summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp1678
1 files changed, 1678 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
new file mode 100644
index 0000000..78492a6
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/TargetLoweringBase.cpp
@@ -0,0 +1,1678 @@
+//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the TargetLoweringBase class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <cctype>
+using namespace llvm;
+
+static cl::opt<bool> JumpIsExpensiveOverride(
+ "jump-is-expensive", cl::init(false),
+ cl::desc("Do not create extra branches to split comparison logic."),
+ cl::Hidden);
+
+/// InitLibcallNames - Set default libcall names.
+///
+static void InitLibcallNames(const char **Names, const Triple &TT) {
+ Names[RTLIB::SHL_I16] = "__ashlhi3";
+ Names[RTLIB::SHL_I32] = "__ashlsi3";
+ Names[RTLIB::SHL_I64] = "__ashldi3";
+ Names[RTLIB::SHL_I128] = "__ashlti3";
+ Names[RTLIB::SRL_I16] = "__lshrhi3";
+ Names[RTLIB::SRL_I32] = "__lshrsi3";
+ Names[RTLIB::SRL_I64] = "__lshrdi3";
+ Names[RTLIB::SRL_I128] = "__lshrti3";
+ Names[RTLIB::SRA_I16] = "__ashrhi3";
+ Names[RTLIB::SRA_I32] = "__ashrsi3";
+ Names[RTLIB::SRA_I64] = "__ashrdi3";
+ Names[RTLIB::SRA_I128] = "__ashrti3";
+ Names[RTLIB::MUL_I8] = "__mulqi3";
+ Names[RTLIB::MUL_I16] = "__mulhi3";
+ Names[RTLIB::MUL_I32] = "__mulsi3";
+ Names[RTLIB::MUL_I64] = "__muldi3";
+ Names[RTLIB::MUL_I128] = "__multi3";
+ Names[RTLIB::MULO_I32] = "__mulosi4";
+ Names[RTLIB::MULO_I64] = "__mulodi4";
+ Names[RTLIB::MULO_I128] = "__muloti4";
+ Names[RTLIB::SDIV_I8] = "__divqi3";
+ Names[RTLIB::SDIV_I16] = "__divhi3";
+ Names[RTLIB::SDIV_I32] = "__divsi3";
+ Names[RTLIB::SDIV_I64] = "__divdi3";
+ Names[RTLIB::SDIV_I128] = "__divti3";
+ Names[RTLIB::UDIV_I8] = "__udivqi3";
+ Names[RTLIB::UDIV_I16] = "__udivhi3";
+ Names[RTLIB::UDIV_I32] = "__udivsi3";
+ Names[RTLIB::UDIV_I64] = "__udivdi3";
+ Names[RTLIB::UDIV_I128] = "__udivti3";
+ Names[RTLIB::SREM_I8] = "__modqi3";
+ Names[RTLIB::SREM_I16] = "__modhi3";
+ Names[RTLIB::SREM_I32] = "__modsi3";
+ Names[RTLIB::SREM_I64] = "__moddi3";
+ Names[RTLIB::SREM_I128] = "__modti3";
+ Names[RTLIB::UREM_I8] = "__umodqi3";
+ Names[RTLIB::UREM_I16] = "__umodhi3";
+ Names[RTLIB::UREM_I32] = "__umodsi3";
+ Names[RTLIB::UREM_I64] = "__umoddi3";
+ Names[RTLIB::UREM_I128] = "__umodti3";
+
+ // These are generally not available.
+ Names[RTLIB::SDIVREM_I8] = nullptr;
+ Names[RTLIB::SDIVREM_I16] = nullptr;
+ Names[RTLIB::SDIVREM_I32] = nullptr;
+ Names[RTLIB::SDIVREM_I64] = nullptr;
+ Names[RTLIB::SDIVREM_I128] = nullptr;
+ Names[RTLIB::UDIVREM_I8] = nullptr;
+ Names[RTLIB::UDIVREM_I16] = nullptr;
+ Names[RTLIB::UDIVREM_I32] = nullptr;
+ Names[RTLIB::UDIVREM_I64] = nullptr;
+ Names[RTLIB::UDIVREM_I128] = nullptr;
+
+ Names[RTLIB::NEG_I32] = "__negsi2";
+ Names[RTLIB::NEG_I64] = "__negdi2";
+ Names[RTLIB::ADD_F32] = "__addsf3";
+ Names[RTLIB::ADD_F64] = "__adddf3";
+ Names[RTLIB::ADD_F80] = "__addxf3";
+ Names[RTLIB::ADD_F128] = "__addtf3";
+ Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
+ Names[RTLIB::SUB_F32] = "__subsf3";
+ Names[RTLIB::SUB_F64] = "__subdf3";
+ Names[RTLIB::SUB_F80] = "__subxf3";
+ Names[RTLIB::SUB_F128] = "__subtf3";
+ Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
+ Names[RTLIB::MUL_F32] = "__mulsf3";
+ Names[RTLIB::MUL_F64] = "__muldf3";
+ Names[RTLIB::MUL_F80] = "__mulxf3";
+ Names[RTLIB::MUL_F128] = "__multf3";
+ Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
+ Names[RTLIB::DIV_F32] = "__divsf3";
+ Names[RTLIB::DIV_F64] = "__divdf3";
+ Names[RTLIB::DIV_F80] = "__divxf3";
+ Names[RTLIB::DIV_F128] = "__divtf3";
+ Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
+ Names[RTLIB::REM_F32] = "fmodf";
+ Names[RTLIB::REM_F64] = "fmod";
+ Names[RTLIB::REM_F80] = "fmodl";
+ Names[RTLIB::REM_F128] = "fmodl";
+ Names[RTLIB::REM_PPCF128] = "fmodl";
+ Names[RTLIB::FMA_F32] = "fmaf";
+ Names[RTLIB::FMA_F64] = "fma";
+ Names[RTLIB::FMA_F80] = "fmal";
+ Names[RTLIB::FMA_F128] = "fmal";
+ Names[RTLIB::FMA_PPCF128] = "fmal";
+ Names[RTLIB::POWI_F32] = "__powisf2";
+ Names[RTLIB::POWI_F64] = "__powidf2";
+ Names[RTLIB::POWI_F80] = "__powixf2";
+ Names[RTLIB::POWI_F128] = "__powitf2";
+ Names[RTLIB::POWI_PPCF128] = "__powitf2";
+ Names[RTLIB::SQRT_F32] = "sqrtf";
+ Names[RTLIB::SQRT_F64] = "sqrt";
+ Names[RTLIB::SQRT_F80] = "sqrtl";
+ Names[RTLIB::SQRT_F128] = "sqrtl";
+ Names[RTLIB::SQRT_PPCF128] = "sqrtl";
+ Names[RTLIB::LOG_F32] = "logf";
+ Names[RTLIB::LOG_F64] = "log";
+ Names[RTLIB::LOG_F80] = "logl";
+ Names[RTLIB::LOG_F128] = "logl";
+ Names[RTLIB::LOG_PPCF128] = "logl";
+ Names[RTLIB::LOG2_F32] = "log2f";
+ Names[RTLIB::LOG2_F64] = "log2";
+ Names[RTLIB::LOG2_F80] = "log2l";
+ Names[RTLIB::LOG2_F128] = "log2l";
+ Names[RTLIB::LOG2_PPCF128] = "log2l";
+ Names[RTLIB::LOG10_F32] = "log10f";
+ Names[RTLIB::LOG10_F64] = "log10";
+ Names[RTLIB::LOG10_F80] = "log10l";
+ Names[RTLIB::LOG10_F128] = "log10l";
+ Names[RTLIB::LOG10_PPCF128] = "log10l";
+ Names[RTLIB::EXP_F32] = "expf";
+ Names[RTLIB::EXP_F64] = "exp";
+ Names[RTLIB::EXP_F80] = "expl";
+ Names[RTLIB::EXP_F128] = "expl";
+ Names[RTLIB::EXP_PPCF128] = "expl";
+ Names[RTLIB::EXP2_F32] = "exp2f";
+ Names[RTLIB::EXP2_F64] = "exp2";
+ Names[RTLIB::EXP2_F80] = "exp2l";
+ Names[RTLIB::EXP2_F128] = "exp2l";
+ Names[RTLIB::EXP2_PPCF128] = "exp2l";
+ Names[RTLIB::SIN_F32] = "sinf";
+ Names[RTLIB::SIN_F64] = "sin";
+ Names[RTLIB::SIN_F80] = "sinl";
+ Names[RTLIB::SIN_F128] = "sinl";
+ Names[RTLIB::SIN_PPCF128] = "sinl";
+ Names[RTLIB::COS_F32] = "cosf";
+ Names[RTLIB::COS_F64] = "cos";
+ Names[RTLIB::COS_F80] = "cosl";
+ Names[RTLIB::COS_F128] = "cosl";
+ Names[RTLIB::COS_PPCF128] = "cosl";
+ Names[RTLIB::POW_F32] = "powf";
+ Names[RTLIB::POW_F64] = "pow";
+ Names[RTLIB::POW_F80] = "powl";
+ Names[RTLIB::POW_F128] = "powl";
+ Names[RTLIB::POW_PPCF128] = "powl";
+ Names[RTLIB::CEIL_F32] = "ceilf";
+ Names[RTLIB::CEIL_F64] = "ceil";
+ Names[RTLIB::CEIL_F80] = "ceill";
+ Names[RTLIB::CEIL_F128] = "ceill";
+ Names[RTLIB::CEIL_PPCF128] = "ceill";
+ Names[RTLIB::TRUNC_F32] = "truncf";
+ Names[RTLIB::TRUNC_F64] = "trunc";
+ Names[RTLIB::TRUNC_F80] = "truncl";
+ Names[RTLIB::TRUNC_F128] = "truncl";
+ Names[RTLIB::TRUNC_PPCF128] = "truncl";
+ Names[RTLIB::RINT_F32] = "rintf";
+ Names[RTLIB::RINT_F64] = "rint";
+ Names[RTLIB::RINT_F80] = "rintl";
+ Names[RTLIB::RINT_F128] = "rintl";
+ Names[RTLIB::RINT_PPCF128] = "rintl";
+ Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
+ Names[RTLIB::NEARBYINT_F64] = "nearbyint";
+ Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
+ Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
+ Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
+ Names[RTLIB::ROUND_F32] = "roundf";
+ Names[RTLIB::ROUND_F64] = "round";
+ Names[RTLIB::ROUND_F80] = "roundl";
+ Names[RTLIB::ROUND_F128] = "roundl";
+ Names[RTLIB::ROUND_PPCF128] = "roundl";
+ Names[RTLIB::FLOOR_F32] = "floorf";
+ Names[RTLIB::FLOOR_F64] = "floor";
+ Names[RTLIB::FLOOR_F80] = "floorl";
+ Names[RTLIB::FLOOR_F128] = "floorl";
+ Names[RTLIB::FLOOR_PPCF128] = "floorl";
+ Names[RTLIB::FMIN_F32] = "fminf";
+ Names[RTLIB::FMIN_F64] = "fmin";
+ Names[RTLIB::FMIN_F80] = "fminl";
+ Names[RTLIB::FMIN_F128] = "fminl";
+ Names[RTLIB::FMIN_PPCF128] = "fminl";
+ Names[RTLIB::FMAX_F32] = "fmaxf";
+ Names[RTLIB::FMAX_F64] = "fmax";
+ Names[RTLIB::FMAX_F80] = "fmaxl";
+ Names[RTLIB::FMAX_F128] = "fmaxl";
+ Names[RTLIB::FMAX_PPCF128] = "fmaxl";
+ Names[RTLIB::ROUND_F32] = "roundf";
+ Names[RTLIB::ROUND_F64] = "round";
+ Names[RTLIB::ROUND_F80] = "roundl";
+ Names[RTLIB::ROUND_F128] = "roundl";
+ Names[RTLIB::ROUND_PPCF128] = "roundl";
+ Names[RTLIB::COPYSIGN_F32] = "copysignf";
+ Names[RTLIB::COPYSIGN_F64] = "copysign";
+ Names[RTLIB::COPYSIGN_F80] = "copysignl";
+ Names[RTLIB::COPYSIGN_F128] = "copysignl";
+ Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
+ Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
+ Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
+ Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
+ Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
+ Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
+ Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
+ Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
+ Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
+ Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
+ Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
+ Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
+ Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
+ Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
+ Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
+ Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
+ Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
+ Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
+ Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
+ Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
+ Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
+ Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
+ Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
+ Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
+ Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
+ Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
+ Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
+ Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
+ Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
+ Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
+ Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
+ Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
+ Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
+ Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
+ Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
+ Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
+ Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
+ Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
+ Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
+ Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
+ Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
+ Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
+ Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
+ Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
+ Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
+ Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
+ Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
+ Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
+ Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
+ Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
+ Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
+ Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
+ Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
+ Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
+ Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
+ Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
+ Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
+ Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
+ Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
+ Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
+ Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
+ Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
+ Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
+ Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
+ Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
+ Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
+ Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
+ Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
+ Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
+ Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
+ Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
+ Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
+ Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
+ Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
+ Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
+ Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
+ Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
+ Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
+ Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
+ Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
+ Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
+ Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
+ Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
+ Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
+ Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
+ Names[RTLIB::OEQ_F32] = "__eqsf2";
+ Names[RTLIB::OEQ_F64] = "__eqdf2";
+ Names[RTLIB::OEQ_F128] = "__eqtf2";
+ Names[RTLIB::UNE_F32] = "__nesf2";
+ Names[RTLIB::UNE_F64] = "__nedf2";
+ Names[RTLIB::UNE_F128] = "__netf2";
+ Names[RTLIB::OGE_F32] = "__gesf2";
+ Names[RTLIB::OGE_F64] = "__gedf2";
+ Names[RTLIB::OGE_F128] = "__getf2";
+ Names[RTLIB::OLT_F32] = "__ltsf2";
+ Names[RTLIB::OLT_F64] = "__ltdf2";
+ Names[RTLIB::OLT_F128] = "__lttf2";
+ Names[RTLIB::OLE_F32] = "__lesf2";
+ Names[RTLIB::OLE_F64] = "__ledf2";
+ Names[RTLIB::OLE_F128] = "__letf2";
+ Names[RTLIB::OGT_F32] = "__gtsf2";
+ Names[RTLIB::OGT_F64] = "__gtdf2";
+ Names[RTLIB::OGT_F128] = "__gttf2";
+ Names[RTLIB::UO_F32] = "__unordsf2";
+ Names[RTLIB::UO_F64] = "__unorddf2";
+ Names[RTLIB::UO_F128] = "__unordtf2";
+ Names[RTLIB::O_F32] = "__unordsf2";
+ Names[RTLIB::O_F64] = "__unorddf2";
+ Names[RTLIB::O_F128] = "__unordtf2";
+ Names[RTLIB::MEMCPY] = "memcpy";
+ Names[RTLIB::MEMMOVE] = "memmove";
+ Names[RTLIB::MEMSET] = "memset";
+ Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
+ Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
+ Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
+ Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
+ Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
+ Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
+ Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
+ Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
+ Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
+ Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
+ Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
+ Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
+ Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
+ Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
+ Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
+ Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
+ Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
+ Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
+ Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
+ Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
+ Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
+
+ if (TT.getEnvironment() == Triple::GNU) {
+ Names[RTLIB::SINCOS_F32] = "sincosf";
+ Names[RTLIB::SINCOS_F64] = "sincos";
+ Names[RTLIB::SINCOS_F80] = "sincosl";
+ Names[RTLIB::SINCOS_F128] = "sincosl";
+ Names[RTLIB::SINCOS_PPCF128] = "sincosl";
+ } else {
+ // These are generally not available.
+ Names[RTLIB::SINCOS_F32] = nullptr;
+ Names[RTLIB::SINCOS_F64] = nullptr;
+ Names[RTLIB::SINCOS_F80] = nullptr;
+ Names[RTLIB::SINCOS_F128] = nullptr;
+ Names[RTLIB::SINCOS_PPCF128] = nullptr;
+ }
+
+ if (!TT.isOSOpenBSD()) {
+ Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
+ } else {
+ // These are generally not available.
+ Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
+ }
+
+ // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
+ // of the gnueabi-style __gnu_*_ieee.
+ // FIXME: What about other targets?
+ if (TT.isOSDarwin()) {
+ Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
+ Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
+ }
+}
+
+/// InitLibcallCallingConvs - Set default libcall CallingConvs.
+///
+static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
+ for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
+ CCs[i] = CallingConv::C;
+ }
+}
+
+/// getFPEXT - Return the FPEXT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f16) {
+ if (RetVT == MVT::f32)
+ return FPEXT_F16_F32;
+ } else if (OpVT == MVT::f32) {
+ if (RetVT == MVT::f64)
+ return FPEXT_F32_F64;
+ if (RetVT == MVT::f128)
+ return FPEXT_F32_F128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::f128)
+ return FPEXT_F64_F128;
+ }
+
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPROUND - Return the FPROUND_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
+ if (RetVT == MVT::f16) {
+ if (OpVT == MVT::f32)
+ return FPROUND_F32_F16;
+ if (OpVT == MVT::f64)
+ return FPROUND_F64_F16;
+ if (OpVT == MVT::f80)
+ return FPROUND_F80_F16;
+ if (OpVT == MVT::f128)
+ return FPROUND_F128_F16;
+ if (OpVT == MVT::ppcf128)
+ return FPROUND_PPCF128_F16;
+ } else if (RetVT == MVT::f32) {
+ if (OpVT == MVT::f64)
+ return FPROUND_F64_F32;
+ if (OpVT == MVT::f80)
+ return FPROUND_F80_F32;
+ if (OpVT == MVT::f128)
+ return FPROUND_F128_F32;
+ if (OpVT == MVT::ppcf128)
+ return FPROUND_PPCF128_F32;
+ } else if (RetVT == MVT::f64) {
+ if (OpVT == MVT::f80)
+ return FPROUND_F80_F64;
+ if (OpVT == MVT::f128)
+ return FPROUND_F128_F64;
+ if (OpVT == MVT::ppcf128)
+ return FPROUND_PPCF128_F64;
+ }
+
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::i8)
+ return FPTOSINT_F32_I8;
+ if (RetVT == MVT::i16)
+ return FPTOSINT_F32_I16;
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F32_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F32_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F32_I128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::i8)
+ return FPTOSINT_F64_I8;
+ if (RetVT == MVT::i16)
+ return FPTOSINT_F64_I16;
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F64_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F64_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F64_I128;
+ } else if (OpVT == MVT::f80) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F80_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F80_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F80_I128;
+ } else if (OpVT == MVT::f128) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F128_I128;
+ } else if (OpVT == MVT::ppcf128) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_PPCF128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_PPCF128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_PPCF128_I128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::i8)
+ return FPTOUINT_F32_I8;
+ if (RetVT == MVT::i16)
+ return FPTOUINT_F32_I16;
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F32_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F32_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F32_I128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::i8)
+ return FPTOUINT_F64_I8;
+ if (RetVT == MVT::i16)
+ return FPTOUINT_F64_I16;
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F64_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F64_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F64_I128;
+ } else if (OpVT == MVT::f80) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F80_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F80_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F80_I128;
+ } else if (OpVT == MVT::f128) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F128_I128;
+ } else if (OpVT == MVT::ppcf128) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_PPCF128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_PPCF128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_PPCF128_I128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::i32) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I32_F32;
+ if (RetVT == MVT::f64)
+ return SINTTOFP_I32_F64;
+ if (RetVT == MVT::f80)
+ return SINTTOFP_I32_F80;
+ if (RetVT == MVT::f128)
+ return SINTTOFP_I32_F128;
+ if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I32_PPCF128;
+ } else if (OpVT == MVT::i64) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I64_F32;
+ if (RetVT == MVT::f64)
+ return SINTTOFP_I64_F64;
+ if (RetVT == MVT::f80)
+ return SINTTOFP_I64_F80;
+ if (RetVT == MVT::f128)
+ return SINTTOFP_I64_F128;
+ if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I64_PPCF128;
+ } else if (OpVT == MVT::i128) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I128_F32;
+ if (RetVT == MVT::f64)
+ return SINTTOFP_I128_F64;
+ if (RetVT == MVT::f80)
+ return SINTTOFP_I128_F80;
+ if (RetVT == MVT::f128)
+ return SINTTOFP_I128_F128;
+ if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I128_PPCF128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::i32) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I32_F32;
+ if (RetVT == MVT::f64)
+ return UINTTOFP_I32_F64;
+ if (RetVT == MVT::f80)
+ return UINTTOFP_I32_F80;
+ if (RetVT == MVT::f128)
+ return UINTTOFP_I32_F128;
+ if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I32_PPCF128;
+ } else if (OpVT == MVT::i64) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I64_F32;
+ if (RetVT == MVT::f64)
+ return UINTTOFP_I64_F64;
+ if (RetVT == MVT::f80)
+ return UINTTOFP_I64_F80;
+ if (RetVT == MVT::f128)
+ return UINTTOFP_I64_F128;
+ if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I64_PPCF128;
+ } else if (OpVT == MVT::i128) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I128_F32;
+ if (RetVT == MVT::f64)
+ return UINTTOFP_I128_F64;
+ if (RetVT == MVT::f80)
+ return UINTTOFP_I128_F80;
+ if (RetVT == MVT::f128)
+ return UINTTOFP_I128_F128;
+ if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I128_PPCF128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
+#define OP_TO_LIBCALL(Name, Enum) \
+ case Name: \
+ switch (VT.SimpleTy) { \
+ default: \
+ return UNKNOWN_LIBCALL; \
+ case MVT::i8: \
+ return Enum##_1; \
+ case MVT::i16: \
+ return Enum##_2; \
+ case MVT::i32: \
+ return Enum##_4; \
+ case MVT::i64: \
+ return Enum##_8; \
+ case MVT::i128: \
+ return Enum##_16; \
+ }
+
+ switch (Opc) {
+ OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
+ OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
+ OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
+ }
+
+#undef OP_TO_LIBCALL
+
+ return UNKNOWN_LIBCALL;
+}
+
+/// InitCmpLibcallCCs - Set default comparison libcall CC.
+///
+static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
+ memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
+ CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
+ CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
+ CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
+ CCs[RTLIB::UNE_F32] = ISD::SETNE;
+ CCs[RTLIB::UNE_F64] = ISD::SETNE;
+ CCs[RTLIB::UNE_F128] = ISD::SETNE;
+ CCs[RTLIB::OGE_F32] = ISD::SETGE;
+ CCs[RTLIB::OGE_F64] = ISD::SETGE;
+ CCs[RTLIB::OGE_F128] = ISD::SETGE;
+ CCs[RTLIB::OLT_F32] = ISD::SETLT;
+ CCs[RTLIB::OLT_F64] = ISD::SETLT;
+ CCs[RTLIB::OLT_F128] = ISD::SETLT;
+ CCs[RTLIB::OLE_F32] = ISD::SETLE;
+ CCs[RTLIB::OLE_F64] = ISD::SETLE;
+ CCs[RTLIB::OLE_F128] = ISD::SETLE;
+ CCs[RTLIB::OGT_F32] = ISD::SETGT;
+ CCs[RTLIB::OGT_F64] = ISD::SETGT;
+ CCs[RTLIB::OGT_F128] = ISD::SETGT;
+ CCs[RTLIB::UO_F32] = ISD::SETNE;
+ CCs[RTLIB::UO_F64] = ISD::SETNE;
+ CCs[RTLIB::UO_F128] = ISD::SETNE;
+ CCs[RTLIB::O_F32] = ISD::SETEQ;
+ CCs[RTLIB::O_F64] = ISD::SETEQ;
+ CCs[RTLIB::O_F128] = ISD::SETEQ;
+}
+
+/// NOTE: The TargetMachine owns TLOF.
+TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
+ initActions();
+
+ // Perform these initializations only once.
+ IsLittleEndian = getDataLayout()->isLittleEndian();
+ MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
+ MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
+ = MaxStoresPerMemmoveOptSize = 4;
+ UseUnderscoreSetJmp = false;
+ UseUnderscoreLongJmp = false;
+ SelectIsExpensive = false;
+ HasMultipleConditionRegisters = false;
+ HasExtractBitsInsn = false;
+ IntDivIsCheap = false;
+ FsqrtIsCheap = false;
+ Pow2SDivIsCheap = false;
+ JumpIsExpensive = JumpIsExpensiveOverride;
+ PredictableSelectIsExpensive = false;
+ MaskAndBranchFoldingIsLegal = false;
+ EnableExtLdPromotion = false;
+ HasFloatingPointExceptions = true;
+ StackPointerRegisterToSaveRestore = 0;
+ ExceptionPointerRegister = 0;
+ ExceptionSelectorRegister = 0;
+ BooleanContents = UndefinedBooleanContent;
+ BooleanFloatContents = UndefinedBooleanContent;
+ BooleanVectorContents = UndefinedBooleanContent;
+ SchedPreferenceInfo = Sched::ILP;
+ JumpBufSize = 0;
+ JumpBufAlignment = 0;
+ MinFunctionAlignment = 0;
+ PrefFunctionAlignment = 0;
+ PrefLoopAlignment = 0;
+ MinStackArgumentAlignment = 1;
+ InsertFencesForAtomic = false;
+ MinimumJumpTableEntries = 4;
+
+ InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
+ InitCmpLibcallCCs(CmpLibcallCCs);
+ InitLibcallCallingConvs(LibcallCallingConvs);
+}
+
+void TargetLoweringBase::initActions() {
+ // All operations default to being supported.
+ memset(OpActions, 0, sizeof(OpActions));
+ memset(LoadExtActions, 0, sizeof(LoadExtActions));
+ memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
+ memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
+ memset(CondCodeActions, 0, sizeof(CondCodeActions));
+ memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
+ memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
+
+ // Set default actions for various operations.
+ for (MVT VT : MVT::all_valuetypes()) {
+ // Default all indexed load / store to expand.
+ for (unsigned IM = (unsigned)ISD::PRE_INC;
+ IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
+ setIndexedLoadAction(IM, VT, Expand);
+ setIndexedStoreAction(IM, VT, Expand);
+ }
+
+ // Most backends expect to see the node which just returns the value loaded.
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
+
+ // These operations default to expand.
+ setOperationAction(ISD::FGETSIGN, VT, Expand);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
+ setOperationAction(ISD::FMINNUM, VT, Expand);
+ setOperationAction(ISD::FMAXNUM, VT, Expand);
+ setOperationAction(ISD::FMAD, VT, Expand);
+ setOperationAction(ISD::SMIN, VT, Expand);
+ setOperationAction(ISD::SMAX, VT, Expand);
+ setOperationAction(ISD::UMIN, VT, Expand);
+ setOperationAction(ISD::UMAX, VT, Expand);
+
+ // Overflow operations default to expand
+ setOperationAction(ISD::SADDO, VT, Expand);
+ setOperationAction(ISD::SSUBO, VT, Expand);
+ setOperationAction(ISD::UADDO, VT, Expand);
+ setOperationAction(ISD::USUBO, VT, Expand);
+ setOperationAction(ISD::SMULO, VT, Expand);
+ setOperationAction(ISD::UMULO, VT, Expand);
+
+ // These library functions default to expand.
+ setOperationAction(ISD::FROUND, VT, Expand);
+
+ // These operations default to expand for vector types.
+ if (VT.isVector()) {
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
+ setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
+ }
+ }
+
+ // Most targets ignore the @llvm.prefetch intrinsic.
+ setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
+
+ // ConstantFP nodes default to expand. Targets can either change this to
+ // Legal, in which case all fp constants are legal, or use isFPImmLegal()
+ // to optimize expansions for certain constants.
+ setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
+
+ // These library functions default to expand.
+ for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
+ setOperationAction(ISD::FLOG , VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FEXP , VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FMINNUM, VT, Expand);
+ setOperationAction(ISD::FMAXNUM, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FROUND, VT, Expand);
+ }
+
+ // Default ISD::TRAP to expand (which turns it into abort).
+ setOperationAction(ISD::TRAP, MVT::Other, Expand);
+
+ // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
+ // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
+ //
+ setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
+}
+
+MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
+ return MVT::getIntegerVT(getPointerSizeInBits(AS));
+}
+
+unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
+ return getDataLayout()->getPointerSizeInBits(AS);
+}
+
+unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isPointerTy());
+ return getPointerSizeInBits(Ty->getPointerAddressSpace());
+}
+
+MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
+ return MVT::getIntegerVT(8 * getDataLayout()->getPointerSize(0));
+}
+
+EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
+ assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
+ if (LHSTy.isVector())
+ return LHSTy;
+ return getScalarShiftAmountTy(LHSTy);
+}
+
+/// canOpTrap - Returns true if the operation can trap for the value type.
+/// VT must be a legal type.
+bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
+ assert(isTypeLegal(VT));
+ switch (Op) {
+ default:
+ return false;
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ return true;
+ }
+}
+
+void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
+ // If the command-line option was specified, ignore this request.
+ if (!JumpIsExpensiveOverride.getNumOccurrences())
+ JumpIsExpensive = isExpensive;
+}
+
+TargetLoweringBase::LegalizeKind
+TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
+ // If this is a simple type, use the ComputeRegisterProp mechanism.
+ if (VT.isSimple()) {
+ MVT SVT = VT.getSimpleVT();
+ assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
+ MVT NVT = TransformToType[SVT.SimpleTy];
+ LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
+
+ assert((LA == TypeLegal || LA == TypeSoftenFloat ||
+ ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
+ "Promote may not follow Expand or Promote");
+
+ if (LA == TypeSplitVector)
+ return LegalizeKind(LA,
+ EVT::getVectorVT(Context, SVT.getVectorElementType(),
+ SVT.getVectorNumElements() / 2));
+ if (LA == TypeScalarizeVector)
+ return LegalizeKind(LA, SVT.getVectorElementType());
+ return LegalizeKind(LA, NVT);
+ }
+
+ // Handle Extended Scalar Types.
+ if (!VT.isVector()) {
+ assert(VT.isInteger() && "Float types must be simple");
+ unsigned BitSize = VT.getSizeInBits();
+ // First promote to a power-of-two size, then expand if necessary.
+ if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
+ EVT NVT = VT.getRoundIntegerType(Context);
+ assert(NVT != VT && "Unable to round integer VT");
+ LegalizeKind NextStep = getTypeConversion(Context, NVT);
+ // Avoid multi-step promotion.
+ if (NextStep.first == TypePromoteInteger)
+ return NextStep;
+ // Return rounded integer type.
+ return LegalizeKind(TypePromoteInteger, NVT);
+ }
+
+ return LegalizeKind(TypeExpandInteger,
+ EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
+ }
+
+ // Handle vector types.
+ unsigned NumElts = VT.getVectorNumElements();
+ EVT EltVT = VT.getVectorElementType();
+
+ // Vectors with only one element are always scalarized.
+ if (NumElts == 1)
+ return LegalizeKind(TypeScalarizeVector, EltVT);
+
+ // Try to widen vector elements until the element type is a power of two and
+ // promote it to a legal type later on, for example:
+ // <3 x i8> -> <4 x i8> -> <4 x i32>
+ if (EltVT.isInteger()) {
+ // Vectors with a number of elements that is not a power of two are always
+ // widened, for example <3 x i8> -> <4 x i8>.
+ if (!VT.isPow2VectorType()) {
+ NumElts = (unsigned)NextPowerOf2(NumElts);
+ EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
+ return LegalizeKind(TypeWidenVector, NVT);
+ }
+
+ // Examine the element type.
+ LegalizeKind LK = getTypeConversion(Context, EltVT);
+
+ // If type is to be expanded, split the vector.
+ // <4 x i140> -> <2 x i140>
+ if (LK.first == TypeExpandInteger)
+ return LegalizeKind(TypeSplitVector,
+ EVT::getVectorVT(Context, EltVT, NumElts / 2));
+
+ // Promote the integer element types until a legal vector type is found
+ // or until the element integer type is too big. If a legal type was not
+ // found, fallback to the usual mechanism of widening/splitting the
+ // vector.
+ EVT OldEltVT = EltVT;
+ while (1) {
+ // Increase the bitwidth of the element to the next pow-of-two
+ // (which is greater than 8 bits).
+ EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
+ .getRoundIntegerType(Context);
+
+ // Stop trying when getting a non-simple element type.
+ // Note that vector elements may be greater than legal vector element
+ // types. Example: X86 XMM registers hold 64bit element on 32bit
+ // systems.
+ if (!EltVT.isSimple())
+ break;
+
+ // Build a new vector type and check if it is legal.
+ MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
+ // Found a legal promoted vector type.
+ if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
+ return LegalizeKind(TypePromoteInteger,
+ EVT::getVectorVT(Context, EltVT, NumElts));
+ }
+
+ // Reset the type to the unexpanded type if we did not find a legal vector
+ // type with a promoted vector element type.
+ EltVT = OldEltVT;
+ }
+
+ // Try to widen the vector until a legal type is found.
+ // If there is no wider legal type, split the vector.
+ while (1) {
+ // Round up to the next power of 2.
+ NumElts = (unsigned)NextPowerOf2(NumElts);
+
+ // If there is no simple vector type with this many elements then there
+ // cannot be a larger legal vector type. Note that this assumes that
+ // there are no skipped intermediate vector types in the simple types.
+ if (!EltVT.isSimple())
+ break;
+ MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
+ if (LargerVector == MVT())
+ break;
+
+ // If this type is legal then widen the vector.
+ if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
+ return LegalizeKind(TypeWidenVector, LargerVector);
+ }
+
+ // Widen odd vectors to next power of two.
+ if (!VT.isPow2VectorType()) {
+ EVT NVT = VT.getPow2VectorType(Context);
+ return LegalizeKind(TypeWidenVector, NVT);
+ }
+
+ // Vectors with illegal element types are expanded.
+ EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
+ return LegalizeKind(TypeSplitVector, NVT);
+}
+
+static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ MVT &RegisterVT,
+ TargetLoweringBase *TLI) {
+ // Figure out the right, legal destination reg to copy into.
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType();
+
+ unsigned NumVectorRegs = 1;
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+ // could break down into LHS/RHS like LegalizeDAG does.
+ if (!isPowerOf2_32(NumElts)) {
+ NumVectorRegs = NumElts;
+ NumElts = 1;
+ }
+
+ // Divide the input until we get to a supported size. This will always
+ // end with a scalar if the target doesn't support vectors.
+ while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
+ NumElts >>= 1;
+ NumVectorRegs <<= 1;
+ }
+
+ NumIntermediates = NumVectorRegs;
+
+ MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
+ if (!TLI->isTypeLegal(NewVT))
+ NewVT = EltTy;
+ IntermediateVT = NewVT;
+
+ unsigned NewVTSize = NewVT.getSizeInBits();
+
+ // Convert sizes such as i33 to i64.
+ if (!isPowerOf2_32(NewVTSize))
+ NewVTSize = NextPowerOf2(NewVTSize);
+
+ MVT DestVT = TLI->getRegisterType(NewVT);
+ RegisterVT = DestVT;
+ if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
+ return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
+
+ // Otherwise, promotion or legal types use the same number of registers as
+ // the vector decimated to the appropriate level.
+ return NumVectorRegs;
+}
+
+/// isLegalRC - Return true if the value types that can be represented by the
+/// specified register class are all legal.
+bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
+ for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
+ I != E; ++I) {
+ if (isTypeLegal(*I))
+ return true;
+ }
+ return false;
+}
+
+/// Replace/modify any TargetFrameIndex operands with a targte-dependent
+/// sequence of memory operands that is recognized by PrologEpilogInserter.
+MachineBasicBlock*
+TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+
+ // MI changes inside this loop as we grow operands.
+ for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
+ MachineOperand &MO = MI->getOperand(OperIdx);
+ if (!MO.isFI())
+ continue;
+
+ // foldMemoryOperand builds a new MI after replacing a single FI operand
+ // with the canonical set of five x86 addressing-mode operands.
+ int FI = MO.getIndex();
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
+
+ // Copy operands before the frame-index.
+ for (unsigned i = 0; i < OperIdx; ++i)
+ MIB.addOperand(MI->getOperand(i));
+ // Add frame index operands: direct-mem-ref tag, #FI, offset.
+ MIB.addImm(StackMaps::DirectMemRefOp);
+ MIB.addOperand(MI->getOperand(OperIdx));
+ MIB.addImm(0);
+ // Copy the operands after the frame index.
+ for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
+ MIB.addOperand(MI->getOperand(i));
+
+ // Inherit previous memory operands.
+ MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
+
+ // Add a new memory operand for this FI.
+ const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ assert(MFI.getObjectOffset(FI) != -1);
+
+ unsigned Flags = MachineMemOperand::MOLoad;
+ if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
+ Flags |= MachineMemOperand::MOStore;
+ Flags |= MachineMemOperand::MOVolatile;
+ }
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(FI), Flags,
+ TM.getDataLayout()->getPointerSize(), MFI.getObjectAlignment(FI));
+ MIB->addMemOperand(MF, MMO);
+
+ // Replace the instruction and update the operand index.
+ MBB->insert(MachineBasicBlock::iterator(MI), MIB);
+ OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
+ MI->eraseFromParent();
+ MI = MIB;
+ }
+ return MBB;
+}
+
+/// findRepresentativeClass - Return the largest legal super-reg register class
+/// of the register class for the specified type and its associated "cost".
+// This function is in TargetLowering because it uses RegClassForVT which would
+// need to be moved to TargetRegisterInfo and would necessitate moving
+// isTypeLegal over as well - a massive change that would just require
+// TargetLowering having a TargetRegisterInfo class member that it would use.
+std::pair<const TargetRegisterClass *, uint8_t>
+TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
+ MVT VT) const {
+ const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
+ if (!RC)
+ return std::make_pair(RC, 0);
+
+ // Compute the set of all super-register classes.
+ BitVector SuperRegRC(TRI->getNumRegClasses());
+ for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
+ SuperRegRC.setBitsInMask(RCI.getMask());
+
+ // Find the first legal register class with the largest spill size.
+ const TargetRegisterClass *BestRC = RC;
+ for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
+ const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
+ // We want the largest possible spill size.
+ if (SuperRC->getSize() <= BestRC->getSize())
+ continue;
+ if (!isLegalRC(SuperRC))
+ continue;
+ BestRC = SuperRC;
+ }
+ return std::make_pair(BestRC, 1);
+}
+
+/// computeRegisterProperties - Once all of the register classes are added,
+/// this allows us to compute derived properties we expose.
+void TargetLoweringBase::computeRegisterProperties(
+ const TargetRegisterInfo *TRI) {
+ static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
+ "Too many value types for ValueTypeActions to hold!");
+
+ // Everything defaults to needing one register.
+ for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
+ NumRegistersForVT[i] = 1;
+ RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
+ }
+ // ...except isVoid, which doesn't need any registers.
+ NumRegistersForVT[MVT::isVoid] = 0;
+
+ // Find the largest integer register class.
+ unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
+ for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
+ assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
+
+ // Every integer value type larger than this largest register takes twice as
+ // many registers to represent as the previous ValueType.
+ for (unsigned ExpandedReg = LargestIntReg + 1;
+ ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
+ NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
+ RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
+ TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
+ ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
+ TypeExpandInteger);
+ }
+
+ // Inspect all of the ValueType's smaller than the largest integer
+ // register to see which ones need promotion.
+ unsigned LegalIntReg = LargestIntReg;
+ for (unsigned IntReg = LargestIntReg - 1;
+ IntReg >= (unsigned)MVT::i1; --IntReg) {
+ MVT IVT = (MVT::SimpleValueType)IntReg;
+ if (isTypeLegal(IVT)) {
+ LegalIntReg = IntReg;
+ } else {
+ RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
+ (const MVT::SimpleValueType)LegalIntReg;
+ ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
+ }
+ }
+
+ // ppcf128 type is really two f64's.
+ if (!isTypeLegal(MVT::ppcf128)) {
+ NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
+ RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
+ TransformToType[MVT::ppcf128] = MVT::f64;
+ ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
+ }
+
+ // Decide how to handle f128. If the target does not have native f128 support,
+ // expand it to i128 and we will be generating soft float library calls.
+ if (!isTypeLegal(MVT::f128)) {
+ NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
+ RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
+ TransformToType[MVT::f128] = MVT::i128;
+ ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
+ }
+
+ // Decide how to handle f64. If the target does not have native f64 support,
+ // expand it to i64 and we will be generating soft float library calls.
+ if (!isTypeLegal(MVT::f64)) {
+ NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
+ RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
+ TransformToType[MVT::f64] = MVT::i64;
+ ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
+ }
+
+ // Decide how to handle f32. If the target does not have native f32 support,
+ // expand it to i32 and we will be generating soft float library calls.
+ if (!isTypeLegal(MVT::f32)) {
+ NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
+ RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
+ TransformToType[MVT::f32] = MVT::i32;
+ ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
+ }
+
+ if (!isTypeLegal(MVT::f16)) {
+ // If the target has native f32 support, promote f16 operations to f32. If
+ // f32 is not supported, generate soft float library calls.
+ if (isTypeLegal(MVT::f32)) {
+ NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
+ RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
+ TransformToType[MVT::f16] = MVT::f32;
+ ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
+ } else {
+ NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
+ RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
+ TransformToType[MVT::f16] = MVT::i16;
+ ValueTypeActions.setTypeAction(MVT::f16, TypeSoftenFloat);
+ }
+ }
+
+ // Loop over all of the vector value types to see which need transformations.
+ for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
+ i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT VT = (MVT::SimpleValueType) i;
+ if (isTypeLegal(VT))
+ continue;
+
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NElts = VT.getVectorNumElements();
+ bool IsLegalWiderType = false;
+ LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
+ switch (PreferredAction) {
+ case TypePromoteInteger: {
+ // Try to promote the elements of integer vectors. If no legal
+ // promotion was found, fall through to the widen-vector method.
+ for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+ MVT SVT = (MVT::SimpleValueType) nVT;
+ // Promote vectors of integers to vectors with the same number
+ // of elements, with a wider element type.
+ if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
+ && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
+ && SVT.getScalarType().isInteger()) {
+ TransformToType[i] = SVT;
+ RegisterTypeForVT[i] = SVT;
+ NumRegistersForVT[i] = 1;
+ ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
+ IsLegalWiderType = true;
+ break;
+ }
+ }
+ if (IsLegalWiderType)
+ break;
+ }
+ case TypeWidenVector: {
+ // Try to widen the vector.
+ for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+ MVT SVT = (MVT::SimpleValueType) nVT;
+ if (SVT.getVectorElementType() == EltVT
+ && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
+ TransformToType[i] = SVT;
+ RegisterTypeForVT[i] = SVT;
+ NumRegistersForVT[i] = 1;
+ ValueTypeActions.setTypeAction(VT, TypeWidenVector);
+ IsLegalWiderType = true;
+ break;
+ }
+ }
+ if (IsLegalWiderType)
+ break;
+ }
+ case TypeSplitVector:
+ case TypeScalarizeVector: {
+ MVT IntermediateVT;
+ MVT RegisterVT;
+ unsigned NumIntermediates;
+ NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
+ NumIntermediates, RegisterVT, this);
+ RegisterTypeForVT[i] = RegisterVT;
+
+ MVT NVT = VT.getPow2VectorType();
+ if (NVT == VT) {
+ // Type is already a power of 2. The default action is to split.
+ TransformToType[i] = MVT::Other;
+ if (PreferredAction == TypeScalarizeVector)
+ ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
+ else if (PreferredAction == TypeSplitVector)
+ ValueTypeActions.setTypeAction(VT, TypeSplitVector);
+ else
+ // Set type action according to the number of elements.
+ ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
+ : TypeSplitVector);
+ } else {
+ TransformToType[i] = NVT;
+ ValueTypeActions.setTypeAction(VT, TypeWidenVector);
+ }
+ break;
+ }
+ default:
+ llvm_unreachable("Unknown vector legalization action!");
+ }
+ }
+
+ // Determine the 'representative' register class for each value type.
+ // An representative register class is the largest (meaning one which is
+ // not a sub-register class / subreg register class) legal register class for
+ // a group of value types. For example, on i386, i8, i16, and i32
+ // representative would be GR32; while on x86_64 it's GR64.
+ for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
+ const TargetRegisterClass* RRC;
+ uint8_t Cost;
+ std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
+ RepRegClassForVT[i] = RRC;
+ RepRegClassCostForVT[i] = Cost;
+ }
+}
+
+EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
+ assert(!VT.isVector() && "No default SetCC type for vectors!");
+ return getPointerTy(0).SimpleTy;
+}
+
+MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
+ return MVT::i32; // return the default value
+}
+
+/// getVectorTypeBreakdown - Vector types are broken down into some number of
+/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
+/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
+/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
+///
+/// This method returns the number of registers needed, and the VT for each
+/// register. It also returns the VT and quantity of the intermediate values
+/// before they are promoted/expanded.
+///
+unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
+ EVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ MVT &RegisterVT) const {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // If there is a wider vector type with the same element type as this one,
+ // or a promoted vector type that has the same number of elements which
+ // are wider, then we should convert to that legal vector type.
+ // This handles things like <2 x float> -> <4 x float> and
+ // <4 x i1> -> <4 x i32>.
+ LegalizeTypeAction TA = getTypeAction(Context, VT);
+ if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
+ EVT RegisterEVT = getTypeToTransformTo(Context, VT);
+ if (isTypeLegal(RegisterEVT)) {
+ IntermediateVT = RegisterEVT;
+ RegisterVT = RegisterEVT.getSimpleVT();
+ NumIntermediates = 1;
+ return 1;
+ }
+ }
+
+ // Figure out the right, legal destination reg to copy into.
+ EVT EltTy = VT.getVectorElementType();
+
+ unsigned NumVectorRegs = 1;
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+ // could break down into LHS/RHS like LegalizeDAG does.
+ if (!isPowerOf2_32(NumElts)) {
+ NumVectorRegs = NumElts;
+ NumElts = 1;
+ }
+
+ // Divide the input until we get to a supported size. This will always
+ // end with a scalar if the target doesn't support vectors.
+ while (NumElts > 1 && !isTypeLegal(
+ EVT::getVectorVT(Context, EltTy, NumElts))) {
+ NumElts >>= 1;
+ NumVectorRegs <<= 1;
+ }
+
+ NumIntermediates = NumVectorRegs;
+
+ EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
+ if (!isTypeLegal(NewVT))
+ NewVT = EltTy;
+ IntermediateVT = NewVT;
+
+ MVT DestVT = getRegisterType(Context, NewVT);
+ RegisterVT = DestVT;
+ unsigned NewVTSize = NewVT.getSizeInBits();
+
+ // Convert sizes such as i33 to i64.
+ if (!isPowerOf2_32(NewVTSize))
+ NewVTSize = NextPowerOf2(NewVTSize);
+
+ if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
+ return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
+
+ // Otherwise, promotion or legal types use the same number of registers as
+ // the vector decimated to the appropriate level.
+ return NumVectorRegs;
+}
+
+/// Get the EVTs and ArgFlags collections that represent the legalized return
+/// type of the given function. This does not require a DAG or a return value,
+/// and is suitable for use before any DAGs for the function are constructed.
+/// TODO: Move this out of TargetLowering.cpp.
+void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
+ SmallVectorImpl<ISD::OutputArg> &Outs,
+ const TargetLowering &TLI) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, ReturnType, ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0) return;
+
+ for (unsigned j = 0, f = NumValues; j != f; ++j) {
+ EVT VT = ValueVTs[j];
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ // FIXME: C calling convention requires the return type to be promoted to
+ // at least 32-bit. But this is not necessary for non-C calling
+ // conventions. The frontend should mark functions whose return values
+ // require promoting with signext or zeroext attributes.
+ if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+ MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
+ if (VT.bitsLT(MinVT))
+ VT = MinVT;
+ }
+
+ unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
+ MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
+
+ // 'inreg' on function refers to return value
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
+ Flags.setInReg();
+
+ // Propagate extension type if any
+ if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
+ Flags.setSExt();
+ else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i)
+ Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
+ }
+}
+
+/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area. This is the actual
+/// alignment, not its logarithm.
+unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
+ return getDataLayout()->getABITypeAlignment(Ty);
+}
+
+//===----------------------------------------------------------------------===//
+// TargetTransformInfo Helpers
+//===----------------------------------------------------------------------===//
+
+int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
+ enum InstructionOpcodes {
+#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
+#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
+#include "llvm/IR/Instruction.def"
+ };
+ switch (static_cast<InstructionOpcodes>(Opcode)) {
+ case Ret: return 0;
+ case Br: return 0;
+ case Switch: return 0;
+ case IndirectBr: return 0;
+ case Invoke: return 0;
+ case Resume: return 0;
+ case Unreachable: return 0;
+ case Add: return ISD::ADD;
+ case FAdd: return ISD::FADD;
+ case Sub: return ISD::SUB;
+ case FSub: return ISD::FSUB;
+ case Mul: return ISD::MUL;
+ case FMul: return ISD::FMUL;
+ case UDiv: return ISD::UDIV;
+ case SDiv: return ISD::SDIV;
+ case FDiv: return ISD::FDIV;
+ case URem: return ISD::UREM;
+ case SRem: return ISD::SREM;
+ case FRem: return ISD::FREM;
+ case Shl: return ISD::SHL;
+ case LShr: return ISD::SRL;
+ case AShr: return ISD::SRA;
+ case And: return ISD::AND;
+ case Or: return ISD::OR;
+ case Xor: return ISD::XOR;
+ case Alloca: return 0;
+ case Load: return ISD::LOAD;
+ case Store: return ISD::STORE;
+ case GetElementPtr: return 0;
+ case Fence: return 0;
+ case AtomicCmpXchg: return 0;
+ case AtomicRMW: return 0;
+ case Trunc: return ISD::TRUNCATE;
+ case ZExt: return ISD::ZERO_EXTEND;
+ case SExt: return ISD::SIGN_EXTEND;
+ case FPToUI: return ISD::FP_TO_UINT;
+ case FPToSI: return ISD::FP_TO_SINT;
+ case UIToFP: return ISD::UINT_TO_FP;
+ case SIToFP: return ISD::SINT_TO_FP;
+ case FPTrunc: return ISD::FP_ROUND;
+ case FPExt: return ISD::FP_EXTEND;
+ case PtrToInt: return ISD::BITCAST;
+ case IntToPtr: return ISD::BITCAST;
+ case BitCast: return ISD::BITCAST;
+ case AddrSpaceCast: return ISD::ADDRSPACECAST;
+ case ICmp: return ISD::SETCC;
+ case FCmp: return ISD::SETCC;
+ case PHI: return 0;
+ case Call: return 0;
+ case Select: return ISD::SELECT;
+ case UserOp1: return 0;
+ case UserOp2: return 0;
+ case VAArg: return 0;
+ case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
+ case InsertElement: return ISD::INSERT_VECTOR_ELT;
+ case ShuffleVector: return ISD::VECTOR_SHUFFLE;
+ case ExtractValue: return ISD::MERGE_VALUES;
+ case InsertValue: return ISD::MERGE_VALUES;
+ case LandingPad: return 0;
+ }
+
+ llvm_unreachable("Unknown instruction type encountered!");
+}
+
+std::pair<unsigned, MVT>
+TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
+ LLVMContext &C = Ty->getContext();
+ EVT MTy = getValueType(Ty);
+
+ unsigned Cost = 1;
+ // We keep legalizing the type until we find a legal kind. We assume that
+ // the only operation that costs anything is the split. After splitting
+ // we need to handle two types.
+ while (true) {
+ LegalizeKind LK = getTypeConversion(C, MTy);
+
+ if (LK.first == TypeLegal)
+ return std::make_pair(Cost, MTy.getSimpleVT());
+
+ if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
+ Cost *= 2;
+
+ // Keep legalizing the type.
+ MTy = LK.second;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Loop Strength Reduction hooks
+//===----------------------------------------------------------------------===//
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
+ Type *Ty,
+ unsigned AS) const {
+ // The default implementation of this implements a conservative RISCy, r+r and
+ // r+i addr mode.
+
+ // Allows a sign-extended 16-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
+ return false;
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // Only support r+r,
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
+ return false;
+ // Otherwise we have r+r or r+i.
+ break;
+ case 2:
+ if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
+ return false;
+ // Allow 2*r as r+r.
+ break;
+ default: // Don't allow n * r
+ return false;
+ }
+
+ return true;
+}
OpenPOWER on IntegriCloud