diff options
Diffstat (limited to 'contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp')
-rw-r--r-- | contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp | 1352 |
1 files changed, 1352 insertions, 0 deletions
diff --git a/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp new file mode 100644 index 0000000..0748b54 --- /dev/null +++ b/contrib/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp @@ -0,0 +1,1352 @@ +//===-- Execution.cpp - Implement code to simulate the program ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the actual instruction interpreter. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "interpreter" +#include "Interpreter.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <cmath> +using namespace llvm; + +STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); + +static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, + cl::desc("make the interpreter print every volatile load and store")); + +//===----------------------------------------------------------------------===// +// Various Helper Functions +//===----------------------------------------------------------------------===// + +static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { + SF.Values[V] = Val; +} + +//===----------------------------------------------------------------------===// +// Binary Instruction Implementations +//===----------------------------------------------------------------------===// + +#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ + case Type::TY##TyID: \ + Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ + break + +static void executeFAddInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(+, Float); + IMPLEMENT_BINARY_OPERATOR(+, Double); + default: + dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } +} + +static void executeFSubInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(-, Float); + IMPLEMENT_BINARY_OPERATOR(-, Double); + default: + dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } +} + +static void executeFMulInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(*, Float); + IMPLEMENT_BINARY_OPERATOR(*, Double); + default: + dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } +} + +static void executeFDivInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + IMPLEMENT_BINARY_OPERATOR(/, Float); + IMPLEMENT_BINARY_OPERATOR(/, Double); + default: + dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } +} + +static void executeFRemInst(GenericValue &Dest, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::FloatTyID: + Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); + break; + case Type::DoubleTyID: + Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); + break; + default: + dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } +} + +#define IMPLEMENT_INTEGER_ICMP(OP, TY) \ + case Type::IntegerTyID: \ + Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ + break; + +// Handle pointers specially because they must be compared with only as much +// width as the host has. We _do not_ want to be comparing 64 bit values when +// running on a 32-bit target, otherwise the upper 32 bits might mess up +// comparisons if they contain garbage. +#define IMPLEMENT_POINTER_ICMP(OP) \ + case Type::PointerTyID: \ + Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ + (void*)(intptr_t)Src2.PointerVal); \ + break; + +static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(eq,Ty); + IMPLEMENT_POINTER_ICMP(==); + default: + dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(ne,Ty); + IMPLEMENT_POINTER_ICMP(!=); + default: + dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(ult,Ty); + IMPLEMENT_POINTER_ICMP(<); + default: + dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(slt,Ty); + IMPLEMENT_POINTER_ICMP(<); + default: + dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(ugt,Ty); + IMPLEMENT_POINTER_ICMP(>); + default: + dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(sgt,Ty); + IMPLEMENT_POINTER_ICMP(>); + default: + dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(ule,Ty); + IMPLEMENT_POINTER_ICMP(<=); + default: + dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(sle,Ty); + IMPLEMENT_POINTER_ICMP(<=); + default: + dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(uge,Ty); + IMPLEMENT_POINTER_ICMP(>=); + default: + dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_INTEGER_ICMP(sge,Ty); + IMPLEMENT_POINTER_ICMP(>=); + default: + dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +void Interpreter::visitICmpInst(ICmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; + case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; + case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; + case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; + default: + dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; + llvm_unreachable(0); + } + + SetValue(&I, R, SF); +} + +#define IMPLEMENT_FCMP(OP, TY) \ + case Type::TY##TyID: \ + Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ + break + +static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(==, Float); + IMPLEMENT_FCMP(==, Double); + default: + dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(!=, Float); + IMPLEMENT_FCMP(!=, Double); + + default: + dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(<=, Float); + IMPLEMENT_FCMP(<=, Double); + default: + dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(>=, Float); + IMPLEMENT_FCMP(>=, Double); + default: + dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(<, Float); + IMPLEMENT_FCMP(<, Double); + default: + dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + switch (Ty->getTypeID()) { + IMPLEMENT_FCMP(>, Float); + IMPLEMENT_FCMP(>, Double); + default: + dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } + return Dest; +} + +#define IMPLEMENT_UNORDERED(TY, X,Y) \ + if (TY->isFloatTy()) { \ + if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ + Dest.IntVal = APInt(1,true); \ + return Dest; \ + } \ + } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ + Dest.IntVal = APInt(1,true); \ + return Dest; \ + } + + +static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OEQ(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_ONE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OLE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OGE(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OLT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + IMPLEMENT_UNORDERED(Ty, Src1, Src2) + return executeFCMP_OGT(Src1, Src2, Ty); +} + +static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (Ty->isFloatTy()) + Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && + Src2.FloatVal == Src2.FloatVal)); + else + Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && + Src2.DoubleVal == Src2.DoubleVal)); + return Dest; +} + +static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, + const Type *Ty) { + GenericValue Dest; + if (Ty->isFloatTy()) + Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || + Src2.FloatVal != Src2.FloatVal)); + else + Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || + Src2.DoubleVal != Src2.DoubleVal)); + return Dest; +} + +void Interpreter::visitFCmpInst(FCmpInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getPredicate()) { + case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break; + case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break; + case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; + case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; + case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; + default: + dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; + llvm_unreachable(0); + } + + SetValue(&I, R, SF); +} + +static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, + GenericValue Src2, const Type *Ty) { + GenericValue Result; + switch (predicate) { + case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); + case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); + case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); + case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); + case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); + case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); + case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); + case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); + case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); + case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); + case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); + case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); + case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); + case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); + case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); + case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); + case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); + case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); + case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); + case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); + case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); + case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); + case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); + case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); + case FCmpInst::FCMP_FALSE: { + GenericValue Result; + Result.IntVal = APInt(1, false); + return Result; + } + case FCmpInst::FCMP_TRUE: { + GenericValue Result; + Result.IntVal = APInt(1, true); + return Result; + } + default: + dbgs() << "Unhandled Cmp predicate\n"; + llvm_unreachable(0); + } +} + +void Interpreter::visitBinaryOperator(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); + const Type *Ty = I.getOperand(0)->getType(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue R; // Result + + switch (I.getOpcode()) { + case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; + case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; + case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; + case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; + case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; + case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; + case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; + case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; + case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; + case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; + case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; + case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; + case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; + case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; + case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; + default: + dbgs() << "Don't know how to handle this binary operator!\n-->" << I; + llvm_unreachable(0); + } + + SetValue(&I, R, SF); +} + +static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, + GenericValue Src3) { + return Src1.IntVal == 0 ? Src3 : Src2; +} + +void Interpreter::visitSelectInst(SelectInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Src3 = getOperandValue(I.getOperand(2), SF); + GenericValue R = executeSelectInst(Src1, Src2, Src3); + SetValue(&I, R, SF); +} + + +//===----------------------------------------------------------------------===// +// Terminator Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::exitCalled(GenericValue GV) { + // runAtExitHandlers() assumes there are no stack frames, but + // if exit() was called, then it had a stack frame. Blow away + // the stack before interpreting atexit handlers. + ECStack.clear(); + runAtExitHandlers(); + exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); +} + +/// Pop the last stack frame off of ECStack and then copy the result +/// back into the result variable if we are not returning void. The +/// result variable may be the ExitValue, or the Value of the calling +/// CallInst if there was a previous stack frame. This method may +/// invalidate any ECStack iterators you have. This method also takes +/// care of switching to the normal destination BB, if we are returning +/// from an invoke. +/// +void Interpreter::popStackAndReturnValueToCaller(const Type *RetTy, + GenericValue Result) { + // Pop the current stack frame. + ECStack.pop_back(); + + if (ECStack.empty()) { // Finished main. Put result into exit code... + if (RetTy && RetTy->isIntegerTy()) { // Nonvoid return type? + ExitValue = Result; // Capture the exit value of the program + } else { + memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); + } + } else { + // If we have a previous stack frame, and we have a previous call, + // fill in the return value... + ExecutionContext &CallingSF = ECStack.back(); + if (Instruction *I = CallingSF.Caller.getInstruction()) { + // Save result... + if (!CallingSF.Caller.getType()->isVoidTy()) + SetValue(I, Result, CallingSF); + if (InvokeInst *II = dyn_cast<InvokeInst> (I)) + SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); + CallingSF.Caller = CallSite(); // We returned from the call... + } + } +} + +void Interpreter::visitReturnInst(ReturnInst &I) { + ExecutionContext &SF = ECStack.back(); + const Type *RetTy = Type::getVoidTy(I.getContext()); + GenericValue Result; + + // Save away the return value... (if we are not 'ret void') + if (I.getNumOperands()) { + RetTy = I.getReturnValue()->getType(); + Result = getOperandValue(I.getReturnValue(), SF); + } + + popStackAndReturnValueToCaller(RetTy, Result); +} + +void Interpreter::visitUnwindInst(UnwindInst &I) { + // Unwind stack + Instruction *Inst; + do { + ECStack.pop_back(); + if (ECStack.empty()) + report_fatal_error("Empty stack during unwind!"); + Inst = ECStack.back().Caller.getInstruction(); + } while (!(Inst && isa<InvokeInst>(Inst))); + + // Return from invoke + ExecutionContext &InvokingSF = ECStack.back(); + InvokingSF.Caller = CallSite(); + + // Go to exceptional destination BB of invoke instruction + SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF); +} + +void Interpreter::visitUnreachableInst(UnreachableInst &I) { + report_fatal_error("Program executed an 'unreachable' instruction!"); +} + +void Interpreter::visitBranchInst(BranchInst &I) { + ExecutionContext &SF = ECStack.back(); + BasicBlock *Dest; + + Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... + if (!I.isUnconditional()) { + Value *Cond = I.getCondition(); + if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... + Dest = I.getSuccessor(1); + } + SwitchToNewBasicBlock(Dest, SF); +} + +void Interpreter::visitSwitchInst(SwitchInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue CondVal = getOperandValue(I.getOperand(0), SF); + const Type *ElTy = I.getOperand(0)->getType(); + + // Check to see if any of the cases match... + BasicBlock *Dest = 0; + for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2) + if (executeICMP_EQ(CondVal, getOperandValue(I.getOperand(i), SF), ElTy) + .IntVal != 0) { + Dest = cast<BasicBlock>(I.getOperand(i+1)); + break; + } + + if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default + SwitchToNewBasicBlock(Dest, SF); +} + +void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { + ExecutionContext &SF = ECStack.back(); + void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); + SwitchToNewBasicBlock((BasicBlock*)Dest, SF); +} + + +// SwitchToNewBasicBlock - This method is used to jump to a new basic block. +// This function handles the actual updating of block and instruction iterators +// as well as execution of all of the PHI nodes in the destination block. +// +// This method does this because all of the PHI nodes must be executed +// atomically, reading their inputs before any of the results are updated. Not +// doing this can cause problems if the PHI nodes depend on other PHI nodes for +// their inputs. If the input PHI node is updated before it is read, incorrect +// results can happen. Thus we use a two phase approach. +// +void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ + BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... + SF.CurBB = Dest; // Update CurBB to branch destination + SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... + + if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do + + // Loop over all of the PHI nodes in the current block, reading their inputs. + std::vector<GenericValue> ResultValues; + + for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { + // Search for the value corresponding to this previous bb... + int i = PN->getBasicBlockIndex(PrevBB); + assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); + Value *IncomingValue = PN->getIncomingValue(i); + + // Save the incoming value for this PHI node... + ResultValues.push_back(getOperandValue(IncomingValue, SF)); + } + + // Now loop over all of the PHI nodes setting their values... + SF.CurInst = SF.CurBB->begin(); + for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { + PHINode *PN = cast<PHINode>(SF.CurInst); + SetValue(PN, ResultValues[i], SF); + } +} + +//===----------------------------------------------------------------------===// +// Memory Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::visitAllocaInst(AllocaInst &I) { + ExecutionContext &SF = ECStack.back(); + + const Type *Ty = I.getType()->getElementType(); // Type to be allocated + + // Get the number of elements being allocated by the array... + unsigned NumElements = + getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); + + unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty); + + // Avoid malloc-ing zero bytes, use max()... + unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); + + // Allocate enough memory to hold the type... + void *Memory = malloc(MemToAlloc); + + DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " + << NumElements << " (Total: " << MemToAlloc << ") at " + << uintptr_t(Memory) << '\n'); + + GenericValue Result = PTOGV(Memory); + assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); + SetValue(&I, Result, SF); + + if (I.getOpcode() == Instruction::Alloca) + ECStack.back().Allocas.add(Memory); +} + +// getElementOffset - The workhorse for getelementptr. +// +GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, + gep_type_iterator E, + ExecutionContext &SF) { + assert(Ptr->getType()->isPointerTy() && + "Cannot getElementOffset of a nonpointer type!"); + + uint64_t Total = 0; + + for (; I != E; ++I) { + if (const StructType *STy = dyn_cast<StructType>(*I)) { + const StructLayout *SLO = TD.getStructLayout(STy); + + const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); + unsigned Index = unsigned(CPU->getZExtValue()); + + Total += SLO->getElementOffset(Index); + } else { + const SequentialType *ST = cast<SequentialType>(*I); + // Get the index number for the array... which must be long type... + GenericValue IdxGV = getOperandValue(I.getOperand(), SF); + + int64_t Idx; + unsigned BitWidth = + cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); + if (BitWidth == 32) + Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); + else { + assert(BitWidth == 64 && "Invalid index type for getelementptr"); + Idx = (int64_t)IdxGV.IntVal.getZExtValue(); + } + Total += TD.getTypeAllocSize(ST->getElementType())*Idx; + } + } + + GenericValue Result; + Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; + DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); + return Result; +} + +void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeGEPOperation(I.getPointerOperand(), + gep_type_begin(I), gep_type_end(I), SF), SF); +} + +void Interpreter::visitLoadInst(LoadInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); + GenericValue *Ptr = (GenericValue*)GVTOP(SRC); + GenericValue Result; + LoadValueFromMemory(Result, Ptr, I.getType()); + SetValue(&I, Result, SF); + if (I.isVolatile() && PrintVolatile) + dbgs() << "Volatile load " << I; +} + +void Interpreter::visitStoreInst(StoreInst &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Val = getOperandValue(I.getOperand(0), SF); + GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); + StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), + I.getOperand(0)->getType()); + if (I.isVolatile() && PrintVolatile) + dbgs() << "Volatile store: " << I; +} + +//===----------------------------------------------------------------------===// +// Miscellaneous Instruction Implementations +//===----------------------------------------------------------------------===// + +void Interpreter::visitCallSite(CallSite CS) { + ExecutionContext &SF = ECStack.back(); + + // Check to see if this is an intrinsic function call... + Function *F = CS.getCalledFunction(); + if (F && F->isDeclaration()) + switch (F->getIntrinsicID()) { + case Intrinsic::not_intrinsic: + break; + case Intrinsic::vastart: { // va_start + GenericValue ArgIndex; + ArgIndex.UIntPairVal.first = ECStack.size() - 1; + ArgIndex.UIntPairVal.second = 0; + SetValue(CS.getInstruction(), ArgIndex, SF); + return; + } + case Intrinsic::vaend: // va_end is a noop for the interpreter + return; + case Intrinsic::vacopy: // va_copy: dest = src + SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); + return; + default: + // If it is an unknown intrinsic function, use the intrinsic lowering + // class to transform it into hopefully tasty LLVM code. + // + BasicBlock::iterator me(CS.getInstruction()); + BasicBlock *Parent = CS.getInstruction()->getParent(); + bool atBegin(Parent->begin() == me); + if (!atBegin) + --me; + IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); + + // Restore the CurInst pointer to the first instruction newly inserted, if + // any. + if (atBegin) { + SF.CurInst = Parent->begin(); + } else { + SF.CurInst = me; + ++SF.CurInst; + } + return; + } + + + SF.Caller = CS; + std::vector<GenericValue> ArgVals; + const unsigned NumArgs = SF.Caller.arg_size(); + ArgVals.reserve(NumArgs); + uint16_t pNum = 1; + for (CallSite::arg_iterator i = SF.Caller.arg_begin(), + e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { + Value *V = *i; + ArgVals.push_back(getOperandValue(V, SF)); + } + + // To handle indirect calls, we must get the pointer value from the argument + // and treat it as a function pointer. + GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); + callFunction((Function*)GVTOP(SRC), ArgVals); +} + +void Interpreter::visitShl(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) + Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue()); + else + Dest.IntVal = Src1.IntVal; + + SetValue(&I, Dest, SF); +} + +void Interpreter::visitLShr(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) + Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue()); + else + Dest.IntVal = Src1.IntVal; + + SetValue(&I, Dest, SF); +} + +void Interpreter::visitAShr(BinaryOperator &I) { + ExecutionContext &SF = ECStack.back(); + GenericValue Src1 = getOperandValue(I.getOperand(0), SF); + GenericValue Src2 = getOperandValue(I.getOperand(1), SF); + GenericValue Dest; + if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth()) + Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue()); + else + Dest.IntVal = Src1.IntVal; + + SetValue(&I, Dest, SF); +} + +GenericValue Interpreter::executeTruncInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast<IntegerType>(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.trunc(DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeSExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast<IntegerType>(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.sext(DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeZExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + const IntegerType *DITy = cast<IntegerType>(DstTy); + unsigned DBitWidth = DITy->getBitWidth(); + Dest.IntVal = Src.IntVal.zext(DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && + "Invalid FPTrunc instruction"); + Dest.FloatVal = (float) Src.DoubleVal; + return Dest; +} + +GenericValue Interpreter::executeFPExtInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && + "Invalid FPTrunc instruction"); + Dest.DoubleVal = (double) Src.FloatVal; + return Dest; +} + +GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); + + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + const Type *SrcTy = SrcVal->getType(); + uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); + + if (SrcTy->getTypeID() == Type::FloatTyID) + Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); + else + Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); + return Dest; +} + +GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); + else + Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); + return Dest; +} + +GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); + + if (DstTy->getTypeID() == Type::FloatTyID) + Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); + else + Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); + return Dest; + +} + +GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); + + Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); + return Dest; +} + +GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); + + uint32_t PtrSize = TD.getPointerSizeInBits(); + if (PtrSize != Src.IntVal.getBitWidth()) + Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); + + Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); + return Dest; +} + +GenericValue Interpreter::executeBitCastInst(Value *SrcVal, const Type *DstTy, + ExecutionContext &SF) { + + const Type *SrcTy = SrcVal->getType(); + GenericValue Dest, Src = getOperandValue(SrcVal, SF); + if (DstTy->isPointerTy()) { + assert(SrcTy->isPointerTy() && "Invalid BitCast"); + Dest.PointerVal = Src.PointerVal; + } else if (DstTy->isIntegerTy()) { + if (SrcTy->isFloatTy()) { + Dest.IntVal.zext(sizeof(Src.FloatVal) * CHAR_BIT); + Dest.IntVal.floatToBits(Src.FloatVal); + } else if (SrcTy->isDoubleTy()) { + Dest.IntVal.zext(sizeof(Src.DoubleVal) * CHAR_BIT); + Dest.IntVal.doubleToBits(Src.DoubleVal); + } else if (SrcTy->isIntegerTy()) { + Dest.IntVal = Src.IntVal; + } else + llvm_unreachable("Invalid BitCast"); + } else if (DstTy->isFloatTy()) { + if (SrcTy->isIntegerTy()) + Dest.FloatVal = Src.IntVal.bitsToFloat(); + else + Dest.FloatVal = Src.FloatVal; + } else if (DstTy->isDoubleTy()) { + if (SrcTy->isIntegerTy()) + Dest.DoubleVal = Src.IntVal.bitsToDouble(); + else + Dest.DoubleVal = Src.DoubleVal; + } else + llvm_unreachable("Invalid Bitcast"); + + return Dest; +} + +void Interpreter::visitTruncInst(TruncInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitSExtInst(SExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitZExtInst(ZExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPTruncInst(FPTruncInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPExtInst(FPExtInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitUIToFPInst(UIToFPInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitSIToFPInst(SIToFPInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPToUIInst(FPToUIInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitFPToSIInst(FPToSIInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); +} + +void Interpreter::visitBitCastInst(BitCastInst &I) { + ExecutionContext &SF = ECStack.back(); + SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); +} + +#define IMPLEMENT_VAARG(TY) \ + case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break + +void Interpreter::visitVAArgInst(VAArgInst &I) { + ExecutionContext &SF = ECStack.back(); + + // Get the incoming valist parameter. LLI treats the valist as a + // (ec-stack-depth var-arg-index) pair. + GenericValue VAList = getOperandValue(I.getOperand(0), SF); + GenericValue Dest; + GenericValue Src = ECStack[VAList.UIntPairVal.first] + .VarArgs[VAList.UIntPairVal.second]; + const Type *Ty = I.getType(); + switch (Ty->getTypeID()) { + case Type::IntegerTyID: Dest.IntVal = Src.IntVal; + IMPLEMENT_VAARG(Pointer); + IMPLEMENT_VAARG(Float); + IMPLEMENT_VAARG(Double); + default: + dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; + llvm_unreachable(0); + } + + // Set the Value of this Instruction. + SetValue(&I, Dest, SF); + + // Move the pointer to the next vararg. + ++VAList.UIntPairVal.second; +} + +GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, + ExecutionContext &SF) { + switch (CE->getOpcode()) { + case Instruction::Trunc: + return executeTruncInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::ZExt: + return executeZExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::SExt: + return executeSExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPTrunc: + return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPExt: + return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::UIToFP: + return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::SIToFP: + return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPToUI: + return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::FPToSI: + return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::PtrToInt: + return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::IntToPtr: + return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::BitCast: + return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); + case Instruction::GetElementPtr: + return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), + gep_type_end(CE), SF); + case Instruction::FCmp: + case Instruction::ICmp: + return executeCmpInst(CE->getPredicate(), + getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + CE->getOperand(0)->getType()); + case Instruction::Select: + return executeSelectInst(getOperandValue(CE->getOperand(0), SF), + getOperandValue(CE->getOperand(1), SF), + getOperandValue(CE->getOperand(2), SF)); + default : + break; + } + + // The cases below here require a GenericValue parameter for the result + // so we initialize one, compute it and then return it. + GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); + GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); + GenericValue Dest; + const Type * Ty = CE->getOperand(0)->getType(); + switch (CE->getOpcode()) { + case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; + case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; + case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; + case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; + case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; + case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; + case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; + case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; + case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; + case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; + case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; + case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; + case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break; + case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break; + case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; + case Instruction::Shl: + Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); + break; + case Instruction::LShr: + Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); + break; + case Instruction::AShr: + Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); + break; + default: + dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; + llvm_unreachable(0); + return GenericValue(); + } + return Dest; +} + +GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { + return getConstantExprValue(CE, SF); + } else if (Constant *CPV = dyn_cast<Constant>(V)) { + return getConstantValue(CPV); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + return PTOGV(getPointerToGlobal(GV)); + } else { + return SF.Values[V]; + } +} + +//===----------------------------------------------------------------------===// +// Dispatch and Execution Code +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// callFunction - Execute the specified function... +// +void Interpreter::callFunction(Function *F, + const std::vector<GenericValue> &ArgVals) { + assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 || + ECStack.back().Caller.arg_size() == ArgVals.size()) && + "Incorrect number of arguments passed into function call!"); + // Make a new stack frame... and fill it in. + ECStack.push_back(ExecutionContext()); + ExecutionContext &StackFrame = ECStack.back(); + StackFrame.CurFunction = F; + + // Special handling for external functions. + if (F->isDeclaration()) { + GenericValue Result = callExternalFunction (F, ArgVals); + // Simulate a 'ret' instruction of the appropriate type. + popStackAndReturnValueToCaller (F->getReturnType (), Result); + return; + } + + // Get pointers to first LLVM BB & Instruction in function. + StackFrame.CurBB = F->begin(); + StackFrame.CurInst = StackFrame.CurBB->begin(); + + // Run through the function arguments and initialize their values... + assert((ArgVals.size() == F->arg_size() || + (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& + "Invalid number of values passed to function invocation!"); + + // Handle non-varargs arguments... + unsigned i = 0; + for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); + AI != E; ++AI, ++i) + SetValue(AI, ArgVals[i], StackFrame); + + // Handle varargs arguments... + StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); +} + + +void Interpreter::run() { + while (!ECStack.empty()) { + // Interpret a single instruction & increment the "PC". + ExecutionContext &SF = ECStack.back(); // Current stack frame + Instruction &I = *SF.CurInst++; // Increment before execute + + // Track the number of dynamic instructions executed. + ++NumDynamicInsts; + + DEBUG(dbgs() << "About to interpret: " << I); + visit(I); // Dispatch to one of the visit* methods... +#if 0 + // This is not safe, as visiting the instruction could lower it and free I. +DEBUG( + if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && + I.getType() != Type::VoidTy) { + dbgs() << " --> "; + const GenericValue &Val = SF.Values[&I]; + switch (I.getType()->getTypeID()) { + default: llvm_unreachable("Invalid GenericValue Type"); + case Type::VoidTyID: dbgs() << "void"; break; + case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break; + case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break; + case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal); + break; + case Type::IntegerTyID: + dbgs() << "i" << Val.IntVal.getBitWidth() << " " + << Val.IntVal.toStringUnsigned(10) + << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n"; + break; + } + }); +#endif + } +} |