summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp993
1 files changed, 572 insertions, 421 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
index f2c69fc..728138e 100644
--- a/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
+++ b/contrib/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
@@ -11,12 +11,10 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "dyld"
#include "RuntimeDyldELF.h"
#include "JITRegistrar.h"
#include "ObjectImageCommon.h"
#include "llvm/ADT/IntervalMap.h"
-#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
@@ -25,122 +23,125 @@
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
+#include "llvm/Support/MemoryBuffer.h"
+
using namespace llvm;
using namespace llvm::object;
+#define DEBUG_TYPE "dyld"
+
namespace {
-static inline
-error_code check(error_code Err) {
+static inline std::error_code check(std::error_code Err) {
if (Err) {
report_fatal_error(Err.message());
}
return Err;
}
-template<class ELFT>
-class DyldELFObject
- : public ELFObjectFile<ELFT> {
+template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
typedef Elf_Sym_Impl<ELFT> Elf_Sym;
- typedef
- Elf_Rel_Impl<ELFT, false> Elf_Rel;
- typedef
- Elf_Rel_Impl<ELFT, true> Elf_Rela;
+ typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
+ typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
- typedef typename ELFDataTypeTypedefHelper<
- ELFT>::value_type addr_type;
+ typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
+
+ std::unique_ptr<ObjectFile> UnderlyingFile;
public:
- DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
+ DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
+ std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec);
+
+ DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec);
void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
// Methods for type inquiry through isa, cast and dyn_cast
static inline bool classof(const Binary *v) {
- return (isa<ELFObjectFile<ELFT> >(v)
- && classof(cast<ELFObjectFile
- <ELFT> >(v)));
+ return (isa<ELFObjectFile<ELFT>>(v) &&
+ classof(cast<ELFObjectFile<ELFT>>(v)));
}
- static inline bool classof(
- const ELFObjectFile<ELFT> *v) {
+ static inline bool classof(const ELFObjectFile<ELFT> *v) {
return v->isDyldType();
}
};
-template<class ELFT>
-class ELFObjectImage : public ObjectImageCommon {
- protected:
- DyldELFObject<ELFT> *DyldObj;
- bool Registered;
-
- public:
- ELFObjectImage(ObjectBuffer *Input,
- DyldELFObject<ELFT> *Obj)
- : ObjectImageCommon(Input, Obj),
- DyldObj(Obj),
- Registered(false) {}
-
- virtual ~ELFObjectImage() {
- if (Registered)
- deregisterWithDebugger();
- }
+template <class ELFT> class ELFObjectImage : public ObjectImageCommon {
+ bool Registered;
- // Subclasses can override these methods to update the image with loaded
- // addresses for sections and common symbols
- virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
- {
- DyldObj->updateSectionAddress(Sec, Addr);
- }
+public:
+ ELFObjectImage(ObjectBuffer *Input, std::unique_ptr<DyldELFObject<ELFT>> Obj)
+ : ObjectImageCommon(Input, std::move(Obj)), Registered(false) {}
- virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
- {
- DyldObj->updateSymbolAddress(Sym, Addr);
- }
+ virtual ~ELFObjectImage() {
+ if (Registered)
+ deregisterWithDebugger();
+ }
- virtual void registerWithDebugger()
- {
- JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
- Registered = true;
- }
- virtual void deregisterWithDebugger()
- {
- JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
- }
+ // Subclasses can override these methods to update the image with loaded
+ // addresses for sections and common symbols
+ void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override {
+ static_cast<DyldELFObject<ELFT>*>(getObjectFile())
+ ->updateSectionAddress(Sec, Addr);
+ }
+
+ void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override {
+ static_cast<DyldELFObject<ELFT>*>(getObjectFile())
+ ->updateSymbolAddress(Sym, Addr);
+ }
+
+ void registerWithDebugger() override {
+ JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
+ Registered = true;
+ }
+ void deregisterWithDebugger() override {
+ JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
+ }
};
// The MemoryBuffer passed into this constructor is just a wrapper around the
// actual memory. Ultimately, the Binary parent class will take ownership of
// this MemoryBuffer object but not the underlying memory.
-template<class ELFT>
-DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
- : ELFObjectFile<ELFT>(Wrapper, ec) {
+template <class ELFT>
+DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper,
+ std::error_code &EC)
+ : ELFObjectFile<ELFT>(std::move(Wrapper), EC) {
+ this->isDyldELFObject = true;
+}
+
+template <class ELFT>
+DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
+ std::unique_ptr<MemoryBuffer> Wrapper,
+ std::error_code &EC)
+ : ELFObjectFile<ELFT>(std::move(Wrapper), EC),
+ UnderlyingFile(std::move(UnderlyingFile)) {
this->isDyldELFObject = true;
}
-template<class ELFT>
+template <class ELFT>
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
uint64_t Addr) {
DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
- Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
- reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
+ Elf_Shdr *shdr =
+ const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
// This assumes the address passed in matches the target address bitness
// The template-based type cast handles everything else.
shdr->sh_addr = static_cast<addr_type>(Addr);
}
-template<class ELFT>
+template <class ELFT>
void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
uint64_t Addr) {
- Elf_Sym *sym = const_cast<Elf_Sym*>(
- ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
+ Elf_Sym *sym = const_cast<Elf_Sym *>(
+ ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
// This assumes the address passed in matches the target address bitness
// The template-based type cast handles everything else.
@@ -178,60 +179,94 @@ void RuntimeDyldELF::deregisterEHFrames() {
RegisteredEHFrameSections.clear();
}
+ObjectImage *
+RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile) {
+ if (!ObjFile)
+ return nullptr;
+
+ std::error_code ec;
+ std::unique_ptr<MemoryBuffer> Buffer(
+ MemoryBuffer::getMemBuffer(ObjFile->getData(), "", false));
+
+ if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
+ auto Obj =
+ llvm::make_unique<DyldELFObject<ELFType<support::little, 2, false>>>(
+ std::move(ObjFile), std::move(Buffer), ec);
+ return new ELFObjectImage<ELFType<support::little, 2, false>>(
+ nullptr, std::move(Obj));
+ } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
+ auto Obj =
+ llvm::make_unique<DyldELFObject<ELFType<support::big, 2, false>>>(
+ std::move(ObjFile), std::move(Buffer), ec);
+ return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, std::move(Obj));
+ } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
+ auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 2, true>>>(
+ std::move(ObjFile), std::move(Buffer), ec);
+ return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr,
+ std::move(Obj));
+ } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
+ auto Obj =
+ llvm::make_unique<DyldELFObject<ELFType<support::little, 2, true>>>(
+ std::move(ObjFile), std::move(Buffer), ec);
+ return new ELFObjectImage<ELFType<support::little, 2, true>>(
+ nullptr, std::move(Obj));
+ } else
+ llvm_unreachable("Unexpected ELF format");
+}
+
ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
if (Buffer->getBufferSize() < ELF::EI_NIDENT)
llvm_unreachable("Unexpected ELF object size");
- std::pair<unsigned char, unsigned char> Ident = std::make_pair(
- (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
- (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
- error_code ec;
+ std::pair<unsigned char, unsigned char> Ident =
+ std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
+ (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
+ std::error_code ec;
+
+ std::unique_ptr<MemoryBuffer> Buf(Buffer->getMemBuffer());
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
- DyldELFObject<ELFType<support::little, 4, false> > *Obj =
- new DyldELFObject<ELFType<support::little, 4, false> >(
- Buffer->getMemBuffer(), ec);
- return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
- }
- else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
- DyldELFObject<ELFType<support::big, 4, false> > *Obj =
- new DyldELFObject<ELFType<support::big, 4, false> >(
- Buffer->getMemBuffer(), ec);
- return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
- }
- else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
- DyldELFObject<ELFType<support::big, 8, true> > *Obj =
- new DyldELFObject<ELFType<support::big, 8, true> >(
- Buffer->getMemBuffer(), ec);
- return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
- }
- else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
- DyldELFObject<ELFType<support::little, 8, true> > *Obj =
- new DyldELFObject<ELFType<support::little, 8, true> >(
- Buffer->getMemBuffer(), ec);
- return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
- }
- else
+ auto Obj =
+ llvm::make_unique<DyldELFObject<ELFType<support::little, 4, false>>>(
+ std::move(Buf), ec);
+ return new ELFObjectImage<ELFType<support::little, 4, false>>(
+ Buffer, std::move(Obj));
+ } else if (Ident.first == ELF::ELFCLASS32 &&
+ Ident.second == ELF::ELFDATA2MSB) {
+ auto Obj =
+ llvm::make_unique<DyldELFObject<ELFType<support::big, 4, false>>>(
+ std::move(Buf), ec);
+ return new ELFObjectImage<ELFType<support::big, 4, false>>(Buffer,
+ std::move(Obj));
+ } else if (Ident.first == ELF::ELFCLASS64 &&
+ Ident.second == ELF::ELFDATA2MSB) {
+ auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 8, true>>>(
+ std::move(Buf), ec);
+ return new ELFObjectImage<ELFType<support::big, 8, true>>(Buffer, std::move(Obj));
+ } else if (Ident.first == ELF::ELFCLASS64 &&
+ Ident.second == ELF::ELFDATA2LSB) {
+ auto Obj =
+ llvm::make_unique<DyldELFObject<ELFType<support::little, 8, true>>>(
+ std::move(Buf), ec);
+ return new ELFObjectImage<ELFType<support::little, 8, true>>(Buffer, std::move(Obj));
+ } else
llvm_unreachable("Unexpected ELF format");
}
-RuntimeDyldELF::~RuntimeDyldELF() {
-}
+RuntimeDyldELF::~RuntimeDyldELF() {}
void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
uint64_t SymOffset) {
switch (Type) {
default:
llvm_unreachable("Relocation type not implemented yet!");
- break;
+ break;
case ELF::R_X86_64_64: {
- uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+ uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
*Target = Value + Addend;
- DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
- << " at " << format("%p\n",Target));
+ DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
+ << format("%p\n", Target));
break;
}
case ELF::R_X86_64_32:
@@ -239,20 +274,20 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
Value += Addend;
assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
(Type == ELF::R_X86_64_32S &&
- ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
+ ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
- uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
*Target = TruncatedAddr;
- DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
- << " at " << format("%p\n",Target));
+ DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
+ << format("%p\n", Target));
break;
}
case ELF::R_X86_64_GOTPCREL: {
// findGOTEntry returns the 'G + GOT' part of the relocation calculation
// based on the load/target address of the GOT (not the current/local addr).
uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
- uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
- uint64_t FinalAddress = Section.LoadAddress + Offset;
+ uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
// The processRelocationRef method combines the symbol offset and the addend
// and in most cases that's what we want. For this relocation type, we need
// the raw addend, so we subtract the symbol offset to get it.
@@ -265,10 +300,10 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
case ELF::R_X86_64_PC32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
- + Offset);
- uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
- uint64_t FinalAddress = Section.LoadAddress + Offset;
+ uint32_t *Placeholder =
+ reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
@@ -278,10 +313,10 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
case ELF::R_X86_64_PC64: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint64_t *Placeholder = reinterpret_cast<uint64_t*>(Section.ObjAddress
- + Offset);
- uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
- uint64_t FinalAddress = Section.LoadAddress + Offset;
+ uint64_t *Placeholder =
+ reinterpret_cast<uint64_t *>(Section.ObjAddress + Offset);
+ uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
+ uint64_t FinalAddress = Section.LoadAddress + Offset;
*Target = *Placeholder + Value + Addend - FinalAddress;
break;
}
@@ -289,53 +324,48 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
}
void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
- uint64_t Offset,
- uint32_t Value,
- uint32_t Type,
- int32_t Addend) {
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
switch (Type) {
case ELF::R_386_32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
- + Offset);
- uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint32_t *Placeholder =
+ reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
*Target = *Placeholder + Value + Addend;
break;
}
case ELF::R_386_PC32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
- uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
- + Offset);
- uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
- uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
+ uint32_t *Placeholder =
+ reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+ uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
+ uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
*Target = RealOffset;
break;
- }
- default:
- // There are other relocation types, but it appears these are the
- // only ones currently used by the LLVM ELF object writer
- llvm_unreachable("Relocation type not implemented yet!");
- break;
+ }
+ default:
+ // There are other relocation types, but it appears these are the
+ // only ones currently used by the LLVM ELF object writer
+ llvm_unreachable("Relocation type not implemented yet!");
+ break;
}
}
void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) {
- uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
uint64_t FinalAddress = Section.LoadAddress + Offset;
DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
<< format("%llx", Section.Address + Offset)
- << " FinalAddress: 0x" << format("%llx",FinalAddress)
- << " Value: 0x" << format("%llx",Value)
- << " Type: 0x" << format("%x",Type)
- << " Addend: 0x" << format("%llx",Addend)
+ << " FinalAddress: 0x" << format("%llx", FinalAddress)
+ << " Value: 0x" << format("%llx", Value) << " Type: 0x"
+ << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
<< "\n");
switch (Type) {
@@ -343,7 +373,8 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
llvm_unreachable("Relocation type not implemented yet!");
break;
case ELF::R_AARCH64_ABS64: {
- uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
+ uint64_t *TargetPtr =
+ reinterpret_cast<uint64_t *>(Section.Address + Offset);
*TargetPtr = Value + Addend;
break;
}
@@ -419,35 +450,77 @@ void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
break;
}
+ case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
+ // Operation: Page(S+A) - Page(P)
+ uint64_t Result =
+ ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
+
+ // Check that -2^32 <= X < 2^32
+ assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
+ static_cast<int64_t>(Result) < (1LL << 32) &&
+ "overflow check failed for relocation");
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0x9f00001fU;
+ // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
+ // from bits 32:12 of X.
+ *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
+ *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
+ break;
+ }
+ case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
+ // Operation: S + A
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffc003ffU;
+ // Immediate goes in bits 21:10 of LD/ST instruction, taken
+ // from bits 11:2 of X
+ *TargetPtr |= ((Result & 0xffc) << (10 - 2));
+ break;
+ }
+ case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
+ // Operation: S + A
+ uint64_t Result = Value + Addend;
+
+ // AArch64 code is emitted with .rela relocations. The data already in any
+ // bits affected by the relocation on entry is garbage.
+ *TargetPtr &= 0xffc003ffU;
+ // Immediate goes in bits 21:10 of LD/ST instruction, taken
+ // from bits 11:3 of X
+ *TargetPtr |= ((Result & 0xff8) << (10 - 3));
+ break;
+ }
}
}
void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
- uint64_t Offset,
- uint32_t Value,
- uint32_t Type,
- int32_t Addend) {
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
// TODO: Add Thumb relocations.
- uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
- Offset);
- uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+ uint32_t *Placeholder =
+ reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+ uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
Value += Addend;
DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
<< Section.Address + Offset
- << " FinalAddress: " << format("%p",FinalAddress)
- << " Value: " << format("%x",Value)
- << " Type: " << format("%x",Type)
- << " Addend: " << format("%x",Addend)
- << "\n");
+ << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
+ << format("%x", Value) << " Type: " << format("%x", Type)
+ << " Addend: " << format("%x", Addend) << "\n");
- switch(Type) {
+ switch (Type) {
default:
llvm_unreachable("Not implemented relocation type!");
+ case ELF::R_ARM_NONE:
+ break;
// Write a 32bit value to relocation address, taking into account the
// implicit addend encoded in the target.
+ case ELF::R_ARM_PREL31:
case ELF::R_ARM_TARGET1:
case ELF::R_ARM_ABS32:
*TargetPtr = *Placeholder + Value;
@@ -475,8 +548,8 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
*TargetPtr |= ((Value >> 12) & 0xF) << 16;
break;
// Write 24 bit relative value to the branch instruction.
- case ELF::R_ARM_PC24 : // Fall through.
- case ELF::R_ARM_CALL : // Fall through.
+ case ELF::R_ARM_PC24: // Fall through.
+ case ELF::R_ARM_CALL: // Fall through.
case ELF::R_ARM_JUMP24: {
int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
RelValue = (RelValue & 0x03FFFFFC) >> 2;
@@ -496,25 +569,20 @@ void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
}
void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
- uint64_t Offset,
- uint32_t Value,
- uint32_t Type,
- int32_t Addend) {
- uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
- Offset);
- uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
+ uint64_t Offset, uint32_t Value,
+ uint32_t Type, int32_t Addend) {
+ uint32_t *Placeholder =
+ reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
+ uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
Value += Addend;
DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
- << Section.Address + Offset
- << " FinalAddress: "
- << format("%p",Section.LoadAddress + Offset)
- << " Value: " << format("%x",Value)
- << " Type: " << format("%x",Type)
- << " Addend: " << format("%x",Addend)
- << "\n");
+ << Section.Address + Offset << " FinalAddress: "
+ << format("%p", Section.LoadAddress + Offset) << " Value: "
+ << format("%x", Value) << " Type: " << format("%x", Type)
+ << " Addend: " << format("%x", Addend) << "\n");
- switch(Type) {
+ switch (Type) {
default:
llvm_unreachable("Not implemented relocation type!");
break;
@@ -522,13 +590,13 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
*TargetPtr = Value + (*Placeholder);
break;
case ELF::R_MIPS_26:
- *TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
+ *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
break;
case ELF::R_MIPS_HI16:
// Get the higher 16-bits. Also add 1 if bit 15 is 1.
Value += ((*Placeholder) & 0x0000ffff) << 16;
- *TargetPtr = ((*Placeholder) & 0xffff0000) |
- (((Value + 0x8000) >> 16) & 0xffff);
+ *TargetPtr =
+ ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
break;
case ELF::R_MIPS_LO16:
Value += ((*Placeholder) & 0x0000ffff);
@@ -539,41 +607,47 @@ void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
// are used for internal JIT purpose. These relocations are similar to
// R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
// account.
- *TargetPtr = ((*TargetPtr) & 0xffff0000) |
- (((Value + 0x8000) >> 16) & 0xffff);
+ *TargetPtr =
+ ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
break;
case ELF::R_MIPS_UNUSED2:
*TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
break;
- }
+ }
}
-// Return the .TOC. section address to R_PPC64_TOC relocations.
-uint64_t RuntimeDyldELF::findPPC64TOC() const {
+// Return the .TOC. section and offset.
+void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
+ ObjSectionToIDMap &LocalSections,
+ RelocationValueRef &Rel) {
+ // Set a default SectionID in case we do not find a TOC section below.
+ // This may happen for references to TOC base base (sym@toc, .odp
+ // relocation) without a .toc directive. In this case just use the
+ // first section (which is usually the .odp) since the code won't
+ // reference the .toc base directly.
+ Rel.SymbolName = NULL;
+ Rel.SectionID = 0;
+
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
// order. The TOC starts where the first of these sections starts.
- SectionList::const_iterator it = Sections.begin();
- SectionList::const_iterator ite = Sections.end();
- for (; it != ite; ++it) {
- if (it->Name == ".got" ||
- it->Name == ".toc" ||
- it->Name == ".tocbss" ||
- it->Name == ".plt")
+ for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
+ si != se; ++si) {
+
+ StringRef SectionName;
+ check(si->getName(SectionName));
+
+ if (SectionName == ".got"
+ || SectionName == ".toc"
+ || SectionName == ".tocbss"
+ || SectionName == ".plt") {
+ Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
break;
+ }
}
- if (it == ite) {
- // This may happen for
- // * references to TOC base base (sym@toc, .odp relocation) without
- // a .toc directive.
- // In this case just use the first section (which is usually
- // the .odp) since the code won't reference the .toc base
- // directly.
- it = Sections.begin();
- }
- assert (it != ite);
+
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment.
- return it->LoadAddress + 0x8000;
+ Rel.Addend = 0x8000;
}
// Returns the sections and offset associated with the ODP entry referenced
@@ -583,10 +657,8 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
RelocationValueRef &Rel) {
// Get the ELF symbol value (st_value) to compare with Relocation offset in
// .opd entries
-
- error_code err;
- for (section_iterator si = Obj.begin_sections(),
- se = Obj.end_sections(); si != se; si.increment(err)) {
+ for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
+ si != se; ++si) {
section_iterator RelSecI = si->getRelocatedSection();
if (RelSecI == Obj.end_sections())
continue;
@@ -596,16 +668,15 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
if (RelSectionName != ".opd")
continue;
- for (relocation_iterator i = si->begin_relocations(),
- e = si->end_relocations(); i != e;) {
- check(err);
-
+ for (relocation_iterator i = si->relocation_begin(),
+ e = si->relocation_end();
+ i != e;) {
// The R_PPC64_ADDR64 relocation indicates the first field
// of a .opd entry
uint64_t TypeFunc;
check(i->getType(TypeFunc));
if (TypeFunc != ELF::R_PPC64_ADDR64) {
- i.increment(err);
+ ++i;
continue;
}
@@ -615,10 +686,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
int64_t Addend;
check(getELFRelocationAddend(*i, Addend));
- i = i.increment(err);
+ ++i;
if (i == e)
break;
- check(err);
// Just check if following relocation is a R_PPC64_TOC
uint64_t TypeTOC;
@@ -634,7 +704,9 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
section_iterator tsi(Obj.end_sections());
check(TargetSymbol->getSection(tsi));
- Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
+ bool IsCode = false;
+ tsi->isText(IsCode);
+ Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
Rel.Addend = (intptr_t)Addend;
return;
}
@@ -642,69 +714,103 @@ void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
llvm_unreachable("Attempting to get address of ODP entry!");
}
-// Relocation masks following the #lo(value), #hi(value), #higher(value),
-// and #highest(value) macros defined in section 4.5.1. Relocation Types
-// in PPC-elf64abi document.
-//
-static inline
-uint16_t applyPPClo (uint64_t value)
-{
- return value & 0xffff;
-}
+// Relocation masks following the #lo(value), #hi(value), #ha(value),
+// #higher(value), #highera(value), #highest(value), and #highesta(value)
+// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
+// document.
-static inline
-uint16_t applyPPChi (uint64_t value)
-{
+static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
+
+static inline uint16_t applyPPChi(uint64_t value) {
return (value >> 16) & 0xffff;
}
-static inline
-uint16_t applyPPChigher (uint64_t value)
-{
+static inline uint16_t applyPPCha (uint64_t value) {
+ return ((value + 0x8000) >> 16) & 0xffff;
+}
+
+static inline uint16_t applyPPChigher(uint64_t value) {
return (value >> 32) & 0xffff;
}
-static inline
-uint16_t applyPPChighest (uint64_t value)
-{
+static inline uint16_t applyPPChighera (uint64_t value) {
+ return ((value + 0x8000) >> 32) & 0xffff;
+}
+
+static inline uint16_t applyPPChighest(uint64_t value) {
return (value >> 48) & 0xffff;
}
+static inline uint16_t applyPPChighesta (uint64_t value) {
+ return ((value + 0x8000) >> 48) & 0xffff;
+}
+
void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) {
- uint8_t* LocalAddress = Section.Address + Offset;
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
+ uint8_t *LocalAddress = Section.Address + Offset;
switch (Type) {
default:
llvm_unreachable("Relocation type not implemented yet!");
- break;
- case ELF::R_PPC64_ADDR16_LO :
- writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
break;
- case ELF::R_PPC64_ADDR16_HI :
- writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
+ case ELF::R_PPC64_ADDR16:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
break;
- case ELF::R_PPC64_ADDR16_HIGHER :
- writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
+ case ELF::R_PPC64_ADDR16_DS:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
break;
- case ELF::R_PPC64_ADDR16_HIGHEST :
- writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
+ case ELF::R_PPC64_ADDR16_LO:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
break;
- case ELF::R_PPC64_ADDR14 : {
+ case ELF::R_PPC64_ADDR16_LO_DS:
+ writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
+ break;
+ case ELF::R_PPC64_ADDR16_HI:
+ writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HA:
+ writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHER:
+ writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHERA:
+ writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHEST:
+ writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR16_HIGHESTA:
+ writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
+ break;
+ case ELF::R_PPC64_ADDR14: {
assert(((Value + Addend) & 3) == 0);
// Preserve the AA/LK bits in the branch instruction
- uint8_t aalk = *(LocalAddress+3);
+ uint8_t aalk = *(LocalAddress + 3);
writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
} break;
- case ELF::R_PPC64_ADDR32 : {
+ case ELF::R_PPC64_REL16_LO: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPClo(Delta));
+ } break;
+ case ELF::R_PPC64_REL16_HI: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPChi(Delta));
+ } break;
+ case ELF::R_PPC64_REL16_HA: {
+ uint64_t FinalAddress = (Section.LoadAddress + Offset);
+ uint64_t Delta = Value - FinalAddress + Addend;
+ writeInt16BE(LocalAddress, applyPPCha(Delta));
+ } break;
+ case ELF::R_PPC64_ADDR32: {
int32_t Result = static_cast<int32_t>(Value + Addend);
if (SignExtend32<32>(Result) != Result)
llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
writeInt32BE(LocalAddress, Result);
} break;
- case ELF::R_PPC64_REL24 : {
+ case ELF::R_PPC64_REL24: {
uint64_t FinalAddress = (Section.LoadAddress + Offset);
int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
if (SignExtend32<24>(delta) != delta)
@@ -712,7 +818,7 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
// Generates a 'bl <address>' instruction
writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
} break;
- case ELF::R_PPC64_REL32 : {
+ case ELF::R_PPC64_REL32: {
uint64_t FinalAddress = (Section.LoadAddress + Offset);
int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
if (SignExtend32<32>(delta) != delta)
@@ -724,30 +830,15 @@ void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
uint64_t Delta = Value - FinalAddress + Addend;
writeInt64BE(LocalAddress, Delta);
} break;
- case ELF::R_PPC64_ADDR64 :
+ case ELF::R_PPC64_ADDR64:
writeInt64BE(LocalAddress, Value + Addend);
break;
- case ELF::R_PPC64_TOC :
- writeInt64BE(LocalAddress, findPPC64TOC());
- break;
- case ELF::R_PPC64_TOC16 : {
- uint64_t TOCStart = findPPC64TOC();
- Value = applyPPClo((Value + Addend) - TOCStart);
- writeInt16BE(LocalAddress, applyPPClo(Value));
- } break;
- case ELF::R_PPC64_TOC16_DS : {
- uint64_t TOCStart = findPPC64TOC();
- Value = ((Value + Addend) - TOCStart);
- writeInt16BE(LocalAddress, applyPPClo(Value));
- } break;
}
}
void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend) {
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend) {
uint8_t *LocalAddress = Section.Address + Offset;
switch (Type) {
default:
@@ -807,66 +898,63 @@ void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
}
void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
- uint64_t Offset,
- uint64_t Value,
- uint32_t Type,
- int64_t Addend,
+ uint64_t Offset, uint64_t Value,
+ uint32_t Type, int64_t Addend,
uint64_t SymOffset) {
switch (Arch) {
case Triple::x86_64:
resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
break;
case Triple::x86:
- resolveX86Relocation(Section, Offset,
- (uint32_t)(Value & 0xffffffffL), Type,
+ resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
case Triple::aarch64:
+ case Triple::aarch64_be:
+ case Triple::arm64:
+ case Triple::arm64_be:
resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
break;
- case Triple::arm: // Fall through.
+ case Triple::arm: // Fall through.
+ case Triple::armeb:
case Triple::thumb:
- resolveARMRelocation(Section, Offset,
- (uint32_t)(Value & 0xffffffffL), Type,
+ case Triple::thumbeb:
+ resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
(uint32_t)(Addend & 0xffffffffL));
break;
- case Triple::mips: // Fall through.
+ case Triple::mips: // Fall through.
case Triple::mipsel:
- resolveMIPSRelocation(Section, Offset,
- (uint32_t)(Value & 0xffffffffL), Type,
- (uint32_t)(Addend & 0xffffffffL));
+ resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
+ Type, (uint32_t)(Addend & 0xffffffffL));
break;
- case Triple::ppc64: // Fall through.
+ case Triple::ppc64: // Fall through.
case Triple::ppc64le:
resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
break;
case Triple::systemz:
resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
break;
- default: llvm_unreachable("Unsupported CPU type!");
+ default:
+ llvm_unreachable("Unsupported CPU type!");
}
}
-void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
- RelocationRef RelI,
- ObjectImage &Obj,
- ObjSectionToIDMap &ObjSectionToID,
- const SymbolTableMap &Symbols,
- StubMap &Stubs) {
+relocation_iterator RuntimeDyldELF::processRelocationRef(
+ unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
+ ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
+ StubMap &Stubs) {
uint64_t RelType;
- Check(RelI.getType(RelType));
+ Check(RelI->getType(RelType));
int64_t Addend;
- Check(getELFRelocationAddend(RelI, Addend));
- symbol_iterator Symbol = RelI.getSymbol();
+ Check(getELFRelocationAddend(*RelI, Addend));
+ symbol_iterator Symbol = RelI->getSymbol();
// Obtain the symbol name which is referenced in the relocation
StringRef TargetName;
if (Symbol != Obj.end_symbols())
Symbol->getName(TargetName);
- DEBUG(dbgs() << "\t\tRelType: " << RelType
- << " Addend: " << Addend
- << " TargetName: " << TargetName
- << "\n");
+ DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
+ << " TargetName: " << TargetName << "\n");
RelocationValueRef Value;
// First search for the symbol in the local symbol table
SymbolTableMap::const_iterator lsi = Symbols.end();
@@ -890,53 +978,49 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
Value.Addend = gsi->second.second + Addend;
} else {
switch (SymType) {
- case SymbolRef::ST_Debug: {
- // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
- // and can be changed by another developers. Maybe best way is add
- // a new symbol type ST_Section to SymbolRef and use it.
- section_iterator si(Obj.end_sections());
- Symbol->getSection(si);
- if (si == Obj.end_sections())
- llvm_unreachable("Symbol section not found, bad object file format!");
- DEBUG(dbgs() << "\t\tThis is section symbol\n");
- // Default to 'true' in case isText fails (though it never does).
- bool isCode = true;
- si->isText(isCode);
- Value.SectionID = findOrEmitSection(Obj,
- (*si),
- isCode,
- ObjSectionToID);
- Value.Addend = Addend;
- break;
- }
- case SymbolRef::ST_Data:
- case SymbolRef::ST_Unknown: {
- Value.SymbolName = TargetName.data();
- Value.Addend = Addend;
-
- // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
- // will manifest here as a NULL symbol name.
- // We can set this as a valid (but empty) symbol name, and rely
- // on addRelocationForSymbol to handle this.
- if (!Value.SymbolName)
- Value.SymbolName = "";
- break;
- }
- default:
- llvm_unreachable("Unresolved symbol type!");
- break;
+ case SymbolRef::ST_Debug: {
+ // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
+ // and can be changed by another developers. Maybe best way is add
+ // a new symbol type ST_Section to SymbolRef and use it.
+ section_iterator si(Obj.end_sections());
+ Symbol->getSection(si);
+ if (si == Obj.end_sections())
+ llvm_unreachable("Symbol section not found, bad object file format!");
+ DEBUG(dbgs() << "\t\tThis is section symbol\n");
+ // Default to 'true' in case isText fails (though it never does).
+ bool isCode = true;
+ si->isText(isCode);
+ Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
+ Value.Addend = Addend;
+ break;
+ }
+ case SymbolRef::ST_Data:
+ case SymbolRef::ST_Unknown: {
+ Value.SymbolName = TargetName.data();
+ Value.Addend = Addend;
+
+ // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
+ // will manifest here as a NULL symbol name.
+ // We can set this as a valid (but empty) symbol name, and rely
+ // on addRelocationForSymbol to handle this.
+ if (!Value.SymbolName)
+ Value.SymbolName = "";
+ break;
+ }
+ default:
+ llvm_unreachable("Unresolved symbol type!");
+ break;
}
}
}
uint64_t Offset;
- Check(RelI.getOffset(Offset));
+ Check(RelI->getOffset(Offset));
- DEBUG(dbgs() << "\t\tSectionID: " << SectionID
- << " Offset: " << Offset
+ DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
<< "\n");
- if (Arch == Triple::aarch64 &&
- (RelType == ELF::R_AARCH64_CALL26 ||
- RelType == ELF::R_AARCH64_JUMP26)) {
+ if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
+ Arch == Triple::arm64 || Arch == Triple::arm64_be) &&
+ (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
// This is an AArch64 branch relocation, need to use a stub function.
DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
SectionEntry &Section = Sections[SectionID];
@@ -944,24 +1028,21 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
// Look for an existing stub.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end()) {
- resolveRelocation(Section, Offset,
- (uint64_t)Section.Address + i->second, RelType, 0);
+ resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+ RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
// Create a new stub function.
DEBUG(dbgs() << " Create a new stub function\n");
Stubs[Value] = Section.StubOffset;
- uint8_t *StubTargetAddr = createStubFunction(Section.Address +
- Section.StubOffset);
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset);
- RelocationEntry REmovz_g3(SectionID,
- StubTargetAddr - Section.Address,
+ RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
- RelocationEntry REmovk_g2(SectionID,
- StubTargetAddr - Section.Address + 4,
+ RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
- RelocationEntry REmovk_g1(SectionID,
- StubTargetAddr - Section.Address + 8,
+ RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
RelocationEntry REmovk_g0(SectionID,
StubTargetAddr - Section.Address + 12,
@@ -979,14 +1060,13 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
addRelocationForSection(REmovk_g0, Value.SectionID);
}
resolveRelocation(Section, Offset,
- (uint64_t)Section.Address + Section.StubOffset,
- RelType, 0);
+ (uint64_t)Section.Address + Section.StubOffset, RelType,
+ 0);
Section.StubOffset += getMaxStubSize();
}
} else if (Arch == Triple::arm &&
- (RelType == ELF::R_ARM_PC24 ||
- RelType == ELF::R_ARM_CALL ||
- RelType == ELF::R_ARM_JUMP24)) {
+ (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
+ RelType == ELF::R_ARM_JUMP24)) {
// This is an ARM branch relocation, need to use a stub function.
DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
SectionEntry &Section = Sections[SectionID];
@@ -994,15 +1074,15 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
// Look for an existing stub.
StubMap::const_iterator i = Stubs.find(Value);
if (i != Stubs.end()) {
- resolveRelocation(Section, Offset,
- (uint64_t)Section.Address + i->second, RelType, 0);
+ resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
+ RelType, 0);
DEBUG(dbgs() << " Stub function found\n");
} else {
// Create a new stub function.
DEBUG(dbgs() << " Create a new stub function\n");
Stubs[Value] = Section.StubOffset;
- uint8_t *StubTargetAddr = createStubFunction(Section.Address +
- Section.StubOffset);
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset);
RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
ELF::R_ARM_PRIVATE_0, Value.Addend);
if (Value.SymbolName)
@@ -1011,8 +1091,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
addRelocationForSection(RE, Value.SectionID);
resolveRelocation(Section, Offset,
- (uint64_t)Section.Address + Section.StubOffset,
- RelType, 0);
+ (uint64_t)Section.Address + Section.StubOffset, RelType,
+ 0);
Section.StubOffset += getMaxStubSize();
}
} else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
@@ -1038,15 +1118,13 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
// Create a new stub function.
DEBUG(dbgs() << " Create a new stub function\n");
Stubs[Value] = Section.StubOffset;
- uint8_t *StubTargetAddr = createStubFunction(Section.Address +
- Section.StubOffset);
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset);
// Creating Hi and Lo relocations for the filled stub instructions.
- RelocationEntry REHi(SectionID,
- StubTargetAddr - Section.Address,
+ RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
ELF::R_MIPS_UNUSED1, Value.Addend);
- RelocationEntry RELo(SectionID,
- StubTargetAddr - Section.Address + 4,
+ RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
ELF::R_MIPS_UNUSED2, Value.Addend);
if (Value.SymbolName) {
@@ -1063,6 +1141,10 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
}
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
if (RelType == ELF::R_PPC64_REL24) {
+ // Determine ABI variant in use for this object.
+ unsigned AbiVariant;
+ Obj.getObjectFile()->getPlatformFlags(AbiVariant);
+ AbiVariant &= ELF::EF_PPC64_ABI;
// A PPC branch relocation will need a stub function if the target is
// an external symbol (Symbol::ST_Unknown) or if the target address
// is not within the signed 24-bits branch address.
@@ -1070,9 +1152,18 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
uint8_t *Target = Section.Address + Offset;
bool RangeOverflow = false;
if (SymType != SymbolRef::ST_Unknown) {
- // A function call may points to the .opd entry, so the final symbol value
- // in calculated based in the relocation values in .opd section.
- findOPDEntrySection(Obj, ObjSectionToID, Value);
+ if (AbiVariant != 2) {
+ // In the ELFv1 ABI, a function call may point to the .opd entry,
+ // so the final symbol value is calculated based on the relocation
+ // values in the .opd section.
+ findOPDEntrySection(Obj, ObjSectionToID, Value);
+ } else {
+ // In the ELFv2 ABI, a function symbol may provide a local entry
+ // point, which must be used for direct calls.
+ uint8_t SymOther;
+ Symbol->getOther(SymOther);
+ Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
+ }
uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
int32_t delta = static_cast<int32_t>(Target - RelocTarget);
// If it is within 24-bits branch range, just set the branch target
@@ -1099,53 +1190,100 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
// Create a new stub function.
DEBUG(dbgs() << " Create a new stub function\n");
Stubs[Value] = Section.StubOffset;
- uint8_t *StubTargetAddr = createStubFunction(Section.Address +
- Section.StubOffset);
+ uint8_t *StubTargetAddr =
+ createStubFunction(Section.Address + Section.StubOffset,
+ AbiVariant);
RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
ELF::R_PPC64_ADDR64, Value.Addend);
// Generates the 64-bits address loads as exemplified in section
- // 4.5.1 in PPC64 ELF ABI.
- RelocationEntry REhst(SectionID,
- StubTargetAddr - Section.Address + 2,
+ // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
+ // apply to the low part of the instructions, so we have to update
+ // the offset according to the target endianness.
+ uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
+ if (!IsTargetLittleEndian)
+ StubRelocOffset += 2;
+
+ RelocationEntry REhst(SectionID, StubRelocOffset + 0,
ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
- RelocationEntry REhr(SectionID,
- StubTargetAddr - Section.Address + 6,
+ RelocationEntry REhr(SectionID, StubRelocOffset + 4,
ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
- RelocationEntry REh(SectionID,
- StubTargetAddr - Section.Address + 14,
+ RelocationEntry REh(SectionID, StubRelocOffset + 12,
ELF::R_PPC64_ADDR16_HI, Value.Addend);
- RelocationEntry REl(SectionID,
- StubTargetAddr - Section.Address + 18,
+ RelocationEntry REl(SectionID, StubRelocOffset + 16,
ELF::R_PPC64_ADDR16_LO, Value.Addend);
if (Value.SymbolName) {
addRelocationForSymbol(REhst, Value.SymbolName);
- addRelocationForSymbol(REhr, Value.SymbolName);
- addRelocationForSymbol(REh, Value.SymbolName);
- addRelocationForSymbol(REl, Value.SymbolName);
+ addRelocationForSymbol(REhr, Value.SymbolName);
+ addRelocationForSymbol(REh, Value.SymbolName);
+ addRelocationForSymbol(REl, Value.SymbolName);
} else {
addRelocationForSection(REhst, Value.SectionID);
- addRelocationForSection(REhr, Value.SectionID);
- addRelocationForSection(REh, Value.SectionID);
- addRelocationForSection(REl, Value.SectionID);
+ addRelocationForSection(REhr, Value.SectionID);
+ addRelocationForSection(REh, Value.SectionID);
+ addRelocationForSection(REl, Value.SectionID);
}
resolveRelocation(Section, Offset,
(uint64_t)Section.Address + Section.StubOffset,
RelType, 0);
- if (SymType == SymbolRef::ST_Unknown)
- // Restore the TOC for external calls
- writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
Section.StubOffset += getMaxStubSize();
}
+ if (SymType == SymbolRef::ST_Unknown) {
+ // Restore the TOC for external calls
+ if (AbiVariant == 2)
+ writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
+ else
+ writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
+ }
}
+ } else if (RelType == ELF::R_PPC64_TOC16 ||
+ RelType == ELF::R_PPC64_TOC16_DS ||
+ RelType == ELF::R_PPC64_TOC16_LO ||
+ RelType == ELF::R_PPC64_TOC16_LO_DS ||
+ RelType == ELF::R_PPC64_TOC16_HI ||
+ RelType == ELF::R_PPC64_TOC16_HA) {
+ // These relocations are supposed to subtract the TOC address from
+ // the final value. This does not fit cleanly into the RuntimeDyld
+ // scheme, since there may be *two* sections involved in determining
+ // the relocation value (the section of the symbol refered to by the
+ // relocation, and the TOC section associated with the current module).
+ //
+ // Fortunately, these relocations are currently only ever generated
+ // refering to symbols that themselves reside in the TOC, which means
+ // that the two sections are actually the same. Thus they cancel out
+ // and we can immediately resolve the relocation right now.
+ switch (RelType) {
+ case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
+ case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
+ case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
+ case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
+ case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
+ case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
+ default: llvm_unreachable("Wrong relocation type.");
+ }
+
+ RelocationValueRef TOCValue;
+ findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
+ if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
+ llvm_unreachable("Unsupported TOC relocation.");
+ Value.Addend -= TOCValue.Addend;
+ resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
} else {
+ // There are two ways to refer to the TOC address directly: either
+ // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
+ // ignored), or via any relocation that refers to the magic ".TOC."
+ // symbols (in which case the addend is respected).
+ if (RelType == ELF::R_PPC64_TOC) {
+ RelType = ELF::R_PPC64_ADDR64;
+ findPPC64TOCSection(Obj, ObjSectionToID, Value);
+ } else if (TargetName == ".TOC.") {
+ findPPC64TOCSection(Obj, ObjSectionToID, Value);
+ Value.Addend += Addend;
+ }
+
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
- // Extra check to avoid relocation againt empty symbols (usually
- // the R_PPC64_TOC).
- if (SymType != SymbolRef::ST_Unknown && TargetName.empty())
- Value.SymbolName = NULL;
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
@@ -1153,8 +1291,7 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
addRelocationForSection(RE, Value.SectionID);
}
} else if (Arch == Triple::systemz &&
- (RelType == ELF::R_390_PLT32DBL ||
- RelType == ELF::R_390_GOTENT)) {
+ (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
// Create function stubs for both PLT and GOT references, regardless of
// whether the GOT reference is to data or code. The stub contains the
// full address of the symbol, as needed by GOT references, and the
@@ -1179,14 +1316,14 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
uintptr_t BaseAddress = uintptr_t(Section.Address);
uintptr_t StubAlignment = getStubAlignment();
- StubAddress = (BaseAddress + Section.StubOffset +
- StubAlignment - 1) & -StubAlignment;
+ StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+ -StubAlignment;
unsigned StubOffset = StubAddress - BaseAddress;
Stubs[Value] = StubOffset;
createStubFunction((uint8_t *)StubAddress);
- RelocationEntry RE(SectionID, StubOffset + 8,
- ELF::R_390_64, Value.Addend - Addend);
+ RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
+ Value.Addend - Addend);
if (Value.SymbolName)
addRelocationForSymbol(RE, Value.SymbolName);
else
@@ -1195,15 +1332,17 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
}
if (RelType == ELF::R_390_GOTENT)
- resolveRelocation(Section, Offset, StubAddress + 8,
- ELF::R_390_PC32DBL, Addend);
+ resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
+ Addend);
else
resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
} else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
- // The way the PLT relocations normally work is that the linker allocates the
+ // The way the PLT relocations normally work is that the linker allocates
+ // the
// PLT and this relocation makes a PC-relative call into the PLT. The PLT
- // entry will then jump to an address provided by the GOT. On first call, the
- // GOT address will point back into PLT code that resolves the symbol. After
+ // entry will then jump to an address provided by the GOT. On first call,
+ // the
+ // GOT address will point back into PLT code that resolves the symbol. After
// the first call, the GOT entry points to the actual function.
//
// For local functions we're ignoring all of that here and just replacing
@@ -1229,8 +1368,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
uintptr_t BaseAddress = uintptr_t(Section.Address);
uintptr_t StubAlignment = getStubAlignment();
- StubAddress = (BaseAddress + Section.StubOffset +
- StubAlignment - 1) & -StubAlignment;
+ StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
+ -StubAlignment;
unsigned StubOffset = StubAddress - BaseAddress;
Stubs[Value] = StubOffset;
createStubFunction((uint8_t *)StubAddress);
@@ -1239,8 +1378,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
GOTEntries.push_back(Value);
// Make our stub function a relative call to the GOT entry.
- RelocationEntry RE(SectionID, StubOffset + 2,
- ELF::R_X86_64_GOTPCREL, -4);
+ RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL,
+ -4);
addRelocationForSymbol(RE, Value.SymbolName);
// Bump our stub offset counter
@@ -1248,8 +1387,8 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
}
// Make the target call a call into the stub table.
- resolveRelocation(Section, Offset, StubAddress,
- ELF::R_X86_64_PC32, Addend);
+ resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
+ Addend);
} else {
RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
Value.Offset);
@@ -1265,17 +1404,19 @@ void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
else
addRelocationForSection(RE, Value.SectionID);
}
+ return ++RelI;
}
void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
- SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator it;
- SmallVectorImpl<std::pair<SID, GOTRelocations> >::iterator end = GOTs.end();
+ SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it;
+ SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end();
for (it = GOTs.begin(); it != end; ++it) {
GOTRelocations &GOTEntries = it->second;
for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
- if (GOTEntries[i].SymbolName != 0 && GOTEntries[i].SymbolName == Name) {
+ if (GOTEntries[i].SymbolName != nullptr &&
+ GOTEntries[i].SymbolName == Name) {
GOTEntries[i].Offset = Addr;
}
}
@@ -1289,6 +1430,9 @@ size_t RuntimeDyldELF::getGOTEntrySize() {
switch (Arch) {
case Triple::x86_64:
case Triple::aarch64:
+ case Triple::aarch64_be:
+ case Triple::arm64:
+ case Triple::arm64_be:
case Triple::ppc64:
case Triple::ppc64le:
case Triple::systemz:
@@ -1301,18 +1445,19 @@ size_t RuntimeDyldELF::getGOTEntrySize() {
case Triple::mipsel:
Result = sizeof(uint32_t);
break;
- default: llvm_unreachable("Unsupported CPU type!");
+ default:
+ llvm_unreachable("Unsupported CPU type!");
}
return Result;
}
-uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
- uint64_t Offset) {
+uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
const size_t GOTEntrySize = getGOTEntrySize();
- SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator it;
- SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator end = GOTs.end();
+ SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it;
+ SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end =
+ GOTs.end();
int GOTIndex = -1;
for (it = GOTs.begin(); it != end; ++it) {
@@ -1322,7 +1467,7 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
// Find the matching entry in our vector.
uint64_t SymbolOffset = 0;
for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
- if (GOTEntries[i].SymbolName == 0) {
+ if (!GOTEntries[i].SymbolName) {
if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
GOTEntries[i].Offset == Offset) {
GOTIndex = i;
@@ -1342,11 +1487,11 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
if (GOTIndex != -1) {
if (GOTEntrySize == sizeof(uint64_t)) {
- uint64_t *LocalGOTAddr = (uint64_t*)getSectionAddress(GOTSectionID);
+ uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID);
// Fill in this entry with the address of the symbol being referenced.
LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
} else {
- uint32_t *LocalGOTAddr = (uint32_t*)getSectionAddress(GOTSectionID);
+ uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID);
// Fill in this entry with the address of the symbol being referenced.
LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
}
@@ -1360,7 +1505,8 @@ uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
return 0;
}
-void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
+void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg,
+ ObjSectionToIDMap &SectionMap) {
// If necessary, allocate the global offset table
if (MemMgr) {
// Allocate the GOT if necessary
@@ -1380,8 +1526,7 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
// needed when GOT-based relocations are applied.
memset(Addr, 0, TotalSize);
}
- }
- else {
+ } else {
report_fatal_error("Unable to allocate memory for GOT!");
}
@@ -1401,6 +1546,12 @@ void RuntimeDyldELF::finalizeLoad(ObjSectionToIDMap &SectionMap) {
bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
return false;
- return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
+ return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic,
+ strlen(ELF::ElfMagic))) == 0;
+}
+
+bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
+ return Obj->isELF();
}
+
} // namespace llvm
OpenPOWER on IntegriCloud