summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp1678
1 files changed, 1678 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
new file mode 100644
index 0000000..e6dfe10
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -0,0 +1,1678 @@
+//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TwoAddress instruction pass which is used
+// by most register allocators. Two-Address instructions are rewritten
+// from:
+//
+// A = B op C
+//
+// to:
+//
+// A = B
+// A op= C
+//
+// Note that if a register allocator chooses to use this pass, that it
+// has to be capable of handling the non-SSA nature of these rewritten
+// virtual registers.
+//
+// It is also worth noting that the duplicate operand of the two
+// address instruction is removed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "twoaddrinstr"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
+STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
+STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
+STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
+STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
+STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
+STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
+
+namespace {
+class TwoAddressInstructionPass : public MachineFunctionPass {
+ MachineFunction *MF;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const InstrItineraryData *InstrItins;
+ MachineRegisterInfo *MRI;
+ LiveVariables *LV;
+ LiveIntervals *LIS;
+ AliasAnalysis *AA;
+ CodeGenOpt::Level OptLevel;
+
+ // The current basic block being processed.
+ MachineBasicBlock *MBB;
+
+ // DistanceMap - Keep track the distance of a MI from the start of the
+ // current basic block.
+ DenseMap<MachineInstr*, unsigned> DistanceMap;
+
+ // Set of already processed instructions in the current block.
+ SmallPtrSet<MachineInstr*, 8> Processed;
+
+ // SrcRegMap - A map from virtual registers to physical registers which are
+ // likely targets to be coalesced to due to copies from physical registers to
+ // virtual registers. e.g. v1024 = move r0.
+ DenseMap<unsigned, unsigned> SrcRegMap;
+
+ // DstRegMap - A map from virtual registers to physical registers which are
+ // likely targets to be coalesced to due to copies to physical registers from
+ // virtual registers. e.g. r1 = move v1024.
+ DenseMap<unsigned, unsigned> DstRegMap;
+
+ bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
+ MachineBasicBlock::iterator OldPos);
+
+ bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
+
+ bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
+ MachineInstr *MI, unsigned Dist);
+
+ bool commuteInstruction(MachineBasicBlock::iterator &mi,
+ unsigned RegB, unsigned RegC, unsigned Dist);
+
+ bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
+
+ bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned RegA, unsigned RegB, unsigned Dist);
+
+ bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
+
+ bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned Reg);
+ bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned Reg);
+
+ bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned SrcIdx, unsigned DstIdx,
+ unsigned Dist, bool shouldOnlyCommute);
+
+ void scanUses(unsigned DstReg);
+
+ void processCopy(MachineInstr *MI);
+
+ typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
+ typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
+ bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
+ void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
+ void eliminateRegSequence(MachineBasicBlock::iterator&);
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+ TwoAddressInstructionPass() : MachineFunctionPass(ID) {
+ initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addPreservedID(MachineDominatorsID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ /// runOnMachineFunction - Pass entry point.
+ bool runOnMachineFunction(MachineFunction&);
+};
+} // end anonymous namespace
+
+char TwoAddressInstructionPass::ID = 0;
+INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
+ "Two-Address instruction pass", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
+ "Two-Address instruction pass", false, false)
+
+char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
+
+static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
+
+/// sink3AddrInstruction - A two-address instruction has been converted to a
+/// three-address instruction to avoid clobbering a register. Try to sink it
+/// past the instruction that would kill the above mentioned register to reduce
+/// register pressure.
+bool TwoAddressInstructionPass::
+sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
+ MachineBasicBlock::iterator OldPos) {
+ // FIXME: Shouldn't we be trying to do this before we three-addressify the
+ // instruction? After this transformation is done, we no longer need
+ // the instruction to be in three-address form.
+
+ // Check if it's safe to move this instruction.
+ bool SeenStore = true; // Be conservative.
+ if (!MI->isSafeToMove(TII, AA, SeenStore))
+ return false;
+
+ unsigned DefReg = 0;
+ SmallSet<unsigned, 4> UseRegs;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MO.isUse() && MOReg != SavedReg)
+ UseRegs.insert(MO.getReg());
+ if (!MO.isDef())
+ continue;
+ if (MO.isImplicit())
+ // Don't try to move it if it implicitly defines a register.
+ return false;
+ if (DefReg)
+ // For now, don't move any instructions that define multiple registers.
+ return false;
+ DefReg = MO.getReg();
+ }
+
+ // Find the instruction that kills SavedReg.
+ MachineInstr *KillMI = NULL;
+ if (LIS) {
+ LiveInterval &LI = LIS->getInterval(SavedReg);
+ assert(LI.end() != LI.begin() &&
+ "Reg should not have empty live interval.");
+
+ SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
+ LiveInterval::const_iterator I = LI.find(MBBEndIdx);
+ if (I != LI.end() && I->start < MBBEndIdx)
+ return false;
+
+ --I;
+ KillMI = LIS->getInstructionFromIndex(I->end);
+ }
+ if (!KillMI) {
+ for (MachineRegisterInfo::use_nodbg_iterator
+ UI = MRI->use_nodbg_begin(SavedReg),
+ UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
+ MachineOperand &UseMO = UI.getOperand();
+ if (!UseMO.isKill())
+ continue;
+ KillMI = UseMO.getParent();
+ break;
+ }
+ }
+
+ // If we find the instruction that kills SavedReg, and it is in an
+ // appropriate location, we can try to sink the current instruction
+ // past it.
+ if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
+ KillMI == OldPos || KillMI->isTerminator())
+ return false;
+
+ // If any of the definitions are used by another instruction between the
+ // position and the kill use, then it's not safe to sink it.
+ //
+ // FIXME: This can be sped up if there is an easy way to query whether an
+ // instruction is before or after another instruction. Then we can use
+ // MachineRegisterInfo def / use instead.
+ MachineOperand *KillMO = NULL;
+ MachineBasicBlock::iterator KillPos = KillMI;
+ ++KillPos;
+
+ unsigned NumVisited = 0;
+ for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
+ MachineInstr *OtherMI = I;
+ // DBG_VALUE cannot be counted against the limit.
+ if (OtherMI->isDebugValue())
+ continue;
+ if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
+ return false;
+ ++NumVisited;
+ for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = OtherMI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (DefReg == MOReg)
+ return false;
+
+ if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
+ if (OtherMI == KillMI && MOReg == SavedReg)
+ // Save the operand that kills the register. We want to unset the kill
+ // marker if we can sink MI past it.
+ KillMO = &MO;
+ else if (UseRegs.count(MOReg))
+ // One of the uses is killed before the destination.
+ return false;
+ }
+ }
+ }
+ assert(KillMO && "Didn't find kill");
+
+ if (!LIS) {
+ // Update kill and LV information.
+ KillMO->setIsKill(false);
+ KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
+ KillMO->setIsKill(true);
+
+ if (LV)
+ LV->replaceKillInstruction(SavedReg, KillMI, MI);
+ }
+
+ // Move instruction to its destination.
+ MBB->remove(MI);
+ MBB->insert(KillPos, MI);
+
+ if (LIS)
+ LIS->handleMove(MI);
+
+ ++Num3AddrSunk;
+ return true;
+}
+
+/// noUseAfterLastDef - Return true if there are no intervening uses between the
+/// last instruction in the MBB that defines the specified register and the
+/// two-address instruction which is being processed. It also returns the last
+/// def location by reference
+bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
+ unsigned &LastDef) {
+ LastDef = 0;
+ unsigned LastUse = Dist;
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+ E = MRI->reg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ MachineInstr *MI = MO.getParent();
+ if (MI->getParent() != MBB || MI->isDebugValue())
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+ if (DI == DistanceMap.end())
+ continue;
+ if (MO.isUse() && DI->second < LastUse)
+ LastUse = DI->second;
+ if (MO.isDef() && DI->second > LastDef)
+ LastDef = DI->second;
+ }
+
+ return !(LastUse > LastDef && LastUse < Dist);
+}
+
+/// isCopyToReg - Return true if the specified MI is a copy instruction or
+/// a extract_subreg instruction. It also returns the source and destination
+/// registers and whether they are physical registers by reference.
+static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
+ unsigned &SrcReg, unsigned &DstReg,
+ bool &IsSrcPhys, bool &IsDstPhys) {
+ SrcReg = 0;
+ DstReg = 0;
+ if (MI.isCopy()) {
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+ } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(2).getReg();
+ } else
+ return false;
+
+ IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ return true;
+}
+
+/// isPLainlyKilled - Test if the given register value, which is used by the
+// given instruction, is killed by the given instruction.
+static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
+ LiveIntervals *LIS) {
+ if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
+ !LIS->isNotInMIMap(MI)) {
+ // FIXME: Sometimes tryInstructionTransform() will add instructions and
+ // test whether they can be folded before keeping them. In this case it
+ // sets a kill before recursively calling tryInstructionTransform() again.
+ // If there is no interval available, we assume that this instruction is
+ // one of those. A kill flag is manually inserted on the operand so the
+ // check below will handle it.
+ LiveInterval &LI = LIS->getInterval(Reg);
+ // This is to match the kill flag version where undefs don't have kill
+ // flags.
+ if (!LI.hasAtLeastOneValue())
+ return false;
+
+ SlotIndex useIdx = LIS->getInstructionIndex(MI);
+ LiveInterval::const_iterator I = LI.find(useIdx);
+ assert(I != LI.end() && "Reg must be live-in to use.");
+ return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
+ }
+
+ return MI->killsRegister(Reg);
+}
+
+/// isKilled - Test if the given register value, which is used by the given
+/// instruction, is killed by the given instruction. This looks through
+/// coalescable copies to see if the original value is potentially not killed.
+///
+/// For example, in this code:
+///
+/// %reg1034 = copy %reg1024
+/// %reg1035 = copy %reg1025<kill>
+/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
+///
+/// %reg1034 is not considered to be killed, since it is copied from a
+/// register which is not killed. Treating it as not killed lets the
+/// normal heuristics commute the (two-address) add, which lets
+/// coalescing eliminate the extra copy.
+///
+/// If allowFalsePositives is true then likely kills are treated as kills even
+/// if it can't be proven that they are kills.
+static bool isKilled(MachineInstr &MI, unsigned Reg,
+ const MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII,
+ LiveIntervals *LIS,
+ bool allowFalsePositives) {
+ MachineInstr *DefMI = &MI;
+ for (;;) {
+ // All uses of physical registers are likely to be kills.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ (allowFalsePositives || MRI->hasOneUse(Reg)))
+ return true;
+ if (!isPlainlyKilled(DefMI, Reg, LIS))
+ return false;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return true;
+ MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
+ // If there are multiple defs, we can't do a simple analysis, so just
+ // go with what the kill flag says.
+ if (llvm::next(Begin) != MRI->def_end())
+ return true;
+ DefMI = &*Begin;
+ bool IsSrcPhys, IsDstPhys;
+ unsigned SrcReg, DstReg;
+ // If the def is something other than a copy, then it isn't going to
+ // be coalesced, so follow the kill flag.
+ if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+ return true;
+ Reg = SrcReg;
+ }
+}
+
+/// isTwoAddrUse - Return true if the specified MI uses the specified register
+/// as a two-address use. If so, return the destination register by reference.
+static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned NumOps = MI.isInlineAsm()
+ ? MI.getNumOperands() : MCID.getNumOperands();
+ for (unsigned i = 0; i != NumOps; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
+ continue;
+ unsigned ti;
+ if (MI.isRegTiedToDefOperand(i, &ti)) {
+ DstReg = MI.getOperand(ti).getReg();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// findOnlyInterestingUse - Given a register, if has a single in-basic block
+/// use, return the use instruction if it's a copy or a two-address use.
+static
+MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
+ MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII,
+ bool &IsCopy,
+ unsigned &DstReg, bool &IsDstPhys) {
+ if (!MRI->hasOneNonDBGUse(Reg))
+ // None or more than one use.
+ return 0;
+ MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
+ if (UseMI.getParent() != MBB)
+ return 0;
+ unsigned SrcReg;
+ bool IsSrcPhys;
+ if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
+ IsCopy = true;
+ return &UseMI;
+ }
+ IsDstPhys = false;
+ if (isTwoAddrUse(UseMI, Reg, DstReg)) {
+ IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ return &UseMI;
+ }
+ return 0;
+}
+
+/// getMappedReg - Return the physical register the specified virtual register
+/// might be mapped to.
+static unsigned
+getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
+ while (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
+ if (SI == RegMap.end())
+ return 0;
+ Reg = SI->second;
+ }
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return Reg;
+ return 0;
+}
+
+/// regsAreCompatible - Return true if the two registers are equal or aliased.
+///
+static bool
+regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
+ if (RegA == RegB)
+ return true;
+ if (!RegA || !RegB)
+ return false;
+ return TRI->regsOverlap(RegA, RegB);
+}
+
+
+/// isProfitableToCommute - Return true if it's potentially profitable to commute
+/// the two-address instruction that's being processed.
+bool
+TwoAddressInstructionPass::
+isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
+ MachineInstr *MI, unsigned Dist) {
+ if (OptLevel == CodeGenOpt::None)
+ return false;
+
+ // Determine if it's profitable to commute this two address instruction. In
+ // general, we want no uses between this instruction and the definition of
+ // the two-address register.
+ // e.g.
+ // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+ // %reg1029<def> = MOV8rr %reg1028
+ // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+ // insert => %reg1030<def> = MOV8rr %reg1028
+ // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+ // In this case, it might not be possible to coalesce the second MOV8rr
+ // instruction if the first one is coalesced. So it would be profitable to
+ // commute it:
+ // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+ // %reg1029<def> = MOV8rr %reg1028
+ // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+ // insert => %reg1030<def> = MOV8rr %reg1029
+ // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
+
+ if (!isPlainlyKilled(MI, regC, LIS))
+ return false;
+
+ // Ok, we have something like:
+ // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+ // let's see if it's worth commuting it.
+
+ // Look for situations like this:
+ // %reg1024<def> = MOV r1
+ // %reg1025<def> = MOV r0
+ // %reg1026<def> = ADD %reg1024, %reg1025
+ // r0 = MOV %reg1026
+ // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
+ unsigned ToRegA = getMappedReg(regA, DstRegMap);
+ if (ToRegA) {
+ unsigned FromRegB = getMappedReg(regB, SrcRegMap);
+ unsigned FromRegC = getMappedReg(regC, SrcRegMap);
+ bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI);
+ bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI);
+ if (BComp != CComp)
+ return !BComp && CComp;
+ }
+
+ // If there is a use of regC between its last def (could be livein) and this
+ // instruction, then bail.
+ unsigned LastDefC = 0;
+ if (!noUseAfterLastDef(regC, Dist, LastDefC))
+ return false;
+
+ // If there is a use of regB between its last def (could be livein) and this
+ // instruction, then go ahead and make this transformation.
+ unsigned LastDefB = 0;
+ if (!noUseAfterLastDef(regB, Dist, LastDefB))
+ return true;
+
+ // Since there are no intervening uses for both registers, then commute
+ // if the def of regC is closer. Its live interval is shorter.
+ return LastDefB && LastDefC && LastDefC > LastDefB;
+}
+
+/// commuteInstruction - Commute a two-address instruction and update the basic
+/// block, distance map, and live variables if needed. Return true if it is
+/// successful.
+bool TwoAddressInstructionPass::
+commuteInstruction(MachineBasicBlock::iterator &mi,
+ unsigned RegB, unsigned RegC, unsigned Dist) {
+ MachineInstr *MI = mi;
+ DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
+ MachineInstr *NewMI = TII->commuteInstruction(MI);
+
+ if (NewMI == 0) {
+ DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
+ return false;
+ }
+
+ DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
+ assert(NewMI == MI &&
+ "TargetInstrInfo::commuteInstruction() should not return a new "
+ "instruction unless it was requested.");
+
+ // Update source register map.
+ unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
+ if (FromRegC) {
+ unsigned RegA = MI->getOperand(0).getReg();
+ SrcRegMap[RegA] = FromRegC;
+ }
+
+ return true;
+}
+
+/// isProfitableToConv3Addr - Return true if it is profitable to convert the
+/// given 2-address instruction to a 3-address one.
+bool
+TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
+ // Look for situations like this:
+ // %reg1024<def> = MOV r1
+ // %reg1025<def> = MOV r0
+ // %reg1026<def> = ADD %reg1024, %reg1025
+ // r2 = MOV %reg1026
+ // Turn ADD into a 3-address instruction to avoid a copy.
+ unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
+ if (!FromRegB)
+ return false;
+ unsigned ToRegA = getMappedReg(RegA, DstRegMap);
+ return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
+}
+
+/// convertInstTo3Addr - Convert the specified two-address instruction into a
+/// three address one. Return true if this transformation was successful.
+bool
+TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned RegA, unsigned RegB,
+ unsigned Dist) {
+ // FIXME: Why does convertToThreeAddress() need an iterator reference?
+ MachineFunction::iterator MFI = MBB;
+ MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
+ assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
+ if (!NewMI)
+ return false;
+
+ DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
+ DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
+ bool Sunk = false;
+
+ if (LIS)
+ LIS->ReplaceMachineInstrInMaps(mi, NewMI);
+
+ if (NewMI->findRegisterUseOperand(RegB, false, TRI))
+ // FIXME: Temporary workaround. If the new instruction doesn't
+ // uses RegB, convertToThreeAddress must have created more
+ // then one instruction.
+ Sunk = sink3AddrInstruction(NewMI, RegB, mi);
+
+ MBB->erase(mi); // Nuke the old inst.
+
+ if (!Sunk) {
+ DistanceMap.insert(std::make_pair(NewMI, Dist));
+ mi = NewMI;
+ nmi = llvm::next(mi);
+ }
+
+ // Update source and destination register maps.
+ SrcRegMap.erase(RegA);
+ DstRegMap.erase(RegB);
+ return true;
+}
+
+/// scanUses - Scan forward recursively for only uses, update maps if the use
+/// is a copy or a two-address instruction.
+void
+TwoAddressInstructionPass::scanUses(unsigned DstReg) {
+ SmallVector<unsigned, 4> VirtRegPairs;
+ bool IsDstPhys;
+ bool IsCopy = false;
+ unsigned NewReg = 0;
+ unsigned Reg = DstReg;
+ while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
+ NewReg, IsDstPhys)) {
+ if (IsCopy && !Processed.insert(UseMI))
+ break;
+
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+ if (DI != DistanceMap.end())
+ // Earlier in the same MBB.Reached via a back edge.
+ break;
+
+ if (IsDstPhys) {
+ VirtRegPairs.push_back(NewReg);
+ break;
+ }
+ bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
+ if (!isNew)
+ assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
+ VirtRegPairs.push_back(NewReg);
+ Reg = NewReg;
+ }
+
+ if (!VirtRegPairs.empty()) {
+ unsigned ToReg = VirtRegPairs.back();
+ VirtRegPairs.pop_back();
+ while (!VirtRegPairs.empty()) {
+ unsigned FromReg = VirtRegPairs.back();
+ VirtRegPairs.pop_back();
+ bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
+ if (!isNew)
+ assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
+ ToReg = FromReg;
+ }
+ bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
+ if (!isNew)
+ assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
+ }
+}
+
+/// processCopy - If the specified instruction is not yet processed, process it
+/// if it's a copy. For a copy instruction, we find the physical registers the
+/// source and destination registers might be mapped to. These are kept in
+/// point-to maps used to determine future optimizations. e.g.
+/// v1024 = mov r0
+/// v1025 = mov r1
+/// v1026 = add v1024, v1025
+/// r1 = mov r1026
+/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
+/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
+/// potentially joined with r1 on the output side. It's worthwhile to commute
+/// 'add' to eliminate a copy.
+void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
+ if (Processed.count(MI))
+ return;
+
+ bool IsSrcPhys, IsDstPhys;
+ unsigned SrcReg, DstReg;
+ if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+ return;
+
+ if (IsDstPhys && !IsSrcPhys)
+ DstRegMap.insert(std::make_pair(SrcReg, DstReg));
+ else if (!IsDstPhys && IsSrcPhys) {
+ bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
+ if (!isNew)
+ assert(SrcRegMap[DstReg] == SrcReg &&
+ "Can't map to two src physical registers!");
+
+ scanUses(DstReg);
+ }
+
+ Processed.insert(MI);
+ return;
+}
+
+/// rescheduleMIBelowKill - If there is one more local instruction that reads
+/// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
+/// instruction in order to eliminate the need for the copy.
+bool TwoAddressInstructionPass::
+rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned Reg) {
+ // Bail immediately if we don't have LV or LIS available. We use them to find
+ // kills efficiently.
+ if (!LV && !LIS)
+ return false;
+
+ MachineInstr *MI = &*mi;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+ if (DI == DistanceMap.end())
+ // Must be created from unfolded load. Don't waste time trying this.
+ return false;
+
+ MachineInstr *KillMI = 0;
+ if (LIS) {
+ LiveInterval &LI = LIS->getInterval(Reg);
+ assert(LI.end() != LI.begin() &&
+ "Reg should not have empty live interval.");
+
+ SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
+ LiveInterval::const_iterator I = LI.find(MBBEndIdx);
+ if (I != LI.end() && I->start < MBBEndIdx)
+ return false;
+
+ --I;
+ KillMI = LIS->getInstructionFromIndex(I->end);
+ } else {
+ KillMI = LV->getVarInfo(Reg).findKill(MBB);
+ }
+ if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
+ // Don't mess with copies, they may be coalesced later.
+ return false;
+
+ if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
+ KillMI->isBranch() || KillMI->isTerminator())
+ // Don't move pass calls, etc.
+ return false;
+
+ unsigned DstReg;
+ if (isTwoAddrUse(*KillMI, Reg, DstReg))
+ return false;
+
+ bool SeenStore = true;
+ if (!MI->isSafeToMove(TII, AA, SeenStore))
+ return false;
+
+ if (TII->getInstrLatency(InstrItins, MI) > 1)
+ // FIXME: Needs more sophisticated heuristics.
+ return false;
+
+ SmallSet<unsigned, 2> Uses;
+ SmallSet<unsigned, 2> Kills;
+ SmallSet<unsigned, 2> Defs;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MO.isDef())
+ Defs.insert(MOReg);
+ else {
+ Uses.insert(MOReg);
+ if (MOReg != Reg && (MO.isKill() ||
+ (LIS && isPlainlyKilled(MI, MOReg, LIS))))
+ Kills.insert(MOReg);
+ }
+ }
+
+ // Move the copies connected to MI down as well.
+ MachineBasicBlock::iterator Begin = MI;
+ MachineBasicBlock::iterator AfterMI = llvm::next(Begin);
+
+ MachineBasicBlock::iterator End = AfterMI;
+ while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
+ Defs.insert(End->getOperand(0).getReg());
+ ++End;
+ }
+
+ // Check if the reschedule will not break depedencies.
+ unsigned NumVisited = 0;
+ MachineBasicBlock::iterator KillPos = KillMI;
+ ++KillPos;
+ for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
+ MachineInstr *OtherMI = I;
+ // DBG_VALUE cannot be counted against the limit.
+ if (OtherMI->isDebugValue())
+ continue;
+ if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
+ return false;
+ ++NumVisited;
+ if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
+ OtherMI->isBranch() || OtherMI->isTerminator())
+ // Don't move pass calls, etc.
+ return false;
+ for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = OtherMI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MO.isDef()) {
+ if (Uses.count(MOReg))
+ // Physical register use would be clobbered.
+ return false;
+ if (!MO.isDead() && Defs.count(MOReg))
+ // May clobber a physical register def.
+ // FIXME: This may be too conservative. It's ok if the instruction
+ // is sunken completely below the use.
+ return false;
+ } else {
+ if (Defs.count(MOReg))
+ return false;
+ bool isKill = MO.isKill() ||
+ (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
+ if (MOReg != Reg &&
+ ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
+ // Don't want to extend other live ranges and update kills.
+ return false;
+ if (MOReg == Reg && !isKill)
+ // We can't schedule across a use of the register in question.
+ return false;
+ // Ensure that if this is register in question, its the kill we expect.
+ assert((MOReg != Reg || OtherMI == KillMI) &&
+ "Found multiple kills of a register in a basic block");
+ }
+ }
+ }
+
+ // Move debug info as well.
+ while (Begin != MBB->begin() && llvm::prior(Begin)->isDebugValue())
+ --Begin;
+
+ nmi = End;
+ MachineBasicBlock::iterator InsertPos = KillPos;
+ if (LIS) {
+ // We have to move the copies first so that the MBB is still well-formed
+ // when calling handleMove().
+ for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
+ MachineInstr *CopyMI = MBBI;
+ ++MBBI;
+ MBB->splice(InsertPos, MBB, CopyMI);
+ LIS->handleMove(CopyMI);
+ InsertPos = CopyMI;
+ }
+ End = llvm::next(MachineBasicBlock::iterator(MI));
+ }
+
+ // Copies following MI may have been moved as well.
+ MBB->splice(InsertPos, MBB, Begin, End);
+ DistanceMap.erase(DI);
+
+ // Update live variables
+ if (LIS) {
+ LIS->handleMove(MI);
+ } else {
+ LV->removeVirtualRegisterKilled(Reg, KillMI);
+ LV->addVirtualRegisterKilled(Reg, MI);
+ }
+
+ DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
+ return true;
+}
+
+/// isDefTooClose - Return true if the re-scheduling will put the given
+/// instruction too close to the defs of its register dependencies.
+bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
+ MachineInstr *MI) {
+ for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
+ DE = MRI->def_end(); DI != DE; ++DI) {
+ MachineInstr *DefMI = &*DI;
+ if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
+ continue;
+ if (DefMI == MI)
+ return true; // MI is defining something KillMI uses
+ DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
+ if (DDI == DistanceMap.end())
+ return true; // Below MI
+ unsigned DefDist = DDI->second;
+ assert(Dist > DefDist && "Visited def already?");
+ if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
+ return true;
+ }
+ return false;
+}
+
+/// rescheduleKillAboveMI - If there is one more local instruction that reads
+/// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
+/// current two-address instruction in order to eliminate the need for the
+/// copy.
+bool TwoAddressInstructionPass::
+rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned Reg) {
+ // Bail immediately if we don't have LV or LIS available. We use them to find
+ // kills efficiently.
+ if (!LV && !LIS)
+ return false;
+
+ MachineInstr *MI = &*mi;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+ if (DI == DistanceMap.end())
+ // Must be created from unfolded load. Don't waste time trying this.
+ return false;
+
+ MachineInstr *KillMI = 0;
+ if (LIS) {
+ LiveInterval &LI = LIS->getInterval(Reg);
+ assert(LI.end() != LI.begin() &&
+ "Reg should not have empty live interval.");
+
+ SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
+ LiveInterval::const_iterator I = LI.find(MBBEndIdx);
+ if (I != LI.end() && I->start < MBBEndIdx)
+ return false;
+
+ --I;
+ KillMI = LIS->getInstructionFromIndex(I->end);
+ } else {
+ KillMI = LV->getVarInfo(Reg).findKill(MBB);
+ }
+ if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
+ // Don't mess with copies, they may be coalesced later.
+ return false;
+
+ unsigned DstReg;
+ if (isTwoAddrUse(*KillMI, Reg, DstReg))
+ return false;
+
+ bool SeenStore = true;
+ if (!KillMI->isSafeToMove(TII, AA, SeenStore))
+ return false;
+
+ SmallSet<unsigned, 2> Uses;
+ SmallSet<unsigned, 2> Kills;
+ SmallSet<unsigned, 2> Defs;
+ SmallSet<unsigned, 2> LiveDefs;
+ for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = KillMI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (MO.isUse()) {
+ if (!MOReg)
+ continue;
+ if (isDefTooClose(MOReg, DI->second, MI))
+ return false;
+ bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
+ if (MOReg == Reg && !isKill)
+ return false;
+ Uses.insert(MOReg);
+ if (isKill && MOReg != Reg)
+ Kills.insert(MOReg);
+ } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
+ Defs.insert(MOReg);
+ if (!MO.isDead())
+ LiveDefs.insert(MOReg);
+ }
+ }
+
+ // Check if the reschedule will not break depedencies.
+ unsigned NumVisited = 0;
+ MachineBasicBlock::iterator KillPos = KillMI;
+ for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
+ MachineInstr *OtherMI = I;
+ // DBG_VALUE cannot be counted against the limit.
+ if (OtherMI->isDebugValue())
+ continue;
+ if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
+ return false;
+ ++NumVisited;
+ if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
+ OtherMI->isBranch() || OtherMI->isTerminator())
+ // Don't move pass calls, etc.
+ return false;
+ SmallVector<unsigned, 2> OtherDefs;
+ for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = OtherMI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MO.isUse()) {
+ if (Defs.count(MOReg))
+ // Moving KillMI can clobber the physical register if the def has
+ // not been seen.
+ return false;
+ if (Kills.count(MOReg))
+ // Don't want to extend other live ranges and update kills.
+ return false;
+ if (OtherMI != MI && MOReg == Reg &&
+ !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
+ // We can't schedule across a use of the register in question.
+ return false;
+ } else {
+ OtherDefs.push_back(MOReg);
+ }
+ }
+
+ for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
+ unsigned MOReg = OtherDefs[i];
+ if (Uses.count(MOReg))
+ return false;
+ if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
+ LiveDefs.count(MOReg))
+ return false;
+ // Physical register def is seen.
+ Defs.erase(MOReg);
+ }
+ }
+
+ // Move the old kill above MI, don't forget to move debug info as well.
+ MachineBasicBlock::iterator InsertPos = mi;
+ while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
+ --InsertPos;
+ MachineBasicBlock::iterator From = KillMI;
+ MachineBasicBlock::iterator To = llvm::next(From);
+ while (llvm::prior(From)->isDebugValue())
+ --From;
+ MBB->splice(InsertPos, MBB, From, To);
+
+ nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
+ DistanceMap.erase(DI);
+
+ // Update live variables
+ if (LIS) {
+ LIS->handleMove(KillMI);
+ } else {
+ LV->removeVirtualRegisterKilled(Reg, KillMI);
+ LV->addVirtualRegisterKilled(Reg, MI);
+ }
+
+ DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
+ return true;
+}
+
+/// tryInstructionTransform - For the case where an instruction has a single
+/// pair of tied register operands, attempt some transformations that may
+/// either eliminate the tied operands or improve the opportunities for
+/// coalescing away the register copy. Returns true if no copy needs to be
+/// inserted to untie mi's operands (either because they were untied, or
+/// because mi was rescheduled, and will be visited again later). If the
+/// shouldOnlyCommute flag is true, only instruction commutation is attempted.
+bool TwoAddressInstructionPass::
+tryInstructionTransform(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ unsigned SrcIdx, unsigned DstIdx,
+ unsigned Dist, bool shouldOnlyCommute) {
+ if (OptLevel == CodeGenOpt::None)
+ return false;
+
+ MachineInstr &MI = *mi;
+ unsigned regA = MI.getOperand(DstIdx).getReg();
+ unsigned regB = MI.getOperand(SrcIdx).getReg();
+
+ assert(TargetRegisterInfo::isVirtualRegister(regB) &&
+ "cannot make instruction into two-address form");
+ bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
+
+ if (TargetRegisterInfo::isVirtualRegister(regA))
+ scanUses(regA);
+
+ // Check if it is profitable to commute the operands.
+ unsigned SrcOp1, SrcOp2;
+ unsigned regC = 0;
+ unsigned regCIdx = ~0U;
+ bool TryCommute = false;
+ bool AggressiveCommute = false;
+ if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
+ TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
+ if (SrcIdx == SrcOp1)
+ regCIdx = SrcOp2;
+ else if (SrcIdx == SrcOp2)
+ regCIdx = SrcOp1;
+
+ if (regCIdx != ~0U) {
+ regC = MI.getOperand(regCIdx).getReg();
+ if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
+ // If C dies but B does not, swap the B and C operands.
+ // This makes the live ranges of A and C joinable.
+ TryCommute = true;
+ else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
+ TryCommute = true;
+ AggressiveCommute = true;
+ }
+ }
+ }
+
+ // If it's profitable to commute, try to do so.
+ if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
+ ++NumCommuted;
+ if (AggressiveCommute)
+ ++NumAggrCommuted;
+ return false;
+ }
+
+ if (shouldOnlyCommute)
+ return false;
+
+ // If there is one more use of regB later in the same MBB, consider
+ // re-schedule this MI below it.
+ if (rescheduleMIBelowKill(mi, nmi, regB)) {
+ ++NumReSchedDowns;
+ return true;
+ }
+
+ if (MI.isConvertibleTo3Addr()) {
+ // This instruction is potentially convertible to a true
+ // three-address instruction. Check if it is profitable.
+ if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
+ // Try to convert it.
+ if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
+ ++NumConvertedTo3Addr;
+ return true; // Done with this instruction.
+ }
+ }
+ }
+
+ // If there is one more use of regB later in the same MBB, consider
+ // re-schedule it before this MI if it's legal.
+ if (rescheduleKillAboveMI(mi, nmi, regB)) {
+ ++NumReSchedUps;
+ return true;
+ }
+
+ // If this is an instruction with a load folded into it, try unfolding
+ // the load, e.g. avoid this:
+ // movq %rdx, %rcx
+ // addq (%rax), %rcx
+ // in favor of this:
+ // movq (%rax), %rcx
+ // addq %rdx, %rcx
+ // because it's preferable to schedule a load than a register copy.
+ if (MI.mayLoad() && !regBKilled) {
+ // Determine if a load can be unfolded.
+ unsigned LoadRegIndex;
+ unsigned NewOpc =
+ TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
+ /*UnfoldLoad=*/true,
+ /*UnfoldStore=*/false,
+ &LoadRegIndex);
+ if (NewOpc != 0) {
+ const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
+ if (UnfoldMCID.getNumDefs() == 1) {
+ // Unfold the load.
+ DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
+ const TargetRegisterClass *RC =
+ TRI->getAllocatableClass(
+ TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
+ unsigned Reg = MRI->createVirtualRegister(RC);
+ SmallVector<MachineInstr *, 2> NewMIs;
+ if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
+ /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
+ NewMIs)) {
+ DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
+ return false;
+ }
+ assert(NewMIs.size() == 2 &&
+ "Unfolded a load into multiple instructions!");
+ // The load was previously folded, so this is the only use.
+ NewMIs[1]->addRegisterKilled(Reg, TRI);
+
+ // Tentatively insert the instructions into the block so that they
+ // look "normal" to the transformation logic.
+ MBB->insert(mi, NewMIs[0]);
+ MBB->insert(mi, NewMIs[1]);
+
+ DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
+ << "2addr: NEW INST: " << *NewMIs[1]);
+
+ // Transform the instruction, now that it no longer has a load.
+ unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
+ unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
+ MachineBasicBlock::iterator NewMI = NewMIs[1];
+ bool TransformResult =
+ tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
+ (void)TransformResult;
+ assert(!TransformResult &&
+ "tryInstructionTransform() should return false.");
+ if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
+ // Success, or at least we made an improvement. Keep the unfolded
+ // instructions and discard the original.
+ if (LV) {
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (MO.isReg() &&
+ TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ if (MO.isUse()) {
+ if (MO.isKill()) {
+ if (NewMIs[0]->killsRegister(MO.getReg()))
+ LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
+ else {
+ assert(NewMIs[1]->killsRegister(MO.getReg()) &&
+ "Kill missing after load unfold!");
+ LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
+ }
+ }
+ } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
+ if (NewMIs[1]->registerDefIsDead(MO.getReg()))
+ LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
+ else {
+ assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
+ "Dead flag missing after load unfold!");
+ LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
+ }
+ }
+ }
+ }
+ LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
+ }
+
+ SmallVector<unsigned, 4> OrigRegs;
+ if (LIS) {
+ for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
+ MOE = MI.operands_end(); MOI != MOE; ++MOI) {
+ if (MOI->isReg())
+ OrigRegs.push_back(MOI->getReg());
+ }
+ }
+
+ MI.eraseFromParent();
+
+ // Update LiveIntervals.
+ if (LIS) {
+ MachineBasicBlock::iterator Begin(NewMIs[0]);
+ MachineBasicBlock::iterator End(NewMIs[1]);
+ LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
+ }
+
+ mi = NewMIs[1];
+ } else {
+ // Transforming didn't eliminate the tie and didn't lead to an
+ // improvement. Clean up the unfolded instructions and keep the
+ // original.
+ DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
+ NewMIs[0]->eraseFromParent();
+ NewMIs[1]->eraseFromParent();
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+// Collect tied operands of MI that need to be handled.
+// Rewrite trivial cases immediately.
+// Return true if any tied operands where found, including the trivial ones.
+bool TwoAddressInstructionPass::
+collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ bool AnyOps = false;
+ unsigned NumOps = MI->getNumOperands();
+
+ for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
+ unsigned DstIdx = 0;
+ if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
+ continue;
+ AnyOps = true;
+ MachineOperand &SrcMO = MI->getOperand(SrcIdx);
+ MachineOperand &DstMO = MI->getOperand(DstIdx);
+ unsigned SrcReg = SrcMO.getReg();
+ unsigned DstReg = DstMO.getReg();
+ // Tied constraint already satisfied?
+ if (SrcReg == DstReg)
+ continue;
+
+ assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
+
+ // Deal with <undef> uses immediately - simply rewrite the src operand.
+ if (SrcMO.isUndef()) {
+ // Constrain the DstReg register class if required.
+ if (TargetRegisterInfo::isVirtualRegister(DstReg))
+ if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
+ TRI, *MF))
+ MRI->constrainRegClass(DstReg, RC);
+ SrcMO.setReg(DstReg);
+ DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
+ continue;
+ }
+ TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
+ }
+ return AnyOps;
+}
+
+// Process a list of tied MI operands that all use the same source register.
+// The tied pairs are of the form (SrcIdx, DstIdx).
+void
+TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
+ TiedPairList &TiedPairs,
+ unsigned &Dist) {
+ bool IsEarlyClobber = false;
+ for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
+ const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
+ IsEarlyClobber |= DstMO.isEarlyClobber();
+ }
+
+ bool RemovedKillFlag = false;
+ bool AllUsesCopied = true;
+ unsigned LastCopiedReg = 0;
+ SlotIndex LastCopyIdx;
+ unsigned RegB = 0;
+ for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
+ unsigned SrcIdx = TiedPairs[tpi].first;
+ unsigned DstIdx = TiedPairs[tpi].second;
+
+ const MachineOperand &DstMO = MI->getOperand(DstIdx);
+ unsigned RegA = DstMO.getReg();
+
+ // Grab RegB from the instruction because it may have changed if the
+ // instruction was commuted.
+ RegB = MI->getOperand(SrcIdx).getReg();
+
+ if (RegA == RegB) {
+ // The register is tied to multiple destinations (or else we would
+ // not have continued this far), but this use of the register
+ // already matches the tied destination. Leave it.
+ AllUsesCopied = false;
+ continue;
+ }
+ LastCopiedReg = RegA;
+
+ assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
+ "cannot make instruction into two-address form");
+
+#ifndef NDEBUG
+ // First, verify that we don't have a use of "a" in the instruction
+ // (a = b + a for example) because our transformation will not
+ // work. This should never occur because we are in SSA form.
+ for (unsigned i = 0; i != MI->getNumOperands(); ++i)
+ assert(i == DstIdx ||
+ !MI->getOperand(i).isReg() ||
+ MI->getOperand(i).getReg() != RegA);
+#endif
+
+ // Emit a copy.
+ BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), RegA).addReg(RegB);
+
+ // Update DistanceMap.
+ MachineBasicBlock::iterator PrevMI = MI;
+ --PrevMI;
+ DistanceMap.insert(std::make_pair(PrevMI, Dist));
+ DistanceMap[MI] = ++Dist;
+
+ if (LIS) {
+ LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
+
+ if (TargetRegisterInfo::isVirtualRegister(RegA)) {
+ LiveInterval &LI = LIS->getInterval(RegA);
+ VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
+ SlotIndex endIdx =
+ LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
+ LI.addRange(LiveRange(LastCopyIdx, endIdx, VNI));
+ }
+ }
+
+ DEBUG(dbgs() << "\t\tprepend:\t" << *PrevMI);
+
+ MachineOperand &MO = MI->getOperand(SrcIdx);
+ assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
+ "inconsistent operand info for 2-reg pass");
+ if (MO.isKill()) {
+ MO.setIsKill(false);
+ RemovedKillFlag = true;
+ }
+
+ // Make sure regA is a legal regclass for the SrcIdx operand.
+ if (TargetRegisterInfo::isVirtualRegister(RegA) &&
+ TargetRegisterInfo::isVirtualRegister(RegB))
+ MRI->constrainRegClass(RegA, MRI->getRegClass(RegB));
+
+ MO.setReg(RegA);
+
+ // Propagate SrcRegMap.
+ SrcRegMap[RegA] = RegB;
+ }
+
+
+ if (AllUsesCopied) {
+ if (!IsEarlyClobber) {
+ // Replace other (un-tied) uses of regB with LastCopiedReg.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
+ if (MO.isKill()) {
+ MO.setIsKill(false);
+ RemovedKillFlag = true;
+ }
+ MO.setReg(LastCopiedReg);
+ }
+ }
+ }
+
+ // Update live variables for regB.
+ if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
+ MachineBasicBlock::iterator PrevMI = MI;
+ --PrevMI;
+ LV->addVirtualRegisterKilled(RegB, PrevMI);
+ }
+
+ // Update LiveIntervals.
+ if (LIS) {
+ LiveInterval &LI = LIS->getInterval(RegB);
+ SlotIndex MIIdx = LIS->getInstructionIndex(MI);
+ LiveInterval::const_iterator I = LI.find(MIIdx);
+ assert(I != LI.end() && "RegB must be live-in to use.");
+
+ SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
+ if (I->end == UseIdx)
+ LI.removeRange(LastCopyIdx, UseIdx);
+ }
+
+ } else if (RemovedKillFlag) {
+ // Some tied uses of regB matched their destination registers, so
+ // regB is still used in this instruction, but a kill flag was
+ // removed from a different tied use of regB, so now we need to add
+ // a kill flag to one of the remaining uses of regB.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
+ MO.setIsKill(true);
+ break;
+ }
+ }
+ }
+}
+
+/// runOnMachineFunction - Reduce two-address instructions to two operands.
+///
+bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
+ MF = &Func;
+ const TargetMachine &TM = MF->getTarget();
+ MRI = &MF->getRegInfo();
+ TII = TM.getInstrInfo();
+ TRI = TM.getRegisterInfo();
+ InstrItins = TM.getInstrItineraryData();
+ LV = getAnalysisIfAvailable<LiveVariables>();
+ LIS = getAnalysisIfAvailable<LiveIntervals>();
+ AA = &getAnalysis<AliasAnalysis>();
+ OptLevel = TM.getOptLevel();
+
+ bool MadeChange = false;
+
+ DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
+ DEBUG(dbgs() << "********** Function: "
+ << MF->getName() << '\n');
+
+ // This pass takes the function out of SSA form.
+ MRI->leaveSSA();
+
+ TiedOperandMap TiedOperands;
+ for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
+ MBBI != MBBE; ++MBBI) {
+ MBB = MBBI;
+ unsigned Dist = 0;
+ DistanceMap.clear();
+ SrcRegMap.clear();
+ DstRegMap.clear();
+ Processed.clear();
+ for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
+ mi != me; ) {
+ MachineBasicBlock::iterator nmi = llvm::next(mi);
+ if (mi->isDebugValue()) {
+ mi = nmi;
+ continue;
+ }
+
+ // Expand REG_SEQUENCE instructions. This will position mi at the first
+ // expanded instruction.
+ if (mi->isRegSequence())
+ eliminateRegSequence(mi);
+
+ DistanceMap.insert(std::make_pair(mi, ++Dist));
+
+ processCopy(&*mi);
+
+ // First scan through all the tied register uses in this instruction
+ // and record a list of pairs of tied operands for each register.
+ if (!collectTiedOperands(mi, TiedOperands)) {
+ mi = nmi;
+ continue;
+ }
+
+ ++NumTwoAddressInstrs;
+ MadeChange = true;
+ DEBUG(dbgs() << '\t' << *mi);
+
+ // If the instruction has a single pair of tied operands, try some
+ // transformations that may either eliminate the tied operands or
+ // improve the opportunities for coalescing away the register copy.
+ if (TiedOperands.size() == 1) {
+ SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs
+ = TiedOperands.begin()->second;
+ if (TiedPairs.size() == 1) {
+ unsigned SrcIdx = TiedPairs[0].first;
+ unsigned DstIdx = TiedPairs[0].second;
+ unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
+ unsigned DstReg = mi->getOperand(DstIdx).getReg();
+ if (SrcReg != DstReg &&
+ tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
+ // The tied operands have been eliminated or shifted further down the
+ // block to ease elimination. Continue processing with 'nmi'.
+ TiedOperands.clear();
+ mi = nmi;
+ continue;
+ }
+ }
+ }
+
+ // Now iterate over the information collected above.
+ for (TiedOperandMap::iterator OI = TiedOperands.begin(),
+ OE = TiedOperands.end(); OI != OE; ++OI) {
+ processTiedPairs(mi, OI->second, Dist);
+ DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
+ }
+
+ // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
+ if (mi->isInsertSubreg()) {
+ // From %reg = INSERT_SUBREG %reg, %subreg, subidx
+ // To %reg:subidx = COPY %subreg
+ unsigned SubIdx = mi->getOperand(3).getImm();
+ mi->RemoveOperand(3);
+ assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
+ mi->getOperand(0).setSubReg(SubIdx);
+ mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
+ mi->RemoveOperand(1);
+ mi->setDesc(TII->get(TargetOpcode::COPY));
+ DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
+ }
+
+ // Clear TiedOperands here instead of at the top of the loop
+ // since most instructions do not have tied operands.
+ TiedOperands.clear();
+ mi = nmi;
+ }
+ }
+
+ if (LIS)
+ MF->verify(this, "After two-address instruction pass");
+
+ return MadeChange;
+}
+
+/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
+///
+/// The instruction is turned into a sequence of sub-register copies:
+///
+/// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
+///
+/// Becomes:
+///
+/// %dst:ssub0<def,undef> = COPY %v1
+/// %dst:ssub1<def> = COPY %v2
+///
+void TwoAddressInstructionPass::
+eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
+ MachineInstr *MI = MBBI;
+ unsigned DstReg = MI->getOperand(0).getReg();
+ if (MI->getOperand(0).getSubReg() ||
+ TargetRegisterInfo::isPhysicalRegister(DstReg) ||
+ !(MI->getNumOperands() & 1)) {
+ DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
+ llvm_unreachable(0);
+ }
+
+ SmallVector<unsigned, 4> OrigRegs;
+ if (LIS) {
+ OrigRegs.push_back(MI->getOperand(0).getReg());
+ for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
+ OrigRegs.push_back(MI->getOperand(i).getReg());
+ }
+
+ bool DefEmitted = false;
+ for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
+ MachineOperand &UseMO = MI->getOperand(i);
+ unsigned SrcReg = UseMO.getReg();
+ unsigned SubIdx = MI->getOperand(i+1).getImm();
+ // Nothing needs to be inserted for <undef> operands.
+ if (UseMO.isUndef())
+ continue;
+
+ // Defer any kill flag to the last operand using SrcReg. Otherwise, we
+ // might insert a COPY that uses SrcReg after is was killed.
+ bool isKill = UseMO.isKill();
+ if (isKill)
+ for (unsigned j = i + 2; j < e; j += 2)
+ if (MI->getOperand(j).getReg() == SrcReg) {
+ MI->getOperand(j).setIsKill();
+ UseMO.setIsKill(false);
+ isKill = false;
+ break;
+ }
+
+ // Insert the sub-register copy.
+ MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY))
+ .addReg(DstReg, RegState::Define, SubIdx)
+ .addOperand(UseMO);
+
+ // The first def needs an <undef> flag because there is no live register
+ // before it.
+ if (!DefEmitted) {
+ CopyMI->getOperand(0).setIsUndef(true);
+ // Return an iterator pointing to the first inserted instr.
+ MBBI = CopyMI;
+ }
+ DefEmitted = true;
+
+ // Update LiveVariables' kill info.
+ if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
+ LV->replaceKillInstruction(SrcReg, MI, CopyMI);
+
+ DEBUG(dbgs() << "Inserted: " << *CopyMI);
+ }
+
+ MachineBasicBlock::iterator EndMBBI =
+ llvm::next(MachineBasicBlock::iterator(MI));
+
+ if (!DefEmitted) {
+ DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
+ MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
+ for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
+ MI->RemoveOperand(j);
+ } else {
+ DEBUG(dbgs() << "Eliminated: " << *MI);
+ MI->eraseFromParent();
+ }
+
+ // Udpate LiveIntervals.
+ if (LIS)
+ LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
+}
OpenPOWER on IntegriCloud