branch relocation will need a stub function if the target is
+ // an external symbol (Symbol::ST_Unknown) or if the target address
+ // is not within the signed 24-bits branch address.
+ SectionEntry &Section = Sections[SectionID];
+ uint8_t *Target = Section.Address + Offset;
+ bool RangeOverflow = false;
+ if (SymType != SymbolRef::ST_Unknown) {
+ // A function call may points to the .opd entry, so the final symbol value
+ // in calculated based in the relocation values in .opd section.
+ findOPDEntrySection(Obj, ObjSectionToID, Value);
+ uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
+ int32_t delta = static_cast<int32_t>(Target - RelocTarget);
+ // If it is within 24-bits branch range, just set the branch target
+ if (SignExtend32<24>(delta) == delta) {
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ } else {
+ RangeOverflow = true;
+ }
+ }
+ if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
+ // It is an external symbol (SymbolRef::ST_Unknown) or within a range
+ // larger than 24-bits.
+ StubMap::const_iterator i = Stubs.find(Value);
+ if (i != Stubs.end()) {
+ // Symbol function stub already created, just relocate to it
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + i->second, RelType, 0);
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+ Stubs[Value] = Section.StubOffset;
+ uint8_t *StubTargetAddr = createStubFunction(Section.Address +
+ Section.StubOffset);
+ RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
+ ELF::R_PPC64_ADDR64, Value.Addend);
+
+ // Generates the 64-bits address loads as exemplified in section
+ // 4.5.1 in PPC64 ELF ABI.
+ RelocationEntry REhst(SectionID,
+ StubTargetAddr - Section.Address + 2,
+ ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
+ RelocationEntry REhr(SectionID,
+ StubTargetAddr - Section.Address + 6,
+ ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
+ RelocationEntry REh(SectionID,
+ StubTargetAddr - Section.Address + 14,
+ ELF::R_PPC64_ADDR16_HI, Value.Addend);
+ RelocationEntry REl(SectionID,
+ StubTargetAddr - Section.Address + 18,
+ ELF::R_PPC64_ADDR16_LO, Value.Addend);
+
+ if (Value.SymbolName) {
+ addRelocationForSymbol(REhst, Value.SymbolName);
+ addRelocationForSymbol(REhr, Value.SymbolName);
+ addRelocationForSymbol(REh, Value.SymbolName);
+ addRelocationForSymbol(REl, Value.SymbolName);
+ } else {
+ addRelocationForSection(REhst, Value.SectionID);
+ addRelocationForSection(REhr, Value.SectionID);
+ addRelocationForSection(REh, Value.SectionID);
+ addRelocationForSection(REl, Value.SectionID);
+ }
+
+ resolveRelocation(Section, Offset,
+ (uint64_t)Section.Address + Section.StubOffset,
+ RelType, 0);
+ if (SymType == SymbolRef::ST_Unknown)
+ // Restore the TOC for external calls
+ writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
+ Section.StubOffset += getMaxStubSize();
+ }
+ }
+ } else {
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+ // Extra check to avoid relocation againt empty symbols (usually
+ // the R_PPC64_TOC).
+ if (Value.SymbolName && !TargetName.empty())
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+ } else if (Arch == Triple::systemz &&
+ (RelType == ELF::R_390_PLT32DBL ||
+ RelType == ELF::R_390_GOTENT)) {
+ // Create function stubs for both PLT and GOT references, regardless of
+ // whether the GOT reference is to data or code. The stub contains the
+ // full address of the symbol, as needed by GOT references, and the
+ // executable part only adds an overhead of 8 bytes.
+ //
+ // We could try to conserve space by allocating the code and data
+ // parts of the stub separately. However, as things stand, we allocate
+ // a stub for every relocation, so using a GOT in JIT code should be
+ // no less space efficient than using an explicit constant pool.
+ DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
+ SectionEntry &Section = Sections[SectionID];
+
+ // Look for an existing stub.
+ StubMap::const_iterator i = Stubs.find(Value);
+ uintptr_t StubAddress;
+ if (i != Stubs.end()) {
+ StubAddress = uintptr_t(Section.Address) + i->second;
+ DEBUG(dbgs() << " Stub function found\n");
+ } else {
+ // Create a new stub function.
+ DEBUG(dbgs() << " Create a new stub function\n");
+
+ uintptr_t BaseAddress = uintptr_t(Section.Address);
+ uintptr_t StubAlignment = getStubAlignment();
+ StubAddress = (BaseAddress + Section.StubOffset +
+ StubAlignment - 1) & -StubAlignment;
+ unsigned StubOffset = StubAddress - BaseAddress;
+
+ Stubs[Value] = StubOffset;
+ createStubFunction((uint8_t *)StubAddress);
+ RelocationEntry RE(SectionID, StubOffset + 8,
+ ELF::R_390_64, Value.Addend - Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ Section.StubOffset = StubOffset + getMaxStubSize();
+ }
+
+ if (RelType == ELF::R_390_GOTENT)
+ resolveRelocation(Section, Offset, StubAddress + 8,
+ ELF::R_390_PC32DBL, Addend);
+ else
+ resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
+ } else {
+ RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
+ if (Value.SymbolName)
+ addRelocationForSymbol(RE, Value.SymbolName);
+ else
+ addRelocationForSection(RE, Value.SectionID);
+ }
+}
+
+bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
+ if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
+ return false;
+ return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
+}
+} // namespace llvm
OpenPOWER on IntegriCloud