diff options
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/JIT')
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/Intercept.cpp | 162 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp | 821 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JIT.h | 227 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp | 211 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.h | 116 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp | 596 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h | 73 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp | 1309 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp | 727 | ||||
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp | 192 |
10 files changed, 4434 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/Intercept.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/Intercept.cpp new file mode 100644 index 0000000..2251a8e --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/Intercept.cpp @@ -0,0 +1,162 @@ +//===-- Intercept.cpp - System function interception routines -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// If a function call occurs to an external function, the JIT is designed to use +// the dynamic loader interface to find a function to call. This is useful for +// calling system calls and library functions that are not available in LLVM. +// Some system calls, however, need to be handled specially. For this reason, +// we intercept some of them here and use our own stubs to handle them. +// +//===----------------------------------------------------------------------===// + +#include "JIT.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/DynamicLibrary.h" +#include "llvm/Config/config.h" +using namespace llvm; + +// AtExitHandlers - List of functions to call when the program exits, +// registered with the atexit() library function. +static std::vector<void (*)()> AtExitHandlers; + +/// runAtExitHandlers - Run any functions registered by the program's +/// calls to atexit(3), which we intercept and store in +/// AtExitHandlers. +/// +static void runAtExitHandlers() { + while (!AtExitHandlers.empty()) { + void (*Fn)() = AtExitHandlers.back(); + AtExitHandlers.pop_back(); + Fn(); + } +} + +//===----------------------------------------------------------------------===// +// Function stubs that are invoked instead of certain library calls +//===----------------------------------------------------------------------===// + +// Force the following functions to be linked in to anything that uses the +// JIT. This is a hack designed to work around the all-too-clever Glibc +// strategy of making these functions work differently when inlined vs. when +// not inlined, and hiding their real definitions in a separate archive file +// that the dynamic linker can't see. For more info, search for +// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274. +#if defined(__linux__) +#if defined(HAVE_SYS_STAT_H) +#include <sys/stat.h> +#endif +#include <fcntl.h> +#include <unistd.h> +/* stat functions are redirecting to __xstat with a version number. On x86-64 + * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat' + * available as an exported symbol, so we have to add it explicitly. + */ +namespace { +class StatSymbols { +public: + StatSymbols() { + sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat); + sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat); + sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat); + sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64); + sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64); + sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64); + sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64); + sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64); + sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64); + sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit); + sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod); + } +}; +} +static StatSymbols initStatSymbols; +#endif // __linux__ + +// jit_exit - Used to intercept the "exit" library call. +static void jit_exit(int Status) { + runAtExitHandlers(); // Run atexit handlers... + exit(Status); +} + +// jit_atexit - Used to intercept the "atexit" library call. +static int jit_atexit(void (*Fn)()) { + AtExitHandlers.push_back(Fn); // Take note of atexit handler... + return 0; // Always successful +} + +static int jit_noop() { + return 0; +} + +//===----------------------------------------------------------------------===// +// +/// getPointerToNamedFunction - This method returns the address of the specified +/// function by using the dynamic loader interface. As such it is only useful +/// for resolving library symbols, not code generated symbols. +/// +void *JIT::getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure) { + if (!isSymbolSearchingDisabled()) { + // Check to see if this is one of the functions we want to intercept. Note, + // we cast to intptr_t here to silence a -pedantic warning that complains + // about casting a function pointer to a normal pointer. + if (Name == "exit") return (void*)(intptr_t)&jit_exit; + if (Name == "atexit") return (void*)(intptr_t)&jit_atexit; + + // We should not invoke parent's ctors/dtors from generated main()! + // On Mingw and Cygwin, the symbol __main is resolved to + // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors + // (and register wrong callee's dtors with atexit(3)). + // We expect ExecutionEngine::runStaticConstructorsDestructors() + // is called before ExecutionEngine::runFunctionAsMain() is called. + if (Name == "__main") return (void*)(intptr_t)&jit_noop; + + const char *NameStr = Name.c_str(); + // If this is an asm specifier, skip the sentinal. + if (NameStr[0] == 1) ++NameStr; + + // If it's an external function, look it up in the process image... + void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr); + if (Ptr) return Ptr; + + // If it wasn't found and if it starts with an underscore ('_') character, + // and has an asm specifier, try again without the underscore. + if (Name[0] == 1 && NameStr[0] == '_') { + Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1); + if (Ptr) return Ptr; + } + + // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These + // are references to hidden visibility symbols that dlsym cannot resolve. + // If we have one of these, strip off $LDBLStub and try again. +#if defined(__APPLE__) && defined(__ppc__) + if (Name.size() > 9 && Name[Name.size()-9] == '$' && + memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) { + // First try turning $LDBLStub into $LDBL128. If that fails, strip it off. + // This mirrors logic in libSystemStubs.a. + std::string Prefix = std::string(Name.begin(), Name.end()-9); + if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false)) + return Ptr; + if (void *Ptr = getPointerToNamedFunction(Prefix, false)) + return Ptr; + } +#endif + } + + /// If a LazyFunctionCreator is installed, use it to get/create the function. + if (LazyFunctionCreator) + if (void *RP = LazyFunctionCreator(Name)) + return RP; + + if (AbortOnFailure) { + report_fatal_error("Program used external function '"+Name+ + "' which could not be resolved!"); + } + return 0; +} diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp new file mode 100644 index 0000000..d773009 --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.cpp @@ -0,0 +1,821 @@ +//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This tool implements a just-in-time compiler for LLVM, allowing direct +// execution of LLVM bitcode in an efficient manner. +// +//===----------------------------------------------------------------------===// + +#include "JIT.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineCodeInfo.h" +#include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/ExecutionEngine/JITEventListener.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetJITInfo.h" +#include "llvm/Support/Dwarf.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MutexGuard.h" +#include "llvm/Support/DynamicLibrary.h" +#include "llvm/Config/config.h" + +using namespace llvm; + +#ifdef __APPLE__ +// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead +// of atexit). It passes the address of linker generated symbol __dso_handle +// to the function. +// This configuration change happened at version 5330. +# include <AvailabilityMacros.h> +# if defined(MAC_OS_X_VERSION_10_4) && \ + ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ + (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ + __APPLE_CC__ >= 5330)) +# ifndef HAVE___DSO_HANDLE +# define HAVE___DSO_HANDLE 1 +# endif +# endif +#endif + +#if HAVE___DSO_HANDLE +extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); +#endif + +namespace { + +static struct RegisterJIT { + RegisterJIT() { JIT::Register(); } +} JITRegistrator; + +} + +extern "C" void LLVMLinkInJIT() { +} + +// Determine whether we can register EH tables. +#if (defined(__GNUC__) && !defined(__ARM_EABI__) && \ + !defined(__USING_SJLJ_EXCEPTIONS__)) +#define HAVE_EHTABLE_SUPPORT 1 +#else +#define HAVE_EHTABLE_SUPPORT 0 +#endif + +#if HAVE_EHTABLE_SUPPORT + +// libgcc defines the __register_frame function to dynamically register new +// dwarf frames for exception handling. This functionality is not portable +// across compilers and is only provided by GCC. We use the __register_frame +// function here so that code generated by the JIT cooperates with the unwinding +// runtime of libgcc. When JITting with exception handling enable, LLVM +// generates dwarf frames and registers it to libgcc with __register_frame. +// +// The __register_frame function works with Linux. +// +// Unfortunately, this functionality seems to be in libgcc after the unwinding +// library of libgcc for darwin was written. The code for darwin overwrites the +// value updated by __register_frame with a value fetched with "keymgr". +// "keymgr" is an obsolete functionality, which should be rewritten some day. +// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we +// need a workaround in LLVM which uses the "keymgr" to dynamically modify the +// values of an opaque key, used by libgcc to find dwarf tables. + +extern "C" void __register_frame(void*); +extern "C" void __deregister_frame(void*); + +#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050 +# define USE_KEYMGR 1 +#else +# define USE_KEYMGR 0 +#endif + +#if USE_KEYMGR + +namespace { + +// LibgccObject - This is the structure defined in libgcc. There is no #include +// provided for this structure, so we also define it here. libgcc calls it +// "struct object". The structure is undocumented in libgcc. +struct LibgccObject { + void *unused1; + void *unused2; + void *unused3; + + /// frame - Pointer to the exception table. + void *frame; + + /// encoding - The encoding of the object? + union { + struct { + unsigned long sorted : 1; + unsigned long from_array : 1; + unsigned long mixed_encoding : 1; + unsigned long encoding : 8; + unsigned long count : 21; + } b; + size_t i; + } encoding; + + /// fde_end - libgcc defines this field only if some macro is defined. We + /// include this field even if it may not there, to make libgcc happy. + char *fde_end; + + /// next - At least we know it's a chained list! + struct LibgccObject *next; +}; + +// "kemgr" stuff. Apparently, all frame tables are stored there. +extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *); +extern "C" void *_keymgr_get_and_lock_processwide_ptr(int); +#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */ + +/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It +/// probably contains all dwarf tables that are loaded. +struct LibgccObjectInfo { + + /// seenObjects - LibgccObjects already parsed by the unwinding runtime. + /// + struct LibgccObject* seenObjects; + + /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime. + /// + struct LibgccObject* unseenObjects; + + unsigned unused[2]; +}; + +/// darwin_register_frame - Since __register_frame does not work with darwin's +/// libgcc,we provide our own function, which "tricks" libgcc by modifying the +/// "Dwarf2 object list" key. +void DarwinRegisterFrame(void* FrameBegin) { + // Get the key. + LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) + _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); + assert(LOI && "This should be preallocated by the runtime"); + + // Allocate a new LibgccObject to represent this frame. Deallocation of this + // object may be impossible: since darwin code in libgcc was written after + // the ability to dynamically register frames, things may crash if we + // deallocate it. + struct LibgccObject* ob = (struct LibgccObject*) + malloc(sizeof(struct LibgccObject)); + + // Do like libgcc for the values of the field. + ob->unused1 = (void *)-1; + ob->unused2 = 0; + ob->unused3 = 0; + ob->frame = FrameBegin; + ob->encoding.i = 0; + ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit; + + // Put the info on both places, as libgcc uses the first or the second + // field. Note that we rely on having two pointers here. If fde_end was a + // char, things would get complicated. + ob->fde_end = (char*)LOI->unseenObjects; + ob->next = LOI->unseenObjects; + + // Update the key's unseenObjects list. + LOI->unseenObjects = ob; + + // Finally update the "key". Apparently, libgcc requires it. + _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, + LOI); + +} + +} +#endif // __APPLE__ +#endif // HAVE_EHTABLE_SUPPORT + +/// createJIT - This is the factory method for creating a JIT for the current +/// machine, it does not fall back to the interpreter. This takes ownership +/// of the module. +ExecutionEngine *JIT::createJIT(Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel, + bool GVsWithCode, + TargetMachine *TM) { + // Try to register the program as a source of symbols to resolve against. + // + // FIXME: Don't do this here. + sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); + + // If the target supports JIT code generation, create the JIT. + if (TargetJITInfo *TJ = TM->getJITInfo()) { + return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode); + } else { + if (ErrorStr) + *ErrorStr = "target does not support JIT code generation"; + return 0; + } +} + +namespace { +/// This class supports the global getPointerToNamedFunction(), which allows +/// bugpoint or gdb users to search for a function by name without any context. +class JitPool { + SmallPtrSet<JIT*, 1> JITs; // Optimize for process containing just 1 JIT. + mutable sys::Mutex Lock; +public: + void Add(JIT *jit) { + MutexGuard guard(Lock); + JITs.insert(jit); + } + void Remove(JIT *jit) { + MutexGuard guard(Lock); + JITs.erase(jit); + } + void *getPointerToNamedFunction(const char *Name) const { + MutexGuard guard(Lock); + assert(JITs.size() != 0 && "No Jit registered"); + //search function in every instance of JIT + for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(), + end = JITs.end(); + Jit != end; ++Jit) { + if (Function *F = (*Jit)->FindFunctionNamed(Name)) + return (*Jit)->getPointerToFunction(F); + } + // The function is not available : fallback on the first created (will + // search in symbol of the current program/library) + return (*JITs.begin())->getPointerToNamedFunction(Name); + } +}; +ManagedStatic<JitPool> AllJits; +} +extern "C" { + // getPointerToNamedFunction - This function is used as a global wrapper to + // JIT::getPointerToNamedFunction for the purpose of resolving symbols when + // bugpoint is debugging the JIT. In that scenario, we are loading an .so and + // need to resolve function(s) that are being mis-codegenerated, so we need to + // resolve their addresses at runtime, and this is the way to do it. + void *getPointerToNamedFunction(const char *Name) { + return AllJits->getPointerToNamedFunction(Name); + } +} + +JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji, + JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode) + : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode), + isAlreadyCodeGenerating(false) { + setTargetData(TM.getTargetData()); + + jitstate = new JITState(M); + + // Initialize JCE + JCE = createEmitter(*this, JMM, TM); + + // Register in global list of all JITs. + AllJits->Add(this); + + // Add target data + MutexGuard locked(lock); + FunctionPassManager &PM = jitstate->getPM(locked); + PM.add(new TargetData(*TM.getTargetData())); + + // Turn the machine code intermediate representation into bytes in memory that + // may be executed. + if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) { + report_fatal_error("Target does not support machine code emission!"); + } + + // Register routine for informing unwinding runtime about new EH frames +#if HAVE_EHTABLE_SUPPORT +#if USE_KEYMGR + struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) + _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); + + // The key is created on demand, and libgcc creates it the first time an + // exception occurs. Since we need the key to register frames, we create + // it now. + if (!LOI) + LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1); + _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI); + InstallExceptionTableRegister(DarwinRegisterFrame); + // Not sure about how to deregister on Darwin. +#else + InstallExceptionTableRegister(__register_frame); + InstallExceptionTableDeregister(__deregister_frame); +#endif // __APPLE__ +#endif // HAVE_EHTABLE_SUPPORT + + // Initialize passes. + PM.doInitialization(); +} + +JIT::~JIT() { + // Unregister all exception tables registered by this JIT. + DeregisterAllTables(); + // Cleanup. + AllJits->Remove(this); + delete jitstate; + delete JCE; + delete &TM; +} + +/// addModule - Add a new Module to the JIT. If we previously removed the last +/// Module, we need re-initialize jitstate with a valid Module. +void JIT::addModule(Module *M) { + MutexGuard locked(lock); + + if (Modules.empty()) { + assert(!jitstate && "jitstate should be NULL if Modules vector is empty!"); + + jitstate = new JITState(M); + + FunctionPassManager &PM = jitstate->getPM(locked); + PM.add(new TargetData(*TM.getTargetData())); + + // Turn the machine code intermediate representation into bytes in memory + // that may be executed. + if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { + report_fatal_error("Target does not support machine code emission!"); + } + + // Initialize passes. + PM.doInitialization(); + } + + ExecutionEngine::addModule(M); +} + +/// removeModule - If we are removing the last Module, invalidate the jitstate +/// since the PassManager it contains references a released Module. +bool JIT::removeModule(Module *M) { + bool result = ExecutionEngine::removeModule(M); + + MutexGuard locked(lock); + + if (jitstate->getModule() == M) { + delete jitstate; + jitstate = 0; + } + + if (!jitstate && !Modules.empty()) { + jitstate = new JITState(Modules[0]); + + FunctionPassManager &PM = jitstate->getPM(locked); + PM.add(new TargetData(*TM.getTargetData())); + + // Turn the machine code intermediate representation into bytes in memory + // that may be executed. + if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) { + report_fatal_error("Target does not support machine code emission!"); + } + + // Initialize passes. + PM.doInitialization(); + } + return result; +} + +/// run - Start execution with the specified function and arguments. +/// +GenericValue JIT::runFunction(Function *F, + const std::vector<GenericValue> &ArgValues) { + assert(F && "Function *F was null at entry to run()"); + + void *FPtr = getPointerToFunction(F); + assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); + FunctionType *FTy = F->getFunctionType(); + Type *RetTy = FTy->getReturnType(); + + assert((FTy->getNumParams() == ArgValues.size() || + (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && + "Wrong number of arguments passed into function!"); + assert(FTy->getNumParams() == ArgValues.size() && + "This doesn't support passing arguments through varargs (yet)!"); + + // Handle some common cases first. These cases correspond to common `main' + // prototypes. + if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) { + switch (ArgValues.size()) { + case 3: + if (FTy->getParamType(0)->isIntegerTy(32) && + FTy->getParamType(1)->isPointerTy() && + FTy->getParamType(2)->isPointerTy()) { + int (*PF)(int, char **, const char **) = + (int(*)(int, char **, const char **))(intptr_t)FPtr; + + // Call the function. + GenericValue rv; + rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), + (char **)GVTOP(ArgValues[1]), + (const char **)GVTOP(ArgValues[2]))); + return rv; + } + break; + case 2: + if (FTy->getParamType(0)->isIntegerTy(32) && + FTy->getParamType(1)->isPointerTy()) { + int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; + + // Call the function. + GenericValue rv; + rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), + (char **)GVTOP(ArgValues[1]))); + return rv; + } + break; + case 1: + if (FTy->getNumParams() == 1 && + FTy->getParamType(0)->isIntegerTy(32)) { + GenericValue rv; + int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; + rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); + return rv; + } + break; + } + } + + // Handle cases where no arguments are passed first. + if (ArgValues.empty()) { + GenericValue rv; + switch (RetTy->getTypeID()) { + default: llvm_unreachable("Unknown return type for function call!"); + case Type::IntegerTyID: { + unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); + if (BitWidth == 1) + rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 8) + rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 16) + rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 32) + rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); + else if (BitWidth <= 64) + rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); + else + llvm_unreachable("Integer types > 64 bits not supported"); + return rv; + } + case Type::VoidTyID: + rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); + return rv; + case Type::FloatTyID: + rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); + return rv; + case Type::DoubleTyID: + rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); + return rv; + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + llvm_unreachable("long double not supported yet"); + return rv; + case Type::PointerTyID: + return PTOGV(((void*(*)())(intptr_t)FPtr)()); + } + } + + // Okay, this is not one of our quick and easy cases. Because we don't have a + // full FFI, we have to codegen a nullary stub function that just calls the + // function we are interested in, passing in constants for all of the + // arguments. Make this function and return. + + // First, create the function. + FunctionType *STy=FunctionType::get(RetTy, false); + Function *Stub = Function::Create(STy, Function::InternalLinkage, "", + F->getParent()); + + // Insert a basic block. + BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub); + + // Convert all of the GenericValue arguments over to constants. Note that we + // currently don't support varargs. + SmallVector<Value*, 8> Args; + for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { + Constant *C = 0; + Type *ArgTy = FTy->getParamType(i); + const GenericValue &AV = ArgValues[i]; + switch (ArgTy->getTypeID()) { + default: llvm_unreachable("Unknown argument type for function call!"); + case Type::IntegerTyID: + C = ConstantInt::get(F->getContext(), AV.IntVal); + break; + case Type::FloatTyID: + C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal)); + break; + case Type::DoubleTyID: + C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal)); + break; + case Type::PPC_FP128TyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal)); + break; + case Type::PointerTyID: + void *ArgPtr = GVTOP(AV); + if (sizeof(void*) == 4) + C = ConstantInt::get(Type::getInt32Ty(F->getContext()), + (int)(intptr_t)ArgPtr); + else + C = ConstantInt::get(Type::getInt64Ty(F->getContext()), + (intptr_t)ArgPtr); + // Cast the integer to pointer + C = ConstantExpr::getIntToPtr(C, ArgTy); + break; + } + Args.push_back(C); + } + + CallInst *TheCall = CallInst::Create(F, Args, "", StubBB); + TheCall->setCallingConv(F->getCallingConv()); + TheCall->setTailCall(); + if (!TheCall->getType()->isVoidTy()) + // Return result of the call. + ReturnInst::Create(F->getContext(), TheCall, StubBB); + else + ReturnInst::Create(F->getContext(), StubBB); // Just return void. + + // Finally, call our nullary stub function. + GenericValue Result = runFunction(Stub, std::vector<GenericValue>()); + // Erase it, since no other function can have a reference to it. + Stub->eraseFromParent(); + // And return the result. + return Result; +} + +void JIT::RegisterJITEventListener(JITEventListener *L) { + if (L == NULL) + return; + MutexGuard locked(lock); + EventListeners.push_back(L); +} +void JIT::UnregisterJITEventListener(JITEventListener *L) { + if (L == NULL) + return; + MutexGuard locked(lock); + std::vector<JITEventListener*>::reverse_iterator I= + std::find(EventListeners.rbegin(), EventListeners.rend(), L); + if (I != EventListeners.rend()) { + std::swap(*I, EventListeners.back()); + EventListeners.pop_back(); + } +} +void JIT::NotifyFunctionEmitted( + const Function &F, + void *Code, size_t Size, + const JITEvent_EmittedFunctionDetails &Details) { + MutexGuard locked(lock); + for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { + EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details); + } +} + +void JIT::NotifyFreeingMachineCode(void *OldPtr) { + MutexGuard locked(lock); + for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { + EventListeners[I]->NotifyFreeingMachineCode(OldPtr); + } +} + +/// runJITOnFunction - Run the FunctionPassManager full of +/// just-in-time compilation passes on F, hopefully filling in +/// GlobalAddress[F] with the address of F's machine code. +/// +void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { + MutexGuard locked(lock); + + class MCIListener : public JITEventListener { + MachineCodeInfo *const MCI; + public: + MCIListener(MachineCodeInfo *mci) : MCI(mci) {} + virtual void NotifyFunctionEmitted(const Function &, + void *Code, size_t Size, + const EmittedFunctionDetails &) { + MCI->setAddress(Code); + MCI->setSize(Size); + } + }; + MCIListener MCIL(MCI); + if (MCI) + RegisterJITEventListener(&MCIL); + + runJITOnFunctionUnlocked(F, locked); + + if (MCI) + UnregisterJITEventListener(&MCIL); +} + +void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) { + assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); + + jitTheFunction(F, locked); + + // If the function referred to another function that had not yet been + // read from bitcode, and we are jitting non-lazily, emit it now. + while (!jitstate->getPendingFunctions(locked).empty()) { + Function *PF = jitstate->getPendingFunctions(locked).back(); + jitstate->getPendingFunctions(locked).pop_back(); + + assert(!PF->hasAvailableExternallyLinkage() && + "Externally-defined function should not be in pending list."); + + jitTheFunction(PF, locked); + + // Now that the function has been jitted, ask the JITEmitter to rewrite + // the stub with real address of the function. + updateFunctionStub(PF); + } +} + +void JIT::jitTheFunction(Function *F, const MutexGuard &locked) { + isAlreadyCodeGenerating = true; + jitstate->getPM(locked).run(*F); + isAlreadyCodeGenerating = false; + + // clear basic block addresses after this function is done + getBasicBlockAddressMap(locked).clear(); +} + +/// getPointerToFunction - This method is used to get the address of the +/// specified function, compiling it if necessary. +/// +void *JIT::getPointerToFunction(Function *F) { + + if (void *Addr = getPointerToGlobalIfAvailable(F)) + return Addr; // Check if function already code gen'd + + MutexGuard locked(lock); + + // Now that this thread owns the lock, make sure we read in the function if it + // exists in this Module. + std::string ErrorMsg; + if (F->Materialize(&ErrorMsg)) { + report_fatal_error("Error reading function '" + F->getName()+ + "' from bitcode file: " + ErrorMsg); + } + + // ... and check if another thread has already code gen'd the function. + if (void *Addr = getPointerToGlobalIfAvailable(F)) + return Addr; + + if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { + bool AbortOnFailure = !F->hasExternalWeakLinkage(); + void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); + addGlobalMapping(F, Addr); + return Addr; + } + + runJITOnFunctionUnlocked(F, locked); + + void *Addr = getPointerToGlobalIfAvailable(F); + assert(Addr && "Code generation didn't add function to GlobalAddress table!"); + return Addr; +} + +void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) { + MutexGuard locked(lock); + + BasicBlockAddressMapTy::iterator I = + getBasicBlockAddressMap(locked).find(BB); + if (I == getBasicBlockAddressMap(locked).end()) { + getBasicBlockAddressMap(locked)[BB] = Addr; + } else { + // ignore repeats: some BBs can be split into few MBBs? + } +} + +void JIT::clearPointerToBasicBlock(const BasicBlock *BB) { + MutexGuard locked(lock); + getBasicBlockAddressMap(locked).erase(BB); +} + +void *JIT::getPointerToBasicBlock(BasicBlock *BB) { + // make sure it's function is compiled by JIT + (void)getPointerToFunction(BB->getParent()); + + // resolve basic block address + MutexGuard locked(lock); + + BasicBlockAddressMapTy::iterator I = + getBasicBlockAddressMap(locked).find(BB); + if (I != getBasicBlockAddressMap(locked).end()) { + return I->second; + } else { + assert(0 && "JIT does not have BB address for address-of-label, was" + " it eliminated by optimizer?"); + return 0; + } +} + +/// getOrEmitGlobalVariable - Return the address of the specified global +/// variable, possibly emitting it to memory if needed. This is used by the +/// Emitter. +void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { + MutexGuard locked(lock); + + void *Ptr = getPointerToGlobalIfAvailable(GV); + if (Ptr) return Ptr; + + // If the global is external, just remember the address. + if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) { +#if HAVE___DSO_HANDLE + if (GV->getName() == "__dso_handle") + return (void*)&__dso_handle; +#endif + Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName()); + if (Ptr == 0) { + report_fatal_error("Could not resolve external global address: " + +GV->getName()); + } + addGlobalMapping(GV, Ptr); + } else { + // If the global hasn't been emitted to memory yet, allocate space and + // emit it into memory. + Ptr = getMemoryForGV(GV); + addGlobalMapping(GV, Ptr); + EmitGlobalVariable(GV); // Initialize the variable. + } + return Ptr; +} + +/// recompileAndRelinkFunction - This method is used to force a function +/// which has already been compiled, to be compiled again, possibly +/// after it has been modified. Then the entry to the old copy is overwritten +/// with a branch to the new copy. If there was no old copy, this acts +/// just like JIT::getPointerToFunction(). +/// +void *JIT::recompileAndRelinkFunction(Function *F) { + void *OldAddr = getPointerToGlobalIfAvailable(F); + + // If it's not already compiled there is no reason to patch it up. + if (OldAddr == 0) { return getPointerToFunction(F); } + + // Delete the old function mapping. + addGlobalMapping(F, 0); + + // Recodegen the function + runJITOnFunction(F); + + // Update state, forward the old function to the new function. + void *Addr = getPointerToGlobalIfAvailable(F); + assert(Addr && "Code generation didn't add function to GlobalAddress table!"); + TJI.replaceMachineCodeForFunction(OldAddr, Addr); + return Addr; +} + +/// getMemoryForGV - This method abstracts memory allocation of global +/// variable so that the JIT can allocate thread local variables depending +/// on the target. +/// +char* JIT::getMemoryForGV(const GlobalVariable* GV) { + char *Ptr; + + // GlobalVariable's which are not "constant" will cause trouble in a server + // situation. It's returned in the same block of memory as code which may + // not be writable. + if (isGVCompilationDisabled() && !GV->isConstant()) { + report_fatal_error("Compilation of non-internal GlobalValue is disabled!"); + } + + // Some applications require globals and code to live together, so they may + // be allocated into the same buffer, but in general globals are allocated + // through the memory manager which puts them near the code but not in the + // same buffer. + Type *GlobalType = GV->getType()->getElementType(); + size_t S = getTargetData()->getTypeAllocSize(GlobalType); + size_t A = getTargetData()->getPreferredAlignment(GV); + if (GV->isThreadLocal()) { + MutexGuard locked(lock); + Ptr = TJI.allocateThreadLocalMemory(S); + } else if (TJI.allocateSeparateGVMemory()) { + if (A <= 8) { + Ptr = (char*)malloc(S); + } else { + // Allocate S+A bytes of memory, then use an aligned pointer within that + // space. + Ptr = (char*)malloc(S+A); + unsigned MisAligned = ((intptr_t)Ptr & (A-1)); + Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0); + } + } else if (AllocateGVsWithCode) { + Ptr = (char*)JCE->allocateSpace(S, A); + } else { + Ptr = (char*)JCE->allocateGlobal(S, A); + } + return Ptr; +} + +void JIT::addPendingFunction(Function *F) { + MutexGuard locked(lock); + jitstate->getPendingFunctions(locked).push_back(F); +} + + +JITEventListener::~JITEventListener() {} diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h new file mode 100644 index 0000000..92dcb0e --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JIT.h @@ -0,0 +1,227 @@ +//===-- JIT.h - Class definition for the JIT --------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the top-level JIT data structure. +// +//===----------------------------------------------------------------------===// + +#ifndef JIT_H +#define JIT_H + +#include "llvm/ExecutionEngine/ExecutionEngine.h" +#include "llvm/PassManager.h" +#include "llvm/Support/ValueHandle.h" + +namespace llvm { + +class Function; +struct JITEvent_EmittedFunctionDetails; +class MachineCodeEmitter; +class MachineCodeInfo; +class TargetJITInfo; +class TargetMachine; + +class JITState { +private: + FunctionPassManager PM; // Passes to compile a function + Module *M; // Module used to create the PM + + /// PendingFunctions - Functions which have not been code generated yet, but + /// were called from a function being code generated. + std::vector<AssertingVH<Function> > PendingFunctions; + +public: + explicit JITState(Module *M) : PM(M), M(M) {} + + FunctionPassManager &getPM(const MutexGuard &L) { + return PM; + } + + Module *getModule() const { return M; } + std::vector<AssertingVH<Function> > &getPendingFunctions(const MutexGuard &L){ + return PendingFunctions; + } +}; + + +class JIT : public ExecutionEngine { + /// types + typedef ValueMap<const BasicBlock *, void *> + BasicBlockAddressMapTy; + /// data + TargetMachine &TM; // The current target we are compiling to + TargetJITInfo &TJI; // The JITInfo for the target we are compiling to + JITCodeEmitter *JCE; // JCE object + std::vector<JITEventListener*> EventListeners; + + /// AllocateGVsWithCode - Some applications require that global variables and + /// code be allocated into the same region of memory, in which case this flag + /// should be set to true. Doing so breaks freeMachineCodeForFunction. + bool AllocateGVsWithCode; + + /// True while the JIT is generating code. Used to assert against recursive + /// entry. + bool isAlreadyCodeGenerating; + + JITState *jitstate; + + /// BasicBlockAddressMap - A mapping between LLVM basic blocks and their + /// actualized version, only filled for basic blocks that have their address + /// taken. + BasicBlockAddressMapTy BasicBlockAddressMap; + + + JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji, + JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, + bool AllocateGVsWithCode); +public: + ~JIT(); + + static void Register() { + JITCtor = createJIT; + } + + /// getJITInfo - Return the target JIT information structure. + /// + TargetJITInfo &getJITInfo() const { return TJI; } + + /// create - Create an return a new JIT compiler if there is one available + /// for the current target. Otherwise, return null. + /// + static ExecutionEngine *create(Module *M, + std::string *Err, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel = + CodeGenOpt::Default, + bool GVsWithCode = true, + Reloc::Model RM = Reloc::Default, + CodeModel::Model CMM = CodeModel::JITDefault) { + return ExecutionEngine::createJIT(M, Err, JMM, OptLevel, GVsWithCode, + RM, CMM); + } + + virtual void addModule(Module *M); + + /// removeModule - Remove a Module from the list of modules. Returns true if + /// M is found. + virtual bool removeModule(Module *M); + + /// runFunction - Start execution with the specified function and arguments. + /// + virtual GenericValue runFunction(Function *F, + const std::vector<GenericValue> &ArgValues); + + /// getPointerToNamedFunction - This method returns the address of the + /// specified function by using the dlsym function call. As such it is only + /// useful for resolving library symbols, not code generated symbols. + /// + /// If AbortOnFailure is false and no function with the given name is + /// found, this function silently returns a null pointer. Otherwise, + /// it prints a message to stderr and aborts. + /// + void *getPointerToNamedFunction(const std::string &Name, + bool AbortOnFailure = true); + + // CompilationCallback - Invoked the first time that a call site is found, + // which causes lazy compilation of the target function. + // + static void CompilationCallback(); + + /// getPointerToFunction - This returns the address of the specified function, + /// compiling it if necessary. + /// + void *getPointerToFunction(Function *F); + + /// addPointerToBasicBlock - Adds address of the specific basic block. + void addPointerToBasicBlock(const BasicBlock *BB, void *Addr); + + /// clearPointerToBasicBlock - Removes address of specific basic block. + void clearPointerToBasicBlock(const BasicBlock *BB); + + /// getPointerToBasicBlock - This returns the address of the specified basic + /// block, assuming function is compiled. + void *getPointerToBasicBlock(BasicBlock *BB); + + /// getOrEmitGlobalVariable - Return the address of the specified global + /// variable, possibly emitting it to memory if needed. This is used by the + /// Emitter. + void *getOrEmitGlobalVariable(const GlobalVariable *GV); + + /// getPointerToFunctionOrStub - If the specified function has been + /// code-gen'd, return a pointer to the function. If not, compile it, or use + /// a stub to implement lazy compilation if available. + /// + void *getPointerToFunctionOrStub(Function *F); + + /// recompileAndRelinkFunction - This method is used to force a function + /// which has already been compiled, to be compiled again, possibly + /// after it has been modified. Then the entry to the old copy is overwritten + /// with a branch to the new copy. If there was no old copy, this acts + /// just like JIT::getPointerToFunction(). + /// + void *recompileAndRelinkFunction(Function *F); + + /// freeMachineCodeForFunction - deallocate memory used to code-generate this + /// Function. + /// + void freeMachineCodeForFunction(Function *F); + + /// addPendingFunction - while jitting non-lazily, a called but non-codegen'd + /// function was encountered. Add it to a pending list to be processed after + /// the current function. + /// + void addPendingFunction(Function *F); + + /// getCodeEmitter - Return the code emitter this JIT is emitting into. + /// + JITCodeEmitter *getCodeEmitter() const { return JCE; } + + static ExecutionEngine *createJIT(Module *M, + std::string *ErrorStr, + JITMemoryManager *JMM, + CodeGenOpt::Level OptLevel, + bool GVsWithCode, + TargetMachine *TM); + + // Run the JIT on F and return information about the generated code + void runJITOnFunction(Function *F, MachineCodeInfo *MCI = 0); + + virtual void RegisterJITEventListener(JITEventListener *L); + virtual void UnregisterJITEventListener(JITEventListener *L); + /// These functions correspond to the methods on JITEventListener. They + /// iterate over the registered listeners and call the corresponding method on + /// each. + void NotifyFunctionEmitted( + const Function &F, void *Code, size_t Size, + const JITEvent_EmittedFunctionDetails &Details); + void NotifyFreeingMachineCode(void *OldPtr); + + BasicBlockAddressMapTy & + getBasicBlockAddressMap(const MutexGuard &) { + return BasicBlockAddressMap; + } + + +private: + static JITCodeEmitter *createEmitter(JIT &J, JITMemoryManager *JMM, + TargetMachine &tm); + void runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked); + void updateFunctionStub(Function *F); + void jitTheFunction(Function *F, const MutexGuard &locked); + +protected: + + /// getMemoryforGV - Allocate memory for a global variable. + virtual char* getMemoryForGV(const GlobalVariable* GV); + +}; + +} // End llvm namespace + +#endif diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp new file mode 100644 index 0000000..e71c20b --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.cpp @@ -0,0 +1,211 @@ +//===-- JITDebugRegisterer.cpp - Register debug symbols for JIT -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a JITDebugRegisterer object that is used by the JIT to +// register debug info with debuggers like GDB. +// +//===----------------------------------------------------------------------===// + +#include "JITDebugRegisterer.h" +#include "../../CodeGen/ELF.h" +#include "../../CodeGen/ELFWriter.h" +#include "llvm/LLVMContext.h" +#include "llvm/Function.h" +#include "llvm/Module.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/MutexGuard.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Mutex.h" +#include <string> + +namespace llvm { + +// This must be kept in sync with gdb/gdb/jit.h . +extern "C" { + + // Debuggers puts a breakpoint in this function. + LLVM_ATTRIBUTE_NOINLINE void __jit_debug_register_code() { } + + // We put information about the JITed function in this global, which the + // debugger reads. Make sure to specify the version statically, because the + // debugger checks the version before we can set it during runtime. + struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; + +} + +namespace { + + /// JITDebugLock - Used to serialize all code registration events, since they + /// modify global variables. + sys::Mutex JITDebugLock; + +} + +JITDebugRegisterer::JITDebugRegisterer(TargetMachine &tm) : TM(tm), FnMap() { } + +JITDebugRegisterer::~JITDebugRegisterer() { + // Free all ELF memory. + for (RegisteredFunctionsMap::iterator I = FnMap.begin(), E = FnMap.end(); + I != E; ++I) { + // Call the private method that doesn't update the map so our iterator + // doesn't break. + UnregisterFunctionInternal(I); + } + FnMap.clear(); +} + +std::string JITDebugRegisterer::MakeELF(const Function *F, DebugInfo &I) { + // Stack allocate an empty module with an empty LLVMContext for the ELFWriter + // API. We don't use the real module because then the ELFWriter would write + // out unnecessary GlobalValues during finalization. + LLVMContext Context; + Module M("", Context); + + // Make a buffer for the ELF in memory. + std::string Buffer; + raw_string_ostream O(Buffer); + ELFWriter EW(O, TM); + EW.doInitialization(M); + + // Copy the binary into the .text section. This isn't necessary, but it's + // useful to be able to disassemble the ELF by hand. + ELFSection &Text = EW.getTextSection(const_cast<Function *>(F)); + Text.Addr = (uint64_t)I.FnStart; + // TODO: We could eliminate this copy if we somehow used a pointer/size pair + // instead of a vector. + Text.getData().assign(I.FnStart, I.FnEnd); + + // Copy the exception handling call frame information into the .eh_frame + // section. This allows GDB to get a good stack trace, particularly on + // linux x86_64. Mark this as a PROGBITS section that needs to be loaded + // into memory at runtime. + ELFSection &EH = EW.getSection(".eh_frame", ELF::SHT_PROGBITS, + ELF::SHF_ALLOC); + // Pointers in the DWARF EH info are all relative to the EH frame start, + // which is stored here. + EH.Addr = (uint64_t)I.EhStart; + // TODO: We could eliminate this copy if we somehow used a pointer/size pair + // instead of a vector. + EH.getData().assign(I.EhStart, I.EhEnd); + + // Add this single function to the symbol table, so the debugger prints the + // name instead of '???'. We give the symbol default global visibility. + ELFSym *FnSym = ELFSym::getGV(F, + ELF::STB_GLOBAL, + ELF::STT_FUNC, + ELF::STV_DEFAULT); + FnSym->SectionIdx = Text.SectionIdx; + FnSym->Size = I.FnEnd - I.FnStart; + FnSym->Value = 0; // Offset from start of section. + EW.SymbolList.push_back(FnSym); + + EW.doFinalization(M); + O.flush(); + + // When trying to debug why GDB isn't getting the debug info right, it's + // awfully helpful to write the object file to disk so that it can be + // inspected with readelf and objdump. + if (JITEmitDebugInfoToDisk) { + std::string Filename; + raw_string_ostream O2(Filename); + O2 << "/tmp/llvm_function_" << I.FnStart << "_" << F->getNameStr() << ".o"; + O2.flush(); + std::string Errors; + raw_fd_ostream O3(Filename.c_str(), Errors); + O3 << Buffer; + O3.close(); + } + + return Buffer; +} + +void JITDebugRegisterer::RegisterFunction(const Function *F, DebugInfo &I) { + // TODO: Support non-ELF platforms. + if (!TM.getELFWriterInfo()) + return; + + std::string Buffer = MakeELF(F, I); + + jit_code_entry *JITCodeEntry = new jit_code_entry(); + JITCodeEntry->symfile_addr = Buffer.c_str(); + JITCodeEntry->symfile_size = Buffer.size(); + + // Add a mapping from F to the entry and buffer, so we can delete this + // info later. + FnMap[F] = std::make_pair(Buffer, JITCodeEntry); + + // Acquire the lock and do the registration. + { + MutexGuard locked(JITDebugLock); + __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; + + // Insert this entry at the head of the list. + JITCodeEntry->prev_entry = NULL; + jit_code_entry *NextEntry = __jit_debug_descriptor.first_entry; + JITCodeEntry->next_entry = NextEntry; + if (NextEntry != NULL) { + NextEntry->prev_entry = JITCodeEntry; + } + __jit_debug_descriptor.first_entry = JITCodeEntry; + __jit_debug_descriptor.relevant_entry = JITCodeEntry; + __jit_debug_register_code(); + } +} + +void JITDebugRegisterer::UnregisterFunctionInternal( + RegisteredFunctionsMap::iterator I) { + jit_code_entry *&JITCodeEntry = I->second.second; + + // Acquire the lock and do the unregistration. + { + MutexGuard locked(JITDebugLock); + __jit_debug_descriptor.action_flag = JIT_UNREGISTER_FN; + + // Remove the jit_code_entry from the linked list. + jit_code_entry *PrevEntry = JITCodeEntry->prev_entry; + jit_code_entry *NextEntry = JITCodeEntry->next_entry; + if (NextEntry) { + NextEntry->prev_entry = PrevEntry; + } + if (PrevEntry) { + PrevEntry->next_entry = NextEntry; + } else { + assert(__jit_debug_descriptor.first_entry == JITCodeEntry); + __jit_debug_descriptor.first_entry = NextEntry; + } + + // Tell GDB which entry we removed, and unregister the code. + __jit_debug_descriptor.relevant_entry = JITCodeEntry; + __jit_debug_register_code(); + } + + delete JITCodeEntry; + JITCodeEntry = NULL; + + // Free the ELF file in memory. + std::string &Buffer = I->second.first; + Buffer.clear(); +} + +void JITDebugRegisterer::UnregisterFunction(const Function *F) { + // TODO: Support non-ELF platforms. + if (!TM.getELFWriterInfo()) + return; + + RegisteredFunctionsMap::iterator I = FnMap.find(F); + if (I == FnMap.end()) return; + UnregisterFunctionInternal(I); + FnMap.erase(I); +} + +} // end namespace llvm diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.h b/contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.h new file mode 100644 index 0000000..dce506b --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDebugRegisterer.h @@ -0,0 +1,116 @@ +//===-- JITDebugRegisterer.h - Register debug symbols for JIT -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a JITDebugRegisterer object that is used by the JIT to +// register debug info with debuggers like GDB. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_EXECUTION_ENGINE_JIT_DEBUGREGISTERER_H +#define LLVM_EXECUTION_ENGINE_JIT_DEBUGREGISTERER_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/Support/DataTypes.h" +#include <string> + +// This must be kept in sync with gdb/gdb/jit.h . +extern "C" { + + typedef enum { + JIT_NOACTION = 0, + JIT_REGISTER_FN, + JIT_UNREGISTER_FN + } jit_actions_t; + + struct jit_code_entry { + struct jit_code_entry *next_entry; + struct jit_code_entry *prev_entry; + const char *symfile_addr; + uint64_t symfile_size; + }; + + struct jit_descriptor { + uint32_t version; + // This should be jit_actions_t, but we want to be specific about the + // bit-width. + uint32_t action_flag; + struct jit_code_entry *relevant_entry; + struct jit_code_entry *first_entry; + }; + +} + +namespace llvm { + +class ELFSection; +class Function; +class TargetMachine; + + +/// This class encapsulates information we want to send to the debugger. +/// +struct DebugInfo { + uint8_t *FnStart; + uint8_t *FnEnd; + uint8_t *EhStart; + uint8_t *EhEnd; + + DebugInfo() : FnStart(0), FnEnd(0), EhStart(0), EhEnd(0) {} +}; + +typedef DenseMap< const Function*, std::pair<std::string, jit_code_entry*> > + RegisteredFunctionsMap; + +/// This class registers debug info for JITed code with an attached debugger. +/// Without proper debug info, GDB can't do things like source level debugging +/// or even produce a proper stack trace on linux-x86_64. To use this class, +/// whenever a function is JITed, create a DebugInfo struct and pass it to the +/// RegisterFunction method. The method will then do whatever is necessary to +/// inform the debugger about the JITed function. +class JITDebugRegisterer { + + TargetMachine &TM; + + /// FnMap - A map of functions that have been registered to the associated + /// temporary files. Used for cleanup. + RegisteredFunctionsMap FnMap; + + /// MakeELF - Builds the ELF file in memory and returns a std::string that + /// contains the ELF. + std::string MakeELF(const Function *F, DebugInfo &I); + +public: + JITDebugRegisterer(TargetMachine &tm); + + /// ~JITDebugRegisterer - Unregisters all code and frees symbol files. + /// + ~JITDebugRegisterer(); + + /// RegisterFunction - Register debug info for the given function with an + /// attached debugger. Clients must call UnregisterFunction on all + /// registered functions before deleting them to free the associated symbol + /// file and unregister it from the debugger. + void RegisterFunction(const Function *F, DebugInfo &I); + + /// UnregisterFunction - Unregister the debug info for the given function + /// from the debugger and free associated memory. + void UnregisterFunction(const Function *F); + +private: + /// UnregisterFunctionInternal - Unregister the debug info for the given + /// function from the debugger and delete any temporary files. The private + /// version of this method does not remove the function from FnMap so that it + /// can be called while iterating over FnMap. + void UnregisterFunctionInternal(RegisteredFunctionsMap::iterator I); + +}; + +} // end namespace llvm + +#endif // LLVM_EXECUTION_ENGINE_JIT_DEBUGREGISTERER_H diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp new file mode 100644 index 0000000..8f84ac7 --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp @@ -0,0 +1,596 @@ +//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a JITDwarfEmitter object that is used by the JIT to +// write dwarf tables to memory. +// +//===----------------------------------------------------------------------===// + +#include "JIT.h" +#include "JITDwarfEmitter.h" +#include "llvm/Function.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/ExecutionEngine/JITMemoryManager.h" +#include "llvm/MC/MachineLocation.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetFrameLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +using namespace llvm; + +JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {} + + +unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F, + JITCodeEmitter& jce, + unsigned char* StartFunction, + unsigned char* EndFunction, + unsigned char* &EHFramePtr) { + assert(MMI && "MachineModuleInfo not registered!"); + + const TargetMachine& TM = F.getTarget(); + TD = TM.getTargetData(); + stackGrowthDirection = TM.getFrameLowering()->getStackGrowthDirection(); + RI = TM.getRegisterInfo(); + MAI = TM.getMCAsmInfo(); + JCE = &jce; + + unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction, + EndFunction); + + unsigned char* Result = 0; + + const std::vector<const Function *> Personalities = MMI->getPersonalities(); + EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]); + + Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr, + StartFunction, EndFunction, ExceptionTable); + + return Result; +} + + +void +JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr, + const std::vector<MachineMove> &Moves) const { + unsigned PointerSize = TD->getPointerSize(); + int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ? + PointerSize : -PointerSize; + MCSymbol *BaseLabel = 0; + + for (unsigned i = 0, N = Moves.size(); i < N; ++i) { + const MachineMove &Move = Moves[i]; + MCSymbol *Label = Move.getLabel(); + + // Throw out move if the label is invalid. + if (Label && (*JCE->getLabelLocations())[Label] == 0) + continue; + + intptr_t LabelPtr = 0; + if (Label) LabelPtr = JCE->getLabelAddress(Label); + + const MachineLocation &Dst = Move.getDestination(); + const MachineLocation &Src = Move.getSource(); + + // Advance row if new location. + if (BaseLabelPtr && Label && BaseLabel != Label) { + JCE->emitByte(dwarf::DW_CFA_advance_loc4); + JCE->emitInt32(LabelPtr - BaseLabelPtr); + + BaseLabel = Label; + BaseLabelPtr = LabelPtr; + } + + // If advancing cfa. + if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { + if (!Src.isReg()) { + if (Src.getReg() == MachineLocation::VirtualFP) { + JCE->emitByte(dwarf::DW_CFA_def_cfa_offset); + } else { + JCE->emitByte(dwarf::DW_CFA_def_cfa); + JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true)); + } + + JCE->emitULEB128Bytes(-Src.getOffset()); + } else { + llvm_unreachable("Machine move not supported yet."); + } + } else if (Src.isReg() && + Src.getReg() == MachineLocation::VirtualFP) { + if (Dst.isReg()) { + JCE->emitByte(dwarf::DW_CFA_def_cfa_register); + JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true)); + } else { + llvm_unreachable("Machine move not supported yet."); + } + } else { + unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true); + int Offset = Dst.getOffset() / stackGrowth; + + if (Offset < 0) { + JCE->emitByte(dwarf::DW_CFA_offset_extended_sf); + JCE->emitULEB128Bytes(Reg); + JCE->emitSLEB128Bytes(Offset); + } else if (Reg < 64) { + JCE->emitByte(dwarf::DW_CFA_offset + Reg); + JCE->emitULEB128Bytes(Offset); + } else { + JCE->emitByte(dwarf::DW_CFA_offset_extended); + JCE->emitULEB128Bytes(Reg); + JCE->emitULEB128Bytes(Offset); + } + } + } +} + +/// SharedTypeIds - How many leading type ids two landing pads have in common. +static unsigned SharedTypeIds(const LandingPadInfo *L, + const LandingPadInfo *R) { + const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; + unsigned LSize = LIds.size(), RSize = RIds.size(); + unsigned MinSize = LSize < RSize ? LSize : RSize; + unsigned Count = 0; + + for (; Count != MinSize; ++Count) + if (LIds[Count] != RIds[Count]) + return Count; + + return Count; +} + + +/// PadLT - Order landing pads lexicographically by type id. +static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { + const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; + unsigned LSize = LIds.size(), RSize = RIds.size(); + unsigned MinSize = LSize < RSize ? LSize : RSize; + + for (unsigned i = 0; i != MinSize; ++i) + if (LIds[i] != RIds[i]) + return LIds[i] < RIds[i]; + + return LSize < RSize; +} + +namespace { + +/// ActionEntry - Structure describing an entry in the actions table. +struct ActionEntry { + int ValueForTypeID; // The value to write - may not be equal to the type id. + int NextAction; + struct ActionEntry *Previous; +}; + +/// PadRange - Structure holding a try-range and the associated landing pad. +struct PadRange { + // The index of the landing pad. + unsigned PadIndex; + // The index of the begin and end labels in the landing pad's label lists. + unsigned RangeIndex; +}; + +typedef DenseMap<MCSymbol*, PadRange> RangeMapType; + +/// CallSiteEntry - Structure describing an entry in the call-site table. +struct CallSiteEntry { + MCSymbol *BeginLabel; // zero indicates the start of the function. + MCSymbol *EndLabel; // zero indicates the end of the function. + MCSymbol *PadLabel; // zero indicates that there is no landing pad. + unsigned Action; +}; + +} + +unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, + unsigned char* StartFunction, + unsigned char* EndFunction) const { + assert(MMI && "MachineModuleInfo not registered!"); + + // Map all labels and get rid of any dead landing pads. + MMI->TidyLandingPads(JCE->getLabelLocations()); + + const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); + const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); + const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); + if (PadInfos.empty()) return 0; + + // Sort the landing pads in order of their type ids. This is used to fold + // duplicate actions. + SmallVector<const LandingPadInfo *, 64> LandingPads; + LandingPads.reserve(PadInfos.size()); + for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) + LandingPads.push_back(&PadInfos[i]); + std::sort(LandingPads.begin(), LandingPads.end(), PadLT); + + // Negative type ids index into FilterIds, positive type ids index into + // TypeInfos. The value written for a positive type id is just the type + // id itself. For a negative type id, however, the value written is the + // (negative) byte offset of the corresponding FilterIds entry. The byte + // offset is usually equal to the type id, because the FilterIds entries + // are written using a variable width encoding which outputs one byte per + // entry as long as the value written is not too large, but can differ. + // This kind of complication does not occur for positive type ids because + // type infos are output using a fixed width encoding. + // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. + SmallVector<int, 16> FilterOffsets; + FilterOffsets.reserve(FilterIds.size()); + int Offset = -1; + for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), + E = FilterIds.end(); I != E; ++I) { + FilterOffsets.push_back(Offset); + Offset -= MCAsmInfo::getULEB128Size(*I); + } + + // Compute the actions table and gather the first action index for each + // landing pad site. + SmallVector<ActionEntry, 32> Actions; + SmallVector<unsigned, 64> FirstActions; + FirstActions.reserve(LandingPads.size()); + + int FirstAction = 0; + unsigned SizeActions = 0; + for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { + const LandingPadInfo *LP = LandingPads[i]; + const std::vector<int> &TypeIds = LP->TypeIds; + const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; + unsigned SizeSiteActions = 0; + + if (NumShared < TypeIds.size()) { + unsigned SizeAction = 0; + ActionEntry *PrevAction = 0; + + if (NumShared) { + const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); + assert(Actions.size()); + PrevAction = &Actions.back(); + SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); + for (unsigned j = NumShared; j != SizePrevIds; ++j) { + SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); + SizeAction += -PrevAction->NextAction; + PrevAction = PrevAction->Previous; + } + } + + // Compute the actions. + for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { + int TypeID = TypeIds[I]; + assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); + int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; + unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); + + int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; + SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); + SizeSiteActions += SizeAction; + + ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; + Actions.push_back(Action); + + PrevAction = &Actions.back(); + } + + // Record the first action of the landing pad site. + FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; + } // else identical - re-use previous FirstAction + + FirstActions.push_back(FirstAction); + + // Compute this sites contribution to size. + SizeActions += SizeSiteActions; + } + + // Compute the call-site table. Entries must be ordered by address. + SmallVector<CallSiteEntry, 64> CallSites; + + RangeMapType PadMap; + for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { + const LandingPadInfo *LandingPad = LandingPads[i]; + for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { + MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; + assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); + PadRange P = { i, j }; + PadMap[BeginLabel] = P; + } + } + + bool MayThrow = false; + MCSymbol *LastLabel = 0; + for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); + I != E; ++I) { + for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); + MI != E; ++MI) { + if (!MI->isLabel()) { + MayThrow |= MI->getDesc().isCall(); + continue; + } + + MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); + assert(BeginLabel && "Invalid label!"); + + if (BeginLabel == LastLabel) + MayThrow = false; + + RangeMapType::iterator L = PadMap.find(BeginLabel); + + if (L == PadMap.end()) + continue; + + PadRange P = L->second; + const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; + + assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && + "Inconsistent landing pad map!"); + + // If some instruction between the previous try-range and this one may + // throw, create a call-site entry with no landing pad for the region + // between the try-ranges. + if (MayThrow) { + CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; + CallSites.push_back(Site); + } + + LastLabel = LandingPad->EndLabels[P.RangeIndex]; + CallSiteEntry Site = {BeginLabel, LastLabel, + LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; + + assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && + "Invalid landing pad!"); + + // Try to merge with the previous call-site. + if (CallSites.size()) { + CallSiteEntry &Prev = CallSites.back(); + if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { + // Extend the range of the previous entry. + Prev.EndLabel = Site.EndLabel; + continue; + } + } + + // Otherwise, create a new call-site. + CallSites.push_back(Site); + } + } + // If some instruction between the previous try-range and the end of the + // function may throw, create a call-site entry with no landing pad for the + // region following the try-range. + if (MayThrow) { + CallSiteEntry Site = {LastLabel, 0, 0, 0}; + CallSites.push_back(Site); + } + + // Final tallies. + unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. + sizeof(int32_t) + // Site length. + sizeof(int32_t)); // Landing pad. + for (unsigned i = 0, e = CallSites.size(); i < e; ++i) + SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); + + unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); + + unsigned TypeOffset = sizeof(int8_t) + // Call site format + // Call-site table length + MCAsmInfo::getULEB128Size(SizeSites) + + SizeSites + SizeActions + SizeTypes; + + // Begin the exception table. + JCE->emitAlignmentWithFill(4, 0); + // Asm->EOL("Padding"); + + unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); + + // Emit the header. + JCE->emitByte(dwarf::DW_EH_PE_omit); + // Asm->EOL("LPStart format (DW_EH_PE_omit)"); + JCE->emitByte(dwarf::DW_EH_PE_absptr); + // Asm->EOL("TType format (DW_EH_PE_absptr)"); + JCE->emitULEB128Bytes(TypeOffset); + // Asm->EOL("TType base offset"); + JCE->emitByte(dwarf::DW_EH_PE_udata4); + // Asm->EOL("Call site format (DW_EH_PE_udata4)"); + JCE->emitULEB128Bytes(SizeSites); + // Asm->EOL("Call-site table length"); + + // Emit the landing pad site information. + for (unsigned i = 0; i < CallSites.size(); ++i) { + CallSiteEntry &S = CallSites[i]; + intptr_t BeginLabelPtr = 0; + intptr_t EndLabelPtr = 0; + + if (!S.BeginLabel) { + BeginLabelPtr = (intptr_t)StartFunction; + JCE->emitInt32(0); + } else { + BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); + JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); + } + + // Asm->EOL("Region start"); + + if (!S.EndLabel) + EndLabelPtr = (intptr_t)EndFunction; + else + EndLabelPtr = JCE->getLabelAddress(S.EndLabel); + + JCE->emitInt32(EndLabelPtr - BeginLabelPtr); + //Asm->EOL("Region length"); + + if (!S.PadLabel) { + JCE->emitInt32(0); + } else { + unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); + JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); + } + // Asm->EOL("Landing pad"); + + JCE->emitULEB128Bytes(S.Action); + // Asm->EOL("Action"); + } + + // Emit the actions. + for (unsigned I = 0, N = Actions.size(); I != N; ++I) { + ActionEntry &Action = Actions[I]; + + JCE->emitSLEB128Bytes(Action.ValueForTypeID); + //Asm->EOL("TypeInfo index"); + JCE->emitSLEB128Bytes(Action.NextAction); + //Asm->EOL("Next action"); + } + + // Emit the type ids. + for (unsigned M = TypeInfos.size(); M; --M) { + const GlobalVariable *GV = TypeInfos[M - 1]; + + if (GV) { + if (TD->getPointerSize() == sizeof(int32_t)) + JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); + else + JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); + } else { + if (TD->getPointerSize() == sizeof(int32_t)) + JCE->emitInt32(0); + else + JCE->emitInt64(0); + } + // Asm->EOL("TypeInfo"); + } + + // Emit the filter typeids. + for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { + unsigned TypeID = FilterIds[j]; + JCE->emitULEB128Bytes(TypeID); + //Asm->EOL("Filter TypeInfo index"); + } + + JCE->emitAlignmentWithFill(4, 0); + + return DwarfExceptionTable; +} + +unsigned char* +JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const { + unsigned PointerSize = TD->getPointerSize(); + int stackGrowth = stackGrowthDirection == TargetFrameLowering::StackGrowsUp ? + PointerSize : -PointerSize; + + unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue(); + // EH Common Frame header + JCE->allocateSpace(4, 0); + unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); + JCE->emitInt32((int)0); + JCE->emitByte(dwarf::DW_CIE_VERSION); + JCE->emitString(Personality ? "zPLR" : "zR"); + JCE->emitULEB128Bytes(1); + JCE->emitSLEB128Bytes(stackGrowth); + JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true)); + + if (Personality) { + // Augmentation Size: 3 small ULEBs of one byte each, and the personality + // function which size is PointerSize. + JCE->emitULEB128Bytes(3 + PointerSize); + + // We set the encoding of the personality as direct encoding because we use + // the function pointer. The encoding is not relative because the current + // PC value may be bigger than the personality function pointer. + if (PointerSize == 4) { + JCE->emitByte(dwarf::DW_EH_PE_sdata4); + JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality))); + } else { + JCE->emitByte(dwarf::DW_EH_PE_sdata8); + JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality))); + } + + // LSDA encoding: This must match the encoding used in EmitEHFrame () + if (PointerSize == 4) + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); + else + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8); + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); + } else { + JCE->emitULEB128Bytes(1); + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); + } + + EmitFrameMoves(0, MAI->getInitialFrameState()); + + JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); + + JCE->emitInt32At((uintptr_t*)StartCommonPtr, + (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - + FrameCommonBeginPtr)); + + return StartCommonPtr; +} + + +unsigned char* +JITDwarfEmitter::EmitEHFrame(const Function* Personality, + unsigned char* StartCommonPtr, + unsigned char* StartFunction, + unsigned char* EndFunction, + unsigned char* ExceptionTable) const { + unsigned PointerSize = TD->getPointerSize(); + + // EH frame header. + unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue(); + JCE->allocateSpace(4, 0); + unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); + // FDE CIE Offset + JCE->emitInt32(FrameBeginPtr - StartCommonPtr); + JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue()); + JCE->emitInt32(EndFunction - StartFunction); + + // If there is a personality and landing pads then point to the language + // specific data area in the exception table. + if (Personality) { + JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8); + + if (PointerSize == 4) { + if (!MMI->getLandingPads().empty()) + JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); + else + JCE->emitInt32((int)0); + } else { + if (!MMI->getLandingPads().empty()) + JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); + else + JCE->emitInt64((int)0); + } + } else { + JCE->emitULEB128Bytes(0); + } + + // Indicate locations of function specific callee saved registers in + // frame. + EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves()); + + JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); + + // Indicate the size of the table + JCE->emitInt32At((uintptr_t*)StartEHPtr, + (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - + StartEHPtr)); + + // Double zeroes for the unwind runtime + if (PointerSize == 8) { + JCE->emitInt64(0); + JCE->emitInt64(0); + } else { + JCE->emitInt32(0); + JCE->emitInt32(0); + } + + return StartEHPtr; +} diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h new file mode 100644 index 0000000..8dc99ab --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.h @@ -0,0 +1,73 @@ +//===------ JITDwarfEmitter.h - Write dwarf tables into memory ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a JITDwarfEmitter object that is used by the JIT to +// write dwarf tables to memory. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H +#define LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H + +namespace llvm { + +class Function; +class JITCodeEmitter; +class MachineFunction; +class MachineModuleInfo; +class MachineMove; +class MCAsmInfo; +class TargetData; +class TargetMachine; +class TargetRegisterInfo; + +class JITDwarfEmitter { + const TargetData* TD; + JITCodeEmitter* JCE; + const TargetRegisterInfo* RI; + const MCAsmInfo *MAI; + MachineModuleInfo* MMI; + JIT& Jit; + bool stackGrowthDirection; + + unsigned char* EmitExceptionTable(MachineFunction* MF, + unsigned char* StartFunction, + unsigned char* EndFunction) const; + + void EmitFrameMoves(intptr_t BaseLabelPtr, + const std::vector<MachineMove> &Moves) const; + + unsigned char* EmitCommonEHFrame(const Function* Personality) const; + + unsigned char* EmitEHFrame(const Function* Personality, + unsigned char* StartBufferPtr, + unsigned char* StartFunction, + unsigned char* EndFunction, + unsigned char* ExceptionTable) const; + +public: + + JITDwarfEmitter(JIT& jit); + + unsigned char* EmitDwarfTable(MachineFunction& F, + JITCodeEmitter& JCE, + unsigned char* StartFunction, + unsigned char* EndFunction, + unsigned char* &EHFramePtr); + + + void setModuleInfo(MachineModuleInfo* Info) { + MMI = Info; + } +}; + + +} // end namespace llvm + +#endif // LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp new file mode 100644 index 0000000..24020ee --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITEmitter.cpp @@ -0,0 +1,1309 @@ +//===-- JITEmitter.cpp - Write machine code to executable memory ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a MachineCodeEmitter object that is used by the JIT to +// write machine code to memory and remember where relocatable values are. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "jit" +#include "JIT.h" +#include "JITDebugRegisterer.h" +#include "JITDwarfEmitter.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/Constants.h" +#include "llvm/Module.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineCodeInfo.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRelocation.h" +#include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/ExecutionEngine/JITEventListener.h" +#include "llvm/ExecutionEngine/JITMemoryManager.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetJITInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MutexGuard.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Disassembler.h" +#include "llvm/Support/Memory.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/ValueMap.h" +#include <algorithm> +#ifndef NDEBUG +#include <iomanip> +#endif +using namespace llvm; + +STATISTIC(NumBytes, "Number of bytes of machine code compiled"); +STATISTIC(NumRelos, "Number of relocations applied"); +STATISTIC(NumRetries, "Number of retries with more memory"); + + +// A declaration may stop being a declaration once it's fully read from bitcode. +// This function returns true if F is fully read and is still a declaration. +static bool isNonGhostDeclaration(const Function *F) { + return F->isDeclaration() && !F->isMaterializable(); +} + +//===----------------------------------------------------------------------===// +// JIT lazy compilation code. +// +namespace { + class JITEmitter; + class JITResolverState; + + template<typename ValueTy> + struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { + typedef JITResolverState *ExtraData; + static void onRAUW(JITResolverState *, Value *Old, Value *New) { + assert(false && "The JIT doesn't know how to handle a" + " RAUW on a value it has emitted."); + } + }; + + struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { + typedef JITResolverState *ExtraData; + static void onDelete(JITResolverState *JRS, Function *F); + }; + + class JITResolverState { + public: + typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > + FunctionToLazyStubMapTy; + typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; + typedef ValueMap<Function *, SmallPtrSet<void*, 1>, + CallSiteValueMapConfig> FunctionToCallSitesMapTy; + typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; + private: + /// FunctionToLazyStubMap - Keep track of the lazy stub created for a + /// particular function so that we can reuse them if necessary. + FunctionToLazyStubMapTy FunctionToLazyStubMap; + + /// CallSiteToFunctionMap - Keep track of the function that each lazy call + /// site corresponds to, and vice versa. + CallSiteToFunctionMapTy CallSiteToFunctionMap; + FunctionToCallSitesMapTy FunctionToCallSitesMap; + + /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a + /// particular GlobalVariable so that we can reuse them if necessary. + GlobalToIndirectSymMapTy GlobalToIndirectSymMap; + + /// Instance of the JIT this ResolverState serves. + JIT *TheJIT; + + public: + JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), + FunctionToCallSitesMap(this), + TheJIT(jit) {} + + FunctionToLazyStubMapTy& getFunctionToLazyStubMap( + const MutexGuard& locked) { + assert(locked.holds(TheJIT->lock)); + return FunctionToLazyStubMap; + } + + GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) { + assert(lck.holds(TheJIT->lock)); + return GlobalToIndirectSymMap; + } + + std::pair<void *, Function *> LookupFunctionFromCallSite( + const MutexGuard &locked, void *CallSite) const { + assert(locked.holds(TheJIT->lock)); + + // The address given to us for the stub may not be exactly right, it + // might be a little bit after the stub. As such, use upper_bound to + // find it. + CallSiteToFunctionMapTy::const_iterator I = + CallSiteToFunctionMap.upper_bound(CallSite); + assert(I != CallSiteToFunctionMap.begin() && + "This is not a known call site!"); + --I; + return *I; + } + + void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { + assert(locked.holds(TheJIT->lock)); + + bool Inserted = CallSiteToFunctionMap.insert( + std::make_pair(CallSite, F)).second; + (void)Inserted; + assert(Inserted && "Pair was already in CallSiteToFunctionMap"); + FunctionToCallSitesMap[F].insert(CallSite); + } + + void EraseAllCallSitesForPrelocked(Function *F); + + // Erases _all_ call sites regardless of their function. This is used to + // unregister the stub addresses from the StubToResolverMap in + // ~JITResolver(). + void EraseAllCallSitesPrelocked(); + }; + + /// JITResolver - Keep track of, and resolve, call sites for functions that + /// have not yet been compiled. + class JITResolver { + typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; + typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; + typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; + + /// LazyResolverFn - The target lazy resolver function that we actually + /// rewrite instructions to use. + TargetJITInfo::LazyResolverFn LazyResolverFn; + + JITResolverState state; + + /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap + /// for external functions. TODO: Of course, external functions don't need + /// a lazy stub. It's actually here to make it more likely that far calls + /// succeed, but no single stub can guarantee that. I'll remove this in a + /// subsequent checkin when I actually fix far calls. + std::map<void*, void*> ExternalFnToStubMap; + + /// revGOTMap - map addresses to indexes in the GOT + std::map<void*, unsigned> revGOTMap; + unsigned nextGOTIndex; + + JITEmitter &JE; + + /// Instance of JIT corresponding to this Resolver. + JIT *TheJIT; + + public: + explicit JITResolver(JIT &jit, JITEmitter &je) + : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { + LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); + } + + ~JITResolver(); + + /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's + /// lazy-compilation stub if it has already been created. + void *getLazyFunctionStubIfAvailable(Function *F); + + /// getLazyFunctionStub - This returns a pointer to a function's + /// lazy-compilation stub, creating one on demand as needed. + void *getLazyFunctionStub(Function *F); + + /// getExternalFunctionStub - Return a stub for the function at the + /// specified address, created lazily on demand. + void *getExternalFunctionStub(void *FnAddr); + + /// getGlobalValueIndirectSym - Return an indirect symbol containing the + /// specified GV address. + void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); + + /// getGOTIndexForAddress - Return a new or existing index in the GOT for + /// an address. This function only manages slots, it does not manage the + /// contents of the slots or the memory associated with the GOT. + unsigned getGOTIndexForAddr(void *addr); + + /// JITCompilerFn - This function is called to resolve a stub to a compiled + /// address. If the LLVM Function corresponding to the stub has not yet + /// been compiled, this function compiles it first. + static void *JITCompilerFn(void *Stub); + }; + + class StubToResolverMapTy { + /// Map a stub address to a specific instance of a JITResolver so that + /// lazily-compiled functions can find the right resolver to use. + /// + /// Guarded by Lock. + std::map<void*, JITResolver*> Map; + + /// Guards Map from concurrent accesses. + mutable sys::Mutex Lock; + + public: + /// Registers a Stub to be resolved by Resolver. + void RegisterStubResolver(void *Stub, JITResolver *Resolver) { + MutexGuard guard(Lock); + Map.insert(std::make_pair(Stub, Resolver)); + } + /// Unregisters the Stub when it's invalidated. + void UnregisterStubResolver(void *Stub) { + MutexGuard guard(Lock); + Map.erase(Stub); + } + /// Returns the JITResolver instance that owns the Stub. + JITResolver *getResolverFromStub(void *Stub) const { + MutexGuard guard(Lock); + // The address given to us for the stub may not be exactly right, it might + // be a little bit after the stub. As such, use upper_bound to find it. + // This is the same trick as in LookupFunctionFromCallSite from + // JITResolverState. + std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub); + assert(I != Map.begin() && "This is not a known stub!"); + --I; + return I->second; + } + /// True if any stubs refer to the given resolver. Only used in an assert(). + /// O(N) + bool ResolverHasStubs(JITResolver* Resolver) const { + MutexGuard guard(Lock); + for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(), + E = Map.end(); I != E; ++I) { + if (I->second == Resolver) + return true; + } + return false; + } + }; + /// This needs to be static so that a lazy call stub can access it with no + /// context except the address of the stub. + ManagedStatic<StubToResolverMapTy> StubToResolverMap; + + /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is + /// used to output functions to memory for execution. + class JITEmitter : public JITCodeEmitter { + JITMemoryManager *MemMgr; + + // When outputting a function stub in the context of some other function, we + // save BufferBegin/BufferEnd/CurBufferPtr here. + uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; + + // When reattempting to JIT a function after running out of space, we store + // the estimated size of the function we're trying to JIT here, so we can + // ask the memory manager for at least this much space. When we + // successfully emit the function, we reset this back to zero. + uintptr_t SizeEstimate; + + /// Relocations - These are the relocations that the function needs, as + /// emitted. + std::vector<MachineRelocation> Relocations; + + /// MBBLocations - This vector is a mapping from MBB ID's to their address. + /// It is filled in by the StartMachineBasicBlock callback and queried by + /// the getMachineBasicBlockAddress callback. + std::vector<uintptr_t> MBBLocations; + + /// ConstantPool - The constant pool for the current function. + /// + MachineConstantPool *ConstantPool; + + /// ConstantPoolBase - A pointer to the first entry in the constant pool. + /// + void *ConstantPoolBase; + + /// ConstPoolAddresses - Addresses of individual constant pool entries. + /// + SmallVector<uintptr_t, 8> ConstPoolAddresses; + + /// JumpTable - The jump tables for the current function. + /// + MachineJumpTableInfo *JumpTable; + + /// JumpTableBase - A pointer to the first entry in the jump table. + /// + void *JumpTableBase; + + /// Resolver - This contains info about the currently resolved functions. + JITResolver Resolver; + + /// DE - The dwarf emitter for the jit. + OwningPtr<JITDwarfEmitter> DE; + + /// DR - The debug registerer for the jit. + OwningPtr<JITDebugRegisterer> DR; + + /// LabelLocations - This vector is a mapping from Label ID's to their + /// address. + DenseMap<MCSymbol*, uintptr_t> LabelLocations; + + /// MMI - Machine module info for exception informations + MachineModuleInfo* MMI; + + // CurFn - The llvm function being emitted. Only valid during + // finishFunction(). + const Function *CurFn; + + /// Information about emitted code, which is passed to the + /// JITEventListeners. This is reset in startFunction and used in + /// finishFunction. + JITEvent_EmittedFunctionDetails EmissionDetails; + + struct EmittedCode { + void *FunctionBody; // Beginning of the function's allocation. + void *Code; // The address the function's code actually starts at. + void *ExceptionTable; + EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} + }; + struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { + typedef JITEmitter *ExtraData; + static void onDelete(JITEmitter *, const Function*); + static void onRAUW(JITEmitter *, const Function*, const Function*); + }; + ValueMap<const Function *, EmittedCode, + EmittedFunctionConfig> EmittedFunctions; + + DebugLoc PrevDL; + + /// Instance of the JIT + JIT *TheJIT; + + public: + JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) + : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), + EmittedFunctions(this), TheJIT(&jit) { + MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); + if (jit.getJITInfo().needsGOT()) { + MemMgr->AllocateGOT(); + DEBUG(dbgs() << "JIT is managing a GOT\n"); + } + + if (JITExceptionHandling || JITEmitDebugInfo) { + DE.reset(new JITDwarfEmitter(jit)); + } + if (JITEmitDebugInfo) { + DR.reset(new JITDebugRegisterer(TM)); + } + } + ~JITEmitter() { + delete MemMgr; + } + + /// classof - Methods for support type inquiry through isa, cast, and + /// dyn_cast: + /// + static inline bool classof(const MachineCodeEmitter*) { return true; } + + JITResolver &getJITResolver() { return Resolver; } + + virtual void startFunction(MachineFunction &F); + virtual bool finishFunction(MachineFunction &F); + + void emitConstantPool(MachineConstantPool *MCP); + void initJumpTableInfo(MachineJumpTableInfo *MJTI); + void emitJumpTableInfo(MachineJumpTableInfo *MJTI); + + void startGVStub(const GlobalValue* GV, + unsigned StubSize, unsigned Alignment = 1); + void startGVStub(void *Buffer, unsigned StubSize); + void finishGVStub(); + virtual void *allocIndirectGV(const GlobalValue *GV, + const uint8_t *Buffer, size_t Size, + unsigned Alignment); + + /// allocateSpace - Reserves space in the current block if any, or + /// allocate a new one of the given size. + virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); + + /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, + /// this method does not allocate memory in the current output buffer, + /// because a global may live longer than the current function. + virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); + + virtual void addRelocation(const MachineRelocation &MR) { + Relocations.push_back(MR); + } + + virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { + if (MBBLocations.size() <= (unsigned)MBB->getNumber()) + MBBLocations.resize((MBB->getNumber()+1)*2); + MBBLocations[MBB->getNumber()] = getCurrentPCValue(); + if (MBB->hasAddressTaken()) + TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(), + (void*)getCurrentPCValue()); + DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" + << (void*) getCurrentPCValue() << "]\n"); + } + + virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; + virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; + + virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{ + assert(MBBLocations.size() > (unsigned)MBB->getNumber() && + MBBLocations[MBB->getNumber()] && "MBB not emitted!"); + return MBBLocations[MBB->getNumber()]; + } + + /// retryWithMoreMemory - Log a retry and deallocate all memory for the + /// given function. Increase the minimum allocation size so that we get + /// more memory next time. + void retryWithMoreMemory(MachineFunction &F); + + /// deallocateMemForFunction - Deallocate all memory for the specified + /// function body. + void deallocateMemForFunction(const Function *F); + + virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); + + virtual void emitLabel(MCSymbol *Label) { + LabelLocations[Label] = getCurrentPCValue(); + } + + virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { + return &LabelLocations; + } + + virtual uintptr_t getLabelAddress(MCSymbol *Label) const { + assert(LabelLocations.count(Label) && "Label not emitted!"); + return LabelLocations.find(Label)->second; + } + + virtual void setModuleInfo(MachineModuleInfo* Info) { + MMI = Info; + if (DE.get()) DE->setModuleInfo(Info); + } + + private: + void *getPointerToGlobal(GlobalValue *GV, void *Reference, + bool MayNeedFarStub); + void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); + }; +} + +void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { + JRS->EraseAllCallSitesForPrelocked(F); +} + +void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { + FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); + if (F2C == FunctionToCallSitesMap.end()) + return; + StubToResolverMapTy &S2RMap = *StubToResolverMap; + for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), + E = F2C->second.end(); I != E; ++I) { + S2RMap.UnregisterStubResolver(*I); + bool Erased = CallSiteToFunctionMap.erase(*I); + (void)Erased; + assert(Erased && "Missing call site->function mapping"); + } + FunctionToCallSitesMap.erase(F2C); +} + +void JITResolverState::EraseAllCallSitesPrelocked() { + StubToResolverMapTy &S2RMap = *StubToResolverMap; + for (CallSiteToFunctionMapTy::const_iterator + I = CallSiteToFunctionMap.begin(), + E = CallSiteToFunctionMap.end(); I != E; ++I) { + S2RMap.UnregisterStubResolver(I->first); + } + CallSiteToFunctionMap.clear(); + FunctionToCallSitesMap.clear(); +} + +JITResolver::~JITResolver() { + // No need to lock because we're in the destructor, and state isn't shared. + state.EraseAllCallSitesPrelocked(); + assert(!StubToResolverMap->ResolverHasStubs(this) && + "Resolver destroyed with stubs still alive."); +} + +/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub +/// if it has already been created. +void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { + MutexGuard locked(TheJIT->lock); + + // If we already have a stub for this function, recycle it. + return state.getFunctionToLazyStubMap(locked).lookup(F); +} + +/// getFunctionStub - This returns a pointer to a function stub, creating +/// one on demand as needed. +void *JITResolver::getLazyFunctionStub(Function *F) { + MutexGuard locked(TheJIT->lock); + + // If we already have a lazy stub for this function, recycle it. + void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; + if (Stub) return Stub; + + // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we + // must resolve the symbol now. + void *Actual = TheJIT->isCompilingLazily() + ? (void *)(intptr_t)LazyResolverFn : (void *)0; + + // If this is an external declaration, attempt to resolve the address now + // to place in the stub. + if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { + Actual = TheJIT->getPointerToFunction(F); + + // If we resolved the symbol to a null address (eg. a weak external) + // don't emit a stub. Return a null pointer to the application. + if (!Actual) return 0; + } + + TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); + JE.startGVStub(F, SL.Size, SL.Alignment); + // Codegen a new stub, calling the lazy resolver or the actual address of the + // external function, if it was resolved. + Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); + JE.finishGVStub(); + + if (Actual != (void*)(intptr_t)LazyResolverFn) { + // If we are getting the stub for an external function, we really want the + // address of the stub in the GlobalAddressMap for the JIT, not the address + // of the external function. + TheJIT->updateGlobalMapping(F, Stub); + } + + DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" + << F->getName() << "'\n"); + + if (TheJIT->isCompilingLazily()) { + // Register this JITResolver as the one corresponding to this call site so + // JITCompilerFn will be able to find it. + StubToResolverMap->RegisterStubResolver(Stub, this); + + // Finally, keep track of the stub-to-Function mapping so that the + // JITCompilerFn knows which function to compile! + state.AddCallSite(locked, Stub, F); + } else if (!Actual) { + // If we are JIT'ing non-lazily but need to call a function that does not + // exist yet, add it to the JIT's work list so that we can fill in the + // stub address later. + assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && + "'Actual' should have been set above."); + TheJIT->addPendingFunction(F); + } + + return Stub; +} + +/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified +/// GV address. +void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { + MutexGuard locked(TheJIT->lock); + + // If we already have a stub for this global variable, recycle it. + void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; + if (IndirectSym) return IndirectSym; + + // Otherwise, codegen a new indirect symbol. + IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, + JE); + + DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym + << "] for GV '" << GV->getName() << "'\n"); + + return IndirectSym; +} + +/// getExternalFunctionStub - Return a stub for the function at the +/// specified address, created lazily on demand. +void *JITResolver::getExternalFunctionStub(void *FnAddr) { + // If we already have a stub for this function, recycle it. + void *&Stub = ExternalFnToStubMap[FnAddr]; + if (Stub) return Stub; + + TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); + JE.startGVStub(0, SL.Size, SL.Alignment); + Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); + JE.finishGVStub(); + + DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub + << "] for external function at '" << FnAddr << "'\n"); + return Stub; +} + +unsigned JITResolver::getGOTIndexForAddr(void* addr) { + unsigned idx = revGOTMap[addr]; + if (!idx) { + idx = ++nextGOTIndex; + revGOTMap[addr] = idx; + DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" + << addr << "]\n"); + } + return idx; +} + +/// JITCompilerFn - This function is called when a lazy compilation stub has +/// been entered. It looks up which function this stub corresponds to, compiles +/// it if necessary, then returns the resultant function pointer. +void *JITResolver::JITCompilerFn(void *Stub) { + JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); + assert(JR && "Unable to find the corresponding JITResolver to the call site"); + + Function* F = 0; + void* ActualPtr = 0; + + { + // Only lock for getting the Function. The call getPointerToFunction made + // in this function might trigger function materializing, which requires + // JIT lock to be unlocked. + MutexGuard locked(JR->TheJIT->lock); + + // The address given to us for the stub may not be exactly right, it might + // be a little bit after the stub. As such, use upper_bound to find it. + std::pair<void*, Function*> I = + JR->state.LookupFunctionFromCallSite(locked, Stub); + F = I.second; + ActualPtr = I.first; + } + + // If we have already code generated the function, just return the address. + void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); + + if (!Result) { + // Otherwise we don't have it, do lazy compilation now. + + // If lazy compilation is disabled, emit a useful error message and abort. + if (!JR->TheJIT->isCompilingLazily()) { + report_fatal_error("LLVM JIT requested to do lazy compilation of" + " function '" + + F->getName() + "' when lazy compiles are disabled!"); + } + + DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() + << "' In stub ptr = " << Stub << " actual ptr = " + << ActualPtr << "\n"); + (void)ActualPtr; + + Result = JR->TheJIT->getPointerToFunction(F); + } + + // Reacquire the lock to update the GOT map. + MutexGuard locked(JR->TheJIT->lock); + + // We might like to remove the call site from the CallSiteToFunction map, but + // we can't do that! Multiple threads could be stuck, waiting to acquire the + // lock above. As soon as the 1st function finishes compiling the function, + // the next one will be released, and needs to be able to find the function it + // needs to call. + + // FIXME: We could rewrite all references to this stub if we knew them. + + // What we will do is set the compiled function address to map to the + // same GOT entry as the stub so that later clients may update the GOT + // if they see it still using the stub address. + // Note: this is done so the Resolver doesn't have to manage GOT memory + // Do this without allocating map space if the target isn't using a GOT + if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) + JR->revGOTMap[Result] = JR->revGOTMap[Stub]; + + return Result; +} + +//===----------------------------------------------------------------------===// +// JITEmitter code. +// +void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, + bool MayNeedFarStub) { + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + return TheJIT->getOrEmitGlobalVariable(GV); + + if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) + return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); + + // If we have already compiled the function, return a pointer to its body. + Function *F = cast<Function>(V); + + void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); + if (FnStub) { + // Return the function stub if it's already created. We do this first so + // that we're returning the same address for the function as any previous + // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be + // close enough to call. + return FnStub; + } + + // If we know the target can handle arbitrary-distance calls, try to + // return a direct pointer. + if (!MayNeedFarStub) { + // If we have code, go ahead and return that. + void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); + if (ResultPtr) return ResultPtr; + + // If this is an external function pointer, we can force the JIT to + // 'compile' it, which really just adds it to the map. + if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) + return TheJIT->getPointerToFunction(F); + } + + // Otherwise, we may need a to emit a stub, and, conservatively, we always do + // so. Note that it's possible to return null from getLazyFunctionStub in the + // case of a weak extern that fails to resolve. + return Resolver.getLazyFunctionStub(F); +} + +void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { + // Make sure GV is emitted first, and create a stub containing the fully + // resolved address. + void *GVAddress = getPointerToGlobal(V, Reference, false); + void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); + return StubAddr; +} + +void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { + if (DL.isUnknown()) return; + if (!BeforePrintingInsn) return; + + const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); + + if (DL.getScope(Context) != 0 && PrevDL != DL) { + JITEvent_EmittedFunctionDetails::LineStart NextLine; + NextLine.Address = getCurrentPCValue(); + NextLine.Loc = DL; + EmissionDetails.LineStarts.push_back(NextLine); + } + + PrevDL = DL; +} + +static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, + const TargetData *TD) { + const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); + if (Constants.empty()) return 0; + + unsigned Size = 0; + for (unsigned i = 0, e = Constants.size(); i != e; ++i) { + MachineConstantPoolEntry CPE = Constants[i]; + unsigned AlignMask = CPE.getAlignment() - 1; + Size = (Size + AlignMask) & ~AlignMask; + Type *Ty = CPE.getType(); + Size += TD->getTypeAllocSize(Ty); + } + return Size; +} + +void JITEmitter::startFunction(MachineFunction &F) { + DEBUG(dbgs() << "JIT: Starting CodeGen of Function " + << F.getFunction()->getName() << "\n"); + + uintptr_t ActualSize = 0; + // Set the memory writable, if it's not already + MemMgr->setMemoryWritable(); + + if (SizeEstimate > 0) { + // SizeEstimate will be non-zero on reallocation attempts. + ActualSize = SizeEstimate; + } + + BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), + ActualSize); + BufferEnd = BufferBegin+ActualSize; + EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; + + // Ensure the constant pool/jump table info is at least 4-byte aligned. + emitAlignment(16); + + emitConstantPool(F.getConstantPool()); + if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) + initJumpTableInfo(MJTI); + + // About to start emitting the machine code for the function. + emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); + TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); + EmittedFunctions[F.getFunction()].Code = CurBufferPtr; + + MBBLocations.clear(); + + EmissionDetails.MF = &F; + EmissionDetails.LineStarts.clear(); +} + +bool JITEmitter::finishFunction(MachineFunction &F) { + if (CurBufferPtr == BufferEnd) { + // We must call endFunctionBody before retrying, because + // deallocateMemForFunction requires it. + MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); + retryWithMoreMemory(F); + return true; + } + + if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) + emitJumpTableInfo(MJTI); + + // FnStart is the start of the text, not the start of the constant pool and + // other per-function data. + uint8_t *FnStart = + (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); + + // FnEnd is the end of the function's machine code. + uint8_t *FnEnd = CurBufferPtr; + + if (!Relocations.empty()) { + CurFn = F.getFunction(); + NumRelos += Relocations.size(); + + // Resolve the relocations to concrete pointers. + for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { + MachineRelocation &MR = Relocations[i]; + void *ResultPtr = 0; + if (!MR.letTargetResolve()) { + if (MR.isExternalSymbol()) { + ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), + false); + DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" + << ResultPtr << "]\n"); + + // If the target REALLY wants a stub for this function, emit it now. + if (MR.mayNeedFarStub()) { + ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); + } + } else if (MR.isGlobalValue()) { + ResultPtr = getPointerToGlobal(MR.getGlobalValue(), + BufferBegin+MR.getMachineCodeOffset(), + MR.mayNeedFarStub()); + } else if (MR.isIndirectSymbol()) { + ResultPtr = getPointerToGVIndirectSym( + MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); + } else if (MR.isBasicBlock()) { + ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); + } else if (MR.isConstantPoolIndex()) { + ResultPtr = + (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); + } else { + assert(MR.isJumpTableIndex()); + ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); + } + + MR.setResultPointer(ResultPtr); + } + + // if we are managing the GOT and the relocation wants an index, + // give it one + if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { + unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); + MR.setGOTIndex(idx); + if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { + DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr + << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] + << "\n"); + ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; + } + } + } + + CurFn = 0; + TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], + Relocations.size(), MemMgr->getGOTBase()); + } + + // Update the GOT entry for F to point to the new code. + if (MemMgr->isManagingGOT()) { + unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); + if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { + DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin + << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] + << "\n"); + ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; + } + } + + // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for + // global variables that were referenced in the relocations. + MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); + + if (CurBufferPtr == BufferEnd) { + retryWithMoreMemory(F); + return true; + } else { + // Now that we've succeeded in emitting the function, reset the + // SizeEstimate back down to zero. + SizeEstimate = 0; + } + + BufferBegin = CurBufferPtr = 0; + NumBytes += FnEnd-FnStart; + + // Invalidate the icache if necessary. + sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); + + TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, + EmissionDetails); + + // Reset the previous debug location. + PrevDL = DebugLoc(); + + DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart + << "] Function: " << F.getFunction()->getName() + << ": " << (FnEnd-FnStart) << " bytes of text, " + << Relocations.size() << " relocations\n"); + + Relocations.clear(); + ConstPoolAddresses.clear(); + + // Mark code region readable and executable if it's not so already. + MemMgr->setMemoryExecutable(); + + DEBUG({ + if (sys::hasDisassembler()) { + dbgs() << "JIT: Disassembled code:\n"; + dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, + (uintptr_t)FnStart); + } else { + dbgs() << "JIT: Binary code:\n"; + uint8_t* q = FnStart; + for (int i = 0; q < FnEnd; q += 4, ++i) { + if (i == 4) + i = 0; + if (i == 0) + dbgs() << "JIT: " << (long)(q - FnStart) << ": "; + bool Done = false; + for (int j = 3; j >= 0; --j) { + if (q + j >= FnEnd) + Done = true; + else + dbgs() << (unsigned short)q[j]; + } + if (Done) + break; + dbgs() << ' '; + if (i == 3) + dbgs() << '\n'; + } + dbgs()<< '\n'; + } + }); + + if (JITExceptionHandling || JITEmitDebugInfo) { + uintptr_t ActualSize = 0; + SavedBufferBegin = BufferBegin; + SavedBufferEnd = BufferEnd; + SavedCurBufferPtr = CurBufferPtr; + + BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), + ActualSize); + BufferEnd = BufferBegin+ActualSize; + EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; + uint8_t *EhStart; + uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, + EhStart); + MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, + FrameRegister); + uint8_t *EhEnd = CurBufferPtr; + BufferBegin = SavedBufferBegin; + BufferEnd = SavedBufferEnd; + CurBufferPtr = SavedCurBufferPtr; + + if (JITExceptionHandling) { + TheJIT->RegisterTable(F.getFunction(), FrameRegister); + } + + if (JITEmitDebugInfo) { + DebugInfo I; + I.FnStart = FnStart; + I.FnEnd = FnEnd; + I.EhStart = EhStart; + I.EhEnd = EhEnd; + DR->RegisterFunction(F.getFunction(), I); + } + } + + if (MMI) + MMI->EndFunction(); + + return false; +} + +void JITEmitter::retryWithMoreMemory(MachineFunction &F) { + DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); + Relocations.clear(); // Clear the old relocations or we'll reapply them. + ConstPoolAddresses.clear(); + ++NumRetries; + deallocateMemForFunction(F.getFunction()); + // Try again with at least twice as much free space. + SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); + + for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){ + if (MBB->hasAddressTaken()) + TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock()); + } +} + +/// deallocateMemForFunction - Deallocate all memory for the specified +/// function body. Also drop any references the function has to stubs. +/// May be called while the Function is being destroyed inside ~Value(). +void JITEmitter::deallocateMemForFunction(const Function *F) { + ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator + Emitted = EmittedFunctions.find(F); + if (Emitted != EmittedFunctions.end()) { + MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); + MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); + TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); + + EmittedFunctions.erase(Emitted); + } + + if(JITExceptionHandling) { + TheJIT->DeregisterTable(F); + } + + if (JITEmitDebugInfo) { + DR->UnregisterFunction(F); + } +} + + +void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { + if (BufferBegin) + return JITCodeEmitter::allocateSpace(Size, Alignment); + + // create a new memory block if there is no active one. + // care must be taken so that BufferBegin is invalidated when a + // block is trimmed + BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); + BufferEnd = BufferBegin+Size; + return CurBufferPtr; +} + +void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { + // Delegate this call through the memory manager. + return MemMgr->allocateGlobal(Size, Alignment); +} + +void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { + if (TheJIT->getJITInfo().hasCustomConstantPool()) + return; + + const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); + if (Constants.empty()) return; + + unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); + unsigned Align = MCP->getConstantPoolAlignment(); + ConstantPoolBase = allocateSpace(Size, Align); + ConstantPool = MCP; + + if (ConstantPoolBase == 0) return; // Buffer overflow. + + DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase + << "] (size: " << Size << ", alignment: " << Align << ")\n"); + + // Initialize the memory for all of the constant pool entries. + unsigned Offset = 0; + for (unsigned i = 0, e = Constants.size(); i != e; ++i) { + MachineConstantPoolEntry CPE = Constants[i]; + unsigned AlignMask = CPE.getAlignment() - 1; + Offset = (Offset + AlignMask) & ~AlignMask; + + uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; + ConstPoolAddresses.push_back(CAddr); + if (CPE.isMachineConstantPoolEntry()) { + // FIXME: add support to lower machine constant pool values into bytes! + report_fatal_error("Initialize memory with machine specific constant pool" + "entry has not been implemented!"); + } + TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); + DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; + dbgs().write_hex(CAddr) << "]\n"); + + Type *Ty = CPE.Val.ConstVal->getType(); + Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty); + } +} + +void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { + if (TheJIT->getJITInfo().hasCustomJumpTables()) + return; + if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) + return; + + const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); + if (JT.empty()) return; + + unsigned NumEntries = 0; + for (unsigned i = 0, e = JT.size(); i != e; ++i) + NumEntries += JT[i].MBBs.size(); + + unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData()); + + // Just allocate space for all the jump tables now. We will fix up the actual + // MBB entries in the tables after we emit the code for each block, since then + // we will know the final locations of the MBBs in memory. + JumpTable = MJTI; + JumpTableBase = allocateSpace(NumEntries * EntrySize, + MJTI->getEntryAlignment(*TheJIT->getTargetData())); +} + +void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { + if (TheJIT->getJITInfo().hasCustomJumpTables()) + return; + + const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); + if (JT.empty() || JumpTableBase == 0) return; + + + switch (MJTI->getEntryKind()) { + case MachineJumpTableInfo::EK_Inline: + return; + case MachineJumpTableInfo::EK_BlockAddress: { + // EK_BlockAddress - Each entry is a plain address of block, e.g.: + // .word LBB123 + assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) && + "Cross JIT'ing?"); + + // For each jump table, map each target in the jump table to the address of + // an emitted MachineBasicBlock. + intptr_t *SlotPtr = (intptr_t*)JumpTableBase; + + for (unsigned i = 0, e = JT.size(); i != e; ++i) { + const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; + // Store the address of the basic block for this jump table slot in the + // memory we allocated for the jump table in 'initJumpTableInfo' + for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) + *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); + } + break; + } + + case MachineJumpTableInfo::EK_Custom32: + case MachineJumpTableInfo::EK_GPRel32BlockAddress: + case MachineJumpTableInfo::EK_LabelDifference32: { + assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?"); + // For each jump table, place the offset from the beginning of the table + // to the target address. + int *SlotPtr = (int*)JumpTableBase; + + for (unsigned i = 0, e = JT.size(); i != e; ++i) { + const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; + // Store the offset of the basic block for this jump table slot in the + // memory we allocated for the jump table in 'initJumpTableInfo' + uintptr_t Base = (uintptr_t)SlotPtr; + for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { + uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); + /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. + *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); + } + } + break; + } + } +} + +void JITEmitter::startGVStub(const GlobalValue* GV, + unsigned StubSize, unsigned Alignment) { + SavedBufferBegin = BufferBegin; + SavedBufferEnd = BufferEnd; + SavedCurBufferPtr = CurBufferPtr; + + BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); + BufferEnd = BufferBegin+StubSize+1; +} + +void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { + SavedBufferBegin = BufferBegin; + SavedBufferEnd = BufferEnd; + SavedCurBufferPtr = CurBufferPtr; + + BufferBegin = CurBufferPtr = (uint8_t *)Buffer; + BufferEnd = BufferBegin+StubSize+1; +} + +void JITEmitter::finishGVStub() { + assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); + NumBytes += getCurrentPCOffset(); + BufferBegin = SavedBufferBegin; + BufferEnd = SavedBufferEnd; + CurBufferPtr = SavedCurBufferPtr; +} + +void *JITEmitter::allocIndirectGV(const GlobalValue *GV, + const uint8_t *Buffer, size_t Size, + unsigned Alignment) { + uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); + memcpy(IndGV, Buffer, Size); + return IndGV; +} + +// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry +// in the constant pool that was last emitted with the 'emitConstantPool' +// method. +// +uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { + assert(ConstantNum < ConstantPool->getConstants().size() && + "Invalid ConstantPoolIndex!"); + return ConstPoolAddresses[ConstantNum]; +} + +// getJumpTableEntryAddress - Return the address of the JumpTable with index +// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' +// +uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { + const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); + assert(Index < JT.size() && "Invalid jump table index!"); + + unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData()); + + unsigned Offset = 0; + for (unsigned i = 0; i < Index; ++i) + Offset += JT[i].MBBs.size(); + + Offset *= EntrySize; + + return (uintptr_t)((char *)JumpTableBase + Offset); +} + +void JITEmitter::EmittedFunctionConfig::onDelete( + JITEmitter *Emitter, const Function *F) { + Emitter->deallocateMemForFunction(F); +} +void JITEmitter::EmittedFunctionConfig::onRAUW( + JITEmitter *, const Function*, const Function*) { + llvm_unreachable("The JIT doesn't know how to handle a" + " RAUW on a value it has emitted."); +} + + +//===----------------------------------------------------------------------===// +// Public interface to this file +//===----------------------------------------------------------------------===// + +JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, + TargetMachine &tm) { + return new JITEmitter(jit, JMM, tm); +} + +// getPointerToFunctionOrStub - If the specified function has been +// code-gen'd, return a pointer to the function. If not, compile it, or use +// a stub to implement lazy compilation if available. +// +void *JIT::getPointerToFunctionOrStub(Function *F) { + // If we have already code generated the function, just return the address. + if (void *Addr = getPointerToGlobalIfAvailable(F)) + return Addr; + + // Get a stub if the target supports it. + assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); + JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); + return JE->getJITResolver().getLazyFunctionStub(F); +} + +void JIT::updateFunctionStub(Function *F) { + // Get the empty stub we generated earlier. + assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); + JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); + void *Stub = JE->getJITResolver().getLazyFunctionStub(F); + void *Addr = getPointerToGlobalIfAvailable(F); + assert(Addr != Stub && "Function must have non-stub address to be updated."); + + // Tell the target jit info to rewrite the stub at the specified address, + // rather than creating a new one. + TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); + JE->startGVStub(Stub, layout.Size); + getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); + JE->finishGVStub(); +} + +/// freeMachineCodeForFunction - release machine code memory for given Function. +/// +void JIT::freeMachineCodeForFunction(Function *F) { + // Delete translation for this from the ExecutionEngine, so it will get + // retranslated next time it is used. + updateGlobalMapping(F, 0); + + // Free the actual memory for the function body and related stuff. + assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); + cast<JITEmitter>(JCE)->deallocateMemForFunction(F); +} diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp new file mode 100644 index 0000000..eec23ce --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITMemoryManager.cpp @@ -0,0 +1,727 @@ +//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the DefaultJITMemoryManager class. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "jit" +#include "llvm/ExecutionEngine/JITMemoryManager.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/Twine.h" +#include "llvm/GlobalValue.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Memory.h" +#include <vector> +#include <cassert> +#include <climits> +#include <cstring> +using namespace llvm; + +STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT"); + +JITMemoryManager::~JITMemoryManager() {} + +//===----------------------------------------------------------------------===// +// Memory Block Implementation. +//===----------------------------------------------------------------------===// + +namespace { + /// MemoryRangeHeader - For a range of memory, this is the header that we put + /// on the block of memory. It is carefully crafted to be one word of memory. + /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader + /// which starts with this. + struct FreeRangeHeader; + struct MemoryRangeHeader { + /// ThisAllocated - This is true if this block is currently allocated. If + /// not, this can be converted to a FreeRangeHeader. + unsigned ThisAllocated : 1; + + /// PrevAllocated - Keep track of whether the block immediately before us is + /// allocated. If not, the word immediately before this header is the size + /// of the previous block. + unsigned PrevAllocated : 1; + + /// BlockSize - This is the size in bytes of this memory block, + /// including this header. + uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2); + + + /// getBlockAfter - Return the memory block immediately after this one. + /// + MemoryRangeHeader &getBlockAfter() const { + return *(MemoryRangeHeader*)((char*)this+BlockSize); + } + + /// getFreeBlockBefore - If the block before this one is free, return it, + /// otherwise return null. + FreeRangeHeader *getFreeBlockBefore() const { + if (PrevAllocated) return 0; + intptr_t PrevSize = ((intptr_t *)this)[-1]; + return (FreeRangeHeader*)((char*)this-PrevSize); + } + + /// FreeBlock - Turn an allocated block into a free block, adjusting + /// bits in the object headers, and adding an end of region memory block. + FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); + + /// TrimAllocationToSize - If this allocated block is significantly larger + /// than NewSize, split it into two pieces (where the former is NewSize + /// bytes, including the header), and add the new block to the free list. + FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, + uint64_t NewSize); + }; + + /// FreeRangeHeader - For a memory block that isn't already allocated, this + /// keeps track of the current block and has a pointer to the next free block. + /// Free blocks are kept on a circularly linked list. + struct FreeRangeHeader : public MemoryRangeHeader { + FreeRangeHeader *Prev; + FreeRangeHeader *Next; + + /// getMinBlockSize - Get the minimum size for a memory block. Blocks + /// smaller than this size cannot be created. + static unsigned getMinBlockSize() { + return sizeof(FreeRangeHeader)+sizeof(intptr_t); + } + + /// SetEndOfBlockSizeMarker - The word at the end of every free block is + /// known to be the size of the free block. Set it for this block. + void SetEndOfBlockSizeMarker() { + void *EndOfBlock = (char*)this + BlockSize; + ((intptr_t *)EndOfBlock)[-1] = BlockSize; + } + + FreeRangeHeader *RemoveFromFreeList() { + assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); + Next->Prev = Prev; + return Prev->Next = Next; + } + + void AddToFreeList(FreeRangeHeader *FreeList) { + Next = FreeList; + Prev = FreeList->Prev; + Prev->Next = this; + Next->Prev = this; + } + + /// GrowBlock - The block after this block just got deallocated. Merge it + /// into the current block. + void GrowBlock(uintptr_t NewSize); + + /// AllocateBlock - Mark this entire block allocated, updating freelists + /// etc. This returns a pointer to the circular free-list. + FreeRangeHeader *AllocateBlock(); + }; +} + + +/// AllocateBlock - Mark this entire block allocated, updating freelists +/// etc. This returns a pointer to the circular free-list. +FreeRangeHeader *FreeRangeHeader::AllocateBlock() { + assert(!ThisAllocated && !getBlockAfter().PrevAllocated && + "Cannot allocate an allocated block!"); + // Mark this block allocated. + ThisAllocated = 1; + getBlockAfter().PrevAllocated = 1; + + // Remove it from the free list. + return RemoveFromFreeList(); +} + +/// FreeBlock - Turn an allocated block into a free block, adjusting +/// bits in the object headers, and adding an end of region memory block. +/// If possible, coalesce this block with neighboring blocks. Return the +/// FreeRangeHeader to allocate from. +FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { + MemoryRangeHeader *FollowingBlock = &getBlockAfter(); + assert(ThisAllocated && "This block is already free!"); + assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); + + FreeRangeHeader *FreeListToReturn = FreeList; + + // If the block after this one is free, merge it into this block. + if (!FollowingBlock->ThisAllocated) { + FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; + // "FreeList" always needs to be a valid free block. If we're about to + // coalesce with it, update our notion of what the free list is. + if (&FollowingFreeBlock == FreeList) { + FreeList = FollowingFreeBlock.Next; + FreeListToReturn = 0; + assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); + } + FollowingFreeBlock.RemoveFromFreeList(); + + // Include the following block into this one. + BlockSize += FollowingFreeBlock.BlockSize; + FollowingBlock = &FollowingFreeBlock.getBlockAfter(); + + // Tell the block after the block we are coalescing that this block is + // allocated. + FollowingBlock->PrevAllocated = 1; + } + + assert(FollowingBlock->ThisAllocated && "Missed coalescing?"); + + if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { + PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); + return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; + } + + // Otherwise, mark this block free. + FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; + FollowingBlock->PrevAllocated = 0; + FreeBlock.ThisAllocated = 0; + + // Link this into the linked list of free blocks. + FreeBlock.AddToFreeList(FreeList); + + // Add a marker at the end of the block, indicating the size of this free + // block. + FreeBlock.SetEndOfBlockSizeMarker(); + return FreeListToReturn ? FreeListToReturn : &FreeBlock; +} + +/// GrowBlock - The block after this block just got deallocated. Merge it +/// into the current block. +void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { + assert(NewSize > BlockSize && "Not growing block?"); + BlockSize = NewSize; + SetEndOfBlockSizeMarker(); + getBlockAfter().PrevAllocated = 0; +} + +/// TrimAllocationToSize - If this allocated block is significantly larger +/// than NewSize, split it into two pieces (where the former is NewSize +/// bytes, including the header), and add the new block to the free list. +FreeRangeHeader *MemoryRangeHeader:: +TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { + assert(ThisAllocated && getBlockAfter().PrevAllocated && + "Cannot deallocate part of an allocated block!"); + + // Don't allow blocks to be trimmed below minimum required size + NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize); + + // Round up size for alignment of header. + unsigned HeaderAlign = __alignof(FreeRangeHeader); + NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); + + // Size is now the size of the block we will remove from the start of the + // current block. + assert(NewSize <= BlockSize && + "Allocating more space from this block than exists!"); + + // If splitting this block will cause the remainder to be too small, do not + // split the block. + if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) + return FreeList; + + // Otherwise, we splice the required number of bytes out of this block, form + // a new block immediately after it, then mark this block allocated. + MemoryRangeHeader &FormerNextBlock = getBlockAfter(); + + // Change the size of this block. + BlockSize = NewSize; + + // Get the new block we just sliced out and turn it into a free block. + FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); + NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; + NewNextBlock.ThisAllocated = 0; + NewNextBlock.PrevAllocated = 1; + NewNextBlock.SetEndOfBlockSizeMarker(); + FormerNextBlock.PrevAllocated = 0; + NewNextBlock.AddToFreeList(FreeList); + return &NewNextBlock; +} + +//===----------------------------------------------------------------------===// +// Memory Block Implementation. +//===----------------------------------------------------------------------===// + +namespace { + + class DefaultJITMemoryManager; + + class JITSlabAllocator : public SlabAllocator { + DefaultJITMemoryManager &JMM; + public: + JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { } + virtual ~JITSlabAllocator() { } + virtual MemSlab *Allocate(size_t Size); + virtual void Deallocate(MemSlab *Slab); + }; + + /// DefaultJITMemoryManager - Manage memory for the JIT code generation. + /// This splits a large block of MAP_NORESERVE'd memory into two + /// sections, one for function stubs, one for the functions themselves. We + /// have to do this because we may need to emit a function stub while in the + /// middle of emitting a function, and we don't know how large the function we + /// are emitting is. + class DefaultJITMemoryManager : public JITMemoryManager { + + // Whether to poison freed memory. + bool PoisonMemory; + + /// LastSlab - This points to the last slab allocated and is used as the + /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all + /// stubs, data, and code contiguously in memory. In general, however, this + /// is not possible because the NearBlock parameter is ignored on Windows + /// platforms and even on Unix it works on a best-effort pasis. + sys::MemoryBlock LastSlab; + + // Memory slabs allocated by the JIT. We refer to them as slabs so we don't + // confuse them with the blocks of memory described above. + std::vector<sys::MemoryBlock> CodeSlabs; + JITSlabAllocator BumpSlabAllocator; + BumpPtrAllocator StubAllocator; + BumpPtrAllocator DataAllocator; + + // Circular list of free blocks. + FreeRangeHeader *FreeMemoryList; + + // When emitting code into a memory block, this is the block. + MemoryRangeHeader *CurBlock; + + uint8_t *GOTBase; // Target Specific reserved memory + public: + DefaultJITMemoryManager(); + ~DefaultJITMemoryManager(); + + /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the + /// last slab it allocated, so that subsequent allocations follow it. + sys::MemoryBlock allocateNewSlab(size_t size); + + /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at + /// least this much unless more is requested. + static const size_t DefaultCodeSlabSize; + + /// DefaultSlabSize - Allocate data into slabs of this size unless we get + /// an allocation above SizeThreshold. + static const size_t DefaultSlabSize; + + /// DefaultSizeThreshold - For any allocation larger than this threshold, we + /// should allocate a separate slab. + static const size_t DefaultSizeThreshold; + + void AllocateGOT(); + + // Testing methods. + virtual bool CheckInvariants(std::string &ErrorStr); + size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; } + size_t GetDefaultDataSlabSize() { return DefaultSlabSize; } + size_t GetDefaultStubSlabSize() { return DefaultSlabSize; } + unsigned GetNumCodeSlabs() { return CodeSlabs.size(); } + unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); } + unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); } + + /// startFunctionBody - When a function starts, allocate a block of free + /// executable memory, returning a pointer to it and its actual size. + uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) { + + FreeRangeHeader* candidateBlock = FreeMemoryList; + FreeRangeHeader* head = FreeMemoryList; + FreeRangeHeader* iter = head->Next; + + uintptr_t largest = candidateBlock->BlockSize; + + // Search for the largest free block + while (iter != head) { + if (iter->BlockSize > largest) { + largest = iter->BlockSize; + candidateBlock = iter; + } + iter = iter->Next; + } + + largest = largest - sizeof(MemoryRangeHeader); + + // If this block isn't big enough for the allocation desired, allocate + // another block of memory and add it to the free list. + if (largest < ActualSize || + largest <= FreeRangeHeader::getMinBlockSize()) { + DEBUG(dbgs() << "JIT: Allocating another slab of memory for function."); + candidateBlock = allocateNewCodeSlab((size_t)ActualSize); + } + + // Select this candidate block for allocation + CurBlock = candidateBlock; + + // Allocate the entire memory block. + FreeMemoryList = candidateBlock->AllocateBlock(); + ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader); + return (uint8_t *)(CurBlock + 1); + } + + /// allocateNewCodeSlab - Helper method to allocate a new slab of code + /// memory from the OS and add it to the free list. Returns the new + /// FreeRangeHeader at the base of the slab. + FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) { + // If the user needs at least MinSize free memory, then we account for + // two MemoryRangeHeaders: the one in the user's block, and the one at the + // end of the slab. + size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader); + size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin); + sys::MemoryBlock B = allocateNewSlab(SlabSize); + CodeSlabs.push_back(B); + char *MemBase = (char*)(B.base()); + + // Put a tiny allocated block at the end of the memory chunk, so when + // FreeBlock calls getBlockAfter it doesn't fall off the end. + MemoryRangeHeader *EndBlock = + (MemoryRangeHeader*)(MemBase + B.size()) - 1; + EndBlock->ThisAllocated = 1; + EndBlock->PrevAllocated = 0; + EndBlock->BlockSize = sizeof(MemoryRangeHeader); + + // Start out with a vast new block of free memory. + FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase; + NewBlock->ThisAllocated = 0; + // Make sure getFreeBlockBefore doesn't look into unmapped memory. + NewBlock->PrevAllocated = 1; + NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock; + NewBlock->SetEndOfBlockSizeMarker(); + NewBlock->AddToFreeList(FreeMemoryList); + + assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize && + "The block was too small!"); + return NewBlock; + } + + /// endFunctionBody - The function F is now allocated, and takes the memory + /// in the range [FunctionStart,FunctionEnd). + void endFunctionBody(const Function *F, uint8_t *FunctionStart, + uint8_t *FunctionEnd) { + assert(FunctionEnd > FunctionStart); + assert(FunctionStart == (uint8_t *)(CurBlock+1) && + "Mismatched function start/end!"); + + uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock; + + // Release the memory at the end of this block that isn't needed. + FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); + } + + /// allocateSpace - Allocate a memory block of the given size. This method + /// cannot be called between calls to startFunctionBody and endFunctionBody. + uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { + CurBlock = FreeMemoryList; + FreeMemoryList = FreeMemoryList->AllocateBlock(); + + uint8_t *result = (uint8_t *)(CurBlock + 1); + + if (Alignment == 0) Alignment = 1; + result = (uint8_t*)(((intptr_t)result+Alignment-1) & + ~(intptr_t)(Alignment-1)); + + uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock; + FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); + + return result; + } + + /// allocateStub - Allocate memory for a function stub. + uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, + unsigned Alignment) { + return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment); + } + + /// allocateGlobal - Allocate memory for a global. + uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { + return (uint8_t*)DataAllocator.Allocate(Size, Alignment); + } + + /// startExceptionTable - Use startFunctionBody to allocate memory for the + /// function's exception table. + uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) { + return startFunctionBody(F, ActualSize); + } + + /// endExceptionTable - The exception table of F is now allocated, + /// and takes the memory in the range [TableStart,TableEnd). + void endExceptionTable(const Function *F, uint8_t *TableStart, + uint8_t *TableEnd, uint8_t* FrameRegister) { + assert(TableEnd > TableStart); + assert(TableStart == (uint8_t *)(CurBlock+1) && + "Mismatched table start/end!"); + + uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock; + + // Release the memory at the end of this block that isn't needed. + FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); + } + + uint8_t *getGOTBase() const { + return GOTBase; + } + + void deallocateBlock(void *Block) { + // Find the block that is allocated for this function. + MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1; + assert(MemRange->ThisAllocated && "Block isn't allocated!"); + + // Fill the buffer with garbage! + if (PoisonMemory) { + memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange)); + } + + // Free the memory. + FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); + } + + /// deallocateFunctionBody - Deallocate all memory for the specified + /// function body. + void deallocateFunctionBody(void *Body) { + if (Body) deallocateBlock(Body); + } + + /// deallocateExceptionTable - Deallocate memory for the specified + /// exception table. + void deallocateExceptionTable(void *ET) { + if (ET) deallocateBlock(ET); + } + + /// setMemoryWritable - When code generation is in progress, + /// the code pages may need permissions changed. + void setMemoryWritable() + { + for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) + sys::Memory::setWritable(CodeSlabs[i]); + } + /// setMemoryExecutable - When code generation is done and we're ready to + /// start execution, the code pages may need permissions changed. + void setMemoryExecutable() + { + for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) + sys::Memory::setExecutable(CodeSlabs[i]); + } + + /// setPoisonMemory - Controls whether we write garbage over freed memory. + /// + void setPoisonMemory(bool poison) { + PoisonMemory = poison; + } + }; +} + +MemSlab *JITSlabAllocator::Allocate(size_t Size) { + sys::MemoryBlock B = JMM.allocateNewSlab(Size); + MemSlab *Slab = (MemSlab*)B.base(); + Slab->Size = B.size(); + Slab->NextPtr = 0; + return Slab; +} + +void JITSlabAllocator::Deallocate(MemSlab *Slab) { + sys::MemoryBlock B(Slab, Slab->Size); + sys::Memory::ReleaseRWX(B); +} + +DefaultJITMemoryManager::DefaultJITMemoryManager() + : +#ifdef NDEBUG + PoisonMemory(false), +#else + PoisonMemory(true), +#endif + LastSlab(0, 0), + BumpSlabAllocator(*this), + StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator), + DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) { + + // Allocate space for code. + sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize); + CodeSlabs.push_back(MemBlock); + uint8_t *MemBase = (uint8_t*)MemBlock.base(); + + // We set up the memory chunk with 4 mem regions, like this: + // [ START + // [ Free #0 ] -> Large space to allocate functions from. + // [ Allocated #1 ] -> Tiny space to separate regions. + // [ Free #2 ] -> Tiny space so there is always at least 1 free block. + // [ Allocated #3 ] -> Tiny space to prevent looking past end of block. + // END ] + // + // The last three blocks are never deallocated or touched. + + // Add MemoryRangeHeader to the end of the memory region, indicating that + // the space after the block of memory is allocated. This is block #3. + MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; + Mem3->ThisAllocated = 1; + Mem3->PrevAllocated = 0; + Mem3->BlockSize = sizeof(MemoryRangeHeader); + + /// Add a tiny free region so that the free list always has one entry. + FreeRangeHeader *Mem2 = + (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); + Mem2->ThisAllocated = 0; + Mem2->PrevAllocated = 1; + Mem2->BlockSize = FreeRangeHeader::getMinBlockSize(); + Mem2->SetEndOfBlockSizeMarker(); + Mem2->Prev = Mem2; // Mem2 *is* the free list for now. + Mem2->Next = Mem2; + + /// Add a tiny allocated region so that Mem2 is never coalesced away. + MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; + Mem1->ThisAllocated = 1; + Mem1->PrevAllocated = 0; + Mem1->BlockSize = sizeof(MemoryRangeHeader); + + // Add a FreeRangeHeader to the start of the function body region, indicating + // that the space is free. Mark the previous block allocated so we never look + // at it. + FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase; + Mem0->ThisAllocated = 0; + Mem0->PrevAllocated = 1; + Mem0->BlockSize = (char*)Mem1-(char*)Mem0; + Mem0->SetEndOfBlockSizeMarker(); + Mem0->AddToFreeList(Mem2); + + // Start out with the freelist pointing to Mem0. + FreeMemoryList = Mem0; + + GOTBase = NULL; +} + +void DefaultJITMemoryManager::AllocateGOT() { + assert(GOTBase == 0 && "Cannot allocate the got multiple times"); + GOTBase = new uint8_t[sizeof(void*) * 8192]; + HasGOT = true; +} + +DefaultJITMemoryManager::~DefaultJITMemoryManager() { + for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i) + sys::Memory::ReleaseRWX(CodeSlabs[i]); + + delete[] GOTBase; +} + +sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) { + // Allocate a new block close to the last one. + std::string ErrMsg; + sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0; + sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg); + if (B.base() == 0) { + report_fatal_error("Allocation failed when allocating new memory in the" + " JIT\n" + Twine(ErrMsg)); + } + LastSlab = B; + ++NumSlabs; + // Initialize the slab to garbage when debugging. + if (PoisonMemory) { + memset(B.base(), 0xCD, B.size()); + } + return B; +} + +/// CheckInvariants - For testing only. Return "" if all internal invariants +/// are preserved, and a helpful error message otherwise. For free and +/// allocated blocks, make sure that adding BlockSize gives a valid block. +/// For free blocks, make sure they're in the free list and that their end of +/// block size marker is correct. This function should return an error before +/// accessing bad memory. This function is defined here instead of in +/// JITMemoryManagerTest.cpp so that we don't have to expose all of the +/// implementation details of DefaultJITMemoryManager. +bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) { + raw_string_ostream Err(ErrorStr); + + // Construct a the set of FreeRangeHeader pointers so we can query it + // efficiently. + llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet; + FreeRangeHeader* FreeHead = FreeMemoryList; + FreeRangeHeader* FreeRange = FreeHead; + + do { + // Check that the free range pointer is in the blocks we've allocated. + bool Found = false; + for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), + E = CodeSlabs.end(); I != E && !Found; ++I) { + char *Start = (char*)I->base(); + char *End = Start + I->size(); + Found = (Start <= (char*)FreeRange && (char*)FreeRange < End); + } + if (!Found) { + Err << "Corrupt free list; points to " << FreeRange; + return false; + } + + if (FreeRange->Next->Prev != FreeRange) { + Err << "Next and Prev pointers do not match."; + return false; + } + + // Otherwise, add it to the set. + FreeHdrSet.insert(FreeRange); + FreeRange = FreeRange->Next; + } while (FreeRange != FreeHead); + + // Go over each block, and look at each MemoryRangeHeader. + for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(), + E = CodeSlabs.end(); I != E; ++I) { + char *Start = (char*)I->base(); + char *End = Start + I->size(); + + // Check each memory range. + for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL; + Start <= (char*)Hdr && (char*)Hdr < End; + Hdr = &Hdr->getBlockAfter()) { + if (Hdr->ThisAllocated == 0) { + // Check that this range is in the free list. + if (!FreeHdrSet.count(Hdr)) { + Err << "Found free header at " << Hdr << " that is not in free list."; + return false; + } + + // Now make sure the size marker at the end of the block is correct. + uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1; + if (!(Start <= (char*)Marker && (char*)Marker < End)) { + Err << "Block size in header points out of current MemoryBlock."; + return false; + } + if (Hdr->BlockSize != *Marker) { + Err << "End of block size marker (" << *Marker << ") " + << "and BlockSize (" << Hdr->BlockSize << ") don't match."; + return false; + } + } + + if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) { + Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != " + << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")"; + return false; + } else if (!LastHdr && !Hdr->PrevAllocated) { + Err << "The first header should have PrevAllocated true."; + return false; + } + + // Remember the last header. + LastHdr = Hdr; + } + } + + // All invariants are preserved. + return true; +} + +JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() { + return new DefaultJITMemoryManager(); +} + +// Allocate memory for code in 512K slabs. +const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024; + +// Allocate globals and stubs in slabs of 64K. (probably 16 pages) +const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024; + +// Waste at most 16K at the end of each bump slab. (probably 4 pages) +const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024; diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp new file mode 100644 index 0000000..9a9ed6d --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/OProfileJITEventListener.cpp @@ -0,0 +1,192 @@ +//===-- OProfileJITEventListener.cpp - Tell OProfile about JITted code ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a JITEventListener object that calls into OProfile to tell +// it about JITted functions. For now, we only record function names and sizes, +// but eventually we'll also record line number information. +// +// See http://oprofile.sourceforge.net/doc/devel/jit-interface.html for the +// definition of the interface we're using. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "oprofile-jit-event-listener" +#include "llvm/Function.h" +#include "llvm/Metadata.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/ExecutionEngine/JITEventListener.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Errno.h" +#include "llvm/Config/config.h" +#include <stddef.h> +using namespace llvm; + +#if USE_OPROFILE + +#include <opagent.h> + +namespace { + +class OProfileJITEventListener : public JITEventListener { + op_agent_t Agent; +public: + OProfileJITEventListener(); + ~OProfileJITEventListener(); + + virtual void NotifyFunctionEmitted(const Function &F, + void *FnStart, size_t FnSize, + const EmittedFunctionDetails &Details); + virtual void NotifyFreeingMachineCode(void *OldPtr); +}; + +OProfileJITEventListener::OProfileJITEventListener() + : Agent(op_open_agent()) { + if (Agent == NULL) { + const std::string err_str = sys::StrError(); + DEBUG(dbgs() << "Failed to connect to OProfile agent: " << err_str << "\n"); + } else { + DEBUG(dbgs() << "Connected to OProfile agent.\n"); + } +} + +OProfileJITEventListener::~OProfileJITEventListener() { + if (Agent != NULL) { + if (op_close_agent(Agent) == -1) { + const std::string err_str = sys::StrError(); + DEBUG(dbgs() << "Failed to disconnect from OProfile agent: " + << err_str << "\n"); + } else { + DEBUG(dbgs() << "Disconnected from OProfile agent.\n"); + } + } +} + +class FilenameCache { + // Holds the filename of each Scope, so that we can pass a null-terminated + // string into oprofile. Use an AssertingVH rather than a ValueMap because we + // shouldn't be modifying any MDNodes while this map is alive. + DenseMap<AssertingVH<MDNode>, std::string> Filenames; + + public: + const char *getFilename(MDNode *Scope) { + std::string &Filename = Filenames[Scope]; + if (Filename.empty()) { + Filename = DIScope(Scope).getFilename(); + } + return Filename.c_str(); + } +}; + +static debug_line_info LineStartToOProfileFormat( + const MachineFunction &MF, FilenameCache &Filenames, + uintptr_t Address, DebugLoc Loc) { + debug_line_info Result; + Result.vma = Address; + Result.lineno = Loc.getLine(); + Result.filename = Filenames.getFilename( + Loc.getScope(MF.getFunction()->getContext())); + DEBUG(dbgs() << "Mapping " << reinterpret_cast<void*>(Result.vma) << " to " + << Result.filename << ":" << Result.lineno << "\n"); + return Result; +} + +// Adds the just-emitted function to the symbol table. +void OProfileJITEventListener::NotifyFunctionEmitted( + const Function &F, void *FnStart, size_t FnSize, + const EmittedFunctionDetails &Details) { + assert(F.hasName() && FnStart != 0 && "Bad symbol to add"); + if (op_write_native_code(Agent, F.getName().data(), + reinterpret_cast<uint64_t>(FnStart), + FnStart, FnSize) == -1) { + DEBUG(dbgs() << "Failed to tell OProfile about native function " + << F.getName() << " at [" + << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n"); + return; + } + + if (!Details.LineStarts.empty()) { + // Now we convert the line number information from the address/DebugLoc + // format in Details to the address/filename/lineno format that OProfile + // expects. Note that OProfile 0.9.4 has a bug that causes it to ignore + // line numbers for addresses above 4G. + FilenameCache Filenames; + std::vector<debug_line_info> LineInfo; + LineInfo.reserve(1 + Details.LineStarts.size()); + + DebugLoc FirstLoc = Details.LineStarts[0].Loc; + assert(!FirstLoc.isUnknown() + && "LineStarts should not contain unknown DebugLocs"); + MDNode *FirstLocScope = FirstLoc.getScope(F.getContext()); + DISubprogram FunctionDI = getDISubprogram(FirstLocScope); + if (FunctionDI.Verify()) { + // If we have debug info for the function itself, use that as the line + // number of the first several instructions. Otherwise, after filling + // LineInfo, we'll adjust the address of the first line number to point at + // the start of the function. + debug_line_info line_info; + line_info.vma = reinterpret_cast<uintptr_t>(FnStart); + line_info.lineno = FunctionDI.getLineNumber(); + line_info.filename = Filenames.getFilename(FirstLocScope); + LineInfo.push_back(line_info); + } + + for (std::vector<EmittedFunctionDetails::LineStart>::const_iterator + I = Details.LineStarts.begin(), E = Details.LineStarts.end(); + I != E; ++I) { + LineInfo.push_back(LineStartToOProfileFormat( + *Details.MF, Filenames, I->Address, I->Loc)); + } + + // In case the function didn't have line info of its own, adjust the first + // line info's address to include the start of the function. + LineInfo[0].vma = reinterpret_cast<uintptr_t>(FnStart); + + if (op_write_debug_line_info(Agent, FnStart, + LineInfo.size(), &*LineInfo.begin()) == -1) { + DEBUG(dbgs() + << "Failed to tell OProfile about line numbers for native function " + << F.getName() << " at [" + << FnStart << "-" << ((char*)FnStart + FnSize) << "]\n"); + } + } +} + +// Removes the being-deleted function from the symbol table. +void OProfileJITEventListener::NotifyFreeingMachineCode(void *FnStart) { + assert(FnStart && "Invalid function pointer"); + if (op_unload_native_code(Agent, reinterpret_cast<uint64_t>(FnStart)) == -1) { + DEBUG(dbgs() + << "Failed to tell OProfile about unload of native function at " + << FnStart << "\n"); + } +} + +} // anonymous namespace. + +namespace llvm { +JITEventListener *createOProfileJITEventListener() { + return new OProfileJITEventListener; +} +} + +#else // USE_OPROFILE + +namespace llvm { +// By defining this to return NULL, we can let clients call it unconditionally, +// even if they haven't configured with the OProfile libraries. +JITEventListener *createOProfileJITEventListener() { + return NULL; +} +} // namespace llvm + +#endif // USE_OPROFILE |