summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp1530
1 files changed, 1530 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
new file mode 100644
index 0000000..6d6244e
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp
@@ -0,0 +1,1530 @@
+//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TwoAddress instruction pass which is used
+// by most register allocators. Two-Address instructions are rewritten
+// from:
+//
+// A = B op C
+//
+// to:
+//
+// A = B
+// A op= C
+//
+// Note that if a register allocator chooses to use this pass, that it
+// has to be capable of handling the non-SSA nature of these rewritten
+// virtual registers.
+//
+// It is also worth noting that the duplicate operand of the two
+// address instruction is removed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "twoaddrinstr"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace llvm;
+
+STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
+STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
+STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
+STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
+STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
+STATISTIC(NumReMats, "Number of instructions re-materialized");
+STATISTIC(NumDeletes, "Number of dead instructions deleted");
+
+namespace {
+ class TwoAddressInstructionPass : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+ LiveVariables *LV;
+ AliasAnalysis *AA;
+
+ // DistanceMap - Keep track the distance of a MI from the start of the
+ // current basic block.
+ DenseMap<MachineInstr*, unsigned> DistanceMap;
+
+ // SrcRegMap - A map from virtual registers to physical registers which
+ // are likely targets to be coalesced to due to copies from physical
+ // registers to virtual registers. e.g. v1024 = move r0.
+ DenseMap<unsigned, unsigned> SrcRegMap;
+
+ // DstRegMap - A map from virtual registers to physical registers which
+ // are likely targets to be coalesced to due to copies to physical
+ // registers from virtual registers. e.g. r1 = move v1024.
+ DenseMap<unsigned, unsigned> DstRegMap;
+
+ /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
+ /// during the initial walk of the machine function.
+ SmallVector<MachineInstr*, 16> RegSequences;
+
+ bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
+ unsigned Reg,
+ MachineBasicBlock::iterator OldPos);
+
+ bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
+ MachineInstr *MI, MachineInstr *DefMI,
+ MachineBasicBlock *MBB, unsigned Loc);
+
+ bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
+ unsigned &LastDef);
+
+ MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
+ unsigned Dist);
+
+ bool isProfitableToCommute(unsigned regB, unsigned regC,
+ MachineInstr *MI, MachineBasicBlock *MBB,
+ unsigned Dist);
+
+ bool CommuteInstruction(MachineBasicBlock::iterator &mi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegB, unsigned RegC, unsigned Dist);
+
+ bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
+
+ bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegA, unsigned RegB, unsigned Dist);
+
+ typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
+ bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
+ SmallVector<NewKill, 4> &NewKills,
+ MachineBasicBlock *MBB, unsigned Dist);
+ bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi, unsigned Dist);
+
+ bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned SrcIdx, unsigned DstIdx,
+ unsigned Dist,
+ SmallPtrSet<MachineInstr*, 8> &Processed);
+
+ void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &Processed);
+
+ void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &Processed);
+
+ void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
+
+ /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
+ /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
+ /// sub-register references of the register defined by REG_SEQUENCE.
+ bool EliminateRegSequences();
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ TwoAddressInstructionPass() : MachineFunctionPass(ID) {
+ initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addPreservedID(MachineDominatorsID);
+ AU.addPreservedID(PHIEliminationID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ /// runOnMachineFunction - Pass entry point.
+ bool runOnMachineFunction(MachineFunction&);
+ };
+}
+
+char TwoAddressInstructionPass::ID = 0;
+INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
+ "Two-Address instruction pass", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
+ "Two-Address instruction pass", false, false)
+
+char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
+
+/// Sink3AddrInstruction - A two-address instruction has been converted to a
+/// three-address instruction to avoid clobbering a register. Try to sink it
+/// past the instruction that would kill the above mentioned register to reduce
+/// register pressure.
+bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
+ MachineInstr *MI, unsigned SavedReg,
+ MachineBasicBlock::iterator OldPos) {
+ // Check if it's safe to move this instruction.
+ bool SeenStore = true; // Be conservative.
+ if (!MI->isSafeToMove(TII, AA, SeenStore))
+ return false;
+
+ unsigned DefReg = 0;
+ SmallSet<unsigned, 4> UseRegs;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MO.isUse() && MOReg != SavedReg)
+ UseRegs.insert(MO.getReg());
+ if (!MO.isDef())
+ continue;
+ if (MO.isImplicit())
+ // Don't try to move it if it implicitly defines a register.
+ return false;
+ if (DefReg)
+ // For now, don't move any instructions that define multiple registers.
+ return false;
+ DefReg = MO.getReg();
+ }
+
+ // Find the instruction that kills SavedReg.
+ MachineInstr *KillMI = NULL;
+ for (MachineRegisterInfo::use_nodbg_iterator
+ UI = MRI->use_nodbg_begin(SavedReg),
+ UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
+ MachineOperand &UseMO = UI.getOperand();
+ if (!UseMO.isKill())
+ continue;
+ KillMI = UseMO.getParent();
+ break;
+ }
+
+ if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
+ return false;
+
+ // If any of the definitions are used by another instruction between the
+ // position and the kill use, then it's not safe to sink it.
+ //
+ // FIXME: This can be sped up if there is an easy way to query whether an
+ // instruction is before or after another instruction. Then we can use
+ // MachineRegisterInfo def / use instead.
+ MachineOperand *KillMO = NULL;
+ MachineBasicBlock::iterator KillPos = KillMI;
+ ++KillPos;
+
+ unsigned NumVisited = 0;
+ for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
+ MachineInstr *OtherMI = I;
+ // DBG_VALUE cannot be counted against the limit.
+ if (OtherMI->isDebugValue())
+ continue;
+ if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
+ return false;
+ ++NumVisited;
+ for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = OtherMI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (DefReg == MOReg)
+ return false;
+
+ if (MO.isKill()) {
+ if (OtherMI == KillMI && MOReg == SavedReg)
+ // Save the operand that kills the register. We want to unset the kill
+ // marker if we can sink MI past it.
+ KillMO = &MO;
+ else if (UseRegs.count(MOReg))
+ // One of the uses is killed before the destination.
+ return false;
+ }
+ }
+ }
+
+ // Update kill and LV information.
+ KillMO->setIsKill(false);
+ KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
+ KillMO->setIsKill(true);
+
+ if (LV)
+ LV->replaceKillInstruction(SavedReg, KillMI, MI);
+
+ // Move instruction to its destination.
+ MBB->remove(MI);
+ MBB->insert(KillPos, MI);
+
+ ++Num3AddrSunk;
+ return true;
+}
+
+/// isTwoAddrUse - Return true if the specified MI is using the specified
+/// register as a two-address operand.
+static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
+ const MCInstrDesc &MCID = UseMI->getDesc();
+ for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = UseMI->getOperand(i);
+ if (MO.isReg() && MO.getReg() == Reg &&
+ (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
+ // Earlier use is a two-address one.
+ return true;
+ }
+ return false;
+}
+
+/// isProfitableToReMat - Return true if the heuristics determines it is likely
+/// to be profitable to re-materialize the definition of Reg rather than copy
+/// the register.
+bool
+TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
+ const TargetRegisterClass *RC,
+ MachineInstr *MI, MachineInstr *DefMI,
+ MachineBasicBlock *MBB, unsigned Loc) {
+ bool OtherUse = false;
+ for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
+ UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
+ MachineOperand &UseMO = UI.getOperand();
+ MachineInstr *UseMI = UseMO.getParent();
+ MachineBasicBlock *UseMBB = UseMI->getParent();
+ if (UseMBB == MBB) {
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+ if (DI != DistanceMap.end() && DI->second == Loc)
+ continue; // Current use.
+ OtherUse = true;
+ // There is at least one other use in the MBB that will clobber the
+ // register.
+ if (isTwoAddrUse(UseMI, Reg))
+ return true;
+ }
+ }
+
+ // If other uses in MBB are not two-address uses, then don't remat.
+ if (OtherUse)
+ return false;
+
+ // No other uses in the same block, remat if it's defined in the same
+ // block so it does not unnecessarily extend the live range.
+ return MBB == DefMI->getParent();
+}
+
+/// NoUseAfterLastDef - Return true if there are no intervening uses between the
+/// last instruction in the MBB that defines the specified register and the
+/// two-address instruction which is being processed. It also returns the last
+/// def location by reference
+bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
+ MachineBasicBlock *MBB, unsigned Dist,
+ unsigned &LastDef) {
+ LastDef = 0;
+ unsigned LastUse = Dist;
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+ E = MRI->reg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ MachineInstr *MI = MO.getParent();
+ if (MI->getParent() != MBB || MI->isDebugValue())
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+ if (DI == DistanceMap.end())
+ continue;
+ if (MO.isUse() && DI->second < LastUse)
+ LastUse = DI->second;
+ if (MO.isDef() && DI->second > LastDef)
+ LastDef = DI->second;
+ }
+
+ return !(LastUse > LastDef && LastUse < Dist);
+}
+
+MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
+ MachineBasicBlock *MBB,
+ unsigned Dist) {
+ unsigned LastUseDist = 0;
+ MachineInstr *LastUse = 0;
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+ E = MRI->reg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ MachineInstr *MI = MO.getParent();
+ if (MI->getParent() != MBB || MI->isDebugValue())
+ continue;
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+ if (DI == DistanceMap.end())
+ continue;
+ if (DI->second >= Dist)
+ continue;
+
+ if (MO.isUse() && DI->second > LastUseDist) {
+ LastUse = DI->first;
+ LastUseDist = DI->second;
+ }
+ }
+ return LastUse;
+}
+
+/// isCopyToReg - Return true if the specified MI is a copy instruction or
+/// a extract_subreg instruction. It also returns the source and destination
+/// registers and whether they are physical registers by reference.
+static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
+ unsigned &SrcReg, unsigned &DstReg,
+ bool &IsSrcPhys, bool &IsDstPhys) {
+ SrcReg = 0;
+ DstReg = 0;
+ if (MI.isCopy()) {
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+ } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(2).getReg();
+ } else
+ return false;
+
+ IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ return true;
+}
+
+/// isKilled - Test if the given register value, which is used by the given
+/// instruction, is killed by the given instruction. This looks through
+/// coalescable copies to see if the original value is potentially not killed.
+///
+/// For example, in this code:
+///
+/// %reg1034 = copy %reg1024
+/// %reg1035 = copy %reg1025<kill>
+/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
+///
+/// %reg1034 is not considered to be killed, since it is copied from a
+/// register which is not killed. Treating it as not killed lets the
+/// normal heuristics commute the (two-address) add, which lets
+/// coalescing eliminate the extra copy.
+///
+static bool isKilled(MachineInstr &MI, unsigned Reg,
+ const MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII) {
+ MachineInstr *DefMI = &MI;
+ for (;;) {
+ if (!DefMI->killsRegister(Reg))
+ return false;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return true;
+ MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
+ // If there are multiple defs, we can't do a simple analysis, so just
+ // go with what the kill flag says.
+ if (llvm::next(Begin) != MRI->def_end())
+ return true;
+ DefMI = &*Begin;
+ bool IsSrcPhys, IsDstPhys;
+ unsigned SrcReg, DstReg;
+ // If the def is something other than a copy, then it isn't going to
+ // be coalesced, so follow the kill flag.
+ if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+ return true;
+ Reg = SrcReg;
+ }
+}
+
+/// isTwoAddrUse - Return true if the specified MI uses the specified register
+/// as a two-address use. If so, return the destination register by reference.
+static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned NumOps = MI.isInlineAsm()
+ ? MI.getNumOperands() : MCID.getNumOperands();
+ for (unsigned i = 0; i != NumOps; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
+ continue;
+ unsigned ti;
+ if (MI.isRegTiedToDefOperand(i, &ti)) {
+ DstReg = MI.getOperand(ti).getReg();
+ return true;
+ }
+ }
+ return false;
+}
+
+/// findOnlyInterestingUse - Given a register, if has a single in-basic block
+/// use, return the use instruction if it's a copy or a two-address use.
+static
+MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
+ MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII,
+ bool &IsCopy,
+ unsigned &DstReg, bool &IsDstPhys) {
+ if (!MRI->hasOneNonDBGUse(Reg))
+ // None or more than one use.
+ return 0;
+ MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
+ if (UseMI.getParent() != MBB)
+ return 0;
+ unsigned SrcReg;
+ bool IsSrcPhys;
+ if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
+ IsCopy = true;
+ return &UseMI;
+ }
+ IsDstPhys = false;
+ if (isTwoAddrUse(UseMI, Reg, DstReg)) {
+ IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ return &UseMI;
+ }
+ return 0;
+}
+
+/// getMappedReg - Return the physical register the specified virtual register
+/// might be mapped to.
+static unsigned
+getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
+ while (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
+ if (SI == RegMap.end())
+ return 0;
+ Reg = SI->second;
+ }
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return Reg;
+ return 0;
+}
+
+/// regsAreCompatible - Return true if the two registers are equal or aliased.
+///
+static bool
+regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
+ if (RegA == RegB)
+ return true;
+ if (!RegA || !RegB)
+ return false;
+ return TRI->regsOverlap(RegA, RegB);
+}
+
+
+/// isProfitableToReMat - Return true if it's potentially profitable to commute
+/// the two-address instruction that's being processed.
+bool
+TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
+ MachineInstr *MI, MachineBasicBlock *MBB,
+ unsigned Dist) {
+ // Determine if it's profitable to commute this two address instruction. In
+ // general, we want no uses between this instruction and the definition of
+ // the two-address register.
+ // e.g.
+ // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+ // %reg1029<def> = MOV8rr %reg1028
+ // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+ // insert => %reg1030<def> = MOV8rr %reg1028
+ // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+ // In this case, it might not be possible to coalesce the second MOV8rr
+ // instruction if the first one is coalesced. So it would be profitable to
+ // commute it:
+ // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+ // %reg1029<def> = MOV8rr %reg1028
+ // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+ // insert => %reg1030<def> = MOV8rr %reg1029
+ // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
+
+ if (!MI->killsRegister(regC))
+ return false;
+
+ // Ok, we have something like:
+ // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+ // let's see if it's worth commuting it.
+
+ // Look for situations like this:
+ // %reg1024<def> = MOV r1
+ // %reg1025<def> = MOV r0
+ // %reg1026<def> = ADD %reg1024, %reg1025
+ // r0 = MOV %reg1026
+ // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
+ unsigned FromRegB = getMappedReg(regB, SrcRegMap);
+ unsigned FromRegC = getMappedReg(regC, SrcRegMap);
+ unsigned ToRegB = getMappedReg(regB, DstRegMap);
+ unsigned ToRegC = getMappedReg(regC, DstRegMap);
+ if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
+ ((!FromRegC && !ToRegC) ||
+ regsAreCompatible(FromRegB, ToRegC, TRI) ||
+ regsAreCompatible(FromRegC, ToRegB, TRI)))
+ return true;
+
+ // If there is a use of regC between its last def (could be livein) and this
+ // instruction, then bail.
+ unsigned LastDefC = 0;
+ if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
+ return false;
+
+ // If there is a use of regB between its last def (could be livein) and this
+ // instruction, then go ahead and make this transformation.
+ unsigned LastDefB = 0;
+ if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
+ return true;
+
+ // Since there are no intervening uses for both registers, then commute
+ // if the def of regC is closer. Its live interval is shorter.
+ return LastDefB && LastDefC && LastDefC > LastDefB;
+}
+
+/// CommuteInstruction - Commute a two-address instruction and update the basic
+/// block, distance map, and live variables if needed. Return true if it is
+/// successful.
+bool
+TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegB, unsigned RegC, unsigned Dist) {
+ MachineInstr *MI = mi;
+ DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
+ MachineInstr *NewMI = TII->commuteInstruction(MI);
+
+ if (NewMI == 0) {
+ DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
+ return false;
+ }
+
+ DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
+ // If the instruction changed to commute it, update livevar.
+ if (NewMI != MI) {
+ if (LV)
+ // Update live variables
+ LV->replaceKillInstruction(RegC, MI, NewMI);
+
+ mbbi->insert(mi, NewMI); // Insert the new inst
+ mbbi->erase(mi); // Nuke the old inst.
+ mi = NewMI;
+ DistanceMap.insert(std::make_pair(NewMI, Dist));
+ }
+
+ // Update source register map.
+ unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
+ if (FromRegC) {
+ unsigned RegA = MI->getOperand(0).getReg();
+ SrcRegMap[RegA] = FromRegC;
+ }
+
+ return true;
+}
+
+/// isProfitableToConv3Addr - Return true if it is profitable to convert the
+/// given 2-address instruction to a 3-address one.
+bool
+TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
+ // Look for situations like this:
+ // %reg1024<def> = MOV r1
+ // %reg1025<def> = MOV r0
+ // %reg1026<def> = ADD %reg1024, %reg1025
+ // r2 = MOV %reg1026
+ // Turn ADD into a 3-address instruction to avoid a copy.
+ unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
+ if (!FromRegB)
+ return false;
+ unsigned ToRegA = getMappedReg(RegA, DstRegMap);
+ return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
+}
+
+/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
+/// three address one. Return true if this transformation was successful.
+bool
+TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned RegA, unsigned RegB,
+ unsigned Dist) {
+ MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
+ if (NewMI) {
+ DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
+ DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
+ bool Sunk = false;
+
+ if (NewMI->findRegisterUseOperand(RegB, false, TRI))
+ // FIXME: Temporary workaround. If the new instruction doesn't
+ // uses RegB, convertToThreeAddress must have created more
+ // then one instruction.
+ Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
+
+ mbbi->erase(mi); // Nuke the old inst.
+
+ if (!Sunk) {
+ DistanceMap.insert(std::make_pair(NewMI, Dist));
+ mi = NewMI;
+ nmi = llvm::next(mi);
+ }
+
+ // Update source and destination register maps.
+ SrcRegMap.erase(RegA);
+ DstRegMap.erase(RegB);
+ return true;
+ }
+
+ return false;
+}
+
+/// ScanUses - Scan forward recursively for only uses, update maps if the use
+/// is a copy or a two-address instruction.
+void
+TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &Processed) {
+ SmallVector<unsigned, 4> VirtRegPairs;
+ bool IsDstPhys;
+ bool IsCopy = false;
+ unsigned NewReg = 0;
+ unsigned Reg = DstReg;
+ while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
+ NewReg, IsDstPhys)) {
+ if (IsCopy && !Processed.insert(UseMI))
+ break;
+
+ DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+ if (DI != DistanceMap.end())
+ // Earlier in the same MBB.Reached via a back edge.
+ break;
+
+ if (IsDstPhys) {
+ VirtRegPairs.push_back(NewReg);
+ break;
+ }
+ bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
+ if (!isNew)
+ assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
+ VirtRegPairs.push_back(NewReg);
+ Reg = NewReg;
+ }
+
+ if (!VirtRegPairs.empty()) {
+ unsigned ToReg = VirtRegPairs.back();
+ VirtRegPairs.pop_back();
+ while (!VirtRegPairs.empty()) {
+ unsigned FromReg = VirtRegPairs.back();
+ VirtRegPairs.pop_back();
+ bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
+ if (!isNew)
+ assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
+ ToReg = FromReg;
+ }
+ bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
+ if (!isNew)
+ assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
+ }
+}
+
+/// ProcessCopy - If the specified instruction is not yet processed, process it
+/// if it's a copy. For a copy instruction, we find the physical registers the
+/// source and destination registers might be mapped to. These are kept in
+/// point-to maps used to determine future optimizations. e.g.
+/// v1024 = mov r0
+/// v1025 = mov r1
+/// v1026 = add v1024, v1025
+/// r1 = mov r1026
+/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
+/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
+/// potentially joined with r1 on the output side. It's worthwhile to commute
+/// 'add' to eliminate a copy.
+void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
+ MachineBasicBlock *MBB,
+ SmallPtrSet<MachineInstr*, 8> &Processed) {
+ if (Processed.count(MI))
+ return;
+
+ bool IsSrcPhys, IsDstPhys;
+ unsigned SrcReg, DstReg;
+ if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+ return;
+
+ if (IsDstPhys && !IsSrcPhys)
+ DstRegMap.insert(std::make_pair(SrcReg, DstReg));
+ else if (!IsDstPhys && IsSrcPhys) {
+ bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
+ if (!isNew)
+ assert(SrcRegMap[DstReg] == SrcReg &&
+ "Can't map to two src physical registers!");
+
+ ScanUses(DstReg, MBB, Processed);
+ }
+
+ Processed.insert(MI);
+ return;
+}
+
+/// isSafeToDelete - If the specified instruction does not produce any side
+/// effects and all of its defs are dead, then it's safe to delete.
+static bool isSafeToDelete(MachineInstr *MI,
+ const TargetInstrInfo *TII,
+ SmallVector<unsigned, 4> &Kills) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MCID.mayStore() || MCID.isCall())
+ return false;
+ if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
+ return false;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.isDef() && !MO.isDead())
+ return false;
+ if (MO.isUse() && MO.isKill())
+ Kills.push_back(MO.getReg());
+ }
+ return true;
+}
+
+/// canUpdateDeletedKills - Check if all the registers listed in Kills are
+/// killed by instructions in MBB preceding the current instruction at
+/// position Dist. If so, return true and record information about the
+/// preceding kills in NewKills.
+bool TwoAddressInstructionPass::
+canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
+ SmallVector<NewKill, 4> &NewKills,
+ MachineBasicBlock *MBB, unsigned Dist) {
+ while (!Kills.empty()) {
+ unsigned Kill = Kills.back();
+ Kills.pop_back();
+ if (TargetRegisterInfo::isPhysicalRegister(Kill))
+ return false;
+
+ MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
+ if (!LastKill)
+ return false;
+
+ bool isModRef = LastKill->definesRegister(Kill);
+ NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
+ LastKill));
+ }
+ return true;
+}
+
+/// DeleteUnusedInstr - If an instruction with a tied register operand can
+/// be safely deleted, just delete it.
+bool
+TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned Dist) {
+ // Check if the instruction has no side effects and if all its defs are dead.
+ SmallVector<unsigned, 4> Kills;
+ if (!isSafeToDelete(mi, TII, Kills))
+ return false;
+
+ // If this instruction kills some virtual registers, we need to
+ // update the kill information. If it's not possible to do so,
+ // then bail out.
+ SmallVector<NewKill, 4> NewKills;
+ if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
+ return false;
+
+ if (LV) {
+ while (!NewKills.empty()) {
+ MachineInstr *NewKill = NewKills.back().second;
+ unsigned Kill = NewKills.back().first.first;
+ bool isDead = NewKills.back().first.second;
+ NewKills.pop_back();
+ if (LV->removeVirtualRegisterKilled(Kill, mi)) {
+ if (isDead)
+ LV->addVirtualRegisterDead(Kill, NewKill);
+ else
+ LV->addVirtualRegisterKilled(Kill, NewKill);
+ }
+ }
+ }
+
+ mbbi->erase(mi); // Nuke the old inst.
+ mi = nmi;
+ return true;
+}
+
+/// TryInstructionTransform - For the case where an instruction has a single
+/// pair of tied register operands, attempt some transformations that may
+/// either eliminate the tied operands or improve the opportunities for
+/// coalescing away the register copy. Returns true if the tied operands
+/// are eliminated altogether.
+bool TwoAddressInstructionPass::
+TryInstructionTransform(MachineBasicBlock::iterator &mi,
+ MachineBasicBlock::iterator &nmi,
+ MachineFunction::iterator &mbbi,
+ unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
+ SmallPtrSet<MachineInstr*, 8> &Processed) {
+ const MCInstrDesc &MCID = mi->getDesc();
+ unsigned regA = mi->getOperand(DstIdx).getReg();
+ unsigned regB = mi->getOperand(SrcIdx).getReg();
+
+ assert(TargetRegisterInfo::isVirtualRegister(regB) &&
+ "cannot make instruction into two-address form");
+
+ // If regA is dead and the instruction can be deleted, just delete
+ // it so it doesn't clobber regB.
+ bool regBKilled = isKilled(*mi, regB, MRI, TII);
+ if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
+ DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
+ ++NumDeletes;
+ return true; // Done with this instruction.
+ }
+
+ // Check if it is profitable to commute the operands.
+ unsigned SrcOp1, SrcOp2;
+ unsigned regC = 0;
+ unsigned regCIdx = ~0U;
+ bool TryCommute = false;
+ bool AggressiveCommute = false;
+ if (MCID.isCommutable() && mi->getNumOperands() >= 3 &&
+ TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
+ if (SrcIdx == SrcOp1)
+ regCIdx = SrcOp2;
+ else if (SrcIdx == SrcOp2)
+ regCIdx = SrcOp1;
+
+ if (regCIdx != ~0U) {
+ regC = mi->getOperand(regCIdx).getReg();
+ if (!regBKilled && isKilled(*mi, regC, MRI, TII))
+ // If C dies but B does not, swap the B and C operands.
+ // This makes the live ranges of A and C joinable.
+ TryCommute = true;
+ else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
+ TryCommute = true;
+ AggressiveCommute = true;
+ }
+ }
+ }
+
+ // If it's profitable to commute, try to do so.
+ if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
+ ++NumCommuted;
+ if (AggressiveCommute)
+ ++NumAggrCommuted;
+ return false;
+ }
+
+ if (TargetRegisterInfo::isVirtualRegister(regA))
+ ScanUses(regA, &*mbbi, Processed);
+
+ if (MCID.isConvertibleTo3Addr()) {
+ // This instruction is potentially convertible to a true
+ // three-address instruction. Check if it is profitable.
+ if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
+ // Try to convert it.
+ if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
+ ++NumConvertedTo3Addr;
+ return true; // Done with this instruction.
+ }
+ }
+ }
+
+ // If this is an instruction with a load folded into it, try unfolding
+ // the load, e.g. avoid this:
+ // movq %rdx, %rcx
+ // addq (%rax), %rcx
+ // in favor of this:
+ // movq (%rax), %rcx
+ // addq %rdx, %rcx
+ // because it's preferable to schedule a load than a register copy.
+ if (MCID.mayLoad() && !regBKilled) {
+ // Determine if a load can be unfolded.
+ unsigned LoadRegIndex;
+ unsigned NewOpc =
+ TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
+ /*UnfoldLoad=*/true,
+ /*UnfoldStore=*/false,
+ &LoadRegIndex);
+ if (NewOpc != 0) {
+ const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
+ if (UnfoldMCID.getNumDefs() == 1) {
+ MachineFunction &MF = *mbbi->getParent();
+
+ // Unfold the load.
+ DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi);
+ const TargetRegisterClass *RC =
+ TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
+ unsigned Reg = MRI->createVirtualRegister(RC);
+ SmallVector<MachineInstr *, 2> NewMIs;
+ if (!TII->unfoldMemoryOperand(MF, mi, Reg,
+ /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
+ NewMIs)) {
+ DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
+ return false;
+ }
+ assert(NewMIs.size() == 2 &&
+ "Unfolded a load into multiple instructions!");
+ // The load was previously folded, so this is the only use.
+ NewMIs[1]->addRegisterKilled(Reg, TRI);
+
+ // Tentatively insert the instructions into the block so that they
+ // look "normal" to the transformation logic.
+ mbbi->insert(mi, NewMIs[0]);
+ mbbi->insert(mi, NewMIs[1]);
+
+ DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
+ << "2addr: NEW INST: " << *NewMIs[1]);
+
+ // Transform the instruction, now that it no longer has a load.
+ unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
+ unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
+ MachineBasicBlock::iterator NewMI = NewMIs[1];
+ bool TransformSuccess =
+ TryInstructionTransform(NewMI, mi, mbbi,
+ NewSrcIdx, NewDstIdx, Dist, Processed);
+ if (TransformSuccess ||
+ NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
+ // Success, or at least we made an improvement. Keep the unfolded
+ // instructions and discard the original.
+ if (LV) {
+ for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = mi->getOperand(i);
+ if (MO.isReg() &&
+ TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ if (MO.isUse()) {
+ if (MO.isKill()) {
+ if (NewMIs[0]->killsRegister(MO.getReg()))
+ LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
+ else {
+ assert(NewMIs[1]->killsRegister(MO.getReg()) &&
+ "Kill missing after load unfold!");
+ LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
+ }
+ }
+ } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
+ if (NewMIs[1]->registerDefIsDead(MO.getReg()))
+ LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
+ else {
+ assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
+ "Dead flag missing after load unfold!");
+ LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
+ }
+ }
+ }
+ }
+ LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
+ }
+ mi->eraseFromParent();
+ mi = NewMIs[1];
+ if (TransformSuccess)
+ return true;
+ } else {
+ // Transforming didn't eliminate the tie and didn't lead to an
+ // improvement. Clean up the unfolded instructions and keep the
+ // original.
+ DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
+ NewMIs[0]->eraseFromParent();
+ NewMIs[1]->eraseFromParent();
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/// runOnMachineFunction - Reduce two-address instructions to two operands.
+///
+bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "Machine Function\n");
+ const TargetMachine &TM = MF.getTarget();
+ MRI = &MF.getRegInfo();
+ TII = TM.getInstrInfo();
+ TRI = TM.getRegisterInfo();
+ LV = getAnalysisIfAvailable<LiveVariables>();
+ AA = &getAnalysis<AliasAnalysis>();
+
+ bool MadeChange = false;
+
+ DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
+ DEBUG(dbgs() << "********** Function: "
+ << MF.getFunction()->getName() << '\n');
+
+ // ReMatRegs - Keep track of the registers whose def's are remat'ed.
+ BitVector ReMatRegs(MRI->getNumVirtRegs());
+
+ typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
+ TiedOperandMap;
+ TiedOperandMap TiedOperands(4);
+
+ SmallPtrSet<MachineInstr*, 8> Processed;
+ for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
+ mbbi != mbbe; ++mbbi) {
+ unsigned Dist = 0;
+ DistanceMap.clear();
+ SrcRegMap.clear();
+ DstRegMap.clear();
+ Processed.clear();
+ for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
+ mi != me; ) {
+ MachineBasicBlock::iterator nmi = llvm::next(mi);
+ if (mi->isDebugValue()) {
+ mi = nmi;
+ continue;
+ }
+
+ // Remember REG_SEQUENCE instructions, we'll deal with them later.
+ if (mi->isRegSequence())
+ RegSequences.push_back(&*mi);
+
+ const MCInstrDesc &MCID = mi->getDesc();
+ bool FirstTied = true;
+
+ DistanceMap.insert(std::make_pair(mi, ++Dist));
+
+ ProcessCopy(&*mi, &*mbbi, Processed);
+
+ // First scan through all the tied register uses in this instruction
+ // and record a list of pairs of tied operands for each register.
+ unsigned NumOps = mi->isInlineAsm()
+ ? mi->getNumOperands() : MCID.getNumOperands();
+ for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
+ unsigned DstIdx = 0;
+ if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
+ continue;
+
+ if (FirstTied) {
+ FirstTied = false;
+ ++NumTwoAddressInstrs;
+ DEBUG(dbgs() << '\t' << *mi);
+ }
+
+ assert(mi->getOperand(SrcIdx).isReg() &&
+ mi->getOperand(SrcIdx).getReg() &&
+ mi->getOperand(SrcIdx).isUse() &&
+ "two address instruction invalid");
+
+ unsigned regB = mi->getOperand(SrcIdx).getReg();
+ TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
+ }
+
+ // Now iterate over the information collected above.
+ for (TiedOperandMap::iterator OI = TiedOperands.begin(),
+ OE = TiedOperands.end(); OI != OE; ++OI) {
+ SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
+
+ // If the instruction has a single pair of tied operands, try some
+ // transformations that may either eliminate the tied operands or
+ // improve the opportunities for coalescing away the register copy.
+ if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
+ unsigned SrcIdx = TiedPairs[0].first;
+ unsigned DstIdx = TiedPairs[0].second;
+
+ // If the registers are already equal, nothing needs to be done.
+ if (mi->getOperand(SrcIdx).getReg() ==
+ mi->getOperand(DstIdx).getReg())
+ break; // Done with this instruction.
+
+ if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
+ Processed))
+ break; // The tied operands have been eliminated.
+ }
+
+ bool IsEarlyClobber = false;
+ bool RemovedKillFlag = false;
+ bool AllUsesCopied = true;
+ unsigned LastCopiedReg = 0;
+ unsigned regB = OI->first;
+ for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
+ unsigned SrcIdx = TiedPairs[tpi].first;
+ unsigned DstIdx = TiedPairs[tpi].second;
+
+ const MachineOperand &DstMO = mi->getOperand(DstIdx);
+ unsigned regA = DstMO.getReg();
+ IsEarlyClobber |= DstMO.isEarlyClobber();
+
+ // Grab regB from the instruction because it may have changed if the
+ // instruction was commuted.
+ regB = mi->getOperand(SrcIdx).getReg();
+
+ if (regA == regB) {
+ // The register is tied to multiple destinations (or else we would
+ // not have continued this far), but this use of the register
+ // already matches the tied destination. Leave it.
+ AllUsesCopied = false;
+ continue;
+ }
+ LastCopiedReg = regA;
+
+ assert(TargetRegisterInfo::isVirtualRegister(regB) &&
+ "cannot make instruction into two-address form");
+
+#ifndef NDEBUG
+ // First, verify that we don't have a use of "a" in the instruction
+ // (a = b + a for example) because our transformation will not
+ // work. This should never occur because we are in SSA form.
+ for (unsigned i = 0; i != mi->getNumOperands(); ++i)
+ assert(i == DstIdx ||
+ !mi->getOperand(i).isReg() ||
+ mi->getOperand(i).getReg() != regA);
+#endif
+
+ // Emit a copy or rematerialize the definition.
+ const TargetRegisterClass *rc = MRI->getRegClass(regB);
+ MachineInstr *DefMI = MRI->getVRegDef(regB);
+ // If it's safe and profitable, remat the definition instead of
+ // copying it.
+ if (DefMI &&
+ DefMI->getDesc().isAsCheapAsAMove() &&
+ DefMI->isSafeToReMat(TII, AA, regB) &&
+ isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
+ DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
+ unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
+ TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
+ ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
+ ++NumReMats;
+ } else {
+ BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
+ regA).addReg(regB);
+ }
+
+ MachineBasicBlock::iterator prevMI = prior(mi);
+ // Update DistanceMap.
+ DistanceMap.insert(std::make_pair(prevMI, Dist));
+ DistanceMap[mi] = ++Dist;
+
+ DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
+
+ MachineOperand &MO = mi->getOperand(SrcIdx);
+ assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
+ "inconsistent operand info for 2-reg pass");
+ if (MO.isKill()) {
+ MO.setIsKill(false);
+ RemovedKillFlag = true;
+ }
+ MO.setReg(regA);
+ }
+
+ if (AllUsesCopied) {
+ if (!IsEarlyClobber) {
+ // Replace other (un-tied) uses of regB with LastCopiedReg.
+ for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = mi->getOperand(i);
+ if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
+ if (MO.isKill()) {
+ MO.setIsKill(false);
+ RemovedKillFlag = true;
+ }
+ MO.setReg(LastCopiedReg);
+ }
+ }
+ }
+
+ // Update live variables for regB.
+ if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
+ LV->addVirtualRegisterKilled(regB, prior(mi));
+
+ } else if (RemovedKillFlag) {
+ // Some tied uses of regB matched their destination registers, so
+ // regB is still used in this instruction, but a kill flag was
+ // removed from a different tied use of regB, so now we need to add
+ // a kill flag to one of the remaining uses of regB.
+ for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = mi->getOperand(i);
+ if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
+ MO.setIsKill(true);
+ break;
+ }
+ }
+ }
+
+ // Schedule the source copy / remat inserted to form two-address
+ // instruction. FIXME: Does it matter the distance map may not be
+ // accurate after it's scheduled?
+ TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
+
+ MadeChange = true;
+
+ DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
+ }
+
+ // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
+ if (mi->isInsertSubreg()) {
+ // From %reg = INSERT_SUBREG %reg, %subreg, subidx
+ // To %reg:subidx = COPY %subreg
+ unsigned SubIdx = mi->getOperand(3).getImm();
+ mi->RemoveOperand(3);
+ assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
+ mi->getOperand(0).setSubReg(SubIdx);
+ mi->RemoveOperand(1);
+ mi->setDesc(TII->get(TargetOpcode::COPY));
+ DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
+ }
+
+ // Clear TiedOperands here instead of at the top of the loop
+ // since most instructions do not have tied operands.
+ TiedOperands.clear();
+ mi = nmi;
+ }
+ }
+
+ // Some remat'ed instructions are dead.
+ for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
+ unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->use_nodbg_empty(VReg)) {
+ MachineInstr *DefMI = MRI->getVRegDef(VReg);
+ DefMI->eraseFromParent();
+ }
+ }
+
+ // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
+ // SSA form. It's now safe to de-SSA.
+ MadeChange |= EliminateRegSequences();
+
+ return MadeChange;
+}
+
+static void UpdateRegSequenceSrcs(unsigned SrcReg,
+ unsigned DstReg, unsigned SubIdx,
+ MachineRegisterInfo *MRI,
+ const TargetRegisterInfo &TRI) {
+ for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
+ RE = MRI->reg_end(); RI != RE; ) {
+ MachineOperand &MO = RI.getOperand();
+ ++RI;
+ MO.substVirtReg(DstReg, SubIdx, TRI);
+ }
+}
+
+/// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
+/// EXTRACT_SUBREG from the same register and to the same virtual register
+/// with different sub-register indices, attempt to combine the
+/// EXTRACT_SUBREGs and pre-coalesce them. e.g.
+/// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
+/// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
+/// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
+/// Since D subregs 5, 6 can combine to a Q register, we can coalesce
+/// reg1026 to reg1029.
+void
+TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
+ unsigned DstReg) {
+ SmallSet<unsigned, 4> Seen;
+ for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
+ unsigned SrcReg = Srcs[i];
+ if (!Seen.insert(SrcReg))
+ continue;
+
+ // Check that the instructions are all in the same basic block.
+ MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
+ MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
+ if (SrcDefMI->getParent() != DstDefMI->getParent())
+ continue;
+
+ // If there are no other uses than copies which feed into
+ // the reg_sequence, then we might be able to coalesce them.
+ bool CanCoalesce = true;
+ SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
+ for (MachineRegisterInfo::use_nodbg_iterator
+ UI = MRI->use_nodbg_begin(SrcReg),
+ UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
+ CanCoalesce = false;
+ break;
+ }
+ SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
+ DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
+ }
+
+ if (!CanCoalesce || SrcSubIndices.size() < 2)
+ continue;
+
+ // Check that the source subregisters can be combined.
+ std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
+ unsigned NewSrcSubIdx = 0;
+ if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
+ NewSrcSubIdx))
+ continue;
+
+ // Check that the destination subregisters can also be combined.
+ std::sort(DstSubIndices.begin(), DstSubIndices.end());
+ unsigned NewDstSubIdx = 0;
+ if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
+ NewDstSubIdx))
+ continue;
+
+ // If neither source nor destination can be combined to the full register,
+ // just give up. This could be improved if it ever matters.
+ if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
+ continue;
+
+ // Now that we know that all the uses are extract_subregs and that those
+ // subregs can somehow be combined, scan all the extract_subregs again to
+ // make sure the subregs are in the right order and can be composed.
+ MachineInstr *SomeMI = 0;
+ CanCoalesce = true;
+ for (MachineRegisterInfo::use_nodbg_iterator
+ UI = MRI->use_nodbg_begin(SrcReg),
+ UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ assert(UseMI->isCopy());
+ unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
+ unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
+ assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
+ if ((NewDstSubIdx == 0 &&
+ TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
+ (NewSrcSubIdx == 0 &&
+ TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
+ CanCoalesce = false;
+ break;
+ }
+ // Keep track of one of the uses.
+ SomeMI = UseMI;
+ }
+ if (!CanCoalesce)
+ continue;
+
+ // Insert a copy to replace the original.
+ MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
+ SomeMI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY))
+ .addReg(DstReg, RegState::Define, NewDstSubIdx)
+ .addReg(SrcReg, 0, NewSrcSubIdx);
+
+ // Remove all the old extract instructions.
+ for (MachineRegisterInfo::use_nodbg_iterator
+ UI = MRI->use_nodbg_begin(SrcReg),
+ UE = MRI->use_nodbg_end(); UI != UE; ) {
+ MachineInstr *UseMI = &*UI;
+ ++UI;
+ if (UseMI == CopyMI)
+ continue;
+ assert(UseMI->isCopy());
+ // Move any kills to the new copy or extract instruction.
+ if (UseMI->getOperand(1).isKill()) {
+ CopyMI->getOperand(1).setIsKill();
+ if (LV)
+ // Update live variables
+ LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
+ }
+ UseMI->eraseFromParent();
+ }
+ }
+}
+
+static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
+ MachineRegisterInfo *MRI) {
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
+ UE = MRI->use_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ if (UseMI != RegSeq && UseMI->isRegSequence())
+ return true;
+ }
+ return false;
+}
+
+/// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
+/// of the de-ssa process. This replaces sources of REG_SEQUENCE as
+/// sub-register references of the register defined by REG_SEQUENCE. e.g.
+///
+/// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
+/// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
+/// =>
+/// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
+bool TwoAddressInstructionPass::EliminateRegSequences() {
+ if (RegSequences.empty())
+ return false;
+
+ for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
+ MachineInstr *MI = RegSequences[i];
+ unsigned DstReg = MI->getOperand(0).getReg();
+ if (MI->getOperand(0).getSubReg() ||
+ TargetRegisterInfo::isPhysicalRegister(DstReg) ||
+ !(MI->getNumOperands() & 1)) {
+ DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
+ llvm_unreachable(0);
+ }
+
+ bool IsImpDef = true;
+ SmallVector<unsigned, 4> RealSrcs;
+ SmallSet<unsigned, 4> Seen;
+ for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
+ unsigned SrcReg = MI->getOperand(i).getReg();
+ unsigned SubIdx = MI->getOperand(i+1).getImm();
+ if (MI->getOperand(i).getSubReg() ||
+ TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
+ DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
+ llvm_unreachable(0);
+ }
+
+ MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
+ if (DefMI->isImplicitDef()) {
+ DefMI->eraseFromParent();
+ continue;
+ }
+ IsImpDef = false;
+
+ // Remember COPY sources. These might be candidate for coalescing.
+ if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
+ RealSrcs.push_back(DefMI->getOperand(1).getReg());
+
+ bool isKill = MI->getOperand(i).isKill();
+ if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
+ !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
+ !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
+ MRI->getRegClass(SrcReg), SubIdx)) {
+ // REG_SEQUENCE cannot have duplicated operands, add a copy.
+ // Also add an copy if the source is live-in the block. We don't want
+ // to end up with a partial-redef of a livein, e.g.
+ // BB0:
+ // reg1051:10<def> =
+ // ...
+ // BB1:
+ // ... = reg1051:10
+ // BB2:
+ // reg1051:9<def> =
+ // LiveIntervalAnalysis won't like it.
+ //
+ // If the REG_SEQUENCE doesn't kill its source, keeping live variables
+ // correctly up to date becomes very difficult. Insert a copy.
+
+ // Defer any kill flag to the last operand using SrcReg. Otherwise, we
+ // might insert a COPY that uses SrcReg after is was killed.
+ if (isKill)
+ for (unsigned j = i + 2; j < e; j += 2)
+ if (MI->getOperand(j).getReg() == SrcReg) {
+ MI->getOperand(j).setIsKill();
+ isKill = false;
+ break;
+ }
+
+ MachineBasicBlock::iterator InsertLoc = MI;
+ MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
+ MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
+ .addReg(DstReg, RegState::Define, SubIdx)
+ .addReg(SrcReg, getKillRegState(isKill));
+ MI->getOperand(i).setReg(0);
+ if (LV && isKill)
+ LV->replaceKillInstruction(SrcReg, MI, CopyMI);
+ DEBUG(dbgs() << "Inserted: " << *CopyMI);
+ }
+ }
+
+ for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
+ unsigned SrcReg = MI->getOperand(i).getReg();
+ if (!SrcReg) continue;
+ unsigned SubIdx = MI->getOperand(i+1).getImm();
+ UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
+ }
+
+ if (IsImpDef) {
+ DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
+ MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
+ for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
+ MI->RemoveOperand(j);
+ } else {
+ DEBUG(dbgs() << "Eliminated: " << *MI);
+ MI->eraseFromParent();
+ }
+
+ // Try coalescing some EXTRACT_SUBREG instructions. This can create
+ // INSERT_SUBREG instructions that must have <undef> flags added by
+ // LiveIntervalAnalysis, so only run it when LiveVariables is available.
+ if (LV)
+ CoalesceExtSubRegs(RealSrcs, DstReg);
+ }
+
+ RegSequences.clear();
+ return true;
+}
OpenPOWER on IntegriCloud