diff options
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp')
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp | 1037 |
1 files changed, 1037 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp new file mode 100644 index 0000000..4b3ca87 --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp @@ -0,0 +1,1037 @@ +//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a JITDwarfEmitter object that is used by the JIT to +// write dwarf tables to memory. +// +//===----------------------------------------------------------------------===// + +#include "JIT.h" +#include "JITDwarfEmitter.h" +#include "llvm/Function.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineLocation.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/ExecutionEngine/JITMemoryManager.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +using namespace llvm; + +JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {} + + +unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F, + JITCodeEmitter& jce, + unsigned char* StartFunction, + unsigned char* EndFunction, + unsigned char* &EHFramePtr) { + assert(MMI && "MachineModuleInfo not registered!"); + + const TargetMachine& TM = F.getTarget(); + TD = TM.getTargetData(); + stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection(); + RI = TM.getRegisterInfo(); + JCE = &jce; + + unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction, + EndFunction); + + unsigned char* Result = 0; + + const std::vector<const Function *> Personalities = MMI->getPersonalities(); + EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]); + + Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr, + StartFunction, EndFunction, ExceptionTable); + + return Result; +} + + +void +JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr, + const std::vector<MachineMove> &Moves) const { + unsigned PointerSize = TD->getPointerSize(); + int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? + PointerSize : -PointerSize; + MCSymbol *BaseLabel = 0; + + for (unsigned i = 0, N = Moves.size(); i < N; ++i) { + const MachineMove &Move = Moves[i]; + MCSymbol *Label = Move.getLabel(); + + // Throw out move if the label is invalid. + if (Label && (*JCE->getLabelLocations())[Label] == 0) + continue; + + intptr_t LabelPtr = 0; + if (Label) LabelPtr = JCE->getLabelAddress(Label); + + const MachineLocation &Dst = Move.getDestination(); + const MachineLocation &Src = Move.getSource(); + + // Advance row if new location. + if (BaseLabelPtr && Label && BaseLabel != Label) { + JCE->emitByte(dwarf::DW_CFA_advance_loc4); + JCE->emitInt32(LabelPtr - BaseLabelPtr); + + BaseLabel = Label; + BaseLabelPtr = LabelPtr; + } + + // If advancing cfa. + if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { + if (!Src.isReg()) { + if (Src.getReg() == MachineLocation::VirtualFP) { + JCE->emitByte(dwarf::DW_CFA_def_cfa_offset); + } else { + JCE->emitByte(dwarf::DW_CFA_def_cfa); + JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true)); + } + + JCE->emitULEB128Bytes(-Src.getOffset()); + } else { + llvm_unreachable("Machine move not supported yet."); + } + } else if (Src.isReg() && + Src.getReg() == MachineLocation::VirtualFP) { + if (Dst.isReg()) { + JCE->emitByte(dwarf::DW_CFA_def_cfa_register); + JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true)); + } else { + llvm_unreachable("Machine move not supported yet."); + } + } else { + unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true); + int Offset = Dst.getOffset() / stackGrowth; + + if (Offset < 0) { + JCE->emitByte(dwarf::DW_CFA_offset_extended_sf); + JCE->emitULEB128Bytes(Reg); + JCE->emitSLEB128Bytes(Offset); + } else if (Reg < 64) { + JCE->emitByte(dwarf::DW_CFA_offset + Reg); + JCE->emitULEB128Bytes(Offset); + } else { + JCE->emitByte(dwarf::DW_CFA_offset_extended); + JCE->emitULEB128Bytes(Reg); + JCE->emitULEB128Bytes(Offset); + } + } + } +} + +/// SharedTypeIds - How many leading type ids two landing pads have in common. +static unsigned SharedTypeIds(const LandingPadInfo *L, + const LandingPadInfo *R) { + const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; + unsigned LSize = LIds.size(), RSize = RIds.size(); + unsigned MinSize = LSize < RSize ? LSize : RSize; + unsigned Count = 0; + + for (; Count != MinSize; ++Count) + if (LIds[Count] != RIds[Count]) + return Count; + + return Count; +} + + +/// PadLT - Order landing pads lexicographically by type id. +static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) { + const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; + unsigned LSize = LIds.size(), RSize = RIds.size(); + unsigned MinSize = LSize < RSize ? LSize : RSize; + + for (unsigned i = 0; i != MinSize; ++i) + if (LIds[i] != RIds[i]) + return LIds[i] < RIds[i]; + + return LSize < RSize; +} + +namespace { + +/// ActionEntry - Structure describing an entry in the actions table. +struct ActionEntry { + int ValueForTypeID; // The value to write - may not be equal to the type id. + int NextAction; + struct ActionEntry *Previous; +}; + +/// PadRange - Structure holding a try-range and the associated landing pad. +struct PadRange { + // The index of the landing pad. + unsigned PadIndex; + // The index of the begin and end labels in the landing pad's label lists. + unsigned RangeIndex; +}; + +typedef DenseMap<MCSymbol*, PadRange> RangeMapType; + +/// CallSiteEntry - Structure describing an entry in the call-site table. +struct CallSiteEntry { + MCSymbol *BeginLabel; // zero indicates the start of the function. + MCSymbol *EndLabel; // zero indicates the end of the function. + MCSymbol *PadLabel; // zero indicates that there is no landing pad. + unsigned Action; +}; + +} + +unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, + unsigned char* StartFunction, + unsigned char* EndFunction) const { + assert(MMI && "MachineModuleInfo not registered!"); + + // Map all labels and get rid of any dead landing pads. + MMI->TidyLandingPads(JCE->getLabelLocations()); + + const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); + const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); + const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); + if (PadInfos.empty()) return 0; + + // Sort the landing pads in order of their type ids. This is used to fold + // duplicate actions. + SmallVector<const LandingPadInfo *, 64> LandingPads; + LandingPads.reserve(PadInfos.size()); + for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) + LandingPads.push_back(&PadInfos[i]); + std::sort(LandingPads.begin(), LandingPads.end(), PadLT); + + // Negative type ids index into FilterIds, positive type ids index into + // TypeInfos. The value written for a positive type id is just the type + // id itself. For a negative type id, however, the value written is the + // (negative) byte offset of the corresponding FilterIds entry. The byte + // offset is usually equal to the type id, because the FilterIds entries + // are written using a variable width encoding which outputs one byte per + // entry as long as the value written is not too large, but can differ. + // This kind of complication does not occur for positive type ids because + // type infos are output using a fixed width encoding. + // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. + SmallVector<int, 16> FilterOffsets; + FilterOffsets.reserve(FilterIds.size()); + int Offset = -1; + for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), + E = FilterIds.end(); I != E; ++I) { + FilterOffsets.push_back(Offset); + Offset -= MCAsmInfo::getULEB128Size(*I); + } + + // Compute the actions table and gather the first action index for each + // landing pad site. + SmallVector<ActionEntry, 32> Actions; + SmallVector<unsigned, 64> FirstActions; + FirstActions.reserve(LandingPads.size()); + + int FirstAction = 0; + unsigned SizeActions = 0; + for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { + const LandingPadInfo *LP = LandingPads[i]; + const std::vector<int> &TypeIds = LP->TypeIds; + const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; + unsigned SizeSiteActions = 0; + + if (NumShared < TypeIds.size()) { + unsigned SizeAction = 0; + ActionEntry *PrevAction = 0; + + if (NumShared) { + const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); + assert(Actions.size()); + PrevAction = &Actions.back(); + SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); + for (unsigned j = NumShared; j != SizePrevIds; ++j) { + SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); + SizeAction += -PrevAction->NextAction; + PrevAction = PrevAction->Previous; + } + } + + // Compute the actions. + for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { + int TypeID = TypeIds[I]; + assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); + int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; + unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); + + int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; + SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); + SizeSiteActions += SizeAction; + + ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; + Actions.push_back(Action); + + PrevAction = &Actions.back(); + } + + // Record the first action of the landing pad site. + FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; + } // else identical - re-use previous FirstAction + + FirstActions.push_back(FirstAction); + + // Compute this sites contribution to size. + SizeActions += SizeSiteActions; + } + + // Compute the call-site table. Entries must be ordered by address. + SmallVector<CallSiteEntry, 64> CallSites; + + RangeMapType PadMap; + for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { + const LandingPadInfo *LandingPad = LandingPads[i]; + for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { + MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; + assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); + PadRange P = { i, j }; + PadMap[BeginLabel] = P; + } + } + + bool MayThrow = false; + MCSymbol *LastLabel = 0; + for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); + I != E; ++I) { + for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); + MI != E; ++MI) { + if (!MI->isLabel()) { + MayThrow |= MI->getDesc().isCall(); + continue; + } + + MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); + assert(BeginLabel && "Invalid label!"); + + if (BeginLabel == LastLabel) + MayThrow = false; + + RangeMapType::iterator L = PadMap.find(BeginLabel); + + if (L == PadMap.end()) + continue; + + PadRange P = L->second; + const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; + + assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && + "Inconsistent landing pad map!"); + + // If some instruction between the previous try-range and this one may + // throw, create a call-site entry with no landing pad for the region + // between the try-ranges. + if (MayThrow) { + CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; + CallSites.push_back(Site); + } + + LastLabel = LandingPad->EndLabels[P.RangeIndex]; + CallSiteEntry Site = {BeginLabel, LastLabel, + LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; + + assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && + "Invalid landing pad!"); + + // Try to merge with the previous call-site. + if (CallSites.size()) { + CallSiteEntry &Prev = CallSites.back(); + if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { + // Extend the range of the previous entry. + Prev.EndLabel = Site.EndLabel; + continue; + } + } + + // Otherwise, create a new call-site. + CallSites.push_back(Site); + } + } + // If some instruction between the previous try-range and the end of the + // function may throw, create a call-site entry with no landing pad for the + // region following the try-range. + if (MayThrow) { + CallSiteEntry Site = {LastLabel, 0, 0, 0}; + CallSites.push_back(Site); + } + + // Final tallies. + unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. + sizeof(int32_t) + // Site length. + sizeof(int32_t)); // Landing pad. + for (unsigned i = 0, e = CallSites.size(); i < e; ++i) + SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); + + unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); + + unsigned TypeOffset = sizeof(int8_t) + // Call site format + // Call-site table length + MCAsmInfo::getULEB128Size(SizeSites) + + SizeSites + SizeActions + SizeTypes; + + // Begin the exception table. + JCE->emitAlignmentWithFill(4, 0); + // Asm->EOL("Padding"); + + unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); + + // Emit the header. + JCE->emitByte(dwarf::DW_EH_PE_omit); + // Asm->EOL("LPStart format (DW_EH_PE_omit)"); + JCE->emitByte(dwarf::DW_EH_PE_absptr); + // Asm->EOL("TType format (DW_EH_PE_absptr)"); + JCE->emitULEB128Bytes(TypeOffset); + // Asm->EOL("TType base offset"); + JCE->emitByte(dwarf::DW_EH_PE_udata4); + // Asm->EOL("Call site format (DW_EH_PE_udata4)"); + JCE->emitULEB128Bytes(SizeSites); + // Asm->EOL("Call-site table length"); + + // Emit the landing pad site information. + for (unsigned i = 0; i < CallSites.size(); ++i) { + CallSiteEntry &S = CallSites[i]; + intptr_t BeginLabelPtr = 0; + intptr_t EndLabelPtr = 0; + + if (!S.BeginLabel) { + BeginLabelPtr = (intptr_t)StartFunction; + JCE->emitInt32(0); + } else { + BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); + JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); + } + + // Asm->EOL("Region start"); + + if (!S.EndLabel) + EndLabelPtr = (intptr_t)EndFunction; + else + EndLabelPtr = JCE->getLabelAddress(S.EndLabel); + + JCE->emitInt32(EndLabelPtr - BeginLabelPtr); + //Asm->EOL("Region length"); + + if (!S.PadLabel) { + JCE->emitInt32(0); + } else { + unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); + JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); + } + // Asm->EOL("Landing pad"); + + JCE->emitULEB128Bytes(S.Action); + // Asm->EOL("Action"); + } + + // Emit the actions. + for (unsigned I = 0, N = Actions.size(); I != N; ++I) { + ActionEntry &Action = Actions[I]; + + JCE->emitSLEB128Bytes(Action.ValueForTypeID); + //Asm->EOL("TypeInfo index"); + JCE->emitSLEB128Bytes(Action.NextAction); + //Asm->EOL("Next action"); + } + + // Emit the type ids. + for (unsigned M = TypeInfos.size(); M; --M) { + const GlobalVariable *GV = TypeInfos[M - 1]; + + if (GV) { + if (TD->getPointerSize() == sizeof(int32_t)) + JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); + else + JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); + } else { + if (TD->getPointerSize() == sizeof(int32_t)) + JCE->emitInt32(0); + else + JCE->emitInt64(0); + } + // Asm->EOL("TypeInfo"); + } + + // Emit the filter typeids. + for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { + unsigned TypeID = FilterIds[j]; + JCE->emitULEB128Bytes(TypeID); + //Asm->EOL("Filter TypeInfo index"); + } + + JCE->emitAlignmentWithFill(4, 0); + + return DwarfExceptionTable; +} + +unsigned char* +JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const { + unsigned PointerSize = TD->getPointerSize(); + int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? + PointerSize : -PointerSize; + + unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue(); + // EH Common Frame header + JCE->allocateSpace(4, 0); + unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); + JCE->emitInt32((int)0); + JCE->emitByte(dwarf::DW_CIE_VERSION); + JCE->emitString(Personality ? "zPLR" : "zR"); + JCE->emitULEB128Bytes(1); + JCE->emitSLEB128Bytes(stackGrowth); + JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true)); + + if (Personality) { + // Augmentation Size: 3 small ULEBs of one byte each, and the personality + // function which size is PointerSize. + JCE->emitULEB128Bytes(3 + PointerSize); + + // We set the encoding of the personality as direct encoding because we use + // the function pointer. The encoding is not relative because the current + // PC value may be bigger than the personality function pointer. + if (PointerSize == 4) { + JCE->emitByte(dwarf::DW_EH_PE_sdata4); + JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality))); + } else { + JCE->emitByte(dwarf::DW_EH_PE_sdata8); + JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality))); + } + + // LSDA encoding: This must match the encoding used in EmitEHFrame () + if (PointerSize == 4) + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); + else + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8); + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); + } else { + JCE->emitULEB128Bytes(1); + JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4); + } + + std::vector<MachineMove> Moves; + RI->getInitialFrameState(Moves); + EmitFrameMoves(0, Moves); + + JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); + + JCE->emitInt32At((uintptr_t*)StartCommonPtr, + (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - + FrameCommonBeginPtr)); + + return StartCommonPtr; +} + + +unsigned char* +JITDwarfEmitter::EmitEHFrame(const Function* Personality, + unsigned char* StartCommonPtr, + unsigned char* StartFunction, + unsigned char* EndFunction, + unsigned char* ExceptionTable) const { + unsigned PointerSize = TD->getPointerSize(); + + // EH frame header. + unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue(); + JCE->allocateSpace(4, 0); + unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue(); + // FDE CIE Offset + JCE->emitInt32(FrameBeginPtr - StartCommonPtr); + JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue()); + JCE->emitInt32(EndFunction - StartFunction); + + // If there is a personality and landing pads then point to the language + // specific data area in the exception table. + if (Personality) { + JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8); + + if (PointerSize == 4) { + if (!MMI->getLandingPads().empty()) + JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); + else + JCE->emitInt32((int)0); + } else { + if (!MMI->getLandingPads().empty()) + JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue()); + else + JCE->emitInt64((int)0); + } + } else { + JCE->emitULEB128Bytes(0); + } + + // Indicate locations of function specific callee saved registers in + // frame. + EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves()); + + JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop); + + // Indicate the size of the table + JCE->emitInt32At((uintptr_t*)StartEHPtr, + (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() - + StartEHPtr)); + + // Double zeroes for the unwind runtime + if (PointerSize == 8) { + JCE->emitInt64(0); + JCE->emitInt64(0); + } else { + JCE->emitInt32(0); + JCE->emitInt32(0); + } + + return StartEHPtr; +} + +unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F, + JITCodeEmitter& jce, + unsigned char* StartFunction, + unsigned char* EndFunction) { + const TargetMachine& TM = F.getTarget(); + TD = TM.getTargetData(); + stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection(); + RI = TM.getRegisterInfo(); + JCE = &jce; + unsigned FinalSize = 0; + + FinalSize += GetExceptionTableSizeInBytes(&F); + + const std::vector<const Function *> Personalities = MMI->getPersonalities(); + FinalSize += + GetCommonEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()]); + + FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()], + StartFunction); + + return FinalSize; +} + +/// RoundUpToAlign - Add the specified alignment to FinalSize and returns +/// the new value. +static unsigned RoundUpToAlign(unsigned FinalSize, unsigned Alignment) { + if (Alignment == 0) Alignment = 1; + // Since we do not know where the buffer will be allocated, be pessimistic. + return FinalSize + Alignment; +} + +unsigned +JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality, + unsigned char* StartFunction) const { + unsigned PointerSize = TD->getPointerSize(); + unsigned FinalSize = 0; + // EH frame header. + FinalSize += PointerSize; + // FDE CIE Offset + FinalSize += 3 * PointerSize; + // If there is a personality and landing pads then point to the language + // specific data area in the exception table. + if (Personality) { + FinalSize += MCAsmInfo::getULEB128Size(4); + FinalSize += PointerSize; + } else { + FinalSize += MCAsmInfo::getULEB128Size(0); + } + + // Indicate locations of function specific callee saved registers in + // frame. + FinalSize += GetFrameMovesSizeInBytes((intptr_t)StartFunction, + MMI->getFrameMoves()); + + FinalSize = RoundUpToAlign(FinalSize, 4); + + // Double zeroes for the unwind runtime + FinalSize += 2 * PointerSize; + + return FinalSize; +} + +unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personality) + const { + + unsigned PointerSize = TD->getPointerSize(); + int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? + PointerSize : -PointerSize; + unsigned FinalSize = 0; + // EH Common Frame header + FinalSize += PointerSize; + FinalSize += 4; + FinalSize += 1; + FinalSize += Personality ? 5 : 3; // "zPLR" or "zR" + FinalSize += MCAsmInfo::getULEB128Size(1); + FinalSize += MCAsmInfo::getSLEB128Size(stackGrowth); + FinalSize += 1; + + if (Personality) { + FinalSize += MCAsmInfo::getULEB128Size(7); + + // Encoding + FinalSize+= 1; + //Personality + FinalSize += PointerSize; + + FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel); + FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel); + + } else { + FinalSize += MCAsmInfo::getULEB128Size(1); + FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel); + } + + std::vector<MachineMove> Moves; + RI->getInitialFrameState(Moves); + FinalSize += GetFrameMovesSizeInBytes(0, Moves); + FinalSize = RoundUpToAlign(FinalSize, 4); + return FinalSize; +} + +unsigned +JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr, + const std::vector<MachineMove> &Moves) const { + unsigned PointerSize = TD->getPointerSize(); + int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ? + PointerSize : -PointerSize; + bool IsLocal = BaseLabelPtr; + unsigned FinalSize = 0; + + for (unsigned i = 0, N = Moves.size(); i < N; ++i) { + const MachineMove &Move = Moves[i]; + MCSymbol *Label = Move.getLabel(); + + // Throw out move if the label is invalid. + if (Label && (*JCE->getLabelLocations())[Label] == 0) + continue; + + intptr_t LabelPtr = 0; + if (Label) LabelPtr = JCE->getLabelAddress(Label); + + const MachineLocation &Dst = Move.getDestination(); + const MachineLocation &Src = Move.getSource(); + + // Advance row if new location. + if (BaseLabelPtr && Label && (BaseLabelPtr != LabelPtr || !IsLocal)) { + FinalSize++; + FinalSize += PointerSize; + BaseLabelPtr = LabelPtr; + IsLocal = true; + } + + // If advancing cfa. + if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { + if (!Src.isReg()) { + if (Src.getReg() == MachineLocation::VirtualFP) { + ++FinalSize; + } else { + ++FinalSize; + unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true); + FinalSize += MCAsmInfo::getULEB128Size(RegNum); + } + + int Offset = -Src.getOffset(); + + FinalSize += MCAsmInfo::getULEB128Size(Offset); + } else { + llvm_unreachable("Machine move no supported yet."); + } + } else if (Src.isReg() && + Src.getReg() == MachineLocation::VirtualFP) { + if (Dst.isReg()) { + ++FinalSize; + unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true); + FinalSize += MCAsmInfo::getULEB128Size(RegNum); + } else { + llvm_unreachable("Machine move no supported yet."); + } + } else { + unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true); + int Offset = Dst.getOffset() / stackGrowth; + + if (Offset < 0) { + ++FinalSize; + FinalSize += MCAsmInfo::getULEB128Size(Reg); + FinalSize += MCAsmInfo::getSLEB128Size(Offset); + } else if (Reg < 64) { + ++FinalSize; + FinalSize += MCAsmInfo::getULEB128Size(Offset); + } else { + ++FinalSize; + FinalSize += MCAsmInfo::getULEB128Size(Reg); + FinalSize += MCAsmInfo::getULEB128Size(Offset); + } + } + } + return FinalSize; +} + +unsigned +JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const { + unsigned FinalSize = 0; + + // Map all labels and get rid of any dead landing pads. + MMI->TidyLandingPads(JCE->getLabelLocations()); + + const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); + const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); + const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); + if (PadInfos.empty()) return 0; + + // Sort the landing pads in order of their type ids. This is used to fold + // duplicate actions. + SmallVector<const LandingPadInfo *, 64> LandingPads; + LandingPads.reserve(PadInfos.size()); + for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) + LandingPads.push_back(&PadInfos[i]); + std::sort(LandingPads.begin(), LandingPads.end(), PadLT); + + // Negative type ids index into FilterIds, positive type ids index into + // TypeInfos. The value written for a positive type id is just the type + // id itself. For a negative type id, however, the value written is the + // (negative) byte offset of the corresponding FilterIds entry. The byte + // offset is usually equal to the type id, because the FilterIds entries + // are written using a variable width encoding which outputs one byte per + // entry as long as the value written is not too large, but can differ. + // This kind of complication does not occur for positive type ids because + // type infos are output using a fixed width encoding. + // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. + SmallVector<int, 16> FilterOffsets; + FilterOffsets.reserve(FilterIds.size()); + int Offset = -1; + for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), + E = FilterIds.end(); I != E; ++I) { + FilterOffsets.push_back(Offset); + Offset -= MCAsmInfo::getULEB128Size(*I); + } + + // Compute the actions table and gather the first action index for each + // landing pad site. + SmallVector<ActionEntry, 32> Actions; + SmallVector<unsigned, 64> FirstActions; + FirstActions.reserve(LandingPads.size()); + + int FirstAction = 0; + unsigned SizeActions = 0; + for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { + const LandingPadInfo *LP = LandingPads[i]; + const std::vector<int> &TypeIds = LP->TypeIds; + const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; + unsigned SizeSiteActions = 0; + + if (NumShared < TypeIds.size()) { + unsigned SizeAction = 0; + ActionEntry *PrevAction = 0; + + if (NumShared) { + const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); + assert(Actions.size()); + PrevAction = &Actions.back(); + SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); + for (unsigned j = NumShared; j != SizePrevIds; ++j) { + SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); + SizeAction += -PrevAction->NextAction; + PrevAction = PrevAction->Previous; + } + } + + // Compute the actions. + for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { + int TypeID = TypeIds[I]; + assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); + int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; + unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); + + int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; + SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); + SizeSiteActions += SizeAction; + + ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; + Actions.push_back(Action); + + PrevAction = &Actions.back(); + } + + // Record the first action of the landing pad site. + FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; + } // else identical - re-use previous FirstAction + + FirstActions.push_back(FirstAction); + + // Compute this sites contribution to size. + SizeActions += SizeSiteActions; + } + + // Compute the call-site table. Entries must be ordered by address. + SmallVector<CallSiteEntry, 64> CallSites; + + RangeMapType PadMap; + for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { + const LandingPadInfo *LandingPad = LandingPads[i]; + for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { + MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; + assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); + PadRange P = { i, j }; + PadMap[BeginLabel] = P; + } + } + + bool MayThrow = false; + MCSymbol *LastLabel = 0; + for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); + I != E; ++I) { + for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); + MI != E; ++MI) { + if (!MI->isLabel()) { + MayThrow |= MI->getDesc().isCall(); + continue; + } + + MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); + + if (BeginLabel == LastLabel) + MayThrow = false; + + RangeMapType::iterator L = PadMap.find(BeginLabel); + + if (L == PadMap.end()) + continue; + + PadRange P = L->second; + const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; + + assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && + "Inconsistent landing pad map!"); + + // If some instruction between the previous try-range and this one may + // throw, create a call-site entry with no landing pad for the region + // between the try-ranges. + if (MayThrow) { + CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; + CallSites.push_back(Site); + } + + LastLabel = LandingPad->EndLabels[P.RangeIndex]; + CallSiteEntry Site = {BeginLabel, LastLabel, + LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; + + assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && + "Invalid landing pad!"); + + // Try to merge with the previous call-site. + if (CallSites.size()) { + CallSiteEntry &Prev = CallSites.back(); + if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { + // Extend the range of the previous entry. + Prev.EndLabel = Site.EndLabel; + continue; + } + } + + // Otherwise, create a new call-site. + CallSites.push_back(Site); + } + } + // If some instruction between the previous try-range and the end of the + // function may throw, create a call-site entry with no landing pad for the + // region following the try-range. + if (MayThrow) { + CallSiteEntry Site = {LastLabel, 0, 0, 0}; + CallSites.push_back(Site); + } + + // Final tallies. + unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. + sizeof(int32_t) + // Site length. + sizeof(int32_t)); // Landing pad. + for (unsigned i = 0, e = CallSites.size(); i < e; ++i) + SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); + + unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); + + unsigned TypeOffset = sizeof(int8_t) + // Call site format + // Call-site table length + MCAsmInfo::getULEB128Size(SizeSites) + + SizeSites + SizeActions + SizeTypes; + + unsigned TotalSize = sizeof(int8_t) + // LPStart format + sizeof(int8_t) + // TType format + MCAsmInfo::getULEB128Size(TypeOffset) + // TType base offset + TypeOffset; + + unsigned SizeAlign = (4 - TotalSize) & 3; + + // Begin the exception table. + FinalSize = RoundUpToAlign(FinalSize, 4); + for (unsigned i = 0; i != SizeAlign; ++i) { + ++FinalSize; + } + + unsigned PointerSize = TD->getPointerSize(); + + // Emit the header. + ++FinalSize; + // Asm->EOL("LPStart format (DW_EH_PE_omit)"); + ++FinalSize; + // Asm->EOL("TType format (DW_EH_PE_absptr)"); + ++FinalSize; + // Asm->EOL("TType base offset"); + ++FinalSize; + // Asm->EOL("Call site format (DW_EH_PE_udata4)"); + ++FinalSize; + // Asm->EOL("Call-site table length"); + + // Emit the landing pad site information. + for (unsigned i = 0; i < CallSites.size(); ++i) { + CallSiteEntry &S = CallSites[i]; + + // Asm->EOL("Region start"); + FinalSize += PointerSize; + + //Asm->EOL("Region length"); + FinalSize += PointerSize; + + // Asm->EOL("Landing pad"); + FinalSize += PointerSize; + + FinalSize += MCAsmInfo::getULEB128Size(S.Action); + // Asm->EOL("Action"); + } + + // Emit the actions. + for (unsigned I = 0, N = Actions.size(); I != N; ++I) { + ActionEntry &Action = Actions[I]; + + //Asm->EOL("TypeInfo index"); + FinalSize += MCAsmInfo::getSLEB128Size(Action.ValueForTypeID); + //Asm->EOL("Next action"); + FinalSize += MCAsmInfo::getSLEB128Size(Action.NextAction); + } + + // Emit the type ids. + for (unsigned M = TypeInfos.size(); M; --M) { + // Asm->EOL("TypeInfo"); + FinalSize += PointerSize; + } + + // Emit the filter typeids. + for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { + unsigned TypeID = FilterIds[j]; + FinalSize += MCAsmInfo::getULEB128Size(TypeID); + //Asm->EOL("Filter TypeInfo index"); + } + + FinalSize = RoundUpToAlign(FinalSize, 4); + + return FinalSize; +} |