diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/TargetSchedule.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/TargetSchedule.cpp | 309 |
1 files changed, 309 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/TargetSchedule.cpp b/contrib/llvm/lib/CodeGen/TargetSchedule.cpp new file mode 100644 index 0000000..783bfa1 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/TargetSchedule.cpp @@ -0,0 +1,309 @@ +//===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a wrapper around MCSchedModel that allows the interface +// to benefit from information currently only available in TargetInstrInfo. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" + +using namespace llvm; + +static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), + cl::desc("Use TargetSchedModel for latency lookup")); + +static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), + cl::desc("Use InstrItineraryData for latency lookup")); + +bool TargetSchedModel::hasInstrSchedModel() const { + return EnableSchedModel && SchedModel.hasInstrSchedModel(); +} + +bool TargetSchedModel::hasInstrItineraries() const { + return EnableSchedItins && !InstrItins.isEmpty(); +} + +static unsigned gcd(unsigned Dividend, unsigned Divisor) { + // Dividend and Divisor will be naturally swapped as needed. + while(Divisor) { + unsigned Rem = Dividend % Divisor; + Dividend = Divisor; + Divisor = Rem; + }; + return Dividend; +} +static unsigned lcm(unsigned A, unsigned B) { + unsigned LCM = (uint64_t(A) * B) / gcd(A, B); + assert((LCM >= A && LCM >= B) && "LCM overflow"); + return LCM; +} + +void TargetSchedModel::init(const MCSchedModel &sm, + const TargetSubtargetInfo *sti, + const TargetInstrInfo *tii) { + SchedModel = sm; + STI = sti; + TII = tii; + STI->initInstrItins(InstrItins); + + unsigned NumRes = SchedModel.getNumProcResourceKinds(); + ResourceFactors.resize(NumRes); + ResourceLCM = SchedModel.IssueWidth; + for (unsigned Idx = 0; Idx < NumRes; ++Idx) { + unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; + if (NumUnits > 0) + ResourceLCM = lcm(ResourceLCM, NumUnits); + } + MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; + for (unsigned Idx = 0; Idx < NumRes; ++Idx) { + unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; + ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; + } +} + +unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, + const MCSchedClassDesc *SC) const { + if (hasInstrItineraries()) { + int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); + return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI); + } + if (hasInstrSchedModel()) { + if (!SC) + SC = resolveSchedClass(MI); + if (SC->isValid()) + return SC->NumMicroOps; + } + return MI->isTransient() ? 0 : 1; +} + +// The machine model may explicitly specify an invalid latency, which +// effectively means infinite latency. Since users of the TargetSchedule API +// don't know how to handle this, we convert it to a very large latency that is +// easy to distinguish when debugging the DAG but won't induce overflow. +static unsigned convertLatency(int Cycles) { + return Cycles >= 0 ? Cycles : 1000; +} + +/// If we can determine the operand latency from the def only, without machine +/// model or itinerary lookup, do so. Otherwise return -1. +int TargetSchedModel::getDefLatency(const MachineInstr *DefMI, + bool FindMin) const { + + // Return a latency based on the itinerary properties and defining instruction + // if possible. Some common subtargets don't require per-operand latency, + // especially for minimum latencies. + if (FindMin) { + // If MinLatency is invalid, then use the itinerary for MinLatency. If no + // itinerary exists either, then use single cycle latency. + if (SchedModel.MinLatency < 0 && !hasInstrItineraries()) { + return 1; + } + return SchedModel.MinLatency; + } + else if (!hasInstrSchedModel() && !hasInstrItineraries()) { + return TII->defaultDefLatency(&SchedModel, DefMI); + } + // ...operand lookup required + return -1; +} + +/// Return the MCSchedClassDesc for this instruction. Some SchedClasses require +/// evaluation of predicates that depend on instruction operands or flags. +const MCSchedClassDesc *TargetSchedModel:: +resolveSchedClass(const MachineInstr *MI) const { + + // Get the definition's scheduling class descriptor from this machine model. + unsigned SchedClass = MI->getDesc().getSchedClass(); + const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); + +#ifndef NDEBUG + unsigned NIter = 0; +#endif + while (SCDesc->isVariant()) { + assert(++NIter < 6 && "Variants are nested deeper than the magic number"); + + SchedClass = STI->resolveSchedClass(SchedClass, MI, this); + SCDesc = SchedModel.getSchedClassDesc(SchedClass); + } + return SCDesc; +} + +/// Find the def index of this operand. This index maps to the machine model and +/// is independent of use operands. Def operands may be reordered with uses or +/// merged with uses without affecting the def index (e.g. before/after +/// regalloc). However, an instruction's def operands must never be reordered +/// with respect to each other. +static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { + unsigned DefIdx = 0; + for (unsigned i = 0; i != DefOperIdx; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef()) + ++DefIdx; + } + return DefIdx; +} + +/// Find the use index of this operand. This is independent of the instruction's +/// def operands. +/// +/// Note that uses are not determined by the operand's isUse property, which +/// is simply the inverse of isDef. Here we consider any readsReg operand to be +/// a "use". The machine model allows an operand to be both a Def and Use. +static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { + unsigned UseIdx = 0; + for (unsigned i = 0; i != UseOperIdx; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.readsReg()) + ++UseIdx; + } + return UseIdx; +} + +// Top-level API for clients that know the operand indices. +unsigned TargetSchedModel::computeOperandLatency( + const MachineInstr *DefMI, unsigned DefOperIdx, + const MachineInstr *UseMI, unsigned UseOperIdx, + bool FindMin) const { + + int DefLatency = getDefLatency(DefMI, FindMin); + if (DefLatency >= 0) + return DefLatency; + + if (hasInstrItineraries()) { + int OperLatency = 0; + if (UseMI) { + OperLatency = + TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, UseMI, UseOperIdx); + } + else { + unsigned DefClass = DefMI->getDesc().getSchedClass(); + OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); + } + if (OperLatency >= 0) + return OperLatency; + + // No operand latency was found. + unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI); + + // Expected latency is the max of the stage latency and itinerary props. + // Rather than directly querying InstrItins stage latency, we call a TII + // hook to allow subtargets to specialize latency. This hook is only + // applicable to the InstrItins model. InstrSchedModel should model all + // special cases without TII hooks. + if (!FindMin) + InstrLatency = std::max(InstrLatency, + TII->defaultDefLatency(&SchedModel, DefMI)); + return InstrLatency; + } + assert(!FindMin && hasInstrSchedModel() && + "Expected a SchedModel for this cpu"); + const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); + unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); + if (DefIdx < SCDesc->NumWriteLatencyEntries) { + // Lookup the definition's write latency in SubtargetInfo. + const MCWriteLatencyEntry *WLEntry = + STI->getWriteLatencyEntry(SCDesc, DefIdx); + unsigned WriteID = WLEntry->WriteResourceID; + unsigned Latency = convertLatency(WLEntry->Cycles); + if (!UseMI) + return Latency; + + // Lookup the use's latency adjustment in SubtargetInfo. + const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); + if (UseDesc->NumReadAdvanceEntries == 0) + return Latency; + unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); + return Latency - STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); + } + // If DefIdx does not exist in the model (e.g. implicit defs), then return + // unit latency (defaultDefLatency may be too conservative). +#ifndef NDEBUG + if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() + && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) { + std::string Err; + raw_string_ostream ss(Err); + ss << "DefIdx " << DefIdx << " exceeds machine model writes for " + << *DefMI; + report_fatal_error(ss.str()); + } +#endif + // FIXME: Automatically giving all implicit defs defaultDefLatency is + // undesirable. We should only do it for defs that are known to the MC + // desc like flags. Truly implicit defs should get 1 cycle latency. + return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI); +} + +unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const { + // For the itinerary model, fall back to the old subtarget hook. + // Allow subtargets to compute Bundle latencies outside the machine model. + if (hasInstrItineraries() || MI->isBundle()) + return TII->getInstrLatency(&InstrItins, MI); + + if (hasInstrSchedModel()) { + const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); + if (SCDesc->isValid()) { + unsigned Latency = 0; + for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries; + DefIdx != DefEnd; ++DefIdx) { + // Lookup the definition's write latency in SubtargetInfo. + const MCWriteLatencyEntry *WLEntry = + STI->getWriteLatencyEntry(SCDesc, DefIdx); + Latency = std::max(Latency, convertLatency(WLEntry->Cycles)); + } + return Latency; + } + } + return TII->defaultDefLatency(&SchedModel, MI); +} + +unsigned TargetSchedModel:: +computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, + const MachineInstr *DepMI) const { + // MinLatency == -1 is for in-order processors that always have unit + // MinLatency. MinLatency > 0 is for in-order processors with varying min + // latencies, but since this is not a RAW dep, we always use unit latency. + if (SchedModel.MinLatency != 0) + return 1; + + // MinLatency == 0 indicates an out-of-order processor that can dispatch + // WAW dependencies in the same cycle. + + // Treat predication as a data dependency for out-of-order cpus. In-order + // cpus do not need to treat predicated writes specially. + // + // TODO: The following hack exists because predication passes do not + // correctly append imp-use operands, and readsReg() strangely returns false + // for predicated defs. + unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); + const MachineFunction &MF = *DefMI->getParent()->getParent(); + const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); + if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI)) + return computeInstrLatency(DefMI); + + // If we have a per operand scheduling model, check if this def is writing + // an unbuffered resource. If so, it treated like an in-order cpu. + if (hasInstrSchedModel()) { + const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); + if (SCDesc->isValid()) { + for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), + *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { + if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->IsBuffered) + return 1; + } + } + } + return 0; +} |