summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/StackProtector.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/StackProtector.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/StackProtector.cpp495
1 files changed, 495 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/StackProtector.cpp b/contrib/llvm/lib/CodeGen/StackProtector.cpp
new file mode 100644
index 0000000..0824d6f
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/StackProtector.cpp
@@ -0,0 +1,495 @@
+//===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass inserts stack protectors into functions which need them. A variable
+// with a random value in it is stored onto the stack before the local variables
+// are allocated. Upon exiting the block, the stored value is checked. If it's
+// changed, then there was some sort of violation and the program aborts.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <cstdlib>
+using namespace llvm;
+
+#define DEBUG_TYPE "stack-protector"
+
+STATISTIC(NumFunProtected, "Number of functions protected");
+STATISTIC(NumAddrTaken, "Number of local variables that have their address"
+ " taken.");
+
+static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
+ cl::init(true), cl::Hidden);
+
+char StackProtector::ID = 0;
+INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
+ false, true)
+
+FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
+ return new StackProtector(TM);
+}
+
+StackProtector::SSPLayoutKind
+StackProtector::getSSPLayout(const AllocaInst *AI) const {
+ return AI ? Layout.lookup(AI) : SSPLK_None;
+}
+
+void StackProtector::adjustForColoring(const AllocaInst *From,
+ const AllocaInst *To) {
+ // When coloring replaces one alloca with another, transfer the SSPLayoutKind
+ // tag from the remapped to the target alloca. The remapped alloca should
+ // have a size smaller than or equal to the replacement alloca.
+ SSPLayoutMap::iterator I = Layout.find(From);
+ if (I != Layout.end()) {
+ SSPLayoutKind Kind = I->second;
+ Layout.erase(I);
+
+ // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
+ // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
+ // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
+ I = Layout.find(To);
+ if (I == Layout.end())
+ Layout.insert(std::make_pair(To, Kind));
+ else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
+ I->second = Kind;
+ }
+}
+
+bool StackProtector::runOnFunction(Function &Fn) {
+ F = &Fn;
+ M = F->getParent();
+ DominatorTreeWrapperPass *DTWP =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
+
+ Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
+ if (Attr.isStringAttribute() &&
+ Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
+ return false; // Invalid integer string
+
+ if (!RequiresStackProtector())
+ return false;
+
+ ++NumFunProtected;
+ return InsertStackProtectors();
+}
+
+/// \param [out] IsLarge is set to true if a protectable array is found and
+/// it is "large" ( >= ssp-buffer-size). In the case of a structure with
+/// multiple arrays, this gets set if any of them is large.
+bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
+ bool Strong,
+ bool InStruct) const {
+ if (!Ty)
+ return false;
+ if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+ if (!AT->getElementType()->isIntegerTy(8)) {
+ // If we're on a non-Darwin platform or we're inside of a structure, don't
+ // add stack protectors unless the array is a character array.
+ // However, in strong mode any array, regardless of type and size,
+ // triggers a protector.
+ if (!Strong && (InStruct || !Trip.isOSDarwin()))
+ return false;
+ }
+
+ // If an array has more than SSPBufferSize bytes of allocated space, then we
+ // emit stack protectors.
+ if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
+ IsLarge = true;
+ return true;
+ }
+
+ if (Strong)
+ // Require a protector for all arrays in strong mode
+ return true;
+ }
+
+ const StructType *ST = dyn_cast<StructType>(Ty);
+ if (!ST)
+ return false;
+
+ bool NeedsProtector = false;
+ for (StructType::element_iterator I = ST->element_begin(),
+ E = ST->element_end();
+ I != E; ++I)
+ if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
+ // If the element is a protectable array and is large (>= SSPBufferSize)
+ // then we are done. If the protectable array is not large, then
+ // keep looking in case a subsequent element is a large array.
+ if (IsLarge)
+ return true;
+ NeedsProtector = true;
+ }
+
+ return NeedsProtector;
+}
+
+bool StackProtector::HasAddressTaken(const Instruction *AI) {
+ for (const User *U : AI->users()) {
+ if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ if (AI == SI->getValueOperand())
+ return true;
+ } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
+ if (AI == SI->getOperand(0))
+ return true;
+ } else if (isa<CallInst>(U)) {
+ return true;
+ } else if (isa<InvokeInst>(U)) {
+ return true;
+ } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
+ if (HasAddressTaken(SI))
+ return true;
+ } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
+ // Keep track of what PHI nodes we have already visited to ensure
+ // they are only visited once.
+ if (VisitedPHIs.insert(PN).second)
+ if (HasAddressTaken(PN))
+ return true;
+ } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
+ if (HasAddressTaken(GEP))
+ return true;
+ } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
+ if (HasAddressTaken(BI))
+ return true;
+ }
+ }
+ return false;
+}
+
+/// \brief Check whether or not this function needs a stack protector based
+/// upon the stack protector level.
+///
+/// We use two heuristics: a standard (ssp) and strong (sspstrong).
+/// The standard heuristic which will add a guard variable to functions that
+/// call alloca with a either a variable size or a size >= SSPBufferSize,
+/// functions with character buffers larger than SSPBufferSize, and functions
+/// with aggregates containing character buffers larger than SSPBufferSize. The
+/// strong heuristic will add a guard variables to functions that call alloca
+/// regardless of size, functions with any buffer regardless of type and size,
+/// functions with aggregates that contain any buffer regardless of type and
+/// size, and functions that contain stack-based variables that have had their
+/// address taken.
+bool StackProtector::RequiresStackProtector() {
+ bool Strong = false;
+ bool NeedsProtector = false;
+ if (F->hasFnAttribute(Attribute::StackProtectReq)) {
+ NeedsProtector = true;
+ Strong = true; // Use the same heuristic as strong to determine SSPLayout
+ } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
+ Strong = true;
+ else if (!F->hasFnAttribute(Attribute::StackProtect))
+ return false;
+
+ for (const BasicBlock &BB : *F) {
+ for (const Instruction &I : BB) {
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
+ if (AI->isArrayAllocation()) {
+ // SSP-Strong: Enable protectors for any call to alloca, regardless
+ // of size.
+ if (Strong)
+ return true;
+
+ if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
+ if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
+ // A call to alloca with size >= SSPBufferSize requires
+ // stack protectors.
+ Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
+ NeedsProtector = true;
+ } else if (Strong) {
+ // Require protectors for all alloca calls in strong mode.
+ Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
+ NeedsProtector = true;
+ }
+ } else {
+ // A call to alloca with a variable size requires protectors.
+ Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
+ NeedsProtector = true;
+ }
+ continue;
+ }
+
+ bool IsLarge = false;
+ if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
+ Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
+ : SSPLK_SmallArray));
+ NeedsProtector = true;
+ continue;
+ }
+
+ if (Strong && HasAddressTaken(AI)) {
+ ++NumAddrTaken;
+ Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
+ NeedsProtector = true;
+ }
+ }
+ }
+ }
+
+ return NeedsProtector;
+}
+
+static bool InstructionWillNotHaveChain(const Instruction *I) {
+ return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
+ isSafeToSpeculativelyExecute(I);
+}
+
+/// Identify if RI has a previous instruction in the "Tail Position" and return
+/// it. Otherwise return 0.
+///
+/// This is based off of the code in llvm::isInTailCallPosition. The difference
+/// is that it inverts the first part of llvm::isInTailCallPosition since
+/// isInTailCallPosition is checking if a call is in a tail call position, and
+/// we are searching for an unknown tail call that might be in the tail call
+/// position. Once we find the call though, the code uses the same refactored
+/// code, returnTypeIsEligibleForTailCall.
+static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
+ const TargetLoweringBase *TLI) {
+ // Establish a reasonable upper bound on the maximum amount of instructions we
+ // will look through to find a tail call.
+ unsigned SearchCounter = 0;
+ const unsigned MaxSearch = 4;
+ bool NoInterposingChain = true;
+
+ for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend();
+ I != E && SearchCounter < MaxSearch; ++I) {
+ Instruction *Inst = &*I;
+
+ // Skip over debug intrinsics and do not allow them to affect our MaxSearch
+ // counter.
+ if (isa<DbgInfoIntrinsic>(Inst))
+ continue;
+
+ // If we find a call and the following conditions are satisifed, then we
+ // have found a tail call that satisfies at least the target independent
+ // requirements of a tail call:
+ //
+ // 1. The call site has the tail marker.
+ //
+ // 2. The call site either will not cause the creation of a chain or if a
+ // chain is necessary there are no instructions in between the callsite and
+ // the call which would create an interposing chain.
+ //
+ // 3. The return type of the function does not impede tail call
+ // optimization.
+ if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
+ if (CI->isTailCall() &&
+ (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
+ returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
+ return CI;
+ }
+
+ // If we did not find a call see if we have an instruction that may create
+ // an interposing chain.
+ NoInterposingChain =
+ NoInterposingChain && InstructionWillNotHaveChain(Inst);
+
+ // Increment max search.
+ SearchCounter++;
+ }
+
+ return nullptr;
+}
+
+/// Insert code into the entry block that stores the __stack_chk_guard
+/// variable onto the stack:
+///
+/// entry:
+/// StackGuardSlot = alloca i8*
+/// StackGuard = load __stack_chk_guard
+/// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
+///
+/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
+/// node.
+static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
+ const TargetLoweringBase *TLI, const Triple &TT,
+ AllocaInst *&AI, Value *&StackGuardVar) {
+ bool SupportsSelectionDAGSP = false;
+ PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
+ unsigned AddressSpace, Offset;
+ if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
+ Constant *OffsetVal =
+ ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
+
+ StackGuardVar =
+ ConstantExpr::getIntToPtr(OffsetVal, PointerType::get(PtrTy,
+ AddressSpace));
+ } else if (TT.isOSOpenBSD()) {
+ StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
+ cast<GlobalValue>(StackGuardVar)
+ ->setVisibility(GlobalValue::HiddenVisibility);
+ } else {
+ SupportsSelectionDAGSP = true;
+ StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
+ }
+
+ IRBuilder<> B(&F->getEntryBlock().front());
+ AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
+ LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
+ B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
+ {LI, AI});
+
+ return SupportsSelectionDAGSP;
+}
+
+/// InsertStackProtectors - Insert code into the prologue and epilogue of the
+/// function.
+///
+/// - The prologue code loads and stores the stack guard onto the stack.
+/// - The epilogue checks the value stored in the prologue against the original
+/// value. It calls __stack_chk_fail if they differ.
+bool StackProtector::InsertStackProtectors() {
+ bool HasPrologue = false;
+ bool SupportsSelectionDAGSP =
+ EnableSelectionDAGSP && !TM->Options.EnableFastISel;
+ AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
+ Value *StackGuardVar = nullptr; // The stack guard variable.
+
+ for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
+ BasicBlock *BB = I++;
+ ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
+ if (!RI)
+ continue;
+
+ if (!HasPrologue) {
+ HasPrologue = true;
+ SupportsSelectionDAGSP &=
+ CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
+ }
+
+ if (SupportsSelectionDAGSP) {
+ // Since we have a potential tail call, insert the special stack check
+ // intrinsic.
+ Instruction *InsertionPt = nullptr;
+ if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
+ InsertionPt = CI;
+ } else {
+ InsertionPt = RI;
+ // At this point we know that BB has a return statement so it *DOES*
+ // have a terminator.
+ assert(InsertionPt != nullptr &&
+ "BB must have a terminator instruction at this point.");
+ }
+
+ Function *Intrinsic =
+ Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
+ CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
+ } else {
+ // If we do not support SelectionDAG based tail calls, generate IR level
+ // tail calls.
+ //
+ // For each block with a return instruction, convert this:
+ //
+ // return:
+ // ...
+ // ret ...
+ //
+ // into this:
+ //
+ // return:
+ // ...
+ // %1 = load __stack_chk_guard
+ // %2 = load StackGuardSlot
+ // %3 = cmp i1 %1, %2
+ // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
+ //
+ // SP_return:
+ // ret ...
+ //
+ // CallStackCheckFailBlk:
+ // call void @__stack_chk_fail()
+ // unreachable
+
+ // Create the FailBB. We duplicate the BB every time since the MI tail
+ // merge pass will merge together all of the various BB into one including
+ // fail BB generated by the stack protector pseudo instruction.
+ BasicBlock *FailBB = CreateFailBB();
+
+ // Split the basic block before the return instruction.
+ BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
+
+ // Update the dominator tree if we need to.
+ if (DT && DT->isReachableFromEntry(BB)) {
+ DT->addNewBlock(NewBB, BB);
+ DT->addNewBlock(FailBB, BB);
+ }
+
+ // Remove default branch instruction to the new BB.
+ BB->getTerminator()->eraseFromParent();
+
+ // Move the newly created basic block to the point right after the old
+ // basic block so that it's in the "fall through" position.
+ NewBB->moveAfter(BB);
+
+ // Generate the stack protector instructions in the old basic block.
+ IRBuilder<> B(BB);
+ LoadInst *LI1 = B.CreateLoad(StackGuardVar);
+ LoadInst *LI2 = B.CreateLoad(AI);
+ Value *Cmp = B.CreateICmpEQ(LI1, LI2);
+ unsigned SuccessWeight =
+ BranchProbabilityInfo::getBranchWeightStackProtector(true);
+ unsigned FailureWeight =
+ BranchProbabilityInfo::getBranchWeightStackProtector(false);
+ MDNode *Weights = MDBuilder(F->getContext())
+ .createBranchWeights(SuccessWeight, FailureWeight);
+ B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
+ }
+ }
+
+ // Return if we didn't modify any basic blocks. i.e., there are no return
+ // statements in the function.
+ if (!HasPrologue)
+ return false;
+
+ return true;
+}
+
+/// CreateFailBB - Create a basic block to jump to when the stack protector
+/// check fails.
+BasicBlock *StackProtector::CreateFailBB() {
+ LLVMContext &Context = F->getContext();
+ BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
+ IRBuilder<> B(FailBB);
+ if (Trip.isOSOpenBSD()) {
+ Constant *StackChkFail =
+ M->getOrInsertFunction("__stack_smash_handler",
+ Type::getVoidTy(Context),
+ Type::getInt8PtrTy(Context), nullptr);
+
+ B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
+ } else {
+ Constant *StackChkFail =
+ M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context),
+ nullptr);
+ B.CreateCall(StackChkFail, {});
+ }
+ B.CreateUnreachable();
+ return FailBB;
+}
OpenPOWER on IntegriCloud