summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp896
1 files changed, 473 insertions, 423 deletions
diff --git a/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp b/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
index 240d28c..458a213 100644
--- a/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
+++ b/contrib/llvm/lib/CodeGen/VirtRegRewriter.cpp
@@ -22,8 +22,8 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
-#include <algorithm>
using namespace llvm;
STATISTIC(NumDSE , "Number of dead stores elided");
@@ -216,7 +216,8 @@ public:
<< SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
else
DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
- DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
+ DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
+ << (CanClobber ? " canclobber" : "") << "\n");
}
/// canClobberPhysRegForSS - Return true if the spiller is allowed to change
@@ -297,7 +298,7 @@ ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
const TargetLowering *TL = MF.getTarget().getTargetLowering();
if (!TL->isTypeLegal(TL->getPointerTy()))
- // Believe it or not, this is true on PIC16.
+ // Believe it or not, this is true on 16-bit targets like PIC16.
return InsertLoc;
const TargetRegisterClass *ptrRegClass =
@@ -462,25 +463,70 @@ static void findSinglePredSuccessor(MachineBasicBlock *MBB,
}
}
-/// InvalidateKill - Invalidate register kill information for a specific
-/// register. This also unsets the kills marker on the last kill operand.
-static void InvalidateKill(unsigned Reg,
- const TargetRegisterInfo* TRI,
- BitVector &RegKills,
- std::vector<MachineOperand*> &KillOps) {
- if (RegKills[Reg]) {
- KillOps[Reg]->setIsKill(false);
- // KillOps[Reg] might be a def of a super-register.
- unsigned KReg = KillOps[Reg]->getReg();
- KillOps[KReg] = NULL;
- RegKills.reset(KReg);
- for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
- if (RegKills[*SR]) {
- KillOps[*SR]->setIsKill(false);
- KillOps[*SR] = NULL;
- RegKills.reset(*SR);
- }
- }
+/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
+/// but not re-defined and it's being reused. Remove the kill flag for the
+/// register and unset the kill's marker and last kill operand.
+static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
+ BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");
+
+ MachineOperand *KillOp = KillOps[Reg];
+ KillOp->setIsKill(false);
+ // KillOps[Reg] might be a def of a super-register.
+ unsigned KReg = KillOp->getReg();
+ if (!RegKills[KReg])
+ return;
+
+ assert(KillOps[KReg] == KillOp && "invalid superreg kill flags");
+ KillOps[KReg] = NULL;
+ RegKills.reset(KReg);
+
+ // If it's a def of a super-register. Its other sub-regsters are no
+ // longer killed as well.
+ for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
+ DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n");
+
+ assert(KillOps[*SR] == KillOp && "invalid subreg kill flags");
+ KillOps[*SR] = NULL;
+ RegKills.reset(*SR);
+ }
+}
+
+/// ResurrectKill - Invalidate kill info associated with a previous MI. An
+/// optimization may have decided that it's safe to reuse a previously killed
+/// register. If we fail to erase the invalid kill flags, then the register
+/// scavenger may later clobber the register used by this MI. Note that this
+/// must be done even if this MI is being deleted! Consider:
+///
+/// USE $r1 (vreg1) <kill>
+/// ...
+/// $r1(vreg3) = COPY $r1 (vreg2)
+///
+/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
+/// vreg1's only use is a kill. The rewriter doesn't know it should be live
+/// until it rewrites vreg2. At that points it sees that the copy is dead and
+/// deletes it. However, deleting the copy implicitly forwards liveness of $r1
+/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
+/// vreg1 before deleting the copy.
+static void ResurrectKill(MachineInstr &MI, unsigned Reg,
+ const TargetRegisterInfo* TRI, BitVector &RegKills,
+ std::vector<MachineOperand*> &KillOps) {
+ if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
+ ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
+ return;
+ }
+ // No previous kill for this reg. Check for subreg kills as well.
+ // d4 =
+ // store d4, fi#0
+ // ...
+ // = s8<kill>
+ // ...
+ // = d4 <avoiding reload>
+ for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
+ unsigned SReg = *SR;
+ if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
+ ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
}
}
@@ -502,15 +548,22 @@ static void InvalidateKills(MachineInstr &MI,
KillRegs->push_back(Reg);
assert(Reg < KillOps.size());
if (KillOps[Reg] == &MO) {
+ // This operand was the kill, now no longer.
KillOps[Reg] = NULL;
RegKills.reset(Reg);
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
if (RegKills[*SR]) {
+ assert(KillOps[*SR] == &MO && "bad subreg kill flags");
KillOps[*SR] = NULL;
RegKills.reset(*SR);
}
}
}
+ else {
+ // This operand may have reused a previously killed reg. Keep it live in
+ // case it continues to be used after erasing this instruction.
+ ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
+ }
}
}
@@ -578,44 +631,8 @@ static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
if (Reg == 0)
continue;
- if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
- // That can't be right. Register is killed but not re-defined and it's
- // being reused. Let's fix that.
- KillOps[Reg]->setIsKill(false);
- // KillOps[Reg] might be a def of a super-register.
- unsigned KReg = KillOps[Reg]->getReg();
- KillOps[KReg] = NULL;
- RegKills.reset(KReg);
-
- // Must be a def of a super-register. Its other sub-regsters are no
- // longer killed as well.
- for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
- KillOps[*SR] = NULL;
- RegKills.reset(*SR);
- }
- } else {
- // Check for subreg kills as well.
- // d4 =
- // store d4, fi#0
- // ...
- // = s8<kill>
- // ...
- // = d4 <avoiding reload>
- for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
- unsigned SReg = *SR;
- if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
- KillOps[SReg]->setIsKill(false);
- unsigned KReg = KillOps[SReg]->getReg();
- KillOps[KReg] = NULL;
- RegKills.reset(KReg);
-
- for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
- KillOps[*SSR] = NULL;
- RegKills.reset(*SSR);
- }
- }
- }
- }
+ // This operand may have reused a previously killed reg. Keep it live.
+ ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
if (MO.isKill()) {
RegKills.set(Reg);
@@ -770,7 +787,8 @@ void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
NotAvailable.insert(Reg);
else {
MBB.addLiveIn(Reg);
- InvalidateKill(Reg, TRI, RegKills, KillOps);
+ if (RegKills[Reg])
+ ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
}
// Skip over the same register.
@@ -1056,6 +1074,7 @@ class LocalRewriter : public VirtRegRewriter {
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
VirtRegMap *VRM;
+ LiveIntervals *LIs;
BitVector AllocatableRegs;
DenseMap<MachineInstr*, unsigned> DistanceMap;
DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
@@ -1068,6 +1087,11 @@ public:
LiveIntervals* LIs);
private:
+ void EraseInstr(MachineInstr *MI) {
+ VRM->RemoveMachineInstrFromMaps(MI);
+ LIs->RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ }
bool OptimizeByUnfold2(unsigned VirtReg, int SS,
MachineBasicBlock::iterator &MII,
@@ -1110,6 +1134,12 @@ private:
bool InsertSpills(MachineInstr *MI);
+ void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ BitVector &RegKills,
+ ReuseInfo &ReusedOperands,
+ std::vector<MachineOperand*> &KillOps);
+
void RewriteMBB(LiveIntervals *LIs,
AvailableSpills &Spills, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps);
@@ -1117,17 +1147,18 @@ private:
}
bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
- LiveIntervals* LIs) {
+ LiveIntervals* lis) {
MRI = &MF.getRegInfo();
TRI = MF.getTarget().getRegisterInfo();
TII = MF.getTarget().getInstrInfo();
VRM = &vrm;
+ LIs = lis;
AllocatableRegs = TRI->getAllocatableSet(MF);
DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
<< MF.getFunction()->getName() << "':\n");
DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
" reloads!) ****\n");
- DEBUG(MF.dump());
+ DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
// Spills - Keep track of which spilled values are available in physregs
// so that we can choose to reuse the physregs instead of emitting
@@ -1178,7 +1209,7 @@ bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
}
DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
- DEBUG(MF.dump());
+ DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
// Mark unused spill slots.
MachineFrameInfo *MFI = MF.getFrameInfo();
@@ -1190,10 +1221,8 @@ bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
MFI->RemoveStackObject(SS);
for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
MachineInstr *DVMI = DbgValues[j];
- MachineBasicBlock *DVMBB = DVMI->getParent();
DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
- VRM->RemoveMachineInstrFromMaps(DVMI);
- DVMBB->erase(DVMI);
+ EraseInstr(DVMI);
}
++NumDSS;
}
@@ -1273,8 +1302,7 @@ OptimizeByUnfold2(unsigned VirtReg, int SS,
VRM->transferRestorePts(&MI, NewMIs[0]);
MII = MBB->insert(MII, NewMIs[0]);
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
++NumModRefUnfold;
// Unfold next instructions that fold the same SS.
@@ -1289,8 +1317,7 @@ OptimizeByUnfold2(unsigned VirtReg, int SS,
VRM->transferRestorePts(&NextMI, NewMIs[0]);
MBB->insert(NextMII, NewMIs[0]);
InvalidateKills(NextMI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&NextMI);
- MBB->erase(&NextMI);
+ EraseInstr(&NextMI);
++NumModRefUnfold;
// Skip over dbg_value instructions.
while (NextMII != MBB->end() && NextMII->isDebugValue())
@@ -1417,8 +1444,7 @@ OptimizeByUnfold(MachineBasicBlock::iterator &MII,
VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
MII = FoldedMI;
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
return true;
}
}
@@ -1524,14 +1550,11 @@ CommuteToFoldReload(MachineBasicBlock::iterator &MII,
// Delete all 3 old instructions.
InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(ReloadMI);
- MBB->erase(ReloadMI);
+ EraseInstr(ReloadMI);
InvalidateKills(*DefMI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(DefMI);
- MBB->erase(DefMI);
+ EraseInstr(DefMI);
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
// If NewReg was previously holding value of some SS, it's now clobbered.
// This has to be done now because it's a physical register. When this
@@ -1574,8 +1597,7 @@ SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
bool CheckDef = PrevMII != MBB->begin();
if (CheckDef)
--PrevMII;
- VRM->RemoveMachineInstrFromMaps(LastStore);
- MBB->erase(LastStore);
+ EraseInstr(LastStore);
if (CheckDef) {
// Look at defs of killed registers on the store. Mark the defs
// as dead since the store has been deleted and they aren't
@@ -1586,8 +1608,7 @@ SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
MachineInstr *DeadDef = PrevMII;
if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
// FIXME: This assumes a remat def does not have side effects.
- VRM->RemoveMachineInstrFromMaps(DeadDef);
- MBB->erase(DeadDef);
+ EraseInstr(DeadDef);
++NumDRM;
}
}
@@ -1612,10 +1633,18 @@ SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
/// effect and all of its defs are dead.
static bool isSafeToDelete(MachineInstr &MI) {
const TargetInstrDesc &TID = MI.getDesc();
- if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
+ if (TID.mayLoad() || TID.mayStore() || TID.isTerminator() ||
TID.isCall() || TID.isBarrier() || TID.isReturn() ||
- TID.hasUnmodeledSideEffects())
+ MI.isLabel() || MI.isDebugValue() ||
+ MI.hasUnmodeledSideEffects())
return false;
+
+ // Technically speaking inline asm without side effects and no defs can still
+ // be deleted. But there is so much bad inline asm code out there, we should
+ // let them be.
+ if (MI.isInlineAsm())
+ return false;
+
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.getReg())
@@ -1675,8 +1704,7 @@ TransferDeadness(unsigned Reg, BitVector &RegKills,
LastUD->setIsDead();
break;
}
- VRM->RemoveMachineInstrFromMaps(LastUDMI);
- MBB->erase(LastUDMI);
+ EraseInstr(LastUDMI);
} else {
LastUD->setIsKill();
RegKills.set(Reg);
@@ -1764,6 +1792,10 @@ bool LocalRewriter::InsertRestores(MachineInstr *MI,
<< TRI->getName(InReg) << " for vreg"
<< VirtReg <<" instead of reloading into physreg "
<< TRI->getName(Phys) << '\n');
+
+ // Reusing a physreg may resurrect it. But we expect ProcessUses to update
+ // the kill flags for the current instruction after processing it.
+
++NumOmitted;
continue;
} else if (InReg && InReg != Phys) {
@@ -1828,7 +1860,7 @@ bool LocalRewriter::InsertRestores(MachineInstr *MI,
return true;
}
-/// InsertEmergencySpills - Insert spills after MI if requested by VRM. Return
+/// InsertSpills - Insert spills after MI if requested by VRM. Return
/// true if spills were inserted.
bool LocalRewriter::InsertSpills(MachineInstr *MI) {
if (!VRM->isSpillPt(MI))
@@ -1856,6 +1888,349 @@ bool LocalRewriter::InsertSpills(MachineInstr *MI) {
}
+/// ProcessUses - Process all of MI's spilled operands and all available
+/// operands.
+void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
+ std::vector<MachineInstr*> &MaybeDeadStores,
+ BitVector &RegKills,
+ ReuseInfo &ReusedOperands,
+ std::vector<MachineOperand*> &KillOps) {
+ // Clear kill info.
+ SmallSet<unsigned, 2> KilledMIRegs;
+ SmallVector<unsigned, 4> VirtUseOps;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.getReg() == 0)
+ continue; // Ignore non-register operands.
+
+ unsigned VirtReg = MO.getReg();
+
+ if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
+ // Ignore physregs for spilling, but remember that it is used by this
+ // function.
+ MRI->setPhysRegUsed(VirtReg);
+ continue;
+ }
+
+ // We want to process implicit virtual register uses first.
+ if (MO.isImplicit())
+ // If the virtual register is implicitly defined, emit a implicit_def
+ // before so scavenger knows it's "defined".
+ // FIXME: This is a horrible hack done the by register allocator to
+ // remat a definition with virtual register operand.
+ VirtUseOps.insert(VirtUseOps.begin(), i);
+ else
+ VirtUseOps.push_back(i);
+
+ // A partial def causes problems because the same operand both reads and
+ // writes the register. This rewriter is designed to rewrite uses and defs
+ // separately, so a partial def would already have been rewritten to a
+ // physreg by the time we get to processing defs.
+ // Add an implicit use operand to model the partial def.
+ if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
+ MI.findRegisterUseOperandIdx(VirtReg) == -1) {
+ VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
+ MI.addOperand(MachineOperand::CreateReg(VirtReg,
+ false, // isDef
+ true)); // isImplicit
+ DEBUG(dbgs() << "Partial redef: " << MI);
+ }
+ }
+
+ // Process all of the spilled uses and all non spilled reg references.
+ SmallVector<int, 2> PotentialDeadStoreSlots;
+ KilledMIRegs.clear();
+ for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
+ unsigned i = VirtUseOps[j];
+ unsigned VirtReg = MI.getOperand(i).getReg();
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "Not a virtual register?");
+
+ unsigned SubIdx = MI.getOperand(i).getSubReg();
+ if (VRM->isAssignedReg(VirtReg)) {
+ // This virtual register was assigned a physreg!
+ unsigned Phys = VRM->getPhys(VirtReg);
+ MRI->setPhysRegUsed(Phys);
+ if (MI.getOperand(i).isDef())
+ ReusedOperands.markClobbered(Phys);
+ substitutePhysReg(MI.getOperand(i), Phys, *TRI);
+ if (VRM->isImplicitlyDefined(VirtReg))
+ // FIXME: Is this needed?
+ BuildMI(*MBB, &MI, MI.getDebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
+ continue;
+ }
+
+ // This virtual register is now known to be a spilled value.
+ if (!MI.getOperand(i).isUse())
+ continue; // Handle defs in the loop below (handle use&def here though)
+
+ bool AvoidReload = MI.getOperand(i).isUndef();
+ // Check if it is defined by an implicit def. It should not be spilled.
+ // Note, this is for correctness reason. e.g.
+ // 8 %reg1024<def> = IMPLICIT_DEF
+ // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
+ // The live range [12, 14) are not part of the r1024 live interval since
+ // it's defined by an implicit def. It will not conflicts with live
+ // interval of r1025. Now suppose both registers are spilled, you can
+ // easily see a situation where both registers are reloaded before
+ // the INSERT_SUBREG and both target registers that would overlap.
+ bool DoReMat = VRM->isReMaterialized(VirtReg);
+ int SSorRMId = DoReMat
+ ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
+ int ReuseSlot = SSorRMId;
+
+ // Check to see if this stack slot is available.
+ unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+
+ // If this is a sub-register use, make sure the reuse register is in the
+ // right register class. For example, for x86 not all of the 32-bit
+ // registers have accessible sub-registers.
+ // Similarly so for EXTRACT_SUBREG. Consider this:
+ // EDI = op
+ // MOV32_mr fi#1, EDI
+ // ...
+ // = EXTRACT_SUBREG fi#1
+ // fi#1 is available in EDI, but it cannot be reused because it's not in
+ // the right register file.
+ if (PhysReg && !AvoidReload && SubIdx) {
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ if (!RC->contains(PhysReg))
+ PhysReg = 0;
+ }
+
+ if (PhysReg && !AvoidReload) {
+ // This spilled operand might be part of a two-address operand. If this
+ // is the case, then changing it will necessarily require changing the
+ // def part of the instruction as well. However, in some cases, we
+ // aren't allowed to modify the reused register. If none of these cases
+ // apply, reuse it.
+ bool CanReuse = true;
+ bool isTied = MI.isRegTiedToDefOperand(i);
+ if (isTied) {
+ // Okay, we have a two address operand. We can reuse this physreg as
+ // long as we are allowed to clobber the value and there isn't an
+ // earlier def that has already clobbered the physreg.
+ CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
+ Spills.canClobberPhysReg(PhysReg);
+ }
+ // If this is an asm, and a PhysReg alias is used elsewhere as an
+ // earlyclobber operand, we can't also use it as an input.
+ if (MI.isInlineAsm()) {
+ for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
+ MachineOperand &MOk = MI.getOperand(k);
+ if (MOk.isReg() && MOk.isEarlyClobber() &&
+ TRI->regsOverlap(MOk.getReg(), PhysReg)) {
+ CanReuse = false;
+ DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
+ << " for vreg" << VirtReg << ": " << MOk << '\n');
+ break;
+ }
+ }
+ }
+
+ if (CanReuse) {
+ // If this stack slot value is already available, reuse it!
+ if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+ DEBUG(dbgs() << "Reusing RM#"
+ << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
+ else
+ DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(dbgs() << " from physreg "
+ << TRI->getName(PhysReg) << " for vreg"
+ << VirtReg <<" instead of reloading into physreg "
+ << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+
+ // Reusing a physreg may resurrect it. But we expect ProcessUses to
+ // update the kill flags for the current instr after processing it.
+
+ // The only technical detail we have is that we don't know that
+ // PhysReg won't be clobbered by a reloaded stack slot that occurs
+ // later in the instruction. In particular, consider 'op V1, V2'.
+ // If V1 is available in physreg R0, we would choose to reuse it
+ // here, instead of reloading it into the register the allocator
+ // indicated (say R1). However, V2 might have to be reloaded
+ // later, and it might indicate that it needs to live in R0. When
+ // this occurs, we need to have information available that
+ // indicates it is safe to use R1 for the reload instead of R0.
+ //
+ // To further complicate matters, we might conflict with an alias,
+ // or R0 and R1 might not be compatible with each other. In this
+ // case, we actually insert a reload for V1 in R1, ensuring that
+ // we can get at R0 or its alias.
+ ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
+ VRM->getPhys(VirtReg), VirtReg);
+ if (isTied)
+ // Only mark it clobbered if this is a use&def operand.
+ ReusedOperands.markClobbered(PhysReg);
+ ++NumReused;
+
+ if (MI.getOperand(i).isKill() &&
+ ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
+
+ // The store of this spilled value is potentially dead, but we
+ // won't know for certain until we've confirmed that the re-use
+ // above is valid, which means waiting until the other operands
+ // are processed. For now we just track the spill slot, we'll
+ // remove it after the other operands are processed if valid.
+
+ PotentialDeadStoreSlots.push_back(ReuseSlot);
+ }
+
+ // Mark is isKill if it's there no other uses of the same virtual
+ // register and it's not a two-address operand. IsKill will be
+ // unset if reg is reused.
+ if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
+ MI.getOperand(i).setIsKill();
+ KilledMIRegs.insert(VirtReg);
+ }
+ continue;
+ } // CanReuse
+
+ // Otherwise we have a situation where we have a two-address instruction
+ // whose mod/ref operand needs to be reloaded. This reload is already
+ // available in some register "PhysReg", but if we used PhysReg as the
+ // operand to our 2-addr instruction, the instruction would modify
+ // PhysReg. This isn't cool if something later uses PhysReg and expects
+ // to get its initial value.
+ //
+ // To avoid this problem, and to avoid doing a load right after a store,
+ // we emit a copy from PhysReg into the designated register for this
+ // operand.
+ //
+ // This case also applies to an earlyclobber'd PhysReg.
+ unsigned DesignatedReg = VRM->getPhys(VirtReg);
+ assert(DesignatedReg && "Must map virtreg to physreg!");
+
+ // Note that, if we reused a register for a previous operand, the
+ // register we want to reload into might not actually be
+ // available. If this occurs, use the register indicated by the
+ // reuser.
+ if (ReusedOperands.hasReuses())
+ DesignatedReg = ReusedOperands.
+ GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
+ MaybeDeadStores, RegKills, KillOps, *VRM);
+
+ // If the mapped designated register is actually the physreg we have
+ // incoming, we don't need to inserted a dead copy.
+ if (DesignatedReg == PhysReg) {
+ // If this stack slot value is already available, reuse it!
+ if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+ DEBUG(dbgs() << "Reusing RM#"
+ << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
+ else
+ DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
+ DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
+ << " for vreg" << VirtReg
+ << " instead of reloading into same physreg.\n");
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ ReusedOperands.markClobbered(RReg);
+ ++NumReused;
+ continue;
+ }
+
+ MRI->setPhysRegUsed(DesignatedReg);
+ ReusedOperands.markClobbered(DesignatedReg);
+
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
+ SSorRMId, TII, *MBB->getParent());
+ MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
+ TII->get(TargetOpcode::COPY),
+ DesignatedReg).addReg(PhysReg);
+ CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
+ UpdateKills(*CopyMI, TRI, RegKills, KillOps);
+
+ // This invalidates DesignatedReg.
+ Spills.ClobberPhysReg(DesignatedReg);
+
+ Spills.addAvailable(ReuseSlot, DesignatedReg);
+ unsigned RReg =
+ SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ DEBUG(dbgs() << '\t' << *prior(InsertLoc));
+ ++NumReused;
+ continue;
+ } // if (PhysReg)
+
+ // Otherwise, reload it and remember that we have it.
+ PhysReg = VRM->getPhys(VirtReg);
+ assert(PhysReg && "Must map virtreg to physreg!");
+
+ // Note that, if we reused a register for a previous operand, the
+ // register we want to reload into might not actually be
+ // available. If this occurs, use the register indicated by the
+ // reuser.
+ if (ReusedOperands.hasReuses())
+ PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
+ Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
+
+ MRI->setPhysRegUsed(PhysReg);
+ ReusedOperands.markClobbered(PhysReg);
+ if (AvoidReload)
+ ++NumAvoided;
+ else {
+ // Back-schedule reloads and remats.
+ MachineBasicBlock::iterator InsertLoc =
+ ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
+ SSorRMId, TII, *MBB->getParent());
+
+ if (DoReMat) {
+ ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
+ } else {
+ const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
+ TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
+ MachineInstr *LoadMI = prior(InsertLoc);
+ VRM->addSpillSlotUse(SSorRMId, LoadMI);
+ ++NumLoads;
+ DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
+ }
+ // This invalidates PhysReg.
+ Spills.ClobberPhysReg(PhysReg);
+
+ // Any stores to this stack slot are not dead anymore.
+ if (!DoReMat)
+ MaybeDeadStores[SSorRMId] = NULL;
+ Spills.addAvailable(SSorRMId, PhysReg);
+ // Assumes this is the last use. IsKill will be unset if reg is reused
+ // unless it's a two-address operand.
+ if (!MI.isRegTiedToDefOperand(i) &&
+ KilledMIRegs.count(VirtReg) == 0) {
+ MI.getOperand(i).setIsKill();
+ KilledMIRegs.insert(VirtReg);
+ }
+
+ UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
+ DEBUG(dbgs() << '\t' << *prior(InsertLoc));
+ }
+ unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+ MI.getOperand(i).setReg(RReg);
+ MI.getOperand(i).setSubReg(0);
+ }
+
+ // Ok - now we can remove stores that have been confirmed dead.
+ for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
+ // This was the last use and the spilled value is still available
+ // for reuse. That means the spill was unnecessary!
+ int PDSSlot = PotentialDeadStoreSlots[j];
+ MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
+ if (DeadStore) {
+ DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
+ InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
+ EraseInstr(DeadStore);
+ MaybeDeadStores[PDSSlot] = NULL;
+ ++NumDSE;
+ }
+ }
+}
+
/// rewriteMBB - Keep track of which spills are available even after the
/// register allocator is done with them. If possible, avoid reloading vregs.
void
@@ -1880,9 +2255,6 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
// ReMatDefs - These are rematerializable def MIs which are not deleted.
SmallSet<MachineInstr*, 4> ReMatDefs;
- // Clear kill info.
- SmallSet<unsigned, 2> KilledMIRegs;
-
// Keep track of the registers we have already spilled in case there are
// multiple defs of the same register in MI.
SmallSet<unsigned, 8> SpilledMIRegs;
@@ -1918,323 +2290,8 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
/// ReusedOperands - Keep track of operand reuse in case we need to undo
/// reuse.
ReuseInfo ReusedOperands(MI, TRI);
- SmallVector<unsigned, 4> VirtUseOps;
- for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || MO.getReg() == 0)
- continue; // Ignore non-register operands.
-
- unsigned VirtReg = MO.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
- // Ignore physregs for spilling, but remember that it is used by this
- // function.
- MRI->setPhysRegUsed(VirtReg);
- continue;
- }
-
- // We want to process implicit virtual register uses first.
- if (MO.isImplicit())
- // If the virtual register is implicitly defined, emit a implicit_def
- // before so scavenger knows it's "defined".
- // FIXME: This is a horrible hack done the by register allocator to
- // remat a definition with virtual register operand.
- VirtUseOps.insert(VirtUseOps.begin(), i);
- else
- VirtUseOps.push_back(i);
- }
-
- // Process all of the spilled uses and all non spilled reg references.
- SmallVector<int, 2> PotentialDeadStoreSlots;
- KilledMIRegs.clear();
- for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
- unsigned i = VirtUseOps[j];
- unsigned VirtReg = MI.getOperand(i).getReg();
- assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
- "Not a virtual register?");
-
- unsigned SubIdx = MI.getOperand(i).getSubReg();
- if (VRM->isAssignedReg(VirtReg)) {
- // This virtual register was assigned a physreg!
- unsigned Phys = VRM->getPhys(VirtReg);
- MRI->setPhysRegUsed(Phys);
- if (MI.getOperand(i).isDef())
- ReusedOperands.markClobbered(Phys);
- substitutePhysReg(MI.getOperand(i), Phys, *TRI);
- if (VRM->isImplicitlyDefined(VirtReg))
- // FIXME: Is this needed?
- BuildMI(*MBB, &MI, MI.getDebugLoc(),
- TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
- continue;
- }
-
- // This virtual register is now known to be a spilled value.
- if (!MI.getOperand(i).isUse())
- continue; // Handle defs in the loop below (handle use&def here though)
-
- bool AvoidReload = MI.getOperand(i).isUndef();
- // Check if it is defined by an implicit def. It should not be spilled.
- // Note, this is for correctness reason. e.g.
- // 8 %reg1024<def> = IMPLICIT_DEF
- // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
- // The live range [12, 14) are not part of the r1024 live interval since
- // it's defined by an implicit def. It will not conflicts with live
- // interval of r1025. Now suppose both registers are spilled, you can
- // easily see a situation where both registers are reloaded before
- // the INSERT_SUBREG and both target registers that would overlap.
- bool DoReMat = VRM->isReMaterialized(VirtReg);
- int SSorRMId = DoReMat
- ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
- int ReuseSlot = SSorRMId;
-
- // Check to see if this stack slot is available.
- unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
-
- // If this is a sub-register use, make sure the reuse register is in the
- // right register class. For example, for x86 not all of the 32-bit
- // registers have accessible sub-registers.
- // Similarly so for EXTRACT_SUBREG. Consider this:
- // EDI = op
- // MOV32_mr fi#1, EDI
- // ...
- // = EXTRACT_SUBREG fi#1
- // fi#1 is available in EDI, but it cannot be reused because it's not in
- // the right register file.
- if (PhysReg && !AvoidReload && SubIdx) {
- const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
- if (!RC->contains(PhysReg))
- PhysReg = 0;
- }
-
- if (PhysReg && !AvoidReload) {
- // This spilled operand might be part of a two-address operand. If this
- // is the case, then changing it will necessarily require changing the
- // def part of the instruction as well. However, in some cases, we
- // aren't allowed to modify the reused register. If none of these cases
- // apply, reuse it.
- bool CanReuse = true;
- bool isTied = MI.isRegTiedToDefOperand(i);
- if (isTied) {
- // Okay, we have a two address operand. We can reuse this physreg as
- // long as we are allowed to clobber the value and there isn't an
- // earlier def that has already clobbered the physreg.
- CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
- Spills.canClobberPhysReg(PhysReg);
- }
- // If this is an asm, and a PhysReg alias is used elsewhere as an
- // earlyclobber operand, we can't also use it as an input.
- if (MI.isInlineAsm()) {
- for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
- MachineOperand &MOk = MI.getOperand(k);
- if (MOk.isReg() && MOk.isEarlyClobber() &&
- TRI->regsOverlap(MOk.getReg(), PhysReg)) {
- CanReuse = false;
- DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
- << " for vreg" << VirtReg << ": " << MOk << '\n');
- break;
- }
- }
- }
-
- if (CanReuse) {
- // If this stack slot value is already available, reuse it!
- if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(dbgs() << "Reusing RM#"
- << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
- else
- DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
- DEBUG(dbgs() << " from physreg "
- << TRI->getName(PhysReg) << " for vreg"
- << VirtReg <<" instead of reloading into physreg "
- << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
- unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
-
- // The only technical detail we have is that we don't know that
- // PhysReg won't be clobbered by a reloaded stack slot that occurs
- // later in the instruction. In particular, consider 'op V1, V2'.
- // If V1 is available in physreg R0, we would choose to reuse it
- // here, instead of reloading it into the register the allocator
- // indicated (say R1). However, V2 might have to be reloaded
- // later, and it might indicate that it needs to live in R0. When
- // this occurs, we need to have information available that
- // indicates it is safe to use R1 for the reload instead of R0.
- //
- // To further complicate matters, we might conflict with an alias,
- // or R0 and R1 might not be compatible with each other. In this
- // case, we actually insert a reload for V1 in R1, ensuring that
- // we can get at R0 or its alias.
- ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
- VRM->getPhys(VirtReg), VirtReg);
- if (isTied)
- // Only mark it clobbered if this is a use&def operand.
- ReusedOperands.markClobbered(PhysReg);
- ++NumReused;
-
- if (MI.getOperand(i).isKill() &&
- ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
-
- // The store of this spilled value is potentially dead, but we
- // won't know for certain until we've confirmed that the re-use
- // above is valid, which means waiting until the other operands
- // are processed. For now we just track the spill slot, we'll
- // remove it after the other operands are processed if valid.
-
- PotentialDeadStoreSlots.push_back(ReuseSlot);
- }
-
- // Mark is isKill if it's there no other uses of the same virtual
- // register and it's not a two-address operand. IsKill will be
- // unset if reg is reused.
- if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
- MI.getOperand(i).setIsKill();
- KilledMIRegs.insert(VirtReg);
- }
-
- continue;
- } // CanReuse
-
- // Otherwise we have a situation where we have a two-address instruction
- // whose mod/ref operand needs to be reloaded. This reload is already
- // available in some register "PhysReg", but if we used PhysReg as the
- // operand to our 2-addr instruction, the instruction would modify
- // PhysReg. This isn't cool if something later uses PhysReg and expects
- // to get its initial value.
- //
- // To avoid this problem, and to avoid doing a load right after a store,
- // we emit a copy from PhysReg into the designated register for this
- // operand.
- //
- // This case also applies to an earlyclobber'd PhysReg.
- unsigned DesignatedReg = VRM->getPhys(VirtReg);
- assert(DesignatedReg && "Must map virtreg to physreg!");
-
- // Note that, if we reused a register for a previous operand, the
- // register we want to reload into might not actually be
- // available. If this occurs, use the register indicated by the
- // reuser.
- if (ReusedOperands.hasReuses())
- DesignatedReg = ReusedOperands.
- GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
- MaybeDeadStores, RegKills, KillOps, *VRM);
-
- // If the mapped designated register is actually the physreg we have
- // incoming, we don't need to inserted a dead copy.
- if (DesignatedReg == PhysReg) {
- // If this stack slot value is already available, reuse it!
- if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
- DEBUG(dbgs() << "Reusing RM#"
- << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
- else
- DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
- DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
- << " for vreg" << VirtReg
- << " instead of reloading into same physreg.\n");
- unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
- ReusedOperands.markClobbered(RReg);
- ++NumReused;
- continue;
- }
-
- MRI->setPhysRegUsed(DesignatedReg);
- ReusedOperands.markClobbered(DesignatedReg);
-
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
- SSorRMId, TII, MF);
- MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
- TII->get(TargetOpcode::COPY),
- DesignatedReg).addReg(PhysReg);
- CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
- UpdateKills(*CopyMI, TRI, RegKills, KillOps);
-
- // This invalidates DesignatedReg.
- Spills.ClobberPhysReg(DesignatedReg);
-
- Spills.addAvailable(ReuseSlot, DesignatedReg);
- unsigned RReg =
- SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
- DEBUG(dbgs() << '\t' << *prior(MII));
- ++NumReused;
- continue;
- } // if (PhysReg)
-
- // Otherwise, reload it and remember that we have it.
- PhysReg = VRM->getPhys(VirtReg);
- assert(PhysReg && "Must map virtreg to physreg!");
-
- // Note that, if we reused a register for a previous operand, the
- // register we want to reload into might not actually be
- // available. If this occurs, use the register indicated by the
- // reuser.
- if (ReusedOperands.hasReuses())
- PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
- Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
-
- MRI->setPhysRegUsed(PhysReg);
- ReusedOperands.markClobbered(PhysReg);
- if (AvoidReload)
- ++NumAvoided;
- else {
- // Back-schedule reloads and remats.
- MachineBasicBlock::iterator InsertLoc =
- ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat,
- SSorRMId, TII, MF);
-
- if (DoReMat) {
- ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
- } else {
- const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
- TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
- MachineInstr *LoadMI = prior(InsertLoc);
- VRM->addSpillSlotUse(SSorRMId, LoadMI);
- ++NumLoads;
- DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
- }
- // This invalidates PhysReg.
- Spills.ClobberPhysReg(PhysReg);
-
- // Any stores to this stack slot are not dead anymore.
- if (!DoReMat)
- MaybeDeadStores[SSorRMId] = NULL;
- Spills.addAvailable(SSorRMId, PhysReg);
- // Assumes this is the last use. IsKill will be unset if reg is reused
- // unless it's a two-address operand.
- if (!MI.isRegTiedToDefOperand(i) &&
- KilledMIRegs.count(VirtReg) == 0) {
- MI.getOperand(i).setIsKill();
- KilledMIRegs.insert(VirtReg);
- }
-
- UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
- DEBUG(dbgs() << '\t' << *prior(InsertLoc));
- }
- unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
- MI.getOperand(i).setReg(RReg);
- MI.getOperand(i).setSubReg(0);
- }
-
- // Ok - now we can remove stores that have been confirmed dead.
- for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
- // This was the last use and the spilled value is still available
- // for reuse. That means the spill was unnecessary!
- int PDSSlot = PotentialDeadStoreSlots[j];
- MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
- if (DeadStore) {
- DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
- InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(DeadStore);
- MBB->erase(DeadStore);
- MaybeDeadStores[PDSSlot] = NULL;
- ++NumDSE;
- }
- }
+ ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
DEBUG(dbgs() << '\t' << MI);
@@ -2288,14 +2345,13 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
BackTracked = true;
} else {
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
- // Unset last kill since it's being reused.
- InvalidateKill(InReg, TRI, RegKills, KillOps);
+ // InvalidateKills resurrects any prior kill of the copy's source
+ // allowing the source reg to be reused in place of the copy.
Spills.disallowClobberPhysReg(InReg);
}
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
Erased = true;
goto ProcessNextInst;
}
@@ -2306,8 +2362,7 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
MBB->insert(MII, NewMIs[0]);
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
Erased = true;
--NextMII; // backtrack to the unfolded instruction.
BackTracked = true;
@@ -2343,8 +2398,7 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
MBB->insert(MII, NewStore);
VRM->addSpillSlotUse(SS, NewStore);
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
Erased = true;
--NextMII;
--NextMII; // backtrack to the unfolded instruction.
@@ -2359,8 +2413,7 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
// If we get here, the store is dead, nuke it now.
DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(DeadStore);
- MBB->erase(DeadStore);
+ EraseInstr(DeadStore);
if (!NewStore)
++NumDSE;
}
@@ -2437,8 +2490,7 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
// Last def is now dead.
TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
}
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
Erased = true;
Spills.disallowClobberPhysReg(VirtReg);
goto ProcessNextInst;
@@ -2514,8 +2566,7 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
++NumDCE;
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
Erased = true;
UpdateKills(*LastStore, TRI, RegKills, KillOps);
goto ProcessNextInst;
@@ -2526,8 +2577,7 @@ LocalRewriter::RewriteMBB(LiveIntervals *LIs,
// Delete dead instructions without side effects.
if (!Erased && !BackTracked && isSafeToDelete(MI)) {
InvalidateKills(MI, TRI, RegKills, KillOps);
- VRM->RemoveMachineInstrFromMaps(&MI);
- MBB->erase(&MI);
+ EraseInstr(&MI);
Erased = true;
}
if (!Erased)
OpenPOWER on IntegriCloud