summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SplitKit.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SplitKit.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.cpp1030
1 files changed, 1030 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.cpp b/contrib/llvm/lib/CodeGen/SplitKit.cpp
new file mode 100644
index 0000000..5663936
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SplitKit.cpp
@@ -0,0 +1,1030 @@
+//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SplitAnalysis class as well as mutator functions for
+// live range splitting.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "SplitKit.h"
+#include "LiveRangeEdit.h"
+#include "VirtRegMap.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+static cl::opt<bool>
+AllowSplit("spiller-splits-edges",
+ cl::desc("Allow critical edge splitting during spilling"));
+
+//===----------------------------------------------------------------------===//
+// Split Analysis
+//===----------------------------------------------------------------------===//
+
+SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
+ const LiveIntervals &lis,
+ const MachineLoopInfo &mli)
+ : MF(vrm.getMachineFunction()),
+ VRM(vrm),
+ LIS(lis),
+ Loops(mli),
+ TII(*MF.getTarget().getInstrInfo()),
+ CurLI(0) {}
+
+void SplitAnalysis::clear() {
+ UseSlots.clear();
+ UsingInstrs.clear();
+ UsingBlocks.clear();
+ LiveBlocks.clear();
+ CurLI = 0;
+}
+
+bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
+ MachineBasicBlock *T, *F;
+ SmallVector<MachineOperand, 4> Cond;
+ return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
+}
+
+/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
+void SplitAnalysis::analyzeUses() {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
+ E = MRI.reg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ if (MO.isUse() && MO.isUndef())
+ continue;
+ MachineInstr *MI = MO.getParent();
+ if (MI->isDebugValue() || !UsingInstrs.insert(MI))
+ continue;
+ UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
+ MachineBasicBlock *MBB = MI->getParent();
+ UsingBlocks[MBB]++;
+ }
+ array_pod_sort(UseSlots.begin(), UseSlots.end());
+ calcLiveBlockInfo();
+ DEBUG(dbgs() << " counted "
+ << UsingInstrs.size() << " instrs, "
+ << UsingBlocks.size() << " blocks.\n");
+}
+
+/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
+/// where CurLI is live.
+void SplitAnalysis::calcLiveBlockInfo() {
+ if (CurLI->empty())
+ return;
+
+ LiveInterval::const_iterator LVI = CurLI->begin();
+ LiveInterval::const_iterator LVE = CurLI->end();
+
+ SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
+ UseI = UseSlots.begin();
+ UseE = UseSlots.end();
+
+ // Loop over basic blocks where CurLI is live.
+ MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
+ for (;;) {
+ BlockInfo BI;
+ BI.MBB = MFI;
+ SlotIndex Start, Stop;
+ tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ // The last split point is the latest possible insertion point that dominates
+ // all successor blocks. If interference reaches LastSplitPoint, it is not
+ // possible to insert a split or reload that makes CurLI live in the
+ // outgoing bundle.
+ MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
+ if (LSP == BI.MBB->end())
+ BI.LastSplitPoint = Stop;
+ else
+ BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
+
+ // LVI is the first live segment overlapping MBB.
+ BI.LiveIn = LVI->start <= Start;
+ if (!BI.LiveIn)
+ BI.Def = LVI->start;
+
+ // Find the first and last uses in the block.
+ BI.Uses = hasUses(MFI);
+ if (BI.Uses && UseI != UseE) {
+ BI.FirstUse = *UseI;
+ assert(BI.FirstUse >= Start);
+ do ++UseI;
+ while (UseI != UseE && *UseI < Stop);
+ BI.LastUse = UseI[-1];
+ assert(BI.LastUse < Stop);
+ }
+
+ // Look for gaps in the live range.
+ bool hasGap = false;
+ BI.LiveOut = true;
+ while (LVI->end < Stop) {
+ SlotIndex LastStop = LVI->end;
+ if (++LVI == LVE || LVI->start >= Stop) {
+ BI.Kill = LastStop;
+ BI.LiveOut = false;
+ break;
+ }
+ if (LastStop < LVI->start) {
+ hasGap = true;
+ BI.Kill = LastStop;
+ BI.Def = LVI->start;
+ }
+ }
+
+ // Don't set LiveThrough when the block has a gap.
+ BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
+ LiveBlocks.push_back(BI);
+
+ // LVI is now at LVE or LVI->end >= Stop.
+ if (LVI == LVE)
+ break;
+
+ // Live segment ends exactly at Stop. Move to the next segment.
+ if (LVI->end == Stop && ++LVI == LVE)
+ break;
+
+ // Pick the next basic block.
+ if (LVI->start < Stop)
+ ++MFI;
+ else
+ MFI = LIS.getMBBFromIndex(LVI->start);
+ }
+}
+
+void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
+ for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ unsigned count = UsingBlocks.lookup(*I);
+ OS << " BB#" << (*I)->getNumber();
+ if (count)
+ OS << '(' << count << ')';
+ }
+}
+
+void SplitAnalysis::analyze(const LiveInterval *li) {
+ clear();
+ CurLI = li;
+ analyzeUses();
+}
+
+
+//===----------------------------------------------------------------------===//
+// LiveIntervalMap
+//===----------------------------------------------------------------------===//
+
+// Work around the fact that the std::pair constructors are broken for pointer
+// pairs in some implementations. makeVV(x, 0) works.
+static inline std::pair<const VNInfo*, VNInfo*>
+makeVV(const VNInfo *a, VNInfo *b) {
+ return std::make_pair(a, b);
+}
+
+void LiveIntervalMap::reset(LiveInterval *li) {
+ LI = li;
+ Values.clear();
+ LiveOutCache.clear();
+}
+
+bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
+ ValueMap::const_iterator i = Values.find(ParentVNI);
+ return i != Values.end() && i->second == 0;
+}
+
+// defValue - Introduce a LI def for ParentVNI that could be later than
+// ParentVNI->def.
+VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
+ assert(LI && "call reset first");
+ assert(ParentVNI && "Mapping NULL value");
+ assert(Idx.isValid() && "Invalid SlotIndex");
+ assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
+
+ // Create a new value.
+ VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
+
+ // Preserve the PHIDef bit.
+ if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
+ VNI->setIsPHIDef(true);
+
+ // Use insert for lookup, so we can add missing values with a second lookup.
+ std::pair<ValueMap::iterator,bool> InsP =
+ Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
+
+ // This is now a complex def. Mark with a NULL in valueMap.
+ if (!InsP.second)
+ InsP.first->second = 0;
+
+ return VNI;
+}
+
+
+// mapValue - Find the mapped value for ParentVNI at Idx.
+// Potentially create phi-def values.
+VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
+ bool *simple) {
+ assert(LI && "call reset first");
+ assert(ParentVNI && "Mapping NULL value");
+ assert(Idx.isValid() && "Invalid SlotIndex");
+ assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
+
+ // Use insert for lookup, so we can add missing values with a second lookup.
+ std::pair<ValueMap::iterator,bool> InsP =
+ Values.insert(makeVV(ParentVNI, 0));
+
+ // This was an unknown value. Create a simple mapping.
+ if (InsP.second) {
+ if (simple) *simple = true;
+ return InsP.first->second = LI->createValueCopy(ParentVNI,
+ LIS.getVNInfoAllocator());
+ }
+
+ // This was a simple mapped value.
+ if (InsP.first->second) {
+ if (simple) *simple = true;
+ return InsP.first->second;
+ }
+
+ // This is a complex mapped value. There may be multiple defs, and we may need
+ // to create phi-defs.
+ if (simple) *simple = false;
+ MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
+ assert(IdxMBB && "No MBB at Idx");
+
+ // Is there a def in the same MBB we can extend?
+ if (VNInfo *VNI = extendTo(IdxMBB, Idx))
+ return VNI;
+
+ // Now for the fun part. We know that ParentVNI potentially has multiple defs,
+ // and we may need to create even more phi-defs to preserve VNInfo SSA form.
+ // Perform a search for all predecessor blocks where we know the dominating
+ // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
+ DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
+ << " at " << Idx << " in " << *LI << '\n');
+
+ // Blocks where LI should be live-in.
+ SmallVector<MachineDomTreeNode*, 16> LiveIn;
+ LiveIn.push_back(MDT[IdxMBB]);
+
+ // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
+ for (unsigned i = 0; i != LiveIn.size(); ++i) {
+ MachineBasicBlock *MBB = LiveIn[i]->getBlock();
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ MachineBasicBlock *Pred = *PI;
+ // Is this a known live-out block?
+ std::pair<LiveOutMap::iterator,bool> LOIP =
+ LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
+ // Yes, we have been here before.
+ if (!LOIP.second) {
+ DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
+ dbgs() << " known valno #" << VNI->id
+ << " at BB#" << Pred->getNumber() << '\n');
+ continue;
+ }
+
+ // Does Pred provide a live-out value?
+ SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
+ if (VNInfo *VNI = extendTo(Pred, Last)) {
+ MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
+ DEBUG(dbgs() << " found valno #" << VNI->id
+ << " from BB#" << DefMBB->getNumber()
+ << " at BB#" << Pred->getNumber() << '\n');
+ LiveOutPair &LOP = LOIP.first->second;
+ LOP.first = VNI;
+ LOP.second = MDT[DefMBB];
+ continue;
+ }
+ // No, we need a live-in value for Pred as well
+ if (Pred != IdxMBB)
+ LiveIn.push_back(MDT[Pred]);
+ }
+ }
+
+ // We may need to add phi-def values to preserve the SSA form.
+ // This is essentially the same iterative algorithm that SSAUpdater uses,
+ // except we already have a dominator tree, so we don't have to recompute it.
+ VNInfo *IdxVNI = 0;
+ unsigned Changes;
+ do {
+ Changes = 0;
+ DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n");
+ // Propagate live-out values down the dominator tree, inserting phi-defs when
+ // necessary. Since LiveIn was created by a BFS, going backwards makes it more
+ // likely for us to visit immediate dominators before their children.
+ for (unsigned i = LiveIn.size(); i; --i) {
+ MachineDomTreeNode *Node = LiveIn[i-1];
+ MachineBasicBlock *MBB = Node->getBlock();
+ MachineDomTreeNode *IDom = Node->getIDom();
+ LiveOutPair IDomValue;
+ // We need a live-in value to a block with no immediate dominator?
+ // This is probably an unreachable block that has survived somehow.
+ bool needPHI = !IDom;
+
+ // Get the IDom live-out value.
+ if (!needPHI) {
+ LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
+ if (I != LiveOutCache.end())
+ IDomValue = I->second;
+ else
+ // If IDom is outside our set of live-out blocks, there must be new
+ // defs, and we need a phi-def here.
+ needPHI = true;
+ }
+
+ // IDom dominates all of our predecessors, but it may not be the immediate
+ // dominator. Check if any of them have live-out values that are properly
+ // dominated by IDom. If so, we need a phi-def here.
+ if (!needPHI) {
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ LiveOutPair Value = LiveOutCache[*PI];
+ if (!Value.first || Value.first == IDomValue.first)
+ continue;
+ // This predecessor is carrying something other than IDomValue.
+ // It could be because IDomValue hasn't propagated yet, or it could be
+ // because MBB is in the dominance frontier of that value.
+ if (MDT.dominates(IDom, Value.second)) {
+ needPHI = true;
+ break;
+ }
+ }
+ }
+
+ // Create a phi-def if required.
+ if (needPHI) {
+ ++Changes;
+ SlotIndex Start = LIS.getMBBStartIdx(MBB);
+ VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
+ VNI->setIsPHIDef(true);
+ DEBUG(dbgs() << " - BB#" << MBB->getNumber()
+ << " phi-def #" << VNI->id << " at " << Start << '\n');
+ // We no longer need LI to be live-in.
+ LiveIn.erase(LiveIn.begin()+(i-1));
+ // Blocks in LiveIn are either IdxMBB, or have a value live-through.
+ if (MBB == IdxMBB)
+ IdxVNI = VNI;
+ // Check if we need to update live-out info.
+ LiveOutMap::iterator I = LiveOutCache.find(MBB);
+ if (I == LiveOutCache.end() || I->second.second == Node) {
+ // We already have a live-out defined in MBB, so this must be IdxMBB.
+ assert(MBB == IdxMBB && "Adding phi-def to known live-out");
+ LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
+ } else {
+ // This phi-def is also live-out, so color the whole block.
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
+ I->second = LiveOutPair(VNI, Node);
+ }
+ } else if (IDomValue.first) {
+ // No phi-def here. Remember incoming value for IdxMBB.
+ if (MBB == IdxMBB)
+ IdxVNI = IDomValue.first;
+ // Propagate IDomValue if needed:
+ // MBB is live-out and doesn't define its own value.
+ LiveOutMap::iterator I = LiveOutCache.find(MBB);
+ if (I != LiveOutCache.end() && I->second.second != Node &&
+ I->second.first != IDomValue.first) {
+ ++Changes;
+ I->second = IDomValue;
+ DEBUG(dbgs() << " - BB#" << MBB->getNumber()
+ << " idom valno #" << IDomValue.first->id
+ << " from BB#" << IDom->getBlock()->getNumber() << '\n');
+ }
+ }
+ }
+ DEBUG(dbgs() << " - made " << Changes << " changes.\n");
+ } while (Changes);
+
+ assert(IdxVNI && "Didn't find value for Idx");
+
+#ifndef NDEBUG
+ // Check the LiveOutCache invariants.
+ for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
+ I != E; ++I) {
+ assert(I->first && "Null MBB entry in cache");
+ assert(I->second.first && "Null VNInfo in cache");
+ assert(I->second.second && "Null DomTreeNode in cache");
+ if (I->second.second->getBlock() == I->first)
+ continue;
+ for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
+ PE = I->first->pred_end(); PI != PE; ++PI)
+ assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
+ }
+#endif
+
+ // Since we went through the trouble of a full BFS visiting all reaching defs,
+ // the values in LiveIn are now accurate. No more phi-defs are needed
+ // for these blocks, so we can color the live ranges.
+ // This makes the next mapValue call much faster.
+ for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = LiveIn[i]->getBlock();
+ SlotIndex Start = LIS.getMBBStartIdx(MBB);
+ VNInfo *VNI = LiveOutCache.lookup(MBB).first;
+
+ // Anything in LiveIn other than IdxMBB is live-through.
+ // In IdxMBB, we should stop at Idx unless the same value is live-out.
+ if (MBB == IdxMBB && IdxVNI != VNI)
+ LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
+ else
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
+ }
+
+ return IdxVNI;
+}
+
+#ifndef NDEBUG
+void LiveIntervalMap::dumpCache() {
+ for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
+ I != E; ++I) {
+ assert(I->first && "Null MBB entry in cache");
+ assert(I->second.first && "Null VNInfo in cache");
+ assert(I->second.second && "Null DomTreeNode in cache");
+ dbgs() << " cache: BB#" << I->first->getNumber()
+ << " has valno #" << I->second.first->id << " from BB#"
+ << I->second.second->getBlock()->getNumber() << ", preds";
+ for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
+ PE = I->first->pred_end(); PI != PE; ++PI)
+ dbgs() << " BB#" << (*PI)->getNumber();
+ dbgs() << '\n';
+ }
+ dbgs() << " cache: " << LiveOutCache.size() << " entries.\n";
+}
+#endif
+
+// extendTo - Find the last LI value defined in MBB at or before Idx. The
+// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
+// Return the found VNInfo, or NULL.
+VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
+ assert(LI && "call reset first");
+ LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
+ if (I == LI->begin())
+ return 0;
+ --I;
+ if (I->end <= LIS.getMBBStartIdx(MBB))
+ return 0;
+ if (I->end <= Idx)
+ I->end = Idx.getNextSlot();
+ return I->valno;
+}
+
+// addSimpleRange - Add a simple range from ParentLI to LI.
+// ParentVNI must be live in the [Start;End) interval.
+void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
+ const VNInfo *ParentVNI) {
+ assert(LI && "call reset first");
+ bool simple;
+ VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
+ // A simple mapping is easy.
+ if (simple) {
+ LI->addRange(LiveRange(Start, End, VNI));
+ return;
+ }
+
+ // ParentVNI is a complex value. We must map per MBB.
+ MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
+ MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
+
+ if (MBB == MBBE) {
+ LI->addRange(LiveRange(Start, End, VNI));
+ return;
+ }
+
+ // First block.
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
+
+ // Run sequence of full blocks.
+ for (++MBB; MBB != MBBE; ++MBB) {
+ Start = LIS.getMBBStartIdx(MBB);
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
+ mapValue(ParentVNI, Start)));
+ }
+
+ // Final block.
+ Start = LIS.getMBBStartIdx(MBB);
+ if (Start != End)
+ LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
+}
+
+/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
+/// All needed values whose def is not inside [Start;End) must be defined
+/// beforehand so mapValue will work.
+void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
+ assert(LI && "call reset first");
+ LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
+ LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
+
+ // Check if --I begins before Start and overlaps.
+ if (I != B) {
+ --I;
+ if (I->end > Start)
+ addSimpleRange(Start, std::min(End, I->end), I->valno);
+ ++I;
+ }
+
+ // The remaining ranges begin after Start.
+ for (;I != E && I->start < End; ++I)
+ addSimpleRange(I->start, std::min(End, I->end), I->valno);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Split Editor
+//===----------------------------------------------------------------------===//
+
+/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
+SplitEditor::SplitEditor(SplitAnalysis &sa,
+ LiveIntervals &lis,
+ VirtRegMap &vrm,
+ MachineDominatorTree &mdt,
+ LiveRangeEdit &edit)
+ : SA(sa), LIS(lis), VRM(vrm),
+ MRI(vrm.getMachineFunction().getRegInfo()),
+ MDT(mdt),
+ TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
+ TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
+ Edit(edit),
+ OpenIdx(0),
+ RegAssign(Allocator)
+{
+ // We don't need an AliasAnalysis since we will only be performing
+ // cheap-as-a-copy remats anyway.
+ Edit.anyRematerializable(LIS, TII, 0);
+}
+
+void SplitEditor::dump() const {
+ if (RegAssign.empty()) {
+ dbgs() << " empty\n";
+ return;
+ }
+
+ for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
+ dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
+ dbgs() << '\n';
+}
+
+VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
+ VNInfo *ParentVNI,
+ SlotIndex UseIdx,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ MachineInstr *CopyMI = 0;
+ SlotIndex Def;
+ LiveInterval *LI = Edit.get(RegIdx);
+
+ // Attempt cheap-as-a-copy rematerialization.
+ LiveRangeEdit::Remat RM(ParentVNI);
+ if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
+ Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
+ } else {
+ // Can't remat, just insert a copy from parent.
+ CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
+ .addReg(Edit.getReg());
+ Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
+ }
+
+ // Define the value in Reg.
+ VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def);
+ VNI->setCopy(CopyMI);
+
+ // Add minimal liveness for the new value.
+ Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
+ return VNI;
+}
+
+/// Create a new virtual register and live interval.
+void SplitEditor::openIntv() {
+ assert(!OpenIdx && "Previous LI not closed before openIntv");
+
+ // Create the complement as index 0.
+ if (Edit.empty()) {
+ Edit.create(MRI, LIS, VRM);
+ LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
+ LIMappers.back().reset(Edit.get(0));
+ }
+
+ // Create the open interval.
+ OpenIdx = Edit.size();
+ Edit.create(MRI, LIS, VRM);
+ LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
+ LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
+}
+
+SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before enterIntvBefore");
+ DEBUG(dbgs() << " enterIntvBefore " << Idx);
+ Idx = Idx.getBaseIndex();
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "enterIntvBefore called with invalid index");
+
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
+ SlotIndex End = LIS.getMBBEndIdx(&MBB);
+ SlotIndex Last = End.getPrevSlot();
+ DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return End;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id);
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
+ LIS.getLastSplitPoint(Edit.getParent(), &MBB));
+ RegAssign.insert(VNI->def, End, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
+}
+
+/// useIntv - indicate that all instructions in MBB should use OpenLI.
+void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
+ useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
+}
+
+void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
+ assert(OpenIdx && "openIntv not called before useIntv");
+ DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
+}
+
+SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAfter");
+ DEBUG(dbgs() << " leaveIntvAfter " << Idx);
+
+ // The interval must be live beyond the instruction at Idx.
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx.getNextSlot();
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "No instruction at index");
+ VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
+ llvm::next(MachineBasicBlock::iterator(MI)));
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvBefore");
+ DEBUG(dbgs() << " leaveIntvBefore " << Idx);
+
+ // The interval must be live into the instruction at Idx.
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx.getNextSlot();
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "No instruction at index");
+ VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
+ SlotIndex Start = LIS.getMBBStartIdx(&MBB);
+ DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
+
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Start;
+ }
+
+ VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
+ MBB.SkipPHIsAndLabels(MBB.begin()));
+ RegAssign.insert(Start, VNI->def, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
+}
+
+void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
+ assert(OpenIdx && "openIntv not called before overlapIntv");
+ assert(Edit.getParent().getVNInfoAt(Start) ==
+ Edit.getParent().getVNInfoAt(End.getPrevSlot()) &&
+ "Parent changes value in extended range");
+ assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*");
+ assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
+ "Range cannot span basic blocks");
+
+ // Treat this as useIntv() for now. The complement interval will be extended
+ // as needed by mapValue().
+ DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
+}
+
+/// closeIntv - Indicate that we are done editing the currently open
+/// LiveInterval, and ranges can be trimmed.
+void SplitEditor::closeIntv() {
+ assert(OpenIdx && "openIntv not called before closeIntv");
+ OpenIdx = 0;
+}
+
+/// rewriteAssigned - Rewrite all uses of Edit.getReg().
+void SplitEditor::rewriteAssigned() {
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
+ RE = MRI.reg_end(); RI != RE;) {
+ MachineOperand &MO = RI.getOperand();
+ MachineInstr *MI = MO.getParent();
+ ++RI;
+ // LiveDebugVariables should have handled all DBG_VALUE instructions.
+ if (MI->isDebugValue()) {
+ DEBUG(dbgs() << "Zapping " << *MI);
+ MO.setReg(0);
+ continue;
+ }
+
+ // <undef> operands don't really read the register, so just assign them to
+ // the complement.
+ if (MO.isUse() && MO.isUndef()) {
+ MO.setReg(Edit.get(0)->reg);
+ continue;
+ }
+
+ SlotIndex Idx = LIS.getInstructionIndex(MI);
+ Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
+
+ // Rewrite to the mapped register at Idx.
+ unsigned RegIdx = RegAssign.lookup(Idx);
+ MO.setReg(Edit.get(RegIdx)->reg);
+ DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
+ << Idx << ':' << RegIdx << '\t' << *MI);
+
+ // Extend liveness to Idx.
+ const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ LIMappers[RegIdx].mapValue(ParentVNI, Idx);
+ }
+}
+
+/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
+void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
+ const ConnectedVNInfoEqClasses &ConEq) {
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
+ RE = MRI.reg_end(); RI != RE;) {
+ MachineOperand &MO = RI.getOperand();
+ MachineInstr *MI = MO.getParent();
+ ++RI;
+ if (MO.isUse() && MO.isUndef())
+ continue;
+ // DBG_VALUE instructions should have been eliminated earlier.
+ SlotIndex Idx = LIS.getInstructionIndex(MI);
+ Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
+ DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
+ << Idx << ':');
+ const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
+ assert(VNI && "Interval not live at use.");
+ MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
+ DEBUG(dbgs() << VNI->id << '\t' << *MI);
+ }
+}
+
+void SplitEditor::finish() {
+ assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
+
+ // At this point, the live intervals in Edit contain VNInfos corresponding to
+ // the inserted copies.
+
+ // Add the original defs from the parent interval.
+ for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
+ E = Edit.getParent().vni_end(); I != E; ++I) {
+ const VNInfo *ParentVNI = *I;
+ if (ParentVNI->isUnused())
+ continue;
+ LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)];
+ VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def);
+ LIM.getLI()->addRange(LiveRange(ParentVNI->def,
+ ParentVNI->def.getNextSlot(), VNI));
+ // Mark all values as complex to force liveness computation.
+ // This should really only be necessary for remat victims, but we are lazy.
+ LIM.markComplexMapped(ParentVNI);
+ }
+
+#ifndef NDEBUG
+ // Every new interval must have a def by now, otherwise the split is bogus.
+ for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
+ assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
+#endif
+
+ // FIXME: Don't recompute the liveness of all values, infer it from the
+ // overlaps between the parent live interval and RegAssign.
+ // The mapValue algorithm is only necessary when:
+ // - The parent value maps to multiple defs, and new phis are needed, or
+ // - The value has been rematerialized before some uses, and we want to
+ // minimize the live range so it only reaches the remaining uses.
+ // All other values have simple liveness that can be computed from RegAssign
+ // and the parent live interval.
+
+ // Extend live ranges to be live-out for successor PHI values.
+ for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
+ E = Edit.getParent().vni_end(); I != E; ++I) {
+ const VNInfo *PHIVNI = *I;
+ if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
+ continue;
+ unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
+ LiveIntervalMap &LIM = LIMappers[RegIdx];
+ MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
+ DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
+ << " -> " << RegIdx << '\n');
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
+ DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End);
+ // The predecessor may not have a live-out value. That is OK, like an
+ // undef PHI operand.
+ if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) {
+ DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n");
+ assert(RegAssign.lookup(End) == RegIdx &&
+ "Different register assignment in phi predecessor");
+ LIM.mapValue(VNI, End);
+ }
+ else
+ DEBUG(dbgs() << " is not live-out\n");
+ }
+ DEBUG(dbgs() << " " << *LIM.getLI() << '\n');
+ }
+
+ // Rewrite instructions.
+ rewriteAssigned();
+
+ // FIXME: Delete defs that were rematted everywhere.
+
+ // Get rid of unused values and set phi-kill flags.
+ for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
+ (*I)->RenumberValues(LIS);
+
+ // Now check if any registers were separated into multiple components.
+ ConnectedVNInfoEqClasses ConEQ(LIS);
+ for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
+ // Don't use iterators, they are invalidated by create() below.
+ LiveInterval *li = Edit.get(i);
+ unsigned NumComp = ConEQ.Classify(li);
+ if (NumComp <= 1)
+ continue;
+ DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
+ SmallVector<LiveInterval*, 8> dups;
+ dups.push_back(li);
+ for (unsigned i = 1; i != NumComp; ++i)
+ dups.push_back(&Edit.create(MRI, LIS, VRM));
+ rewriteComponents(dups, ConEQ);
+ ConEQ.Distribute(&dups[0]);
+ }
+
+ // Calculate spill weight and allocation hints for new intervals.
+ VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
+ for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
+ LiveInterval &li = **I;
+ vrai.CalculateRegClass(li.reg);
+ vrai.CalculateWeightAndHint(li);
+ DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName()
+ << ":" << li << '\n');
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Single Block Splitting
+//===----------------------------------------------------------------------===//
+
+/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
+/// may be an advantage to split CurLI for the duration of the block.
+bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
+ // If CurLI is local to one block, there is no point to splitting it.
+ if (LiveBlocks.size() <= 1)
+ return false;
+ // Add blocks with multiple uses.
+ for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
+ const BlockInfo &BI = LiveBlocks[i];
+ if (!BI.Uses)
+ continue;
+ unsigned Instrs = UsingBlocks.lookup(BI.MBB);
+ if (Instrs <= 1)
+ continue;
+ if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
+ continue;
+ Blocks.insert(BI.MBB);
+ }
+ return !Blocks.empty();
+}
+
+/// splitSingleBlocks - Split CurLI into a separate live interval inside each
+/// basic block in Blocks.
+void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
+ DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
+
+ for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
+ const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
+ if (!BI.Uses || !Blocks.count(BI.MBB))
+ continue;
+
+ openIntv();
+ SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
+ if (BI.LastUse < BI.LastSplitPoint) {
+ useIntv(SegStart, leaveIntvAfter(BI.LastUse));
+ } else {
+ // THe last use os after tha last valid split point.
+ SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
+ useIntv(SegStart, SegStop);
+ overlapIntv(SegStop, BI.LastUse);
+ }
+ closeIntv();
+ }
+ finish();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Sub Block Splitting
+//===----------------------------------------------------------------------===//
+
+/// getBlockForInsideSplit - If CurLI is contained inside a single basic block,
+/// and it wou pay to subdivide the interval inside that block, return it.
+/// Otherwise return NULL. The returned block can be passed to
+/// SplitEditor::splitInsideBlock.
+const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
+ // The interval must be exclusive to one block.
+ if (UsingBlocks.size() != 1)
+ return 0;
+ // Don't to this for less than 4 instructions. We want to be sure that
+ // splitting actually reduces the instruction count per interval.
+ if (UsingInstrs.size() < 4)
+ return 0;
+ return UsingBlocks.begin()->first;
+}
+
+/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
+void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
+ SmallVector<SlotIndex, 32> Uses;
+ Uses.reserve(SA.UsingInstrs.size());
+ for (SplitAnalysis::InstrPtrSet::const_iterator I = SA.UsingInstrs.begin(),
+ E = SA.UsingInstrs.end(); I != E; ++I)
+ if ((*I)->getParent() == MBB)
+ Uses.push_back(LIS.getInstructionIndex(*I));
+ DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
+ << Uses.size() << " instructions.\n");
+ assert(Uses.size() >= 3 && "Need at least 3 instructions");
+ array_pod_sort(Uses.begin(), Uses.end());
+
+ // Simple algorithm: Find the largest gap between uses as determined by slot
+ // indices. Create new intervals for instructions before the gap and after the
+ // gap.
+ unsigned bestPos = 0;
+ int bestGap = 0;
+ DEBUG(dbgs() << " dist (" << Uses[0]);
+ for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
+ int g = Uses[i-1].distance(Uses[i]);
+ DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
+ if (g > bestGap)
+ bestPos = i, bestGap = g;
+ }
+ DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
+
+ // bestPos points to the first use after the best gap.
+ assert(bestPos > 0 && "Invalid gap");
+
+ // FIXME: Don't create intervals for low densities.
+
+ // First interval before the gap. Don't create single-instr intervals.
+ if (bestPos > 1) {
+ openIntv();
+ useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1]));
+ closeIntv();
+ }
+
+ // Second interval after the gap.
+ if (bestPos < Uses.size()-1) {
+ openIntv();
+ useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back()));
+ closeIntv();
+ }
+
+ finish();
+}
OpenPOWER on IntegriCloud