summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/StrongPHIElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/StrongPHIElimination.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/StrongPHIElimination.cpp1050
1 files changed, 1050 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/StrongPHIElimination.cpp b/contrib/llvm/lib/CodeGen/StrongPHIElimination.cpp
new file mode 100644
index 0000000..142398c
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/StrongPHIElimination.cpp
@@ -0,0 +1,1050 @@
+//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass eliminates machine instruction PHI nodes by inserting copy
+// instructions, using an intelligent copy-folding technique based on
+// dominator information. This is technique is derived from:
+//
+// Budimlic, et al. Fast copy coalescing and live-range identification.
+// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
+// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
+// PLDI '02. ACM, New York, NY, 25-32.
+// DOI= http://doi.acm.org/10.1145/512529.512534
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "strongphielim"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterCoalescer.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+namespace {
+ struct StrongPHIElimination : public MachineFunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ StrongPHIElimination() : MachineFunctionPass(&ID) {}
+
+ // Waiting stores, for each MBB, the set of copies that need to
+ // be inserted into that MBB
+ DenseMap<MachineBasicBlock*,
+ std::multimap<unsigned, unsigned> > Waiting;
+
+ // Stacks holds the renaming stack for each register
+ std::map<unsigned, std::vector<unsigned> > Stacks;
+
+ // Registers in UsedByAnother are PHI nodes that are themselves
+ // used as operands to another PHI node
+ std::set<unsigned> UsedByAnother;
+
+ // RenameSets are the is a map from a PHI-defined register
+ // to the input registers to be coalesced along with the
+ // predecessor block for those input registers.
+ std::map<unsigned, std::map<unsigned, MachineBasicBlock*> > RenameSets;
+
+ // PhiValueNumber holds the ID numbers of the VNs for each phi that we're
+ // eliminating, indexed by the register defined by that phi.
+ std::map<unsigned, unsigned> PhiValueNumber;
+
+ // Store the DFS-in number of each block
+ DenseMap<MachineBasicBlock*, unsigned> preorder;
+
+ // Store the DFS-out number of each block
+ DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
+
+ bool runOnMachineFunction(MachineFunction &Fn);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<SlotIndexes>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<LiveIntervals>();
+
+ // TODO: Actually make this true.
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<RegisterCoalescer>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ virtual void releaseMemory() {
+ preorder.clear();
+ maxpreorder.clear();
+
+ Waiting.clear();
+ Stacks.clear();
+ UsedByAnother.clear();
+ RenameSets.clear();
+ }
+
+ private:
+
+ /// DomForestNode - Represents a node in the "dominator forest". This is
+ /// a forest in which the nodes represent registers and the edges
+ /// represent a dominance relation in the block defining those registers.
+ struct DomForestNode {
+ private:
+ // Store references to our children
+ std::vector<DomForestNode*> children;
+ // The register we represent
+ unsigned reg;
+
+ // Add another node as our child
+ void addChild(DomForestNode* DFN) { children.push_back(DFN); }
+
+ public:
+ typedef std::vector<DomForestNode*>::iterator iterator;
+
+ // Create a DomForestNode by providing the register it represents, and
+ // the node to be its parent. The virtual root node has register 0
+ // and a null parent.
+ DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
+ if (parent)
+ parent->addChild(this);
+ }
+
+ ~DomForestNode() {
+ for (iterator I = begin(), E = end(); I != E; ++I)
+ delete *I;
+ }
+
+ /// getReg - Return the regiser that this node represents
+ inline unsigned getReg() { return reg; }
+
+ // Provide iterator access to our children
+ inline DomForestNode::iterator begin() { return children.begin(); }
+ inline DomForestNode::iterator end() { return children.end(); }
+ };
+
+ void computeDFS(MachineFunction& MF);
+ void processBlock(MachineBasicBlock* MBB);
+
+ std::vector<DomForestNode*> computeDomForest(
+ std::map<unsigned, MachineBasicBlock*>& instrs,
+ MachineRegisterInfo& MRI);
+ void processPHIUnion(MachineInstr* Inst,
+ std::map<unsigned, MachineBasicBlock*>& PHIUnion,
+ std::vector<StrongPHIElimination::DomForestNode*>& DF,
+ std::vector<std::pair<unsigned, unsigned> >& locals);
+ void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
+ void InsertCopies(MachineDomTreeNode* MBB,
+ SmallPtrSet<MachineBasicBlock*, 16>& v);
+ bool mergeLiveIntervals(unsigned primary, unsigned secondary);
+ };
+}
+
+char StrongPHIElimination::ID = 0;
+static RegisterPass<StrongPHIElimination>
+X("strong-phi-node-elimination",
+ "Eliminate PHI nodes for register allocation, intelligently");
+
+const PassInfo *const llvm::StrongPHIEliminationID = &X;
+
+/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
+/// of the given MachineFunction. These numbers are then used in other parts
+/// of the PHI elimination process.
+void StrongPHIElimination::computeDFS(MachineFunction& MF) {
+ SmallPtrSet<MachineDomTreeNode*, 8> frontier;
+ SmallPtrSet<MachineDomTreeNode*, 8> visited;
+
+ unsigned time = 0;
+
+ MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
+
+ MachineDomTreeNode* node = DT.getRootNode();
+
+ std::vector<MachineDomTreeNode*> worklist;
+ worklist.push_back(node);
+
+ while (!worklist.empty()) {
+ MachineDomTreeNode* currNode = worklist.back();
+
+ if (!frontier.count(currNode)) {
+ frontier.insert(currNode);
+ ++time;
+ preorder.insert(std::make_pair(currNode->getBlock(), time));
+ }
+
+ bool inserted = false;
+ for (MachineDomTreeNode::iterator I = currNode->begin(), E = currNode->end();
+ I != E; ++I)
+ if (!frontier.count(*I) && !visited.count(*I)) {
+ worklist.push_back(*I);
+ inserted = true;
+ break;
+ }
+
+ if (!inserted) {
+ frontier.erase(currNode);
+ visited.insert(currNode);
+ maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
+
+ worklist.pop_back();
+ }
+ }
+}
+
+namespace {
+
+/// PreorderSorter - a helper class that is used to sort registers
+/// according to the preorder number of their defining blocks
+class PreorderSorter {
+private:
+ DenseMap<MachineBasicBlock*, unsigned>& preorder;
+ MachineRegisterInfo& MRI;
+
+public:
+ PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
+ MachineRegisterInfo& M) : preorder(p), MRI(M) { }
+
+ bool operator()(unsigned A, unsigned B) {
+ if (A == B)
+ return false;
+
+ MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
+ MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
+
+ if (preorder[ABlock] < preorder[BBlock])
+ return true;
+ else if (preorder[ABlock] > preorder[BBlock])
+ return false;
+
+ return false;
+ }
+};
+
+}
+
+/// computeDomForest - compute the subforest of the DomTree corresponding
+/// to the defining blocks of the registers in question
+std::vector<StrongPHIElimination::DomForestNode*>
+StrongPHIElimination::computeDomForest(
+ std::map<unsigned, MachineBasicBlock*>& regs,
+ MachineRegisterInfo& MRI) {
+ // Begin by creating a virtual root node, since the actual results
+ // may well be a forest. Assume this node has maximum DFS-out number.
+ DomForestNode* VirtualRoot = new DomForestNode(0, 0);
+ maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
+
+ // Populate a worklist with the registers
+ std::vector<unsigned> worklist;
+ worklist.reserve(regs.size());
+ for (std::map<unsigned, MachineBasicBlock*>::iterator I = regs.begin(),
+ E = regs.end(); I != E; ++I)
+ worklist.push_back(I->first);
+
+ // Sort the registers by the DFS-in number of their defining block
+ PreorderSorter PS(preorder, MRI);
+ std::sort(worklist.begin(), worklist.end(), PS);
+
+ // Create a "current parent" stack, and put the virtual root on top of it
+ DomForestNode* CurrentParent = VirtualRoot;
+ std::vector<DomForestNode*> stack;
+ stack.push_back(VirtualRoot);
+
+ // Iterate over all the registers in the previously computed order
+ for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
+ I != E; ++I) {
+ unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
+ MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
+ MRI.getVRegDef(CurrentParent->getReg())->getParent() :
+ 0;
+
+ // If the DFS-in number of the register is greater than the DFS-out number
+ // of the current parent, repeatedly pop the parent stack until it isn't.
+ while (pre > maxpreorder[parentBlock]) {
+ stack.pop_back();
+ CurrentParent = stack.back();
+
+ parentBlock = CurrentParent->getReg() ?
+ MRI.getVRegDef(CurrentParent->getReg())->getParent() :
+ 0;
+ }
+
+ // Now that we've found the appropriate parent, create a DomForestNode for
+ // this register and attach it to the forest
+ DomForestNode* child = new DomForestNode(*I, CurrentParent);
+
+ // Push this new node on the "current parent" stack
+ stack.push_back(child);
+ CurrentParent = child;
+ }
+
+ // Return a vector containing the children of the virtual root node
+ std::vector<DomForestNode*> ret;
+ ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
+ return ret;
+}
+
+/// isLiveIn - helper method that determines, from a regno, if a register
+/// is live into a block
+static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
+ LiveIntervals& LI) {
+ LiveInterval& I = LI.getOrCreateInterval(r);
+ SlotIndex idx = LI.getMBBStartIdx(MBB);
+ return I.liveAt(idx);
+}
+
+/// isLiveOut - help method that determines, from a regno, if a register is
+/// live out of a block.
+static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
+ LiveIntervals& LI) {
+ for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
+ E = MBB->succ_end(); PI != E; ++PI)
+ if (isLiveIn(r, *PI, LI))
+ return true;
+
+ return false;
+}
+
+/// interferes - checks for local interferences by scanning a block. The only
+/// trick parameter is 'mode' which tells it the relationship of the two
+/// registers. 0 - defined in the same block, 1 - first properly dominates
+/// second, 2 - second properly dominates first
+static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
+ LiveIntervals& LV, unsigned mode) {
+ MachineInstr* def = 0;
+ MachineInstr* kill = 0;
+
+ // The code is still in SSA form at this point, so there is only one
+ // definition per VReg. Thus we can safely use MRI->getVRegDef().
+ const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
+
+ bool interference = false;
+
+ // Wallk the block, checking for interferences
+ for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
+ MBI != MBE; ++MBI) {
+ MachineInstr* curr = MBI;
+
+ // Same defining block...
+ if (mode == 0) {
+ if (curr == MRI->getVRegDef(a)) {
+ // If we find our first definition, save it
+ if (!def) {
+ def = curr;
+ // If there's already an unkilled definition, then
+ // this is an interference
+ } else if (!kill) {
+ interference = true;
+ break;
+ // If there's a definition followed by a KillInst, then
+ // they can't interfere
+ } else {
+ interference = false;
+ break;
+ }
+ // Symmetric with the above
+ } else if (curr == MRI->getVRegDef(b)) {
+ if (!def) {
+ def = curr;
+ } else if (!kill) {
+ interference = true;
+ break;
+ } else {
+ interference = false;
+ break;
+ }
+ // Store KillInsts if they match up with the definition
+ } else if (curr->killsRegister(a)) {
+ if (def == MRI->getVRegDef(a)) {
+ kill = curr;
+ } else if (curr->killsRegister(b)) {
+ if (def == MRI->getVRegDef(b)) {
+ kill = curr;
+ }
+ }
+ }
+ // First properly dominates second...
+ } else if (mode == 1) {
+ if (curr == MRI->getVRegDef(b)) {
+ // Definition of second without kill of first is an interference
+ if (!kill) {
+ interference = true;
+ break;
+ // Definition after a kill is a non-interference
+ } else {
+ interference = false;
+ break;
+ }
+ // Save KillInsts of First
+ } else if (curr->killsRegister(a)) {
+ kill = curr;
+ }
+ // Symmetric with the above
+ } else if (mode == 2) {
+ if (curr == MRI->getVRegDef(a)) {
+ if (!kill) {
+ interference = true;
+ break;
+ } else {
+ interference = false;
+ break;
+ }
+ } else if (curr->killsRegister(b)) {
+ kill = curr;
+ }
+ }
+ }
+
+ return interference;
+}
+
+/// processBlock - Determine how to break up PHIs in the current block. Each
+/// PHI is broken up by some combination of renaming its operands and inserting
+/// copies. This method is responsible for determining which operands receive
+/// which treatment.
+void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
+ LiveIntervals& LI = getAnalysis<LiveIntervals>();
+ MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
+
+ // Holds names that have been added to a set in any PHI within this block
+ // before the current one.
+ std::set<unsigned> ProcessedNames;
+
+ // Iterate over all the PHI nodes in this block
+ MachineBasicBlock::iterator P = MBB->begin();
+ while (P != MBB->end() && P->isPHI()) {
+ unsigned DestReg = P->getOperand(0).getReg();
+
+ // Don't both doing PHI elimination for dead PHI's.
+ if (P->registerDefIsDead(DestReg)) {
+ ++P;
+ continue;
+ }
+
+ LiveInterval& PI = LI.getOrCreateInterval(DestReg);
+ SlotIndex pIdx = LI.getInstructionIndex(P).getDefIndex();
+ VNInfo* PVN = PI.getLiveRangeContaining(pIdx)->valno;
+ PhiValueNumber.insert(std::make_pair(DestReg, PVN->id));
+
+ // PHIUnion is the set of incoming registers to the PHI node that
+ // are going to be renames rather than having copies inserted. This set
+ // is refinded over the course of this function. UnionedBlocks is the set
+ // of corresponding MBBs.
+ std::map<unsigned, MachineBasicBlock*> PHIUnion;
+ SmallPtrSet<MachineBasicBlock*, 8> UnionedBlocks;
+
+ // Iterate over the operands of the PHI node
+ for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
+ unsigned SrcReg = P->getOperand(i-1).getReg();
+
+ // Don't need to try to coalesce a register with itself.
+ if (SrcReg == DestReg) {
+ ProcessedNames.insert(SrcReg);
+ continue;
+ }
+
+ // We don't need to insert copies for implicit_defs.
+ MachineInstr* DefMI = MRI.getVRegDef(SrcReg);
+ if (DefMI->isImplicitDef())
+ ProcessedNames.insert(SrcReg);
+
+ // Check for trivial interferences via liveness information, allowing us
+ // to avoid extra work later. Any registers that interfere cannot both
+ // be in the renaming set, so choose one and add copies for it instead.
+ // The conditions are:
+ // 1) if the operand is live into the PHI node's block OR
+ // 2) if the PHI node is live out of the operand's defining block OR
+ // 3) if the operand is itself a PHI node and the original PHI is
+ // live into the operand's defining block OR
+ // 4) if the operand is already being renamed for another PHI node
+ // in this block OR
+ // 5) if any two operands are defined in the same block, insert copies
+ // for one of them
+ if (isLiveIn(SrcReg, P->getParent(), LI) ||
+ isLiveOut(P->getOperand(0).getReg(),
+ MRI.getVRegDef(SrcReg)->getParent(), LI) ||
+ ( MRI.getVRegDef(SrcReg)->isPHI() &&
+ isLiveIn(P->getOperand(0).getReg(),
+ MRI.getVRegDef(SrcReg)->getParent(), LI) ) ||
+ ProcessedNames.count(SrcReg) ||
+ UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
+
+ // Add a copy for the selected register
+ MachineBasicBlock* From = P->getOperand(i).getMBB();
+ Waiting[From].insert(std::make_pair(SrcReg, DestReg));
+ UsedByAnother.insert(SrcReg);
+ } else {
+ // Otherwise, add it to the renaming set
+ PHIUnion.insert(std::make_pair(SrcReg,P->getOperand(i).getMBB()));
+ UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
+ }
+ }
+
+ // Compute the dominator forest for the renaming set. This is a forest
+ // where the nodes are the registers and the edges represent dominance
+ // relations between the defining blocks of the registers
+ std::vector<StrongPHIElimination::DomForestNode*> DF =
+ computeDomForest(PHIUnion, MRI);
+
+ // Walk DomForest to resolve interferences at an inter-block level. This
+ // will remove registers from the renaming set (and insert copies for them)
+ // if interferences are found.
+ std::vector<std::pair<unsigned, unsigned> > localInterferences;
+ processPHIUnion(P, PHIUnion, DF, localInterferences);
+
+ // If one of the inputs is defined in the same block as the current PHI
+ // then we need to check for a local interference between that input and
+ // the PHI.
+ for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
+ E = PHIUnion.end(); I != E; ++I)
+ if (MRI.getVRegDef(I->first)->getParent() == P->getParent())
+ localInterferences.push_back(std::make_pair(I->first,
+ P->getOperand(0).getReg()));
+
+ // The dominator forest walk may have returned some register pairs whose
+ // interference cannot be determined from dominator analysis. We now
+ // examine these pairs for local interferences.
+ for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
+ localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
+ std::pair<unsigned, unsigned> p = *I;
+
+ MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+
+ // Determine the block we need to scan and the relationship between
+ // the two registers
+ MachineBasicBlock* scan = 0;
+ unsigned mode = 0;
+ if (MRI.getVRegDef(p.first)->getParent() ==
+ MRI.getVRegDef(p.second)->getParent()) {
+ scan = MRI.getVRegDef(p.first)->getParent();
+ mode = 0; // Same block
+ } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
+ MRI.getVRegDef(p.second)->getParent())) {
+ scan = MRI.getVRegDef(p.second)->getParent();
+ mode = 1; // First dominates second
+ } else {
+ scan = MRI.getVRegDef(p.first)->getParent();
+ mode = 2; // Second dominates first
+ }
+
+ // If there's an interference, we need to insert copies
+ if (interferes(p.first, p.second, scan, LI, mode)) {
+ // Insert copies for First
+ for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
+ if (P->getOperand(i-1).getReg() == p.first) {
+ unsigned SrcReg = p.first;
+ MachineBasicBlock* From = P->getOperand(i).getMBB();
+
+ Waiting[From].insert(std::make_pair(SrcReg,
+ P->getOperand(0).getReg()));
+ UsedByAnother.insert(SrcReg);
+
+ PHIUnion.erase(SrcReg);
+ }
+ }
+ }
+ }
+
+ // Add the renaming set for this PHI node to our overall renaming information
+ for (std::map<unsigned, MachineBasicBlock*>::iterator QI = PHIUnion.begin(),
+ QE = PHIUnion.end(); QI != QE; ++QI) {
+ DEBUG(dbgs() << "Adding Renaming: " << QI->first << " -> "
+ << P->getOperand(0).getReg() << "\n");
+ }
+
+ RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
+
+ // Remember which registers are already renamed, so that we don't try to
+ // rename them for another PHI node in this block
+ for (std::map<unsigned, MachineBasicBlock*>::iterator I = PHIUnion.begin(),
+ E = PHIUnion.end(); I != E; ++I)
+ ProcessedNames.insert(I->first);
+
+ ++P;
+ }
+}
+
+/// processPHIUnion - Take a set of candidate registers to be coalesced when
+/// decomposing the PHI instruction. Use the DominanceForest to remove the ones
+/// that are known to interfere, and flag others that need to be checked for
+/// local interferences.
+void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
+ std::map<unsigned, MachineBasicBlock*>& PHIUnion,
+ std::vector<StrongPHIElimination::DomForestNode*>& DF,
+ std::vector<std::pair<unsigned, unsigned> >& locals) {
+
+ std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
+ SmallPtrSet<DomForestNode*, 4> visited;
+
+ // Code is still in SSA form, so we can use MRI::getVRegDef()
+ MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
+
+ LiveIntervals& LI = getAnalysis<LiveIntervals>();
+ unsigned DestReg = Inst->getOperand(0).getReg();
+
+ // DF walk on the DomForest
+ while (!worklist.empty()) {
+ DomForestNode* DFNode = worklist.back();
+
+ visited.insert(DFNode);
+
+ bool inserted = false;
+ for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
+ CI != CE; ++CI) {
+ DomForestNode* child = *CI;
+
+ // If the current node is live-out of the defining block of one of its
+ // children, insert a copy for it. NOTE: The paper actually calls for
+ // a more elaborate heuristic for determining whether to insert copies
+ // for the child or the parent. In the interest of simplicity, we're
+ // just always choosing the parent.
+ if (isLiveOut(DFNode->getReg(),
+ MRI.getVRegDef(child->getReg())->getParent(), LI)) {
+ // Insert copies for parent
+ for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
+ if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
+ unsigned SrcReg = DFNode->getReg();
+ MachineBasicBlock* From = Inst->getOperand(i).getMBB();
+
+ Waiting[From].insert(std::make_pair(SrcReg, DestReg));
+ UsedByAnother.insert(SrcReg);
+
+ PHIUnion.erase(SrcReg);
+ }
+ }
+
+ // If a node is live-in to the defining block of one of its children, but
+ // not live-out, then we need to scan that block for local interferences.
+ } else if (isLiveIn(DFNode->getReg(),
+ MRI.getVRegDef(child->getReg())->getParent(), LI) ||
+ MRI.getVRegDef(DFNode->getReg())->getParent() ==
+ MRI.getVRegDef(child->getReg())->getParent()) {
+ // Add (p, c) to possible local interferences
+ locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
+ }
+
+ if (!visited.count(child)) {
+ worklist.push_back(child);
+ inserted = true;
+ }
+ }
+
+ if (!inserted) worklist.pop_back();
+ }
+}
+
+/// ScheduleCopies - Insert copies into predecessor blocks, scheduling
+/// them properly so as to avoid the 'lost copy' and the 'virtual swap'
+/// problems.
+///
+/// Based on "Practical Improvements to the Construction and Destruction
+/// of Static Single Assignment Form" by Briggs, et al.
+void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
+ std::set<unsigned>& pushed) {
+ // FIXME: This function needs to update LiveIntervals
+ std::multimap<unsigned, unsigned>& copy_set= Waiting[MBB];
+
+ std::multimap<unsigned, unsigned> worklist;
+ std::map<unsigned, unsigned> map;
+
+ // Setup worklist of initial copies
+ for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
+ E = copy_set.end(); I != E; ) {
+ map.insert(std::make_pair(I->first, I->first));
+ map.insert(std::make_pair(I->second, I->second));
+
+ if (!UsedByAnother.count(I->second)) {
+ worklist.insert(*I);
+
+ // Avoid iterator invalidation
+ std::multimap<unsigned, unsigned>::iterator OI = I;
+ ++I;
+ copy_set.erase(OI);
+ } else {
+ ++I;
+ }
+ }
+
+ LiveIntervals& LI = getAnalysis<LiveIntervals>();
+ MachineFunction* MF = MBB->getParent();
+ MachineRegisterInfo& MRI = MF->getRegInfo();
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+
+ SmallVector<std::pair<unsigned, MachineInstr*>, 4> InsertedPHIDests;
+
+ // Iterate over the worklist, inserting copies
+ while (!worklist.empty() || !copy_set.empty()) {
+ while (!worklist.empty()) {
+ std::multimap<unsigned, unsigned>::iterator WI = worklist.begin();
+ std::pair<unsigned, unsigned> curr = *WI;
+ worklist.erase(WI);
+
+ const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
+
+ if (isLiveOut(curr.second, MBB, LI)) {
+ // Create a temporary
+ unsigned t = MF->getRegInfo().createVirtualRegister(RC);
+
+ // Insert copy from curr.second to a temporary at
+ // the Phi defining curr.second
+ MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
+ TII->copyRegToReg(*PI->getParent(), PI, t,
+ curr.second, RC, RC, DebugLoc());
+
+ DEBUG(dbgs() << "Inserted copy from " << curr.second << " to " << t
+ << "\n");
+
+ // Push temporary on Stacks
+ Stacks[curr.second].push_back(t);
+
+ // Insert curr.second in pushed
+ pushed.insert(curr.second);
+
+ // Create a live interval for this temporary
+ InsertedPHIDests.push_back(std::make_pair(t, --PI));
+ }
+
+ // Insert copy from map[curr.first] to curr.second
+ TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
+ map[curr.first], RC, RC, DebugLoc());
+ map[curr.first] = curr.second;
+ DEBUG(dbgs() << "Inserted copy from " << curr.first << " to "
+ << curr.second << "\n");
+
+ // Push this copy onto InsertedPHICopies so we can
+ // update LiveIntervals with it.
+ MachineBasicBlock::iterator MI = MBB->getFirstTerminator();
+ InsertedPHIDests.push_back(std::make_pair(curr.second, --MI));
+
+ // If curr.first is a destination in copy_set...
+ for (std::multimap<unsigned, unsigned>::iterator I = copy_set.begin(),
+ E = copy_set.end(); I != E; )
+ if (curr.first == I->second) {
+ std::pair<unsigned, unsigned> temp = *I;
+ worklist.insert(temp);
+
+ // Avoid iterator invalidation
+ std::multimap<unsigned, unsigned>::iterator OI = I;
+ ++I;
+ copy_set.erase(OI);
+
+ break;
+ } else {
+ ++I;
+ }
+ }
+
+ if (!copy_set.empty()) {
+ std::multimap<unsigned, unsigned>::iterator CI = copy_set.begin();
+ std::pair<unsigned, unsigned> curr = *CI;
+ worklist.insert(curr);
+ copy_set.erase(CI);
+
+ LiveInterval& I = LI.getInterval(curr.second);
+ MachineBasicBlock::iterator term = MBB->getFirstTerminator();
+ SlotIndex endIdx = SlotIndex();
+ if (term != MBB->end())
+ endIdx = LI.getInstructionIndex(term);
+ else
+ endIdx = LI.getMBBEndIdx(MBB);
+
+ if (I.liveAt(endIdx)) {
+ const TargetRegisterClass *RC =
+ MF->getRegInfo().getRegClass(curr.first);
+
+ // Insert a copy from dest to a new temporary t at the end of b
+ unsigned t = MF->getRegInfo().createVirtualRegister(RC);
+ TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t,
+ curr.second, RC, RC, DebugLoc());
+ map[curr.second] = t;
+
+ MachineBasicBlock::iterator TI = MBB->getFirstTerminator();
+ InsertedPHIDests.push_back(std::make_pair(t, --TI));
+ }
+ }
+ }
+
+ // Renumber the instructions so that we can perform the index computations
+ // needed to create new live intervals.
+ LI.renumber();
+
+ // For copies that we inserted at the ends of predecessors, we construct
+ // live intervals. This is pretty easy, since we know that the destination
+ // register cannot have be in live at that point previously. We just have
+ // to make sure that, for registers that serve as inputs to more than one
+ // PHI, we don't create multiple overlapping live intervals.
+ std::set<unsigned> RegHandled;
+ for (SmallVector<std::pair<unsigned, MachineInstr*>, 4>::iterator I =
+ InsertedPHIDests.begin(), E = InsertedPHIDests.end(); I != E; ++I) {
+ if (RegHandled.insert(I->first).second) {
+ LiveInterval& Int = LI.getOrCreateInterval(I->first);
+ SlotIndex instrIdx = LI.getInstructionIndex(I->second);
+ if (Int.liveAt(instrIdx.getDefIndex()))
+ Int.removeRange(instrIdx.getDefIndex(),
+ LI.getMBBEndIdx(I->second->getParent()).getNextSlot(),
+ true);
+
+ LiveRange R = LI.addLiveRangeToEndOfBlock(I->first, I->second);
+ R.valno->setCopy(I->second);
+ R.valno->def = LI.getInstructionIndex(I->second).getDefIndex();
+ }
+ }
+}
+
+/// InsertCopies - insert copies into MBB and all of its successors
+void StrongPHIElimination::InsertCopies(MachineDomTreeNode* MDTN,
+ SmallPtrSet<MachineBasicBlock*, 16>& visited) {
+ MachineBasicBlock* MBB = MDTN->getBlock();
+ visited.insert(MBB);
+
+ std::set<unsigned> pushed;
+
+ LiveIntervals& LI = getAnalysis<LiveIntervals>();
+ // Rewrite register uses from Stacks
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ if (I->isPHI())
+ continue;
+
+ for (unsigned i = 0; i < I->getNumOperands(); ++i)
+ if (I->getOperand(i).isReg() &&
+ Stacks[I->getOperand(i).getReg()].size()) {
+ // Remove the live range for the old vreg.
+ LiveInterval& OldInt = LI.getInterval(I->getOperand(i).getReg());
+ LiveInterval::iterator OldLR =
+ OldInt.FindLiveRangeContaining(LI.getInstructionIndex(I).getUseIndex());
+ if (OldLR != OldInt.end())
+ OldInt.removeRange(*OldLR, true);
+
+ // Change the register
+ I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
+
+ // Add a live range for the new vreg
+ LiveInterval& Int = LI.getInterval(I->getOperand(i).getReg());
+ VNInfo* FirstVN = *Int.vni_begin();
+ FirstVN->setHasPHIKill(false);
+ if (I->getOperand(i).isKill())
+ FirstVN->addKill(LI.getInstructionIndex(I).getUseIndex());
+
+ LiveRange LR (LI.getMBBStartIdx(I->getParent()),
+ LI.getInstructionIndex(I).getUseIndex().getNextSlot(),
+ FirstVN);
+
+ Int.addRange(LR);
+ }
+ }
+
+ // Schedule the copies for this block
+ ScheduleCopies(MBB, pushed);
+
+ // Recur down the dominator tree.
+ for (MachineDomTreeNode::iterator I = MDTN->begin(),
+ E = MDTN->end(); I != E; ++I)
+ if (!visited.count((*I)->getBlock()))
+ InsertCopies(*I, visited);
+
+ // As we exit this block, pop the names we pushed while processing it
+ for (std::set<unsigned>::iterator I = pushed.begin(),
+ E = pushed.end(); I != E; ++I)
+ Stacks[*I].pop_back();
+}
+
+bool StrongPHIElimination::mergeLiveIntervals(unsigned primary,
+ unsigned secondary) {
+
+ LiveIntervals& LI = getAnalysis<LiveIntervals>();
+ LiveInterval& LHS = LI.getOrCreateInterval(primary);
+ LiveInterval& RHS = LI.getOrCreateInterval(secondary);
+
+ LI.renumber();
+
+ DenseMap<VNInfo*, VNInfo*> VNMap;
+ for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
+ LiveRange R = *I;
+
+ SlotIndex Start = R.start;
+ SlotIndex End = R.end;
+ if (LHS.getLiveRangeContaining(Start))
+ return false;
+
+ if (LHS.getLiveRangeContaining(End))
+ return false;
+
+ LiveInterval::iterator RI = std::upper_bound(LHS.begin(), LHS.end(), R);
+ if (RI != LHS.end() && RI->start < End)
+ return false;
+ }
+
+ for (LiveInterval::iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
+ LiveRange R = *I;
+ VNInfo* OldVN = R.valno;
+ VNInfo*& NewVN = VNMap[OldVN];
+ if (!NewVN) {
+ NewVN = LHS.createValueCopy(OldVN, LI.getVNInfoAllocator());
+ }
+
+ LiveRange LR (R.start, R.end, NewVN);
+ LHS.addRange(LR);
+ }
+
+ LI.removeInterval(RHS.reg);
+
+ return true;
+}
+
+bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
+ LiveIntervals& LI = getAnalysis<LiveIntervals>();
+
+ // Compute DFS numbers of each block
+ computeDFS(Fn);
+
+ // Determine which phi node operands need copies
+ for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+ if (!I->empty() && I->begin()->isPHI())
+ processBlock(I);
+
+ // Break interferences where two different phis want to coalesce
+ // in the same register.
+ std::set<unsigned> seen;
+ typedef std::map<unsigned, std::map<unsigned, MachineBasicBlock*> >
+ RenameSetType;
+ for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
+ I != E; ++I) {
+ for (std::map<unsigned, MachineBasicBlock*>::iterator
+ OI = I->second.begin(), OE = I->second.end(); OI != OE; ) {
+ if (!seen.count(OI->first)) {
+ seen.insert(OI->first);
+ ++OI;
+ } else {
+ Waiting[OI->second].insert(std::make_pair(OI->first, I->first));
+ unsigned reg = OI->first;
+ ++OI;
+ I->second.erase(reg);
+ DEBUG(dbgs() << "Removing Renaming: " << reg << " -> " << I->first
+ << "\n");
+ }
+ }
+ }
+
+ // Insert copies
+ // FIXME: This process should probably preserve LiveIntervals
+ SmallPtrSet<MachineBasicBlock*, 16> visited;
+ MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+ InsertCopies(MDT.getRootNode(), visited);
+
+ // Perform renaming
+ for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
+ I != E; ++I)
+ while (I->second.size()) {
+ std::map<unsigned, MachineBasicBlock*>::iterator SI = I->second.begin();
+
+ DEBUG(dbgs() << "Renaming: " << SI->first << " -> " << I->first << "\n");
+
+ if (SI->first != I->first) {
+ if (mergeLiveIntervals(I->first, SI->first)) {
+ Fn.getRegInfo().replaceRegWith(SI->first, I->first);
+
+ if (RenameSets.count(SI->first)) {
+ I->second.insert(RenameSets[SI->first].begin(),
+ RenameSets[SI->first].end());
+ RenameSets.erase(SI->first);
+ }
+ } else {
+ // Insert a last-minute copy if a conflict was detected.
+ const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
+ const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(I->first);
+ TII->copyRegToReg(*SI->second, SI->second->getFirstTerminator(),
+ I->first, SI->first, RC, RC, DebugLoc());
+
+ LI.renumber();
+
+ LiveInterval& Int = LI.getOrCreateInterval(I->first);
+ SlotIndex instrIdx =
+ LI.getInstructionIndex(--SI->second->getFirstTerminator());
+ if (Int.liveAt(instrIdx.getDefIndex()))
+ Int.removeRange(instrIdx.getDefIndex(),
+ LI.getMBBEndIdx(SI->second).getNextSlot(), true);
+
+ LiveRange R = LI.addLiveRangeToEndOfBlock(I->first,
+ --SI->second->getFirstTerminator());
+ R.valno->setCopy(--SI->second->getFirstTerminator());
+ R.valno->def = instrIdx.getDefIndex();
+
+ DEBUG(dbgs() << "Renaming failed: " << SI->first << " -> "
+ << I->first << "\n");
+ }
+ }
+
+ LiveInterval& Int = LI.getOrCreateInterval(I->first);
+ const LiveRange* LR =
+ Int.getLiveRangeContaining(LI.getMBBEndIdx(SI->second));
+ LR->valno->setHasPHIKill(true);
+
+ I->second.erase(SI->first);
+ }
+
+ // Remove PHIs
+ std::vector<MachineInstr*> phis;
+ for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
+ for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
+ BI != BE; ++BI)
+ if (BI->isPHI())
+ phis.push_back(BI);
+ }
+
+ for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
+ I != E; ) {
+ MachineInstr* PInstr = *(I++);
+
+ // If this is a dead PHI node, then remove it from LiveIntervals.
+ unsigned DestReg = PInstr->getOperand(0).getReg();
+ LiveInterval& PI = LI.getInterval(DestReg);
+ if (PInstr->registerDefIsDead(DestReg)) {
+ if (PI.containsOneValue()) {
+ LI.removeInterval(DestReg);
+ } else {
+ SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex();
+ PI.removeRange(*PI.getLiveRangeContaining(idx), true);
+ }
+ } else {
+ // Trim live intervals of input registers. They are no longer live into
+ // this block if they died after the PHI. If they lived after it, don't
+ // trim them because they might have other legitimate uses.
+ for (unsigned i = 1; i < PInstr->getNumOperands(); i += 2) {
+ unsigned reg = PInstr->getOperand(i).getReg();
+
+ MachineBasicBlock* MBB = PInstr->getOperand(i+1).getMBB();
+ LiveInterval& InputI = LI.getInterval(reg);
+ if (MBB != PInstr->getParent() &&
+ InputI.liveAt(LI.getMBBStartIdx(PInstr->getParent())) &&
+ InputI.expiredAt(LI.getInstructionIndex(PInstr).getNextIndex()))
+ InputI.removeRange(LI.getMBBStartIdx(PInstr->getParent()),
+ LI.getInstructionIndex(PInstr),
+ true);
+ }
+
+ // If the PHI is not dead, then the valno defined by the PHI
+ // now has an unknown def.
+ SlotIndex idx = LI.getInstructionIndex(PInstr).getDefIndex();
+ const LiveRange* PLR = PI.getLiveRangeContaining(idx);
+ PLR->valno->setIsPHIDef(true);
+ LiveRange R (LI.getMBBStartIdx(PInstr->getParent()),
+ PLR->start, PLR->valno);
+ PI.addRange(R);
+ }
+
+ LI.RemoveMachineInstrFromMaps(PInstr);
+ PInstr->eraseFromParent();
+ }
+
+ LI.renumber();
+
+ return true;
+}
OpenPOWER on IntegriCloud