summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp2565
1 files changed, 2565 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp b/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
new file mode 100644
index 0000000..871d836
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
@@ -0,0 +1,2565 @@
+//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "virtregrewriter"
+#include "VirtRegRewriter.h"
+#include "VirtRegMap.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumDSE , "Number of dead stores elided");
+STATISTIC(NumDSS , "Number of dead spill slots removed");
+STATISTIC(NumCommutes, "Number of instructions commuted");
+STATISTIC(NumDRM , "Number of re-materializable defs elided");
+STATISTIC(NumStores , "Number of stores added");
+STATISTIC(NumPSpills , "Number of physical register spills");
+STATISTIC(NumOmitted , "Number of reloads omited");
+STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
+STATISTIC(NumCopified, "Number of available reloads turned into copies");
+STATISTIC(NumReMats , "Number of re-materialization");
+STATISTIC(NumLoads , "Number of loads added");
+STATISTIC(NumReused , "Number of values reused");
+STATISTIC(NumDCE , "Number of copies elided");
+STATISTIC(NumSUnfold , "Number of stores unfolded");
+STATISTIC(NumModRefUnfold, "Number of modref unfolded");
+
+namespace {
+ enum RewriterName { local, trivial };
+}
+
+static cl::opt<RewriterName>
+RewriterOpt("rewriter",
+ cl::desc("Rewriter to use (default=local)"),
+ cl::Prefix,
+ cl::values(clEnumVal(local, "local rewriter"),
+ clEnumVal(trivial, "trivial rewriter"),
+ clEnumValEnd),
+ cl::init(local));
+
+static cl::opt<bool>
+ScheduleSpills("schedule-spills",
+ cl::desc("Schedule spill code"),
+ cl::init(false));
+
+VirtRegRewriter::~VirtRegRewriter() {}
+
+/// substitutePhysReg - Replace virtual register in MachineOperand with a
+/// physical register. Do the right thing with the sub-register index.
+/// Note that operands may be added, so the MO reference is no longer valid.
+static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
+ const TargetRegisterInfo &TRI) {
+ if (unsigned SubIdx = MO.getSubReg()) {
+ // Insert the physical subreg and reset the subreg field.
+ MO.setReg(TRI.getSubReg(Reg, SubIdx));
+ MO.setSubReg(0);
+
+ // Any def, dead, and kill flags apply to the full virtual register, so they
+ // also apply to the full physical register. Add imp-def/dead and imp-kill
+ // as needed.
+ MachineInstr &MI = *MO.getParent();
+ if (MO.isDef())
+ if (MO.isDead())
+ MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
+ else
+ MI.addRegisterDefined(Reg, &TRI);
+ else if (!MO.isUndef() &&
+ (MO.isKill() ||
+ MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
+ MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
+ } else {
+ MO.setReg(Reg);
+ }
+}
+
+namespace {
+
+/// This class is intended for use with the new spilling framework only. It
+/// rewrites vreg def/uses to use the assigned preg, but does not insert any
+/// spill code.
+struct TrivialRewriter : public VirtRegRewriter {
+
+ bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+ LiveIntervals* LIs) {
+ DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
+ DEBUG(dbgs() << "********** Function: "
+ << MF.getFunction()->getName() << '\n');
+ DEBUG(dbgs() << "**** Machine Instrs"
+ << "(NOTE! Does not include spills and reloads!) ****\n");
+ DEBUG(MF.dump());
+
+ MachineRegisterInfo *mri = &MF.getRegInfo();
+ const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
+
+ bool changed = false;
+
+ for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
+ liItr != liEnd; ++liItr) {
+
+ const LiveInterval *li = liItr->second;
+ unsigned reg = li->reg;
+
+ if (TargetRegisterInfo::isPhysicalRegister(reg)) {
+ if (!li->empty())
+ mri->setPhysRegUsed(reg);
+ }
+ else {
+ if (!VRM.hasPhys(reg))
+ continue;
+ unsigned pReg = VRM.getPhys(reg);
+ mri->setPhysRegUsed(pReg);
+ // Copy the register use-list before traversing it.
+ SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
+ for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
+ E = mri->reg_end(); I != E; ++I)
+ reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
+ for (unsigned N=0; N != reglist.size(); ++N)
+ substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
+ pReg, *tri);
+ changed |= !reglist.empty();
+ }
+ }
+
+ DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
+ DEBUG(MF.dump());
+
+ return changed;
+ }
+
+};
+
+}
+
+// ************************************************************************ //
+
+namespace {
+
+/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
+/// from top down, keep track of which spill slots or remat are available in
+/// each register.
+///
+/// Note that not all physregs are created equal here. In particular, some
+/// physregs are reloads that we are allowed to clobber or ignore at any time.
+/// Other physregs are values that the register allocated program is using
+/// that we cannot CHANGE, but we can read if we like. We keep track of this
+/// on a per-stack-slot / remat id basis as the low bit in the value of the
+/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
+/// this bit and addAvailable sets it if.
+class AvailableSpills {
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+
+ // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
+ // or remat'ed virtual register values that are still available, due to
+ // being loaded or stored to, but not invalidated yet.
+ std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
+
+ // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
+ // indicating which stack slot values are currently held by a physreg. This
+ // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
+ // physreg is modified.
+ std::multimap<unsigned, int> PhysRegsAvailable;
+
+ void disallowClobberPhysRegOnly(unsigned PhysReg);
+
+ void ClobberPhysRegOnly(unsigned PhysReg);
+public:
+ AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
+ : TRI(tri), TII(tii) {
+ }
+
+ /// clear - Reset the state.
+ void clear() {
+ SpillSlotsOrReMatsAvailable.clear();
+ PhysRegsAvailable.clear();
+ }
+
+ const TargetRegisterInfo *getRegInfo() const { return TRI; }
+
+ /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
+ /// available in a physical register, return that PhysReg, otherwise
+ /// return 0.
+ unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
+ std::map<int, unsigned>::const_iterator I =
+ SpillSlotsOrReMatsAvailable.find(Slot);
+ if (I != SpillSlotsOrReMatsAvailable.end()) {
+ return I->second >> 1; // Remove the CanClobber bit.
+ }
+ return 0;
+ }
+
+ /// addAvailable - Mark that the specified stack slot / remat is available
+ /// in the specified physreg. If CanClobber is true, the physreg can be
+ /// modified at any time without changing the semantics of the program.
+ void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
+ // If this stack slot is thought to be available in some other physreg,
+ // remove its record.
+ ModifyStackSlotOrReMat(SlotOrReMat);
+
+ PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
+ SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
+ (unsigned)CanClobber;
+
+ if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+ DEBUG(dbgs() << "Remembering RM#"
+ << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
+ else
+ DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
+ DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
+ }
+
+ /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
+ /// the value of the specified stackslot register if it desires. The
+ /// specified stack slot must be available in a physreg for this query to
+ /// make sense.
+ bool canClobberPhysRegForSS(int SlotOrReMat) const {
+ assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
+ "Value not available!");
+ return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
+ }
+
+ /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
+ /// physical register where values for some stack slot(s) might be
+ /// available.
+ bool canClobberPhysReg(unsigned PhysReg) const {
+ std::multimap<unsigned, int>::const_iterator I =
+ PhysRegsAvailable.lower_bound(PhysReg);
+ while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+ int SlotOrReMat = I->second;
+ I++;
+ if (!canClobberPhysRegForSS(SlotOrReMat))
+ return false;
+ }
+ return true;
+ }
+
+ /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+ /// stackslot register. The register is still available but is no longer
+ /// allowed to be modifed.
+ void disallowClobberPhysReg(unsigned PhysReg);
+
+ /// ClobberPhysReg - This is called when the specified physreg changes
+ /// value. We use this to invalidate any info about stuff that lives in
+ /// it and any of its aliases.
+ void ClobberPhysReg(unsigned PhysReg);
+
+ /// ModifyStackSlotOrReMat - This method is called when the value in a stack
+ /// slot changes. This removes information about which register the
+ /// previous value for this slot lives in (as the previous value is dead
+ /// now).
+ void ModifyStackSlotOrReMat(int SlotOrReMat);
+
+ /// AddAvailableRegsToLiveIn - Availability information is being kept coming
+ /// into the specified MBB. Add available physical registers as potential
+ /// live-in's. If they are reused in the MBB, they will be added to the
+ /// live-in set to make register scavenger and post-allocation scheduler.
+ void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+};
+
+}
+
+// ************************************************************************ //
+
+// Given a location where a reload of a spilled register or a remat of
+// a constant is to be inserted, attempt to find a safe location to
+// insert the load at an earlier point in the basic-block, to hide
+// latency of the load and to avoid address-generation interlock
+// issues.
+static MachineBasicBlock::iterator
+ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
+ MachineBasicBlock::iterator const Begin,
+ unsigned PhysReg,
+ const TargetRegisterInfo *TRI,
+ bool DoReMat,
+ int SSorRMId,
+ const TargetInstrInfo *TII,
+ const MachineFunction &MF)
+{
+ if (!ScheduleSpills)
+ return InsertLoc;
+
+ // Spill backscheduling is of primary interest to addresses, so
+ // don't do anything if the register isn't in the register class
+ // used for pointers.
+
+ const TargetLowering *TL = MF.getTarget().getTargetLowering();
+
+ if (!TL->isTypeLegal(TL->getPointerTy()))
+ // Believe it or not, this is true on PIC16.
+ return InsertLoc;
+
+ const TargetRegisterClass *ptrRegClass =
+ TL->getRegClassFor(TL->getPointerTy());
+ if (!ptrRegClass->contains(PhysReg))
+ return InsertLoc;
+
+ // Scan upwards through the preceding instructions. If an instruction doesn't
+ // reference the stack slot or the register we're loading, we can
+ // backschedule the reload up past it.
+ MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
+ while (NewInsertLoc != Begin) {
+ MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
+ for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
+ MachineOperand &Op = Prev->getOperand(i);
+ if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
+ goto stop;
+ }
+ if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
+ Prev->findRegisterDefOperand(PhysReg))
+ goto stop;
+ for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
+ if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
+ Prev->findRegisterDefOperand(*Alias))
+ goto stop;
+ NewInsertLoc = Prev;
+ }
+stop:;
+
+ // If we made it to the beginning of the block, turn around and move back
+ // down just past any existing reloads. They're likely to be reloads/remats
+ // for instructions earlier than what our current reload/remat is for, so
+ // they should be scheduled earlier.
+ if (NewInsertLoc == Begin) {
+ int FrameIdx;
+ while (InsertLoc != NewInsertLoc &&
+ (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
+ TII->isTriviallyReMaterializable(NewInsertLoc)))
+ ++NewInsertLoc;
+ }
+
+ return NewInsertLoc;
+}
+
+namespace {
+
+// ReusedOp - For each reused operand, we keep track of a bit of information,
+// in case we need to rollback upon processing a new operand. See comments
+// below.
+struct ReusedOp {
+ // The MachineInstr operand that reused an available value.
+ unsigned Operand;
+
+ // StackSlotOrReMat - The spill slot or remat id of the value being reused.
+ unsigned StackSlotOrReMat;
+
+ // PhysRegReused - The physical register the value was available in.
+ unsigned PhysRegReused;
+
+ // AssignedPhysReg - The physreg that was assigned for use by the reload.
+ unsigned AssignedPhysReg;
+
+ // VirtReg - The virtual register itself.
+ unsigned VirtReg;
+
+ ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
+ unsigned vreg)
+ : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
+ AssignedPhysReg(apr), VirtReg(vreg) {}
+};
+
+/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
+/// is reused instead of reloaded.
+class ReuseInfo {
+ MachineInstr &MI;
+ std::vector<ReusedOp> Reuses;
+ BitVector PhysRegsClobbered;
+public:
+ ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
+ PhysRegsClobbered.resize(tri->getNumRegs());
+ }
+
+ bool hasReuses() const {
+ return !Reuses.empty();
+ }
+
+ /// addReuse - If we choose to reuse a virtual register that is already
+ /// available instead of reloading it, remember that we did so.
+ void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
+ unsigned PhysRegReused, unsigned AssignedPhysReg,
+ unsigned VirtReg) {
+ // If the reload is to the assigned register anyway, no undo will be
+ // required.
+ if (PhysRegReused == AssignedPhysReg) return;
+
+ // Otherwise, remember this.
+ Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
+ AssignedPhysReg, VirtReg));
+ }
+
+ void markClobbered(unsigned PhysReg) {
+ PhysRegsClobbered.set(PhysReg);
+ }
+
+ bool isClobbered(unsigned PhysReg) const {
+ return PhysRegsClobbered.test(PhysReg);
+ }
+
+ /// GetRegForReload - We are about to emit a reload into PhysReg. If there
+ /// is some other operand that is using the specified register, either pick
+ /// a new register to use, or evict the previous reload and use this reg.
+ unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
+ MachineFunction &MF, MachineInstr *MI,
+ AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ SmallSet<unsigned, 8> &Rejected,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM);
+
+ /// GetRegForReload - Helper for the above GetRegForReload(). Add a
+ /// 'Rejected' set to remember which registers have been considered and
+ /// rejected for the reload. This avoids infinite looping in case like
+ /// this:
+ /// t1 := op t2, t3
+ /// t2 <- assigned r0 for use by the reload but ended up reuse r1
+ /// t3 <- assigned r1 for use by the reload but ended up reuse r0
+ /// t1 <- desires r1
+ /// sees r1 is taken by t2, tries t2's reload register r0
+ /// sees r0 is taken by t3, tries t3's reload register r1
+ /// sees r1 is taken by t2, tries t2's reload register r0 ...
+ unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
+ AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM) {
+ SmallSet<unsigned, 8> Rejected;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
+ return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
+ Rejected, RegKills, KillOps, VRM);
+ }
+};
+
+}
+
+// ****************** //
+// Utility Functions //
+// ****************** //
+
+/// findSinglePredSuccessor - Return via reference a vector of machine basic
+/// blocks each of which is a successor of the specified BB and has no other
+/// predecessor.
+static void findSinglePredSuccessor(MachineBasicBlock *MBB,
+ SmallVectorImpl<MachineBasicBlock *> &Succs) {
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI) {
+ MachineBasicBlock *SuccMBB = *SI;
+ if (SuccMBB->pred_size() == 1)
+ Succs.push_back(SuccMBB);
+ }
+}
+
+/// InvalidateKill - Invalidate register kill information for a specific
+/// register. This also unsets the kills marker on the last kill operand.
+static void InvalidateKill(unsigned Reg,
+ const TargetRegisterInfo* TRI,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ if (RegKills[Reg]) {
+ KillOps[Reg]->setIsKill(false);
+ // KillOps[Reg] might be a def of a super-register.
+ unsigned KReg = KillOps[Reg]->getReg();
+ KillOps[KReg] = NULL;
+ RegKills.reset(KReg);
+ for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
+ if (RegKills[*SR]) {
+ KillOps[*SR]->setIsKill(false);
+ KillOps[*SR] = NULL;
+ RegKills.reset(*SR);
+ }
+ }
+ }
+}
+
+/// InvalidateKills - MI is going to be deleted. If any of its operands are
+/// marked kill, then invalidate the information.
+static void InvalidateKills(MachineInstr &MI,
+ const TargetRegisterInfo* TRI,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ SmallVector<unsigned, 2> *KillRegs = NULL) {
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ if (KillRegs)
+ KillRegs->push_back(Reg);
+ assert(Reg < KillOps.size());
+ if (KillOps[Reg] == &MO) {
+ KillOps[Reg] = NULL;
+ RegKills.reset(Reg);
+ for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+ if (RegKills[*SR]) {
+ KillOps[*SR] = NULL;
+ RegKills.reset(*SR);
+ }
+ }
+ }
+ }
+}
+
+/// InvalidateRegDef - If the def operand of the specified def MI is now dead
+/// (since its spill instruction is removed), mark it isDead. Also checks if
+/// the def MI has other definition operands that are not dead. Returns it by
+/// reference.
+static bool InvalidateRegDef(MachineBasicBlock::iterator I,
+ MachineInstr &NewDef, unsigned Reg,
+ bool &HasLiveDef,
+ const TargetRegisterInfo *TRI) {
+ // Due to remat, it's possible this reg isn't being reused. That is,
+ // the def of this reg (by prev MI) is now dead.
+ MachineInstr *DefMI = I;
+ MachineOperand *DefOp = NULL;
+ for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = DefMI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
+ continue;
+ if (MO.getReg() == Reg)
+ DefOp = &MO;
+ else if (!MO.isDead())
+ HasLiveDef = true;
+ }
+ if (!DefOp)
+ return false;
+
+ bool FoundUse = false, Done = false;
+ MachineBasicBlock::iterator E = &NewDef;
+ ++I; ++E;
+ for (; !Done && I != E; ++I) {
+ MachineInstr *NMI = I;
+ for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
+ MachineOperand &MO = NMI->getOperand(j);
+ if (!MO.isReg() || MO.getReg() == 0 ||
+ (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
+ continue;
+ if (MO.isUse())
+ FoundUse = true;
+ Done = true; // Stop after scanning all the operands of this MI.
+ }
+ }
+ if (!FoundUse) {
+ // Def is dead!
+ DefOp->setIsDead();
+ return true;
+ }
+ return false;
+}
+
+/// UpdateKills - Track and update kill info. If a MI reads a register that is
+/// marked kill, then it must be due to register reuse. Transfer the kill info
+/// over.
+static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ // These do not affect kill info at all.
+ if (MI.isDebugValue())
+ return;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || MO.isUndef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0)
+ continue;
+
+ if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
+ // That can't be right. Register is killed but not re-defined and it's
+ // being reused. Let's fix that.
+ KillOps[Reg]->setIsKill(false);
+ // KillOps[Reg] might be a def of a super-register.
+ unsigned KReg = KillOps[Reg]->getReg();
+ KillOps[KReg] = NULL;
+ RegKills.reset(KReg);
+
+ // Must be a def of a super-register. Its other sub-regsters are no
+ // longer killed as well.
+ for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
+ KillOps[*SR] = NULL;
+ RegKills.reset(*SR);
+ }
+ } else {
+ // Check for subreg kills as well.
+ // d4 =
+ // store d4, fi#0
+ // ...
+ // = s8<kill>
+ // ...
+ // = d4 <avoiding reload>
+ for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+ unsigned SReg = *SR;
+ if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
+ KillOps[SReg]->setIsKill(false);
+ unsigned KReg = KillOps[SReg]->getReg();
+ KillOps[KReg] = NULL;
+ RegKills.reset(KReg);
+
+ for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
+ KillOps[*SSR] = NULL;
+ RegKills.reset(*SSR);
+ }
+ }
+ }
+ }
+
+ if (MO.isKill()) {
+ RegKills.set(Reg);
+ KillOps[Reg] = &MO;
+ for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+ RegKills.set(*SR);
+ KillOps[*SR] = &MO;
+ }
+ }
+ }
+
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.getReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ RegKills.reset(Reg);
+ KillOps[Reg] = NULL;
+ // It also defines (or partially define) aliases.
+ for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+ RegKills.reset(*SR);
+ KillOps[*SR] = NULL;
+ }
+ for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
+ RegKills.reset(*SR);
+ KillOps[*SR] = NULL;
+ }
+ }
+}
+
+/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
+///
+static void ReMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MII,
+ unsigned DestReg, unsigned Reg,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI,
+ VirtRegMap &VRM) {
+ MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
+#ifndef NDEBUG
+ const TargetInstrDesc &TID = ReMatDefMI->getDesc();
+ assert(TID.getNumDefs() == 1 &&
+ "Don't know how to remat instructions that define > 1 values!");
+#endif
+ TII->reMaterialize(MBB, MII, DestReg,
+ ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI, TRI);
+ MachineInstr *NewMI = prior(MII);
+ for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = NewMI->getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned VirtReg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
+ continue;
+ assert(MO.isUse());
+ unsigned Phys = VRM.getPhys(VirtReg);
+ assert(Phys && "Virtual register is not assigned a register?");
+ substitutePhysReg(MO, Phys, *TRI);
+ }
+ ++NumReMats;
+}
+
+/// findSuperReg - Find the SubReg's super-register of given register class
+/// where its SubIdx sub-register is SubReg.
+static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
+ unsigned SubIdx, const TargetRegisterInfo *TRI) {
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+ I != E; ++I) {
+ unsigned Reg = *I;
+ if (TRI->getSubReg(Reg, SubIdx) == SubReg)
+ return Reg;
+ }
+ return 0;
+}
+
+// ******************************** //
+// Available Spills Implementation //
+// ******************************** //
+
+/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
+/// stackslot register. The register is still available but is no longer
+/// allowed to be modifed.
+void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
+ std::multimap<unsigned, int>::iterator I =
+ PhysRegsAvailable.lower_bound(PhysReg);
+ while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+ int SlotOrReMat = I->second;
+ I++;
+ assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+ "Bidirectional map mismatch!");
+ SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
+ DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
+ << " copied, it is available for use but can no longer be modified\n");
+ }
+}
+
+/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+/// stackslot register and its aliases. The register and its aliases may
+/// still available but is no longer allowed to be modifed.
+void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
+ for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+ disallowClobberPhysRegOnly(*AS);
+ disallowClobberPhysRegOnly(PhysReg);
+}
+
+/// ClobberPhysRegOnly - This is called when the specified physreg changes
+/// value. We use this to invalidate any info about stuff we thing lives in it.
+void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
+ std::multimap<unsigned, int>::iterator I =
+ PhysRegsAvailable.lower_bound(PhysReg);
+ while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+ int SlotOrReMat = I->second;
+ PhysRegsAvailable.erase(I++);
+ assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+ "Bidirectional map mismatch!");
+ SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
+ DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
+ << " clobbered, invalidating ");
+ if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+ DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
+ else
+ DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
+ }
+}
+
+/// ClobberPhysReg - This is called when the specified physreg changes
+/// value. We use this to invalidate any info about stuff we thing lives in
+/// it and any of its aliases.
+void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
+ for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+ ClobberPhysRegOnly(*AS);
+ ClobberPhysRegOnly(PhysReg);
+}
+
+/// AddAvailableRegsToLiveIn - Availability information is being kept coming
+/// into the specified MBB. Add available physical registers as potential
+/// live-in's. If they are reused in the MBB, they will be added to the
+/// live-in set to make register scavenger and post-allocation scheduler.
+void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ std::set<unsigned> NotAvailable;
+ for (std::multimap<unsigned, int>::iterator
+ I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
+ I != E; ++I) {
+ unsigned Reg = I->first;
+ const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
+ // FIXME: A temporary workaround. We can't reuse available value if it's
+ // not safe to move the def of the virtual register's class. e.g.
+ // X86::RFP* register classes. Do not add it as a live-in.
+ if (!TII->isSafeToMoveRegClassDefs(RC))
+ // This is no longer available.
+ NotAvailable.insert(Reg);
+ else {
+ MBB.addLiveIn(Reg);
+ InvalidateKill(Reg, TRI, RegKills, KillOps);
+ }
+
+ // Skip over the same register.
+ std::multimap<unsigned, int>::iterator NI = llvm::next(I);
+ while (NI != E && NI->first == Reg) {
+ ++I;
+ ++NI;
+ }
+ }
+
+ for (std::set<unsigned>::iterator I = NotAvailable.begin(),
+ E = NotAvailable.end(); I != E; ++I) {
+ ClobberPhysReg(*I);
+ for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
+ *SubRegs; ++SubRegs)
+ ClobberPhysReg(*SubRegs);
+ }
+}
+
+/// ModifyStackSlotOrReMat - This method is called when the value in a stack
+/// slot changes. This removes information about which register the previous
+/// value for this slot lives in (as the previous value is dead now).
+void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
+ std::map<int, unsigned>::iterator It =
+ SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
+ if (It == SpillSlotsOrReMatsAvailable.end()) return;
+ unsigned Reg = It->second >> 1;
+ SpillSlotsOrReMatsAvailable.erase(It);
+
+ // This register may hold the value of multiple stack slots, only remove this
+ // stack slot from the set of values the register contains.
+ std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
+ for (; ; ++I) {
+ assert(I != PhysRegsAvailable.end() && I->first == Reg &&
+ "Map inverse broken!");
+ if (I->second == SlotOrReMat) break;
+ }
+ PhysRegsAvailable.erase(I);
+}
+
+// ************************** //
+// Reuse Info Implementation //
+// ************************** //
+
+/// GetRegForReload - We are about to emit a reload into PhysReg. If there
+/// is some other operand that is using the specified register, either pick
+/// a new register to use, or evict the previous reload and use this reg.
+unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
+ unsigned PhysReg,
+ MachineFunction &MF,
+ MachineInstr *MI, AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ SmallSet<unsigned, 8> &Rejected,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ VirtRegMap &VRM) {
+ const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
+ const TargetRegisterInfo *TRI = Spills.getRegInfo();
+
+ if (Reuses.empty()) return PhysReg; // This is most often empty.
+
+ for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
+ ReusedOp &Op = Reuses[ro];
+ // If we find some other reuse that was supposed to use this register
+ // exactly for its reload, we can change this reload to use ITS reload
+ // register. That is, unless its reload register has already been
+ // considered and subsequently rejected because it has also been reused
+ // by another operand.
+ if (Op.PhysRegReused == PhysReg &&
+ Rejected.count(Op.AssignedPhysReg) == 0 &&
+ RC->contains(Op.AssignedPhysReg)) {
+ // Yup, use the reload register that we didn't use before.
+ unsigned NewReg = Op.AssignedPhysReg;
+ Rejected.insert(PhysReg);
+ return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
+ RegKills, KillOps, VRM);
+ } else {
+ // Otherwise, we might also have a problem if a previously reused
+ // value aliases the new register. If so, codegen the previous reload
+ // and use this one.
+ unsigned PRRU = Op.PhysRegReused;
+ if (TRI->regsOverlap(PRRU, PhysReg)) {
+ // Okay, we found out that an alias of a reused register
+ // was used. This isn't good because it means we have
+ // to undo a previous reuse.
+ MachineBasicBlock *MBB = MI->getParent();
+ const TargetRegisterClass *AliasRC =
+ MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
+
+ // Copy Op out of the vector and remove it, we're going to insert an
+ // explicit load for it.
+ ReusedOp NewOp = Op;
+ Reuses.erase(Reuses.begin()+ro);
+
+ // MI may be using only a sub-register of PhysRegUsed.
+ unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
+ unsigned SubIdx = 0;
+ assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
+ "A reuse cannot be a virtual register");
+ if (PRRU != RealPhysRegUsed) {
+ // What was the sub-register index?
+ SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
+ assert(SubIdx &&
+ "Operand physreg is not a sub-register of PhysRegUsed");
+ }
+
+ // Ok, we're going to try to reload the assigned physreg into the
+ // slot that we were supposed to in the first place. However, that
+ // register could hold a reuse. Check to see if it conflicts or
+ // would prefer us to use a different register.
+ unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
+ MF, MI, Spills, MaybeDeadStores,
+ Rejected, RegKills, KillOps, VRM);
+
+ bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
+ int SSorRMId = DoReMat
+ ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
+ DoReMat, SSorRMId, TII, MF);
+
+ if (DoReMat) {
+ ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
+ TRI, VRM);
+ } else {
+ TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
+ NewOp.StackSlotOrReMat, AliasRC, TRI);
+ MachineInstr *LoadMI = prior(InsertLoc);
+ VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
+ // Any stores to this stack slot are not dead anymore.
+ MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
+ ++NumLoads;
+ }
+ Spills.ClobberPhysReg(NewPhysReg);
+ Spills.ClobberPhysReg(NewOp.PhysRegReused);
+
+ unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
+ MI->getOperand(NewOp.Operand).setReg(RReg);
+ MI->getOperand(NewOp.Operand).setSubReg(0);
+
+ Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
+ UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+ DEBUG(dbgs() << '\t' << *prior(InsertLoc));
+
+ DEBUG(dbgs() << "Reuse undone!\n");
+ --NumReused;
+
+ // Finally, PhysReg is now available, go ahead and use it.
+ return PhysReg;
+ }
+ }
+ }
+ return PhysReg;
+}
+
+// ************************************************************************ //
+
+/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
+/// stack slot mod/ref. It also checks if it's possible to unfold the
+/// instruction by having it define a specified physical register instead.
+static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI,
+ VirtRegMap &VRM) {
+ if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
+ return false;
+
+ bool Found = false;
+ VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+ for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
+ unsigned VirtReg = I->second.first;
+ VirtRegMap::ModRef MR = I->second.second;
+ if (MR & VirtRegMap::isModRef)
+ if (VRM.getStackSlot(VirtReg) == SS) {
+ Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
+ break;
+ }
+ }
+ if (!Found)
+ return false;
+
+ // Does the instruction uses a register that overlaps the scratch register?
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (!VRM.hasPhys(Reg))
+ continue;
+ Reg = VRM.getPhys(Reg);
+ }
+ if (TRI->regsOverlap(PhysReg, Reg))
+ return false;
+ }
+ return true;
+}
+
+/// FindFreeRegister - Find a free register of a given register class by looking
+/// at (at most) the last two machine instructions.
+static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
+ MachineBasicBlock &MBB,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ BitVector &AllocatableRegs) {
+ BitVector Defs(TRI->getNumRegs());
+ BitVector Uses(TRI->getNumRegs());
+ SmallVector<unsigned, 4> LocalUses;
+ SmallVector<unsigned, 4> Kills;
+
+ // Take a look at 2 instructions at most.
+ unsigned Count = 0;
+ while (Count < 2) {
+ if (MII == MBB.begin())
+ break;
+ MachineInstr *PrevMI = prior(MII);
+ MII = PrevMI;
+
+ if (PrevMI->isDebugValue())
+ continue; // Skip over dbg_value instructions.
+ ++Count;
+
+ for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = PrevMI->getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue;
+ unsigned Reg = MO.getReg();
+ if (MO.isDef()) {
+ Defs.set(Reg);
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+ Defs.set(*AS);
+ } else {
+ LocalUses.push_back(Reg);
+ if (MO.isKill() && AllocatableRegs[Reg])
+ Kills.push_back(Reg);
+ }
+ }
+
+ for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+ unsigned Kill = Kills[i];
+ if (!Defs[Kill] && !Uses[Kill] &&
+ TRI->getPhysicalRegisterRegClass(Kill) == RC)
+ return Kill;
+ }
+ for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
+ unsigned Reg = LocalUses[i];
+ Uses.set(Reg);
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+ Uses.set(*AS);
+ }
+ }
+
+ return 0;
+}
+
+static
+void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
+ const TargetRegisterInfo &TRI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == VirtReg)
+ substitutePhysReg(MO, PhysReg, TRI);
+ }
+}
+
+namespace {
+
+struct RefSorter {
+ bool operator()(const std::pair<MachineInstr*, int> &A,
+ const std::pair<MachineInstr*, int> &B) {
+ return A.second < B.second;
+ }
+};
+
+// ***************************** //
+// Local Spiller Implementation //
+// ***************************** //
+
+class LocalRewriter : public VirtRegRewriter {
+ MachineRegisterInfo *MRI;
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ VirtRegMap *VRM;
+ BitVector AllocatableRegs;
+ DenseMap<MachineInstr*, unsigned> DistanceMap;
+ DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
+
+ MachineBasicBlock *MBB; // Basic block currently being processed.
+
+public:
+
+ bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
+ LiveIntervals* LIs);
+
+private:
+
+ bool OptimizeByUnfold2(unsigned VirtReg, int SS,
+ MachineBasicBlock::iterator &MII,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+
+ bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+
+ bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
+ unsigned VirtReg, unsigned SrcReg, int SS,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ const TargetRegisterInfo *TRI);
+
+ void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
+ int Idx, unsigned PhysReg, int StackSlot,
+ const TargetRegisterClass *RC,
+ bool isAvailable, MachineInstr *&LastStore,
+ AvailableSpills &Spills,
+ SmallSet<MachineInstr*, 4> &ReMatDefs,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+
+ void TransferDeadness(unsigned Reg, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+
+ bool InsertEmergencySpills(MachineInstr *MI);
+
+ bool InsertRestores(MachineInstr *MI,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+
+ bool InsertSpills(MachineInstr *MI);
+
+ void RewriteMBB(LiveIntervals *LIs,
+ AvailableSpills &Spills, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps);
+};
+}
+
+bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
+ LiveIntervals* LIs) {
+ MRI = &MF.getRegInfo();
+ TRI = MF.getTarget().getRegisterInfo();
+ TII = MF.getTarget().getInstrInfo();
+ VRM = &vrm;
+ AllocatableRegs = TRI->getAllocatableSet(MF);
+ DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
+ << MF.getFunction()->getName() << "':\n");
+ DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
+ " reloads!) ****\n");
+ DEBUG(MF.dump());
+
+ // Spills - Keep track of which spilled values are available in physregs
+ // so that we can choose to reuse the physregs instead of emitting
+ // reloads. This is usually refreshed per basic block.
+ AvailableSpills Spills(TRI, TII);
+
+ // Keep track of kill information.
+ BitVector RegKills(TRI->getNumRegs());
+ std::vector<MachineOperand*> KillOps;
+ KillOps.resize(TRI->getNumRegs(), NULL);
+
+ // SingleEntrySuccs - Successor blocks which have a single predecessor.
+ SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
+ SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
+
+ // Traverse the basic blocks depth first.
+ MachineBasicBlock *Entry = MF.begin();
+ SmallPtrSet<MachineBasicBlock*,16> Visited;
+ for (df_ext_iterator<MachineBasicBlock*,
+ SmallPtrSet<MachineBasicBlock*,16> >
+ DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+ DFI != E; ++DFI) {
+ MBB = *DFI;
+ if (!EarlyVisited.count(MBB))
+ RewriteMBB(LIs, Spills, RegKills, KillOps);
+
+ // If this MBB is the only predecessor of a successor. Keep the
+ // availability information and visit it next.
+ do {
+ // Keep visiting single predecessor successor as long as possible.
+ SinglePredSuccs.clear();
+ findSinglePredSuccessor(MBB, SinglePredSuccs);
+ if (SinglePredSuccs.empty())
+ MBB = 0;
+ else {
+ // FIXME: More than one successors, each of which has MBB has
+ // the only predecessor.
+ MBB = SinglePredSuccs[0];
+ if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
+ Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
+ RewriteMBB(LIs, Spills, RegKills, KillOps);
+ }
+ }
+ } while (MBB);
+
+ // Clear the availability info.
+ Spills.clear();
+ }
+
+ DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
+ DEBUG(MF.dump());
+
+ // Mark unused spill slots.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int SS = VRM->getLowSpillSlot();
+ if (SS != VirtRegMap::NO_STACK_SLOT) {
+ for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
+ SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
+ if (!VRM->isSpillSlotUsed(SS)) {
+ MFI->RemoveStackObject(SS);
+ for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
+ MachineInstr *DVMI = DbgValues[j];
+ MachineBasicBlock *DVMBB = DVMI->getParent();
+ DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
+ VRM->RemoveMachineInstrFromMaps(DVMI);
+ DVMBB->erase(DVMI);
+ }
+ ++NumDSS;
+ }
+ DbgValues.clear();
+ }
+ }
+ Slot2DbgValues.clear();
+
+ return true;
+}
+
+/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
+/// a scratch register is available.
+/// xorq %r12<kill>, %r13
+/// addq %rax, -184(%rbp)
+/// addq %r13, -184(%rbp)
+/// ==>
+/// xorq %r12<kill>, %r13
+/// movq -184(%rbp), %r12
+/// addq %rax, %r12
+/// addq %r13, %r12
+/// movq %r12, -184(%rbp)
+bool LocalRewriter::
+OptimizeByUnfold2(unsigned VirtReg, int SS,
+ MachineBasicBlock::iterator &MII,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+
+ MachineBasicBlock::iterator NextMII = llvm::next(MII);
+ // Skip over dbg_value instructions.
+ while (NextMII != MBB->end() && NextMII->isDebugValue())
+ NextMII = llvm::next(NextMII);
+ if (NextMII == MBB->end())
+ return false;
+
+ if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
+ return false;
+
+ // Now let's see if the last couple of instructions happens to have freed up
+ // a register.
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
+ if (!PhysReg)
+ return false;
+
+ MachineFunction &MF = *MBB->getParent();
+ TRI = MF.getTarget().getRegisterInfo();
+ MachineInstr &MI = *MII;
+ if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
+ return false;
+
+ // If the next instruction also folds the same SS modref and can be unfoled,
+ // then it's worthwhile to issue a load from SS into the free register and
+ // then unfold these instructions.
+ if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
+ return false;
+
+ // Back-schedule reloads and remats.
+ ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
+
+ // Load from SS to the spare physical register.
+ TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
+ // This invalidates Phys.
+ Spills.ClobberPhysReg(PhysReg);
+ // Remember it's available.
+ Spills.addAvailable(SS, PhysReg);
+ MaybeDeadStores[SS] = NULL;
+
+ // Unfold current MI.
+ SmallVector<MachineInstr*, 4> NewMIs;
+ if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
+ llvm_unreachable("Unable unfold the load / store folding instruction!");
+ assert(NewMIs.size() == 1);
+ AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
+ VRM->transferRestorePts(&MI, NewMIs[0]);
+ MII = MBB->insert(MII, NewMIs[0]);
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ ++NumModRefUnfold;
+
+ // Unfold next instructions that fold the same SS.
+ do {
+ MachineInstr &NextMI = *NextMII;
+ NextMII = llvm::next(NextMII);
+ NewMIs.clear();
+ if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
+ llvm_unreachable("Unable unfold the load / store folding instruction!");
+ assert(NewMIs.size() == 1);
+ AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
+ VRM->transferRestorePts(&NextMI, NewMIs[0]);
+ MBB->insert(NextMII, NewMIs[0]);
+ InvalidateKills(NextMI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&NextMI);
+ MBB->erase(&NextMI);
+ ++NumModRefUnfold;
+ // Skip over dbg_value instructions.
+ while (NextMII != MBB->end() && NextMII->isDebugValue())
+ NextMII = llvm::next(NextMII);
+ if (NextMII == MBB->end())
+ break;
+ } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
+
+ // Store the value back into SS.
+ TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
+ MachineInstr *StoreMI = prior(NextMII);
+ VRM->addSpillSlotUse(SS, StoreMI);
+ VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+
+ return true;
+}
+
+/// OptimizeByUnfold - Turn a store folding instruction into a load folding
+/// instruction. e.g.
+/// xorl %edi, %eax
+/// movl %eax, -32(%ebp)
+/// movl -36(%ebp), %eax
+/// orl %eax, -32(%ebp)
+/// ==>
+/// xorl %edi, %eax
+/// orl -36(%ebp), %eax
+/// mov %eax, -32(%ebp)
+/// This enables unfolding optimization for a subsequent instruction which will
+/// also eliminate the newly introduced store instruction.
+bool LocalRewriter::
+OptimizeByUnfold(MachineBasicBlock::iterator &MII,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ MachineFunction &MF = *MBB->getParent();
+ MachineInstr &MI = *MII;
+ unsigned UnfoldedOpc = 0;
+ unsigned UnfoldPR = 0;
+ unsigned UnfoldVR = 0;
+ int FoldedSS = VirtRegMap::NO_STACK_SLOT;
+ VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+ for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
+ // Only transform a MI that folds a single register.
+ if (UnfoldedOpc)
+ return false;
+ UnfoldVR = I->second.first;
+ VirtRegMap::ModRef MR = I->second.second;
+ // MI2VirtMap be can updated which invalidate the iterator.
+ // Increment the iterator first.
+ ++I;
+ if (VRM->isAssignedReg(UnfoldVR))
+ continue;
+ // If this reference is not a use, any previous store is now dead.
+ // Otherwise, the store to this stack slot is not dead anymore.
+ FoldedSS = VRM->getStackSlot(UnfoldVR);
+ MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
+ if (DeadStore && (MR & VirtRegMap::isModRef)) {
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
+ if (!PhysReg || !DeadStore->readsRegister(PhysReg))
+ continue;
+ UnfoldPR = PhysReg;
+ UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
+ false, true);
+ }
+ }
+
+ if (!UnfoldedOpc) {
+ if (!UnfoldVR)
+ return false;
+
+ // Look for other unfolding opportunities.
+ return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
+ RegKills, KillOps);
+ }
+
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
+ continue;
+ unsigned VirtReg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
+ continue;
+ if (VRM->isAssignedReg(VirtReg)) {
+ unsigned PhysReg = VRM->getPhys(VirtReg);
+ if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
+ return false;
+ } else if (VRM->isReMaterialized(VirtReg))
+ continue;
+ int SS = VRM->getStackSlot(VirtReg);
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+ if (PhysReg) {
+ if (TRI->regsOverlap(PhysReg, UnfoldPR))
+ return false;
+ continue;
+ }
+ if (VRM->hasPhys(VirtReg)) {
+ PhysReg = VRM->getPhys(VirtReg);
+ if (!TRI->regsOverlap(PhysReg, UnfoldPR))
+ continue;
+ }
+
+ // Ok, we'll need to reload the value into a register which makes
+ // it impossible to perform the store unfolding optimization later.
+ // Let's see if it is possible to fold the load if the store is
+ // unfolded. This allows us to perform the store unfolding
+ // optimization.
+ SmallVector<MachineInstr*, 4> NewMIs;
+ if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
+ assert(NewMIs.size() == 1);
+ MachineInstr *NewMI = NewMIs.back();
+ NewMIs.clear();
+ int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
+ assert(Idx != -1);
+ SmallVector<unsigned, 1> Ops;
+ Ops.push_back(Idx);
+ MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
+ if (FoldedMI) {
+ VRM->addSpillSlotUse(SS, FoldedMI);
+ if (!VRM->hasPhys(UnfoldVR))
+ VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
+ VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+ MII = MBB->insert(MII, FoldedMI);
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ MF.DeleteMachineInstr(NewMI);
+ return true;
+ }
+ MF.DeleteMachineInstr(NewMI);
+ }
+ }
+
+ return false;
+}
+
+/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
+/// where SrcReg is r1 and it is tied to r0. Return true if after
+/// commuting this instruction it will be r0 = op r2, r1.
+static bool CommuteChangesDestination(MachineInstr *DefMI,
+ const TargetInstrDesc &TID,
+ unsigned SrcReg,
+ const TargetInstrInfo *TII,
+ unsigned &DstIdx) {
+ if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
+ return false;
+ if (!DefMI->getOperand(1).isReg() ||
+ DefMI->getOperand(1).getReg() != SrcReg)
+ return false;
+ unsigned DefIdx;
+ if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
+ return false;
+ unsigned SrcIdx1, SrcIdx2;
+ if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
+ return false;
+ if (SrcIdx1 == 1 && SrcIdx2 == 2) {
+ DstIdx = 2;
+ return true;
+ }
+ return false;
+}
+
+/// CommuteToFoldReload -
+/// Look for
+/// r1 = load fi#1
+/// r1 = op r1, r2<kill>
+/// store r1, fi#1
+///
+/// If op is commutable and r2 is killed, then we can xform these to
+/// r2 = op r2, fi#1
+/// store r2, fi#1
+bool LocalRewriter::
+CommuteToFoldReload(MachineBasicBlock::iterator &MII,
+ unsigned VirtReg, unsigned SrcReg, int SS,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps,
+ const TargetRegisterInfo *TRI) {
+ if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
+ return false;
+
+ MachineFunction &MF = *MBB->getParent();
+ MachineInstr &MI = *MII;
+ MachineBasicBlock::iterator DefMII = prior(MII);
+ MachineInstr *DefMI = DefMII;
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ unsigned NewDstIdx;
+ if (DefMII != MBB->begin() &&
+ TID.isCommutable() &&
+ CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
+ MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+ unsigned NewReg = NewDstMO.getReg();
+ if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
+ return false;
+ MachineInstr *ReloadMI = prior(DefMII);
+ int FrameIdx;
+ unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
+ if (DestReg != SrcReg || FrameIdx != SS)
+ return false;
+ int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
+ if (UseIdx == -1)
+ return false;
+ unsigned DefIdx;
+ if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
+ return false;
+ assert(DefMI->getOperand(DefIdx).isReg() &&
+ DefMI->getOperand(DefIdx).getReg() == SrcReg);
+
+ // Now commute def instruction.
+ MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
+ if (!CommutedMI)
+ return false;
+ SmallVector<unsigned, 1> Ops;
+ Ops.push_back(NewDstIdx);
+ MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
+ // Not needed since foldMemoryOperand returns new MI.
+ MF.DeleteMachineInstr(CommutedMI);
+ if (!FoldedMI)
+ return false;
+
+ VRM->addSpillSlotUse(SS, FoldedMI);
+ VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+ // Insert new def MI and spill MI.
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
+ MII = prior(MII);
+ MachineInstr *StoreMI = MII;
+ VRM->addSpillSlotUse(SS, StoreMI);
+ VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+ MII = MBB->insert(MII, FoldedMI); // Update MII to backtrack.
+
+ // Delete all 3 old instructions.
+ InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(ReloadMI);
+ MBB->erase(ReloadMI);
+ InvalidateKills(*DefMI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(DefMI);
+ MBB->erase(DefMI);
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+
+ // If NewReg was previously holding value of some SS, it's now clobbered.
+ // This has to be done now because it's a physical register. When this
+ // instruction is re-visited, it's ignored.
+ Spills.ClobberPhysReg(NewReg);
+
+ ++NumCommutes;
+ return true;
+ }
+
+ return false;
+}
+
+/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
+/// the last store to the same slot is now dead. If so, remove the last store.
+void LocalRewriter::
+SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
+ int Idx, unsigned PhysReg, int StackSlot,
+ const TargetRegisterClass *RC,
+ bool isAvailable, MachineInstr *&LastStore,
+ AvailableSpills &Spills,
+ SmallSet<MachineInstr*, 4> &ReMatDefs,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+
+ MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
+ TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
+ TRI);
+ MachineInstr *StoreMI = prior(oldNextMII);
+ VRM->addSpillSlotUse(StackSlot, StoreMI);
+ DEBUG(dbgs() << "Store:\t" << *StoreMI);
+
+ // If there is a dead store to this stack slot, nuke it now.
+ if (LastStore) {
+ DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
+ ++NumDSE;
+ SmallVector<unsigned, 2> KillRegs;
+ InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
+ MachineBasicBlock::iterator PrevMII = LastStore;
+ bool CheckDef = PrevMII != MBB->begin();
+ if (CheckDef)
+ --PrevMII;
+ VRM->RemoveMachineInstrFromMaps(LastStore);
+ MBB->erase(LastStore);
+ if (CheckDef) {
+ // Look at defs of killed registers on the store. Mark the defs
+ // as dead since the store has been deleted and they aren't
+ // being reused.
+ for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
+ bool HasOtherDef = false;
+ if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
+ MachineInstr *DeadDef = PrevMII;
+ if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
+ // FIXME: This assumes a remat def does not have side effects.
+ VRM->RemoveMachineInstrFromMaps(DeadDef);
+ MBB->erase(DeadDef);
+ ++NumDRM;
+ }
+ }
+ }
+ }
+ }
+
+ // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
+ // the last of multiple instructions is the actual store.
+ LastStore = prior(oldNextMII);
+
+ // If the stack slot value was previously available in some other
+ // register, change it now. Otherwise, make the register available,
+ // in PhysReg.
+ Spills.ModifyStackSlotOrReMat(StackSlot);
+ Spills.ClobberPhysReg(PhysReg);
+ Spills.addAvailable(StackSlot, PhysReg, isAvailable);
+ ++NumStores;
+}
+
+/// isSafeToDelete - Return true if this instruction doesn't produce any side
+/// effect and all of its defs are dead.
+static bool isSafeToDelete(MachineInstr &MI) {
+ const TargetInstrDesc &TID = MI.getDesc();
+ if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
+ TID.isCall() || TID.isBarrier() || TID.isReturn() ||
+ TID.hasUnmodeledSideEffects())
+ return false;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (MO.isDef() && !MO.isDead())
+ return false;
+ if (MO.isUse() && MO.isKill())
+ // FIXME: We can't remove kill markers or else the scavenger will assert.
+ // An alternative is to add a ADD pseudo instruction to replace kill
+ // markers.
+ return false;
+ }
+ return true;
+}
+
+/// TransferDeadness - A identity copy definition is dead and it's being
+/// removed. Find the last def or use and mark it as dead / kill.
+void LocalRewriter::
+TransferDeadness(unsigned Reg, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ SmallPtrSet<MachineInstr*, 4> Seens;
+ SmallVector<std::pair<MachineInstr*, int>,8> Refs;
+ for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
+ RE = MRI->reg_end(); RI != RE; ++RI) {
+ MachineInstr *UDMI = &*RI;
+ if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
+ if (DI == DistanceMap.end())
+ continue;
+ if (Seens.insert(UDMI))
+ Refs.push_back(std::make_pair(UDMI, DI->second));
+ }
+
+ if (Refs.empty())
+ return;
+ std::sort(Refs.begin(), Refs.end(), RefSorter());
+
+ while (!Refs.empty()) {
+ MachineInstr *LastUDMI = Refs.back().first;
+ Refs.pop_back();
+
+ MachineOperand *LastUD = NULL;
+ for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = LastUDMI->getOperand(i);
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (!LastUD || (LastUD->isUse() && MO.isDef()))
+ LastUD = &MO;
+ if (LastUDMI->isRegTiedToDefOperand(i))
+ break;
+ }
+ if (LastUD->isDef()) {
+ // If the instruction has no side effect, delete it and propagate
+ // backward further. Otherwise, mark is dead and we are done.
+ if (!isSafeToDelete(*LastUDMI)) {
+ LastUD->setIsDead();
+ break;
+ }
+ VRM->RemoveMachineInstrFromMaps(LastUDMI);
+ MBB->erase(LastUDMI);
+ } else {
+ LastUD->setIsKill();
+ RegKills.set(Reg);
+ KillOps[Reg] = LastUD;
+ break;
+ }
+ }
+}
+
+/// InsertEmergencySpills - Insert emergency spills before MI if requested by
+/// VRM. Return true if spills were inserted.
+bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
+ if (!VRM->hasEmergencySpills(MI))
+ return false;
+ MachineBasicBlock::iterator MII = MI;
+ SmallSet<int, 4> UsedSS;
+ std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
+ for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
+ unsigned PhysReg = EmSpills[i];
+ const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(PhysReg);
+ assert(RC && "Unable to determine register class!");
+ int SS = VRM->getEmergencySpillSlot(RC);
+ if (UsedSS.count(SS))
+ llvm_unreachable("Need to spill more than one physical registers!");
+ UsedSS.insert(SS);
+ TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
+ MachineInstr *StoreMI = prior(MII);
+ VRM->addSpillSlotUse(SS, StoreMI);
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
+ TII, *MBB->getParent());
+
+ TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
+
+ MachineInstr *LoadMI = prior(InsertLoc);
+ VRM->addSpillSlotUse(SS, LoadMI);
+ ++NumPSpills;
+ DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
+ }
+ return true;
+}
+
+/// InsertRestores - Restore registers before MI is requested by VRM. Return
+/// true is any instructions were inserted.
+bool LocalRewriter::InsertRestores(MachineInstr *MI,
+ AvailableSpills &Spills,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ if (!VRM->isRestorePt(MI))
+ return false;
+ MachineBasicBlock::iterator MII = MI;
+ std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
+ for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
+ unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
+ if (!VRM->getPreSplitReg(VirtReg))
+ continue; // Split interval spilled again.
+ unsigned Phys = VRM->getPhys(VirtReg);
+ MRI->setPhysRegUsed(Phys);
+
+ // Check if the value being restored if available. If so, it must be
+ // from a predecessor BB that fallthrough into this BB. We do not
+ // expect:
+ // BB1:
+ // r1 = load fi#1
+ // ...
+ // = r1<kill>
+ // ... # r1 not clobbered
+ // ...
+ // = load fi#1
+ bool DoReMat = VRM->isReMaterialized(VirtReg);
+ int SSorRMId = DoReMat
+ ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+ if (InReg == Phys) {
+ // If the value is already available in the expected register, save
+ // a reload / remat.
+ if (SSorRMId)
+ DEBUG(dbgs() << "Reusing RM#"
+ << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
+ else
+ DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
+ DEBUG(dbgs() << " from physreg "
+ << TRI->getName(InReg) << " for vreg"
+ << VirtReg <<" instead of reloading into physreg "
+ << TRI->getName(Phys) << '\n');
+ ++NumOmitted;
+ continue;
+ } else if (InReg && InReg != Phys) {
+ if (SSorRMId)
+ DEBUG(dbgs() << "Reusing RM#"
+ << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
+ else
+ DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
+ DEBUG(dbgs() << " from physreg "
+ << TRI->getName(InReg) << " for vreg"
+ << VirtReg <<" by copying it into physreg "
+ << TRI->getName(Phys) << '\n');
+
+ // If the reloaded / remat value is available in another register,
+ // copy it to the desired register.
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
+ *MBB->getParent());
+
+ TII->copyRegToReg(*MBB, InsertLoc, Phys, InReg, RC, RC,
+ MI->getDebugLoc());
+
+ // This invalidates Phys.
+ Spills.ClobberPhysReg(Phys);
+ // Remember it's available.
+ Spills.addAvailable(SSorRMId, Phys);
+
+ // Mark is killed.
+ MachineInstr *CopyMI = prior(InsertLoc);
+ CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
+ MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
+ KillOpnd->setIsKill();
+ UpdateKills(*CopyMI, TRI, RegKills, KillOps);
+
+ DEBUG(dbgs() << '\t' << *CopyMI);
+ ++NumCopified;
+ continue;
+ }
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
+ *MBB->getParent());
+
+ if (VRM->isReMaterialized(VirtReg)) {
+ ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
+ } else {
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
+ MachineInstr *LoadMI = prior(InsertLoc);
+ VRM->addSpillSlotUse(SSorRMId, LoadMI);
+ ++NumLoads;
+ DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
+ }
+
+ // This invalidates Phys.
+ Spills.ClobberPhysReg(Phys);
+ // Remember it's available.
+ Spills.addAvailable(SSorRMId, Phys);
+
+ UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+ DEBUG(dbgs() << '\t' << *prior(MII));
+ }
+ return true;
+}
+
+/// InsertEmergencySpills - Insert spills after MI if requested by VRM. Return
+/// true if spills were inserted.
+bool LocalRewriter::InsertSpills(MachineInstr *MI) {
+ if (!VRM->isSpillPt(MI))
+ return false;
+ MachineBasicBlock::iterator MII = MI;
+ std::vector<std::pair<unsigned,bool> > &SpillRegs =
+ VRM->getSpillPtSpills(MI);
+ for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
+ unsigned VirtReg = SpillRegs[i].first;
+ bool isKill = SpillRegs[i].second;
+ if (!VRM->getPreSplitReg(VirtReg))
+ continue; // Split interval spilled again.
+ const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
+ unsigned Phys = VRM->getPhys(VirtReg);
+ int StackSlot = VRM->getStackSlot(VirtReg);
+ MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
+ TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
+ RC, TRI);
+ MachineInstr *StoreMI = prior(oldNextMII);
+ VRM->addSpillSlotUse(StackSlot, StoreMI);
+ DEBUG(dbgs() << "Store:\t" << *StoreMI);
+ VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+ }
+ return true;
+}
+
+
+/// rewriteMBB - Keep track of which spills are available even after the
+/// register allocator is done with them. If possible, avid reloading vregs.
+void
+LocalRewriter::RewriteMBB(LiveIntervals *LIs,
+ AvailableSpills &Spills, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+
+ DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
+ << MBB->getName() << "':\n");
+
+ MachineFunction &MF = *MBB->getParent();
+
+ // MaybeDeadStores - When we need to write a value back into a stack slot,
+ // keep track of the inserted store. If the stack slot value is never read
+ // (because the value was used from some available register, for example), and
+ // subsequently stored to, the original store is dead. This map keeps track
+ // of inserted stores that are not used. If we see a subsequent store to the
+ // same stack slot, the original store is deleted.
+ std::vector<MachineInstr*> MaybeDeadStores;
+ MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
+
+ // ReMatDefs - These are rematerializable def MIs which are not deleted.
+ SmallSet<MachineInstr*, 4> ReMatDefs;
+
+ // Clear kill info.
+ SmallSet<unsigned, 2> KilledMIRegs;
+
+ // Keep track of the registers we have already spilled in case there are
+ // multiple defs of the same register in MI.
+ SmallSet<unsigned, 8> SpilledMIRegs;
+
+ RegKills.reset();
+ KillOps.clear();
+ KillOps.resize(TRI->getNumRegs(), NULL);
+
+ DistanceMap.clear();
+ for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
+ MII != E; ) {
+ MachineBasicBlock::iterator NextMII = llvm::next(MII);
+
+ if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
+ NextMII = llvm::next(MII);
+
+ if (InsertEmergencySpills(MII))
+ NextMII = llvm::next(MII);
+
+ InsertRestores(MII, Spills, RegKills, KillOps);
+
+ if (InsertSpills(MII))
+ NextMII = llvm::next(MII);
+
+ VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+ bool Erased = false;
+ bool BackTracked = false;
+ MachineInstr &MI = *MII;
+
+ // Remember DbgValue's which reference stack slots.
+ if (MI.isDebugValue() && MI.getOperand(0).isFI())
+ Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
+
+ /// ReusedOperands - Keep track of operand reuse in case we need to undo
+ /// reuse.
+ ReuseInfo ReusedOperands(MI, TRI);
+ SmallVector<unsigned, 4> VirtUseOps;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue; // Ignore non-register operands.
+
+ unsigned VirtReg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
+ // Ignore physregs for spilling, but remember that it is used by this
+ // function.
+ MRI->setPhysRegUsed(VirtReg);
+ continue;
+ }
+
+ // We want to process implicit virtual register uses first.
+ if (MO.isImplicit())
+ // If the virtual register is implicitly defined, emit a implicit_def
+ // before so scavenger knows it's "defined".
+ // FIXME: This is a horrible hack done the by register allocator to
+ // remat a definition with virtual register operand.
+ VirtUseOps.insert(VirtUseOps.begin(), i);
+ else
+ VirtUseOps.push_back(i);
+ }
+
+ // Process all of the spilled uses and all non spilled reg references.
+ SmallVector<int, 2> PotentialDeadStoreSlots;
+ KilledMIRegs.clear();
+ for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
+ unsigned i = VirtUseOps[j];
+ unsigned VirtReg = MI.getOperand(i).getReg();
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "Not a virtual register?");
+
+ unsigned SubIdx = MI.getOperand(i).getSubReg();
+ if (VRM->isAssignedReg(VirtReg)) {
+ // This virtual register was assigned a physreg!
+ unsigned Phys = VRM->getPhys(VirtReg);
+ MRI->setPhysRegUsed(Phys);
+ if (MI.getOperand(i).isDef())
+ ReusedOperands.markClobbered(Phys);
+ substitutePhysReg(MI.getOperand(i), Phys, *TRI);
+ if (VRM->isImplicitlyDefined(VirtReg))
+ // FIXME: Is this needed?
+ BuildMI(*MBB, &MI, MI.getDebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
+ continue;
+ }
+
+ // This virtual register is now known to be a spilled value.
+ if (!MI.getOperand(i).isUse())
+ continue; // Handle defs in the loop below (handle use&def here though)
+
+ bool AvoidReload = MI.getOperand(i).isUndef();
+ // Check if it is defined by an implicit def. It should not be spilled.
+ // Note, this is for correctness reason. e.g.
+ // 8 %reg1024<def> = IMPLICIT_DEF
+ // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+ // The live range [12, 14) are not part of the r1024 live interval since
+ // it's defined by an implicit def. It will not conflicts with live
+ // interval of r1025. Now suppose both registers are spilled, you can
+ // easily see a situation where both registers are reloaded before
+ // the INSERT_SUBREG and both target registers that would overlap.
+ bool DoReMat = VRM->isReMaterialized(VirtReg);
+ int SSorRMId = DoReMat
+ ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
+ int ReuseSlot = SSorRMId;
+
+ // Check to see if this stack slot is available.
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+
+ // If this is a sub-register use, make sure the reuse register is in the
+ // right register class. For example, for x86 not all of the 32-bit
+ // registers have accessible sub-registers.
+ // Similarly so for EXTRACT_SUBREG. Consider this:
+ // EDI = op
+ // MOV32_mr fi#1, EDI
+ // ...
+ // = EXTRACT_SUBREG fi#1
+ // fi#1 is available in EDI, but it cannot be reused because it's not in
+ // the right register file.
+ if (PhysReg && !AvoidReload && (SubIdx || MI.isExtractSubreg())) {
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ if (!RC->contains(PhysReg))
+ PhysReg = 0;
+ }
+
+ if (PhysReg && !AvoidReload) {
+ // This spilled operand might be part of a two-address operand. If this
+ // is the case, then changing it will necessarily require changing the
+ // def part of the instruction as well. However, in some cases, we
+ // aren't allowed to modify the reused register. If none of these cases
+ // apply, reuse it.
+ bool CanReuse = true;
+ bool isTied = MI.isRegTiedToDefOperand(i);
+ if (isTied) {
+ // Okay, we have a two address operand. We can reuse this physreg as
+ // long as we are allowed to clobber the value and there isn't an
+ // earlier def that has already clobbered the physreg.
+ CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
+ Spills.canClobberPhysReg(PhysReg);
+ }
+
+ if (CanReuse) {
+ // If this stack slot value is already available, reuse it!
+ if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+ DEBUG(dbgs() << "Reusing RM#"
+ << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
+ else
+ DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(dbgs() << " from physreg "
+ << TRI->getName(PhysReg) << " for vreg"
+ << VirtReg <<" instead of reloading into physreg "
+ << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+
+ // The only technical detail we have is that we don't know that
+ // PhysReg won't be clobbered by a reloaded stack slot that occurs
+ // later in the instruction. In particular, consider 'op V1, V2'.
+ // If V1 is available in physreg R0, we would choose to reuse it
+ // here, instead of reloading it into the register the allocator
+ // indicated (say R1). However, V2 might have to be reloaded
+ // later, and it might indicate that it needs to live in R0. When
+ // this occurs, we need to have information available that
+ // indicates it is safe to use R1 for the reload instead of R0.
+ //
+ // To further complicate matters, we might conflict with an alias,
+ // or R0 and R1 might not be compatible with each other. In this
+ // case, we actually insert a reload for V1 in R1, ensuring that
+ // we can get at R0 or its alias.
+ ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
+ VRM->getPhys(VirtReg), VirtReg);
+ if (isTied)
+ // Only mark it clobbered if this is a use&def operand.
+ ReusedOperands.markClobbered(PhysReg);
+ ++NumReused;
+
+ if (MI.getOperand(i).isKill() &&
+ ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
+
+ // The store of this spilled value is potentially dead, but we
+ // won't know for certain until we've confirmed that the re-use
+ // above is valid, which means waiting until the other operands
+ // are processed. For now we just track the spill slot, we'll
+ // remove it after the other operands are processed if valid.
+
+ PotentialDeadStoreSlots.push_back(ReuseSlot);
+ }
+
+ // Mark is isKill if it's there no other uses of the same virtual
+ // register and it's not a two-address operand. IsKill will be
+ // unset if reg is reused.
+ if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
+ MI.getOperand(i).setIsKill();
+ KilledMIRegs.insert(VirtReg);
+ }
+
+ continue;
+ } // CanReuse
+
+ // Otherwise we have a situation where we have a two-address instruction
+ // whose mod/ref operand needs to be reloaded. This reload is already
+ // available in some register "PhysReg", but if we used PhysReg as the
+ // operand to our 2-addr instruction, the instruction would modify
+ // PhysReg. This isn't cool if something later uses PhysReg and expects
+ // to get its initial value.
+ //
+ // To avoid this problem, and to avoid doing a load right after a store,
+ // we emit a copy from PhysReg into the designated register for this
+ // operand.
+ unsigned DesignatedReg = VRM->getPhys(VirtReg);
+ assert(DesignatedReg && "Must map virtreg to physreg!");
+
+ // Note that, if we reused a register for a previous operand, the
+ // register we want to reload into might not actually be
+ // available. If this occurs, use the register indicated by the
+ // reuser.
+ if (ReusedOperands.hasReuses())
+ DesignatedReg = ReusedOperands.
+ GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
+ MaybeDeadStores, RegKills, KillOps, *VRM);
+
+ // If the mapped designated register is actually the physreg we have
+ // incoming, we don't need to inserted a dead copy.
+ if (DesignatedReg == PhysReg) {
+ // If this stack slot value is already available, reuse it!
+ if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+ DEBUG(dbgs() << "Reusing RM#"
+ << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
+ else
+ DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
+ << " for vreg" << VirtReg
+ << " instead of reloading into same physreg.\n");
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ ReusedOperands.markClobbered(RReg);
+ ++NumReused;
+ continue;
+ }
+
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ MRI->setPhysRegUsed(DesignatedReg);
+ ReusedOperands.markClobbered(DesignatedReg);
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
+ SSorRMId, TII, MF);
+
+ TII->copyRegToReg(*MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC,
+ MI.getDebugLoc());
+
+ MachineInstr *CopyMI = prior(InsertLoc);
+ CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
+ UpdateKills(*CopyMI, TRI, RegKills, KillOps);
+
+ // This invalidates DesignatedReg.
+ Spills.ClobberPhysReg(DesignatedReg);
+
+ Spills.addAvailable(ReuseSlot, DesignatedReg);
+ unsigned RReg =
+ SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ DEBUG(dbgs() << '\t' << *prior(MII));
+ ++NumReused;
+ continue;
+ } // if (PhysReg)
+
+ // Otherwise, reload it and remember that we have it.
+ PhysReg = VRM->getPhys(VirtReg);
+ assert(PhysReg && "Must map virtreg to physreg!");
+
+ // Note that, if we reused a register for a previous operand, the
+ // register we want to reload into might not actually be
+ // available. If this occurs, use the register indicated by the
+ // reuser.
+ if (ReusedOperands.hasReuses())
+ PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
+
+ MRI->setPhysRegUsed(PhysReg);
+ ReusedOperands.markClobbered(PhysReg);
+ if (AvoidReload)
+ ++NumAvoided;
+ else {
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat,
+ SSorRMId, TII, MF);
+
+ if (DoReMat) {
+ ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
+ } else {
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
+ MachineInstr *LoadMI = prior(InsertLoc);
+ VRM->addSpillSlotUse(SSorRMId, LoadMI);
+ ++NumLoads;
+ DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
+ }
+ // This invalidates PhysReg.
+ Spills.ClobberPhysReg(PhysReg);
+
+ // Any stores to this stack slot are not dead anymore.
+ if (!DoReMat)
+ MaybeDeadStores[SSorRMId] = NULL;
+ Spills.addAvailable(SSorRMId, PhysReg);
+ // Assumes this is the last use. IsKill will be unset if reg is reused
+ // unless it's a two-address operand.
+ if (!MI.isRegTiedToDefOperand(i) &&
+ KilledMIRegs.count(VirtReg) == 0) {
+ MI.getOperand(i).setIsKill();
+ KilledMIRegs.insert(VirtReg);
+ }
+
+ UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+ DEBUG(dbgs() << '\t' << *prior(InsertLoc));
+ }
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ }
+
+ // Ok - now we can remove stores that have been confirmed dead.
+ for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
+ // This was the last use and the spilled value is still available
+ // for reuse. That means the spill was unnecessary!
+ int PDSSlot = PotentialDeadStoreSlots[j];
+ MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
+ if (DeadStore) {
+ DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
+ InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(DeadStore);
+ MBB->erase(DeadStore);
+ MaybeDeadStores[PDSSlot] = NULL;
+ ++NumDSE;
+ }
+ }
+
+
+ DEBUG(dbgs() << '\t' << MI);
+
+
+ // If we have folded references to memory operands, make sure we clear all
+ // physical registers that may contain the value of the spilled virtual
+ // register
+ SmallSet<int, 2> FoldedSS;
+ for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
+ unsigned VirtReg = I->second.first;
+ VirtRegMap::ModRef MR = I->second.second;
+ DEBUG(dbgs() << "Folded vreg: " << VirtReg << " MR: " << MR);
+
+ // MI2VirtMap be can updated which invalidate the iterator.
+ // Increment the iterator first.
+ ++I;
+ int SS = VRM->getStackSlot(VirtReg);
+ if (SS == VirtRegMap::NO_STACK_SLOT)
+ continue;
+ FoldedSS.insert(SS);
+ DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
+
+ // If this folded instruction is just a use, check to see if it's a
+ // straight load from the virt reg slot.
+ if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
+ int FrameIdx;
+ unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
+ if (DestReg && FrameIdx == SS) {
+ // If this spill slot is available, turn it into a copy (or nothing)
+ // instead of leaving it as a load!
+ if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
+ DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
+ if (DestReg != InReg) {
+ const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
+ TII->copyRegToReg(*MBB, &MI, DestReg, InReg, RC, RC,
+ MI.getDebugLoc());
+ MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
+ unsigned SubIdx = DefMO->getSubReg();
+ // Revisit the copy so we make sure to notice the effects of the
+ // operation on the destreg (either needing to RA it if it's
+ // virtual or needing to clobber any values if it's physical).
+ NextMII = &MI;
+ --NextMII; // backtrack to the copy.
+ NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
+ // Propagate the sub-register index over.
+ if (SubIdx) {
+ DefMO = NextMII->findRegisterDefOperand(DestReg);
+ DefMO->setSubReg(SubIdx);
+ }
+
+ // Mark is killed.
+ MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
+ KillOpnd->setIsKill();
+
+ BackTracked = true;
+ } else {
+ DEBUG(dbgs() << "Removing now-noop copy: " << MI);
+ // Unset last kill since it's being reused.
+ InvalidateKill(InReg, TRI, RegKills, KillOps);
+ Spills.disallowClobberPhysReg(InReg);
+ }
+
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ Erased = true;
+ goto ProcessNextInst;
+ }
+ } else {
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+ SmallVector<MachineInstr*, 4> NewMIs;
+ if (PhysReg &&
+ TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
+ MBB->insert(MII, NewMIs[0]);
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ Erased = true;
+ --NextMII; // backtrack to the unfolded instruction.
+ BackTracked = true;
+ goto ProcessNextInst;
+ }
+ }
+ }
+
+ // If this reference is not a use, any previous store is now dead.
+ // Otherwise, the store to this stack slot is not dead anymore.
+ MachineInstr* DeadStore = MaybeDeadStores[SS];
+ if (DeadStore) {
+ bool isDead = !(MR & VirtRegMap::isRef);
+ MachineInstr *NewStore = NULL;
+ if (MR & VirtRegMap::isModRef) {
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+ SmallVector<MachineInstr*, 4> NewMIs;
+ // We can reuse this physreg as long as we are allowed to clobber
+ // the value and there isn't an earlier def that has already clobbered
+ // the physreg.
+ if (PhysReg &&
+ !ReusedOperands.isClobbered(PhysReg) &&
+ Spills.canClobberPhysReg(PhysReg) &&
+ !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
+ MachineOperand *KillOpnd =
+ DeadStore->findRegisterUseOperand(PhysReg, true);
+ // Note, if the store is storing a sub-register, it's possible the
+ // super-register is needed below.
+ if (KillOpnd && !KillOpnd->getSubReg() &&
+ TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
+ MBB->insert(MII, NewMIs[0]);
+ NewStore = NewMIs[1];
+ MBB->insert(MII, NewStore);
+ VRM->addSpillSlotUse(SS, NewStore);
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ Erased = true;
+ --NextMII;
+ --NextMII; // backtrack to the unfolded instruction.
+ BackTracked = true;
+ isDead = true;
+ ++NumSUnfold;
+ }
+ }
+ }
+
+ if (isDead) { // Previous store is dead.
+ // If we get here, the store is dead, nuke it now.
+ DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
+ InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(DeadStore);
+ MBB->erase(DeadStore);
+ if (!NewStore)
+ ++NumDSE;
+ }
+
+ MaybeDeadStores[SS] = NULL;
+ if (NewStore) {
+ // Treat this store as a spill merged into a copy. That makes the
+ // stack slot value available.
+ VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
+ goto ProcessNextInst;
+ }
+ }
+
+ // If the spill slot value is available, and this is a new definition of
+ // the value, the value is not available anymore.
+ if (MR & VirtRegMap::isMod) {
+ // Notice that the value in this stack slot has been modified.
+ Spills.ModifyStackSlotOrReMat(SS);
+
+ // If this is *just* a mod of the value, check to see if this is just a
+ // store to the spill slot (i.e. the spill got merged into the copy). If
+ // so, realize that the vreg is available now, and add the store to the
+ // MaybeDeadStore info.
+ int StackSlot;
+ if (!(MR & VirtRegMap::isRef)) {
+ if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
+ assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ "Src hasn't been allocated yet?");
+
+ if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
+ Spills, RegKills, KillOps, TRI)) {
+ NextMII = llvm::next(MII);
+ BackTracked = true;
+ goto ProcessNextInst;
+ }
+
+ // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
+ // this as a potentially dead store in case there is a subsequent
+ // store into the stack slot without a read from it.
+ MaybeDeadStores[StackSlot] = &MI;
+
+ // If the stack slot value was previously available in some other
+ // register, change it now. Otherwise, make the register
+ // available in PhysReg.
+ Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
+ }
+ }
+ }
+ }
+
+ // Process all of the spilled defs.
+ SpilledMIRegs.clear();
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!(MO.isReg() && MO.getReg() && MO.isDef()))
+ continue;
+
+ unsigned VirtReg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
+ // Check to see if this is a noop copy. If so, eliminate the
+ // instruction before considering the dest reg to be changed.
+ // Also check if it's copying from an "undef", if so, we can't
+ // eliminate this or else the undef marker is lost and it will
+ // confuses the scavenger. This is extremely rare.
+ unsigned Src, Dst, SrcSR, DstSR;
+ if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) &&
+ Src == Dst && SrcSR == DstSR &&
+ !MI.findRegisterUseOperand(Src)->isUndef()) {
+ ++NumDCE;
+ DEBUG(dbgs() << "Removing now-noop copy: " << MI);
+ SmallVector<unsigned, 2> KillRegs;
+ InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
+ if (MO.isDead() && !KillRegs.empty()) {
+ // Source register or an implicit super/sub-register use is killed.
+ assert(KillRegs[0] == Dst ||
+ TRI->isSubRegister(KillRegs[0], Dst) ||
+ TRI->isSuperRegister(KillRegs[0], Dst));
+ // Last def is now dead.
+ TransferDeadness(Src, RegKills, KillOps);
+ }
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ Erased = true;
+ Spills.disallowClobberPhysReg(VirtReg);
+ goto ProcessNextInst;
+ }
+
+ // If it's not a no-op copy, it clobbers the value in the destreg.
+ Spills.ClobberPhysReg(VirtReg);
+ ReusedOperands.markClobbered(VirtReg);
+
+ // Check to see if this instruction is a load from a stack slot into
+ // a register. If so, this provides the stack slot value in the reg.
+ int FrameIdx;
+ if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
+ assert(DestReg == VirtReg && "Unknown load situation!");
+
+ // If it is a folded reference, then it's not safe to clobber.
+ bool Folded = FoldedSS.count(FrameIdx);
+ // Otherwise, if it wasn't available, remember that it is now!
+ Spills.addAvailable(FrameIdx, DestReg, !Folded);
+ goto ProcessNextInst;
+ }
+
+ continue;
+ }
+
+ unsigned SubIdx = MO.getSubReg();
+ bool DoReMat = VRM->isReMaterialized(VirtReg);
+ if (DoReMat)
+ ReMatDefs.insert(&MI);
+
+ // The only vregs left are stack slot definitions.
+ int StackSlot = VRM->getStackSlot(VirtReg);
+ const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
+
+ // If this def is part of a two-address operand, make sure to execute
+ // the store from the correct physical register.
+ unsigned PhysReg;
+ unsigned TiedOp;
+ if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
+ PhysReg = MI.getOperand(TiedOp).getReg();
+ if (SubIdx) {
+ unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
+ assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
+ "Can't find corresponding super-register!");
+ PhysReg = SuperReg;
+ }
+ } else {
+ PhysReg = VRM->getPhys(VirtReg);
+ if (ReusedOperands.isClobbered(PhysReg)) {
+ // Another def has taken the assigned physreg. It must have been a
+ // use&def which got it due to reuse. Undo the reuse!
+ PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
+ }
+ }
+
+ assert(PhysReg && "VR not assigned a physical register?");
+ MRI->setPhysRegUsed(PhysReg);
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ ReusedOperands.markClobbered(RReg);
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+
+ if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
+ MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
+ SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
+ LastStore, Spills, ReMatDefs, RegKills, KillOps);
+ NextMII = llvm::next(MII);
+
+ // Check to see if this is a noop copy. If so, eliminate the
+ // instruction before considering the dest reg to be changed.
+ {
+ unsigned Src, Dst, SrcSR, DstSR;
+ if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) &&
+ Src == Dst && SrcSR == DstSR) {
+ ++NumDCE;
+ DEBUG(dbgs() << "Removing now-noop copy: " << MI);
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ Erased = true;
+ UpdateKills(*LastStore, TRI, RegKills, KillOps);
+ goto ProcessNextInst;
+ }
+ }
+ }
+ }
+ ProcessNextInst:
+ // Delete dead instructions without side effects.
+ if (!Erased && !BackTracked && isSafeToDelete(MI)) {
+ InvalidateKills(MI, TRI, RegKills, KillOps);
+ VRM->RemoveMachineInstrFromMaps(&MI);
+ MBB->erase(&MI);
+ Erased = true;
+ }
+ if (!Erased)
+ DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
+ if (!Erased && !BackTracked) {
+ for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
+ UpdateKills(*II, TRI, RegKills, KillOps);
+ }
+ MII = NextMII;
+ }
+
+}
+
+llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
+ switch (RewriterOpt) {
+ default: llvm_unreachable("Unreachable!");
+ case local:
+ return new LocalRewriter();
+ case trivial:
+ return new TrivialRewriter();
+ }
+}
OpenPOWER on IntegriCloud