summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp')
-rw-r--r--contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp1037
1 files changed, 1037 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
new file mode 100644
index 0000000..4b3ca87
--- /dev/null
+++ b/contrib/llvm/lib/ExecutionEngine/JIT/JITDwarfEmitter.cpp
@@ -0,0 +1,1037 @@
+//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a JITDwarfEmitter object that is used by the JIT to
+// write dwarf tables to memory.
+//
+//===----------------------------------------------------------------------===//
+
+#include "JIT.h"
+#include "JITDwarfEmitter.h"
+#include "llvm/Function.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/JITCodeEmitter.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineLocation.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/ExecutionEngine/JITMemoryManager.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : MMI(0), Jit(theJit) {}
+
+
+unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
+ JITCodeEmitter& jce,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction,
+ unsigned char* &EHFramePtr) {
+ assert(MMI && "MachineModuleInfo not registered!");
+
+ const TargetMachine& TM = F.getTarget();
+ TD = TM.getTargetData();
+ stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
+ RI = TM.getRegisterInfo();
+ JCE = &jce;
+
+ unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
+ EndFunction);
+
+ unsigned char* Result = 0;
+
+ const std::vector<const Function *> Personalities = MMI->getPersonalities();
+ EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
+
+ Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
+ StartFunction, EndFunction, ExceptionTable);
+
+ return Result;
+}
+
+
+void
+JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
+ const std::vector<MachineMove> &Moves) const {
+ unsigned PointerSize = TD->getPointerSize();
+ int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
+ PointerSize : -PointerSize;
+ MCSymbol *BaseLabel = 0;
+
+ for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
+ const MachineMove &Move = Moves[i];
+ MCSymbol *Label = Move.getLabel();
+
+ // Throw out move if the label is invalid.
+ if (Label && (*JCE->getLabelLocations())[Label] == 0)
+ continue;
+
+ intptr_t LabelPtr = 0;
+ if (Label) LabelPtr = JCE->getLabelAddress(Label);
+
+ const MachineLocation &Dst = Move.getDestination();
+ const MachineLocation &Src = Move.getSource();
+
+ // Advance row if new location.
+ if (BaseLabelPtr && Label && BaseLabel != Label) {
+ JCE->emitByte(dwarf::DW_CFA_advance_loc4);
+ JCE->emitInt32(LabelPtr - BaseLabelPtr);
+
+ BaseLabel = Label;
+ BaseLabelPtr = LabelPtr;
+ }
+
+ // If advancing cfa.
+ if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
+ if (!Src.isReg()) {
+ if (Src.getReg() == MachineLocation::VirtualFP) {
+ JCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
+ } else {
+ JCE->emitByte(dwarf::DW_CFA_def_cfa);
+ JCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getReg(), true));
+ }
+
+ JCE->emitULEB128Bytes(-Src.getOffset());
+ } else {
+ llvm_unreachable("Machine move not supported yet.");
+ }
+ } else if (Src.isReg() &&
+ Src.getReg() == MachineLocation::VirtualFP) {
+ if (Dst.isReg()) {
+ JCE->emitByte(dwarf::DW_CFA_def_cfa_register);
+ JCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getReg(), true));
+ } else {
+ llvm_unreachable("Machine move not supported yet.");
+ }
+ } else {
+ unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
+ int Offset = Dst.getOffset() / stackGrowth;
+
+ if (Offset < 0) {
+ JCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
+ JCE->emitULEB128Bytes(Reg);
+ JCE->emitSLEB128Bytes(Offset);
+ } else if (Reg < 64) {
+ JCE->emitByte(dwarf::DW_CFA_offset + Reg);
+ JCE->emitULEB128Bytes(Offset);
+ } else {
+ JCE->emitByte(dwarf::DW_CFA_offset_extended);
+ JCE->emitULEB128Bytes(Reg);
+ JCE->emitULEB128Bytes(Offset);
+ }
+ }
+ }
+}
+
+/// SharedTypeIds - How many leading type ids two landing pads have in common.
+static unsigned SharedTypeIds(const LandingPadInfo *L,
+ const LandingPadInfo *R) {
+ const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
+ unsigned LSize = LIds.size(), RSize = RIds.size();
+ unsigned MinSize = LSize < RSize ? LSize : RSize;
+ unsigned Count = 0;
+
+ for (; Count != MinSize; ++Count)
+ if (LIds[Count] != RIds[Count])
+ return Count;
+
+ return Count;
+}
+
+
+/// PadLT - Order landing pads lexicographically by type id.
+static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
+ const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
+ unsigned LSize = LIds.size(), RSize = RIds.size();
+ unsigned MinSize = LSize < RSize ? LSize : RSize;
+
+ for (unsigned i = 0; i != MinSize; ++i)
+ if (LIds[i] != RIds[i])
+ return LIds[i] < RIds[i];
+
+ return LSize < RSize;
+}
+
+namespace {
+
+/// ActionEntry - Structure describing an entry in the actions table.
+struct ActionEntry {
+ int ValueForTypeID; // The value to write - may not be equal to the type id.
+ int NextAction;
+ struct ActionEntry *Previous;
+};
+
+/// PadRange - Structure holding a try-range and the associated landing pad.
+struct PadRange {
+ // The index of the landing pad.
+ unsigned PadIndex;
+ // The index of the begin and end labels in the landing pad's label lists.
+ unsigned RangeIndex;
+};
+
+typedef DenseMap<MCSymbol*, PadRange> RangeMapType;
+
+/// CallSiteEntry - Structure describing an entry in the call-site table.
+struct CallSiteEntry {
+ MCSymbol *BeginLabel; // zero indicates the start of the function.
+ MCSymbol *EndLabel; // zero indicates the end of the function.
+ MCSymbol *PadLabel; // zero indicates that there is no landing pad.
+ unsigned Action;
+};
+
+}
+
+unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction) const {
+ assert(MMI && "MachineModuleInfo not registered!");
+
+ // Map all labels and get rid of any dead landing pads.
+ MMI->TidyLandingPads(JCE->getLabelLocations());
+
+ const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
+ const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
+ const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
+ if (PadInfos.empty()) return 0;
+
+ // Sort the landing pads in order of their type ids. This is used to fold
+ // duplicate actions.
+ SmallVector<const LandingPadInfo *, 64> LandingPads;
+ LandingPads.reserve(PadInfos.size());
+ for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
+ LandingPads.push_back(&PadInfos[i]);
+ std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
+
+ // Negative type ids index into FilterIds, positive type ids index into
+ // TypeInfos. The value written for a positive type id is just the type
+ // id itself. For a negative type id, however, the value written is the
+ // (negative) byte offset of the corresponding FilterIds entry. The byte
+ // offset is usually equal to the type id, because the FilterIds entries
+ // are written using a variable width encoding which outputs one byte per
+ // entry as long as the value written is not too large, but can differ.
+ // This kind of complication does not occur for positive type ids because
+ // type infos are output using a fixed width encoding.
+ // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
+ SmallVector<int, 16> FilterOffsets;
+ FilterOffsets.reserve(FilterIds.size());
+ int Offset = -1;
+ for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
+ E = FilterIds.end(); I != E; ++I) {
+ FilterOffsets.push_back(Offset);
+ Offset -= MCAsmInfo::getULEB128Size(*I);
+ }
+
+ // Compute the actions table and gather the first action index for each
+ // landing pad site.
+ SmallVector<ActionEntry, 32> Actions;
+ SmallVector<unsigned, 64> FirstActions;
+ FirstActions.reserve(LandingPads.size());
+
+ int FirstAction = 0;
+ unsigned SizeActions = 0;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LP = LandingPads[i];
+ const std::vector<int> &TypeIds = LP->TypeIds;
+ const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
+ unsigned SizeSiteActions = 0;
+
+ if (NumShared < TypeIds.size()) {
+ unsigned SizeAction = 0;
+ ActionEntry *PrevAction = 0;
+
+ if (NumShared) {
+ const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
+ assert(Actions.size());
+ PrevAction = &Actions.back();
+ SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
+ MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ for (unsigned j = NumShared; j != SizePrevIds; ++j) {
+ SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction += -PrevAction->NextAction;
+ PrevAction = PrevAction->Previous;
+ }
+ }
+
+ // Compute the actions.
+ for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
+ int TypeID = TypeIds[I];
+ assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
+ int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
+ unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
+
+ int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
+ SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
+ SizeSiteActions += SizeAction;
+
+ ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
+ Actions.push_back(Action);
+
+ PrevAction = &Actions.back();
+ }
+
+ // Record the first action of the landing pad site.
+ FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
+ } // else identical - re-use previous FirstAction
+
+ FirstActions.push_back(FirstAction);
+
+ // Compute this sites contribution to size.
+ SizeActions += SizeSiteActions;
+ }
+
+ // Compute the call-site table. Entries must be ordered by address.
+ SmallVector<CallSiteEntry, 64> CallSites;
+
+ RangeMapType PadMap;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LandingPad = LandingPads[i];
+ for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
+ MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
+ assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
+ PadRange P = { i, j };
+ PadMap[BeginLabel] = P;
+ }
+ }
+
+ bool MayThrow = false;
+ MCSymbol *LastLabel = 0;
+ for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
+ I != E; ++I) {
+ for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
+ MI != E; ++MI) {
+ if (!MI->isLabel()) {
+ MayThrow |= MI->getDesc().isCall();
+ continue;
+ }
+
+ MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
+ assert(BeginLabel && "Invalid label!");
+
+ if (BeginLabel == LastLabel)
+ MayThrow = false;
+
+ RangeMapType::iterator L = PadMap.find(BeginLabel);
+
+ if (L == PadMap.end())
+ continue;
+
+ PadRange P = L->second;
+ const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
+
+ assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
+ "Inconsistent landing pad map!");
+
+ // If some instruction between the previous try-range and this one may
+ // throw, create a call-site entry with no landing pad for the region
+ // between the try-ranges.
+ if (MayThrow) {
+ CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
+ CallSites.push_back(Site);
+ }
+
+ LastLabel = LandingPad->EndLabels[P.RangeIndex];
+ CallSiteEntry Site = {BeginLabel, LastLabel,
+ LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
+
+ assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
+ "Invalid landing pad!");
+
+ // Try to merge with the previous call-site.
+ if (CallSites.size()) {
+ CallSiteEntry &Prev = CallSites.back();
+ if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
+ // Extend the range of the previous entry.
+ Prev.EndLabel = Site.EndLabel;
+ continue;
+ }
+ }
+
+ // Otherwise, create a new call-site.
+ CallSites.push_back(Site);
+ }
+ }
+ // If some instruction between the previous try-range and the end of the
+ // function may throw, create a call-site entry with no landing pad for the
+ // region following the try-range.
+ if (MayThrow) {
+ CallSiteEntry Site = {LastLabel, 0, 0, 0};
+ CallSites.push_back(Site);
+ }
+
+ // Final tallies.
+ unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
+ sizeof(int32_t) + // Site length.
+ sizeof(int32_t)); // Landing pad.
+ for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
+ SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
+
+ unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
+
+ unsigned TypeOffset = sizeof(int8_t) + // Call site format
+ // Call-site table length
+ MCAsmInfo::getULEB128Size(SizeSites) +
+ SizeSites + SizeActions + SizeTypes;
+
+ // Begin the exception table.
+ JCE->emitAlignmentWithFill(4, 0);
+ // Asm->EOL("Padding");
+
+ unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();
+
+ // Emit the header.
+ JCE->emitByte(dwarf::DW_EH_PE_omit);
+ // Asm->EOL("LPStart format (DW_EH_PE_omit)");
+ JCE->emitByte(dwarf::DW_EH_PE_absptr);
+ // Asm->EOL("TType format (DW_EH_PE_absptr)");
+ JCE->emitULEB128Bytes(TypeOffset);
+ // Asm->EOL("TType base offset");
+ JCE->emitByte(dwarf::DW_EH_PE_udata4);
+ // Asm->EOL("Call site format (DW_EH_PE_udata4)");
+ JCE->emitULEB128Bytes(SizeSites);
+ // Asm->EOL("Call-site table length");
+
+ // Emit the landing pad site information.
+ for (unsigned i = 0; i < CallSites.size(); ++i) {
+ CallSiteEntry &S = CallSites[i];
+ intptr_t BeginLabelPtr = 0;
+ intptr_t EndLabelPtr = 0;
+
+ if (!S.BeginLabel) {
+ BeginLabelPtr = (intptr_t)StartFunction;
+ JCE->emitInt32(0);
+ } else {
+ BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
+ JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
+ }
+
+ // Asm->EOL("Region start");
+
+ if (!S.EndLabel)
+ EndLabelPtr = (intptr_t)EndFunction;
+ else
+ EndLabelPtr = JCE->getLabelAddress(S.EndLabel);
+
+ JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
+ //Asm->EOL("Region length");
+
+ if (!S.PadLabel) {
+ JCE->emitInt32(0);
+ } else {
+ unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
+ JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
+ }
+ // Asm->EOL("Landing pad");
+
+ JCE->emitULEB128Bytes(S.Action);
+ // Asm->EOL("Action");
+ }
+
+ // Emit the actions.
+ for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
+ ActionEntry &Action = Actions[I];
+
+ JCE->emitSLEB128Bytes(Action.ValueForTypeID);
+ //Asm->EOL("TypeInfo index");
+ JCE->emitSLEB128Bytes(Action.NextAction);
+ //Asm->EOL("Next action");
+ }
+
+ // Emit the type ids.
+ for (unsigned M = TypeInfos.size(); M; --M) {
+ const GlobalVariable *GV = TypeInfos[M - 1];
+
+ if (GV) {
+ if (TD->getPointerSize() == sizeof(int32_t))
+ JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
+ else
+ JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
+ } else {
+ if (TD->getPointerSize() == sizeof(int32_t))
+ JCE->emitInt32(0);
+ else
+ JCE->emitInt64(0);
+ }
+ // Asm->EOL("TypeInfo");
+ }
+
+ // Emit the filter typeids.
+ for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
+ unsigned TypeID = FilterIds[j];
+ JCE->emitULEB128Bytes(TypeID);
+ //Asm->EOL("Filter TypeInfo index");
+ }
+
+ JCE->emitAlignmentWithFill(4, 0);
+
+ return DwarfExceptionTable;
+}
+
+unsigned char*
+JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) const {
+ unsigned PointerSize = TD->getPointerSize();
+ int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
+ PointerSize : -PointerSize;
+
+ unsigned char* StartCommonPtr = (unsigned char*)JCE->getCurrentPCValue();
+ // EH Common Frame header
+ JCE->allocateSpace(4, 0);
+ unsigned char* FrameCommonBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
+ JCE->emitInt32((int)0);
+ JCE->emitByte(dwarf::DW_CIE_VERSION);
+ JCE->emitString(Personality ? "zPLR" : "zR");
+ JCE->emitULEB128Bytes(1);
+ JCE->emitSLEB128Bytes(stackGrowth);
+ JCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
+
+ if (Personality) {
+ // Augmentation Size: 3 small ULEBs of one byte each, and the personality
+ // function which size is PointerSize.
+ JCE->emitULEB128Bytes(3 + PointerSize);
+
+ // We set the encoding of the personality as direct encoding because we use
+ // the function pointer. The encoding is not relative because the current
+ // PC value may be bigger than the personality function pointer.
+ if (PointerSize == 4) {
+ JCE->emitByte(dwarf::DW_EH_PE_sdata4);
+ JCE->emitInt32(((intptr_t)Jit.getPointerToGlobal(Personality)));
+ } else {
+ JCE->emitByte(dwarf::DW_EH_PE_sdata8);
+ JCE->emitInt64(((intptr_t)Jit.getPointerToGlobal(Personality)));
+ }
+
+ // LSDA encoding: This must match the encoding used in EmitEHFrame ()
+ if (PointerSize == 4)
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
+ else
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8);
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
+ } else {
+ JCE->emitULEB128Bytes(1);
+ JCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
+ }
+
+ std::vector<MachineMove> Moves;
+ RI->getInitialFrameState(Moves);
+ EmitFrameMoves(0, Moves);
+
+ JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
+
+ JCE->emitInt32At((uintptr_t*)StartCommonPtr,
+ (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
+ FrameCommonBeginPtr));
+
+ return StartCommonPtr;
+}
+
+
+unsigned char*
+JITDwarfEmitter::EmitEHFrame(const Function* Personality,
+ unsigned char* StartCommonPtr,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction,
+ unsigned char* ExceptionTable) const {
+ unsigned PointerSize = TD->getPointerSize();
+
+ // EH frame header.
+ unsigned char* StartEHPtr = (unsigned char*)JCE->getCurrentPCValue();
+ JCE->allocateSpace(4, 0);
+ unsigned char* FrameBeginPtr = (unsigned char*)JCE->getCurrentPCValue();
+ // FDE CIE Offset
+ JCE->emitInt32(FrameBeginPtr - StartCommonPtr);
+ JCE->emitInt32(StartFunction - (unsigned char*)JCE->getCurrentPCValue());
+ JCE->emitInt32(EndFunction - StartFunction);
+
+ // If there is a personality and landing pads then point to the language
+ // specific data area in the exception table.
+ if (Personality) {
+ JCE->emitULEB128Bytes(PointerSize == 4 ? 4 : 8);
+
+ if (PointerSize == 4) {
+ if (!MMI->getLandingPads().empty())
+ JCE->emitInt32(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
+ else
+ JCE->emitInt32((int)0);
+ } else {
+ if (!MMI->getLandingPads().empty())
+ JCE->emitInt64(ExceptionTable-(unsigned char*)JCE->getCurrentPCValue());
+ else
+ JCE->emitInt64((int)0);
+ }
+ } else {
+ JCE->emitULEB128Bytes(0);
+ }
+
+ // Indicate locations of function specific callee saved registers in
+ // frame.
+ EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
+
+ JCE->emitAlignmentWithFill(PointerSize, dwarf::DW_CFA_nop);
+
+ // Indicate the size of the table
+ JCE->emitInt32At((uintptr_t*)StartEHPtr,
+ (uintptr_t)((unsigned char*)JCE->getCurrentPCValue() -
+ StartEHPtr));
+
+ // Double zeroes for the unwind runtime
+ if (PointerSize == 8) {
+ JCE->emitInt64(0);
+ JCE->emitInt64(0);
+ } else {
+ JCE->emitInt32(0);
+ JCE->emitInt32(0);
+ }
+
+ return StartEHPtr;
+}
+
+unsigned JITDwarfEmitter::GetDwarfTableSizeInBytes(MachineFunction& F,
+ JITCodeEmitter& jce,
+ unsigned char* StartFunction,
+ unsigned char* EndFunction) {
+ const TargetMachine& TM = F.getTarget();
+ TD = TM.getTargetData();
+ stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
+ RI = TM.getRegisterInfo();
+ JCE = &jce;
+ unsigned FinalSize = 0;
+
+ FinalSize += GetExceptionTableSizeInBytes(&F);
+
+ const std::vector<const Function *> Personalities = MMI->getPersonalities();
+ FinalSize +=
+ GetCommonEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()]);
+
+ FinalSize += GetEHFrameSizeInBytes(Personalities[MMI->getPersonalityIndex()],
+ StartFunction);
+
+ return FinalSize;
+}
+
+/// RoundUpToAlign - Add the specified alignment to FinalSize and returns
+/// the new value.
+static unsigned RoundUpToAlign(unsigned FinalSize, unsigned Alignment) {
+ if (Alignment == 0) Alignment = 1;
+ // Since we do not know where the buffer will be allocated, be pessimistic.
+ return FinalSize + Alignment;
+}
+
+unsigned
+JITDwarfEmitter::GetEHFrameSizeInBytes(const Function* Personality,
+ unsigned char* StartFunction) const {
+ unsigned PointerSize = TD->getPointerSize();
+ unsigned FinalSize = 0;
+ // EH frame header.
+ FinalSize += PointerSize;
+ // FDE CIE Offset
+ FinalSize += 3 * PointerSize;
+ // If there is a personality and landing pads then point to the language
+ // specific data area in the exception table.
+ if (Personality) {
+ FinalSize += MCAsmInfo::getULEB128Size(4);
+ FinalSize += PointerSize;
+ } else {
+ FinalSize += MCAsmInfo::getULEB128Size(0);
+ }
+
+ // Indicate locations of function specific callee saved registers in
+ // frame.
+ FinalSize += GetFrameMovesSizeInBytes((intptr_t)StartFunction,
+ MMI->getFrameMoves());
+
+ FinalSize = RoundUpToAlign(FinalSize, 4);
+
+ // Double zeroes for the unwind runtime
+ FinalSize += 2 * PointerSize;
+
+ return FinalSize;
+}
+
+unsigned JITDwarfEmitter::GetCommonEHFrameSizeInBytes(const Function* Personality)
+ const {
+
+ unsigned PointerSize = TD->getPointerSize();
+ int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
+ PointerSize : -PointerSize;
+ unsigned FinalSize = 0;
+ // EH Common Frame header
+ FinalSize += PointerSize;
+ FinalSize += 4;
+ FinalSize += 1;
+ FinalSize += Personality ? 5 : 3; // "zPLR" or "zR"
+ FinalSize += MCAsmInfo::getULEB128Size(1);
+ FinalSize += MCAsmInfo::getSLEB128Size(stackGrowth);
+ FinalSize += 1;
+
+ if (Personality) {
+ FinalSize += MCAsmInfo::getULEB128Size(7);
+
+ // Encoding
+ FinalSize+= 1;
+ //Personality
+ FinalSize += PointerSize;
+
+ FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
+ FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
+
+ } else {
+ FinalSize += MCAsmInfo::getULEB128Size(1);
+ FinalSize += MCAsmInfo::getULEB128Size(dwarf::DW_EH_PE_pcrel);
+ }
+
+ std::vector<MachineMove> Moves;
+ RI->getInitialFrameState(Moves);
+ FinalSize += GetFrameMovesSizeInBytes(0, Moves);
+ FinalSize = RoundUpToAlign(FinalSize, 4);
+ return FinalSize;
+}
+
+unsigned
+JITDwarfEmitter::GetFrameMovesSizeInBytes(intptr_t BaseLabelPtr,
+ const std::vector<MachineMove> &Moves) const {
+ unsigned PointerSize = TD->getPointerSize();
+ int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
+ PointerSize : -PointerSize;
+ bool IsLocal = BaseLabelPtr;
+ unsigned FinalSize = 0;
+
+ for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
+ const MachineMove &Move = Moves[i];
+ MCSymbol *Label = Move.getLabel();
+
+ // Throw out move if the label is invalid.
+ if (Label && (*JCE->getLabelLocations())[Label] == 0)
+ continue;
+
+ intptr_t LabelPtr = 0;
+ if (Label) LabelPtr = JCE->getLabelAddress(Label);
+
+ const MachineLocation &Dst = Move.getDestination();
+ const MachineLocation &Src = Move.getSource();
+
+ // Advance row if new location.
+ if (BaseLabelPtr && Label && (BaseLabelPtr != LabelPtr || !IsLocal)) {
+ FinalSize++;
+ FinalSize += PointerSize;
+ BaseLabelPtr = LabelPtr;
+ IsLocal = true;
+ }
+
+ // If advancing cfa.
+ if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) {
+ if (!Src.isReg()) {
+ if (Src.getReg() == MachineLocation::VirtualFP) {
+ ++FinalSize;
+ } else {
+ ++FinalSize;
+ unsigned RegNum = RI->getDwarfRegNum(Src.getReg(), true);
+ FinalSize += MCAsmInfo::getULEB128Size(RegNum);
+ }
+
+ int Offset = -Src.getOffset();
+
+ FinalSize += MCAsmInfo::getULEB128Size(Offset);
+ } else {
+ llvm_unreachable("Machine move no supported yet.");
+ }
+ } else if (Src.isReg() &&
+ Src.getReg() == MachineLocation::VirtualFP) {
+ if (Dst.isReg()) {
+ ++FinalSize;
+ unsigned RegNum = RI->getDwarfRegNum(Dst.getReg(), true);
+ FinalSize += MCAsmInfo::getULEB128Size(RegNum);
+ } else {
+ llvm_unreachable("Machine move no supported yet.");
+ }
+ } else {
+ unsigned Reg = RI->getDwarfRegNum(Src.getReg(), true);
+ int Offset = Dst.getOffset() / stackGrowth;
+
+ if (Offset < 0) {
+ ++FinalSize;
+ FinalSize += MCAsmInfo::getULEB128Size(Reg);
+ FinalSize += MCAsmInfo::getSLEB128Size(Offset);
+ } else if (Reg < 64) {
+ ++FinalSize;
+ FinalSize += MCAsmInfo::getULEB128Size(Offset);
+ } else {
+ ++FinalSize;
+ FinalSize += MCAsmInfo::getULEB128Size(Reg);
+ FinalSize += MCAsmInfo::getULEB128Size(Offset);
+ }
+ }
+ }
+ return FinalSize;
+}
+
+unsigned
+JITDwarfEmitter::GetExceptionTableSizeInBytes(MachineFunction* MF) const {
+ unsigned FinalSize = 0;
+
+ // Map all labels and get rid of any dead landing pads.
+ MMI->TidyLandingPads(JCE->getLabelLocations());
+
+ const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
+ const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
+ const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
+ if (PadInfos.empty()) return 0;
+
+ // Sort the landing pads in order of their type ids. This is used to fold
+ // duplicate actions.
+ SmallVector<const LandingPadInfo *, 64> LandingPads;
+ LandingPads.reserve(PadInfos.size());
+ for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
+ LandingPads.push_back(&PadInfos[i]);
+ std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
+
+ // Negative type ids index into FilterIds, positive type ids index into
+ // TypeInfos. The value written for a positive type id is just the type
+ // id itself. For a negative type id, however, the value written is the
+ // (negative) byte offset of the corresponding FilterIds entry. The byte
+ // offset is usually equal to the type id, because the FilterIds entries
+ // are written using a variable width encoding which outputs one byte per
+ // entry as long as the value written is not too large, but can differ.
+ // This kind of complication does not occur for positive type ids because
+ // type infos are output using a fixed width encoding.
+ // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
+ SmallVector<int, 16> FilterOffsets;
+ FilterOffsets.reserve(FilterIds.size());
+ int Offset = -1;
+ for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
+ E = FilterIds.end(); I != E; ++I) {
+ FilterOffsets.push_back(Offset);
+ Offset -= MCAsmInfo::getULEB128Size(*I);
+ }
+
+ // Compute the actions table and gather the first action index for each
+ // landing pad site.
+ SmallVector<ActionEntry, 32> Actions;
+ SmallVector<unsigned, 64> FirstActions;
+ FirstActions.reserve(LandingPads.size());
+
+ int FirstAction = 0;
+ unsigned SizeActions = 0;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LP = LandingPads[i];
+ const std::vector<int> &TypeIds = LP->TypeIds;
+ const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
+ unsigned SizeSiteActions = 0;
+
+ if (NumShared < TypeIds.size()) {
+ unsigned SizeAction = 0;
+ ActionEntry *PrevAction = 0;
+
+ if (NumShared) {
+ const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
+ assert(Actions.size());
+ PrevAction = &Actions.back();
+ SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
+ MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ for (unsigned j = NumShared; j != SizePrevIds; ++j) {
+ SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
+ SizeAction += -PrevAction->NextAction;
+ PrevAction = PrevAction->Previous;
+ }
+ }
+
+ // Compute the actions.
+ for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
+ int TypeID = TypeIds[I];
+ assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
+ int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
+ unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
+
+ int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
+ SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
+ SizeSiteActions += SizeAction;
+
+ ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
+ Actions.push_back(Action);
+
+ PrevAction = &Actions.back();
+ }
+
+ // Record the first action of the landing pad site.
+ FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
+ } // else identical - re-use previous FirstAction
+
+ FirstActions.push_back(FirstAction);
+
+ // Compute this sites contribution to size.
+ SizeActions += SizeSiteActions;
+ }
+
+ // Compute the call-site table. Entries must be ordered by address.
+ SmallVector<CallSiteEntry, 64> CallSites;
+
+ RangeMapType PadMap;
+ for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
+ const LandingPadInfo *LandingPad = LandingPads[i];
+ for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
+ MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
+ assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
+ PadRange P = { i, j };
+ PadMap[BeginLabel] = P;
+ }
+ }
+
+ bool MayThrow = false;
+ MCSymbol *LastLabel = 0;
+ for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
+ I != E; ++I) {
+ for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
+ MI != E; ++MI) {
+ if (!MI->isLabel()) {
+ MayThrow |= MI->getDesc().isCall();
+ continue;
+ }
+
+ MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
+
+ if (BeginLabel == LastLabel)
+ MayThrow = false;
+
+ RangeMapType::iterator L = PadMap.find(BeginLabel);
+
+ if (L == PadMap.end())
+ continue;
+
+ PadRange P = L->second;
+ const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
+
+ assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
+ "Inconsistent landing pad map!");
+
+ // If some instruction between the previous try-range and this one may
+ // throw, create a call-site entry with no landing pad for the region
+ // between the try-ranges.
+ if (MayThrow) {
+ CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
+ CallSites.push_back(Site);
+ }
+
+ LastLabel = LandingPad->EndLabels[P.RangeIndex];
+ CallSiteEntry Site = {BeginLabel, LastLabel,
+ LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
+
+ assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
+ "Invalid landing pad!");
+
+ // Try to merge with the previous call-site.
+ if (CallSites.size()) {
+ CallSiteEntry &Prev = CallSites.back();
+ if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
+ // Extend the range of the previous entry.
+ Prev.EndLabel = Site.EndLabel;
+ continue;
+ }
+ }
+
+ // Otherwise, create a new call-site.
+ CallSites.push_back(Site);
+ }
+ }
+ // If some instruction between the previous try-range and the end of the
+ // function may throw, create a call-site entry with no landing pad for the
+ // region following the try-range.
+ if (MayThrow) {
+ CallSiteEntry Site = {LastLabel, 0, 0, 0};
+ CallSites.push_back(Site);
+ }
+
+ // Final tallies.
+ unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
+ sizeof(int32_t) + // Site length.
+ sizeof(int32_t)); // Landing pad.
+ for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
+ SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);
+
+ unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
+
+ unsigned TypeOffset = sizeof(int8_t) + // Call site format
+ // Call-site table length
+ MCAsmInfo::getULEB128Size(SizeSites) +
+ SizeSites + SizeActions + SizeTypes;
+
+ unsigned TotalSize = sizeof(int8_t) + // LPStart format
+ sizeof(int8_t) + // TType format
+ MCAsmInfo::getULEB128Size(TypeOffset) + // TType base offset
+ TypeOffset;
+
+ unsigned SizeAlign = (4 - TotalSize) & 3;
+
+ // Begin the exception table.
+ FinalSize = RoundUpToAlign(FinalSize, 4);
+ for (unsigned i = 0; i != SizeAlign; ++i) {
+ ++FinalSize;
+ }
+
+ unsigned PointerSize = TD->getPointerSize();
+
+ // Emit the header.
+ ++FinalSize;
+ // Asm->EOL("LPStart format (DW_EH_PE_omit)");
+ ++FinalSize;
+ // Asm->EOL("TType format (DW_EH_PE_absptr)");
+ ++FinalSize;
+ // Asm->EOL("TType base offset");
+ ++FinalSize;
+ // Asm->EOL("Call site format (DW_EH_PE_udata4)");
+ ++FinalSize;
+ // Asm->EOL("Call-site table length");
+
+ // Emit the landing pad site information.
+ for (unsigned i = 0; i < CallSites.size(); ++i) {
+ CallSiteEntry &S = CallSites[i];
+
+ // Asm->EOL("Region start");
+ FinalSize += PointerSize;
+
+ //Asm->EOL("Region length");
+ FinalSize += PointerSize;
+
+ // Asm->EOL("Landing pad");
+ FinalSize += PointerSize;
+
+ FinalSize += MCAsmInfo::getULEB128Size(S.Action);
+ // Asm->EOL("Action");
+ }
+
+ // Emit the actions.
+ for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
+ ActionEntry &Action = Actions[I];
+
+ //Asm->EOL("TypeInfo index");
+ FinalSize += MCAsmInfo::getSLEB128Size(Action.ValueForTypeID);
+ //Asm->EOL("Next action");
+ FinalSize += MCAsmInfo::getSLEB128Size(Action.NextAction);
+ }
+
+ // Emit the type ids.
+ for (unsigned M = TypeInfos.size(); M; --M) {
+ // Asm->EOL("TypeInfo");
+ FinalSize += PointerSize;
+ }
+
+ // Emit the filter typeids.
+ for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
+ unsigned TypeID = FilterIds[j];
+ FinalSize += MCAsmInfo::getULEB128Size(TypeID);
+ //Asm->EOL("Filter TypeInfo index");
+ }
+
+ FinalSize = RoundUpToAlign(FinalSize, 4);
+
+ return FinalSize;
+}
OpenPOWER on IntegriCloud