diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SplitKit.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SplitKit.cpp | 1030 |
1 files changed, 1030 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.cpp b/contrib/llvm/lib/CodeGen/SplitKit.cpp new file mode 100644 index 0000000..5663936 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SplitKit.cpp @@ -0,0 +1,1030 @@ +//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the SplitAnalysis class as well as mutator functions for +// live range splitting. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "SplitKit.h" +#include "LiveRangeEdit.h" +#include "VirtRegMap.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" + +using namespace llvm; + +static cl::opt<bool> +AllowSplit("spiller-splits-edges", + cl::desc("Allow critical edge splitting during spilling")); + +//===----------------------------------------------------------------------===// +// Split Analysis +//===----------------------------------------------------------------------===// + +SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, + const LiveIntervals &lis, + const MachineLoopInfo &mli) + : MF(vrm.getMachineFunction()), + VRM(vrm), + LIS(lis), + Loops(mli), + TII(*MF.getTarget().getInstrInfo()), + CurLI(0) {} + +void SplitAnalysis::clear() { + UseSlots.clear(); + UsingInstrs.clear(); + UsingBlocks.clear(); + LiveBlocks.clear(); + CurLI = 0; +} + +bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { + MachineBasicBlock *T, *F; + SmallVector<MachineOperand, 4> Cond; + return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); +} + +/// analyzeUses - Count instructions, basic blocks, and loops using CurLI. +void SplitAnalysis::analyzeUses() { + const MachineRegisterInfo &MRI = MF.getRegInfo(); + for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), + E = MRI.reg_end(); I != E; ++I) { + MachineOperand &MO = I.getOperand(); + if (MO.isUse() && MO.isUndef()) + continue; + MachineInstr *MI = MO.getParent(); + if (MI->isDebugValue() || !UsingInstrs.insert(MI)) + continue; + UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); + MachineBasicBlock *MBB = MI->getParent(); + UsingBlocks[MBB]++; + } + array_pod_sort(UseSlots.begin(), UseSlots.end()); + calcLiveBlockInfo(); + DEBUG(dbgs() << " counted " + << UsingInstrs.size() << " instrs, " + << UsingBlocks.size() << " blocks.\n"); +} + +/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks +/// where CurLI is live. +void SplitAnalysis::calcLiveBlockInfo() { + if (CurLI->empty()) + return; + + LiveInterval::const_iterator LVI = CurLI->begin(); + LiveInterval::const_iterator LVE = CurLI->end(); + + SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; + UseI = UseSlots.begin(); + UseE = UseSlots.end(); + + // Loop over basic blocks where CurLI is live. + MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); + for (;;) { + BlockInfo BI; + BI.MBB = MFI; + SlotIndex Start, Stop; + tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); + + // The last split point is the latest possible insertion point that dominates + // all successor blocks. If interference reaches LastSplitPoint, it is not + // possible to insert a split or reload that makes CurLI live in the + // outgoing bundle. + MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); + if (LSP == BI.MBB->end()) + BI.LastSplitPoint = Stop; + else + BI.LastSplitPoint = LIS.getInstructionIndex(LSP); + + // LVI is the first live segment overlapping MBB. + BI.LiveIn = LVI->start <= Start; + if (!BI.LiveIn) + BI.Def = LVI->start; + + // Find the first and last uses in the block. + BI.Uses = hasUses(MFI); + if (BI.Uses && UseI != UseE) { + BI.FirstUse = *UseI; + assert(BI.FirstUse >= Start); + do ++UseI; + while (UseI != UseE && *UseI < Stop); + BI.LastUse = UseI[-1]; + assert(BI.LastUse < Stop); + } + + // Look for gaps in the live range. + bool hasGap = false; + BI.LiveOut = true; + while (LVI->end < Stop) { + SlotIndex LastStop = LVI->end; + if (++LVI == LVE || LVI->start >= Stop) { + BI.Kill = LastStop; + BI.LiveOut = false; + break; + } + if (LastStop < LVI->start) { + hasGap = true; + BI.Kill = LastStop; + BI.Def = LVI->start; + } + } + + // Don't set LiveThrough when the block has a gap. + BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; + LiveBlocks.push_back(BI); + + // LVI is now at LVE or LVI->end >= Stop. + if (LVI == LVE) + break; + + // Live segment ends exactly at Stop. Move to the next segment. + if (LVI->end == Stop && ++LVI == LVE) + break; + + // Pick the next basic block. + if (LVI->start < Stop) + ++MFI; + else + MFI = LIS.getMBBFromIndex(LVI->start); + } +} + +void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { + for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { + unsigned count = UsingBlocks.lookup(*I); + OS << " BB#" << (*I)->getNumber(); + if (count) + OS << '(' << count << ')'; + } +} + +void SplitAnalysis::analyze(const LiveInterval *li) { + clear(); + CurLI = li; + analyzeUses(); +} + + +//===----------------------------------------------------------------------===// +// LiveIntervalMap +//===----------------------------------------------------------------------===// + +// Work around the fact that the std::pair constructors are broken for pointer +// pairs in some implementations. makeVV(x, 0) works. +static inline std::pair<const VNInfo*, VNInfo*> +makeVV(const VNInfo *a, VNInfo *b) { + return std::make_pair(a, b); +} + +void LiveIntervalMap::reset(LiveInterval *li) { + LI = li; + Values.clear(); + LiveOutCache.clear(); +} + +bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { + ValueMap::const_iterator i = Values.find(ParentVNI); + return i != Values.end() && i->second == 0; +} + +// defValue - Introduce a LI def for ParentVNI that could be later than +// ParentVNI->def. +VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { + assert(LI && "call reset first"); + assert(ParentVNI && "Mapping NULL value"); + assert(Idx.isValid() && "Invalid SlotIndex"); + assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); + + // Create a new value. + VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); + + // Preserve the PHIDef bit. + if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) + VNI->setIsPHIDef(true); + + // Use insert for lookup, so we can add missing values with a second lookup. + std::pair<ValueMap::iterator,bool> InsP = + Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); + + // This is now a complex def. Mark with a NULL in valueMap. + if (!InsP.second) + InsP.first->second = 0; + + return VNI; +} + + +// mapValue - Find the mapped value for ParentVNI at Idx. +// Potentially create phi-def values. +VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, + bool *simple) { + assert(LI && "call reset first"); + assert(ParentVNI && "Mapping NULL value"); + assert(Idx.isValid() && "Invalid SlotIndex"); + assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); + + // Use insert for lookup, so we can add missing values with a second lookup. + std::pair<ValueMap::iterator,bool> InsP = + Values.insert(makeVV(ParentVNI, 0)); + + // This was an unknown value. Create a simple mapping. + if (InsP.second) { + if (simple) *simple = true; + return InsP.first->second = LI->createValueCopy(ParentVNI, + LIS.getVNInfoAllocator()); + } + + // This was a simple mapped value. + if (InsP.first->second) { + if (simple) *simple = true; + return InsP.first->second; + } + + // This is a complex mapped value. There may be multiple defs, and we may need + // to create phi-defs. + if (simple) *simple = false; + MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); + assert(IdxMBB && "No MBB at Idx"); + + // Is there a def in the same MBB we can extend? + if (VNInfo *VNI = extendTo(IdxMBB, Idx)) + return VNI; + + // Now for the fun part. We know that ParentVNI potentially has multiple defs, + // and we may need to create even more phi-defs to preserve VNInfo SSA form. + // Perform a search for all predecessor blocks where we know the dominating + // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. + DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() + << " at " << Idx << " in " << *LI << '\n'); + + // Blocks where LI should be live-in. + SmallVector<MachineDomTreeNode*, 16> LiveIn; + LiveIn.push_back(MDT[IdxMBB]); + + // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. + for (unsigned i = 0; i != LiveIn.size(); ++i) { + MachineBasicBlock *MBB = LiveIn[i]->getBlock(); + for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + MachineBasicBlock *Pred = *PI; + // Is this a known live-out block? + std::pair<LiveOutMap::iterator,bool> LOIP = + LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); + // Yes, we have been here before. + if (!LOIP.second) { + DEBUG(if (VNInfo *VNI = LOIP.first->second.first) + dbgs() << " known valno #" << VNI->id + << " at BB#" << Pred->getNumber() << '\n'); + continue; + } + + // Does Pred provide a live-out value? + SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot(); + if (VNInfo *VNI = extendTo(Pred, Last)) { + MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); + DEBUG(dbgs() << " found valno #" << VNI->id + << " from BB#" << DefMBB->getNumber() + << " at BB#" << Pred->getNumber() << '\n'); + LiveOutPair &LOP = LOIP.first->second; + LOP.first = VNI; + LOP.second = MDT[DefMBB]; + continue; + } + // No, we need a live-in value for Pred as well + if (Pred != IdxMBB) + LiveIn.push_back(MDT[Pred]); + } + } + + // We may need to add phi-def values to preserve the SSA form. + // This is essentially the same iterative algorithm that SSAUpdater uses, + // except we already have a dominator tree, so we don't have to recompute it. + VNInfo *IdxVNI = 0; + unsigned Changes; + do { + Changes = 0; + DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); + // Propagate live-out values down the dominator tree, inserting phi-defs when + // necessary. Since LiveIn was created by a BFS, going backwards makes it more + // likely for us to visit immediate dominators before their children. + for (unsigned i = LiveIn.size(); i; --i) { + MachineDomTreeNode *Node = LiveIn[i-1]; + MachineBasicBlock *MBB = Node->getBlock(); + MachineDomTreeNode *IDom = Node->getIDom(); + LiveOutPair IDomValue; + // We need a live-in value to a block with no immediate dominator? + // This is probably an unreachable block that has survived somehow. + bool needPHI = !IDom; + + // Get the IDom live-out value. + if (!needPHI) { + LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); + if (I != LiveOutCache.end()) + IDomValue = I->second; + else + // If IDom is outside our set of live-out blocks, there must be new + // defs, and we need a phi-def here. + needPHI = true; + } + + // IDom dominates all of our predecessors, but it may not be the immediate + // dominator. Check if any of them have live-out values that are properly + // dominated by IDom. If so, we need a phi-def here. + if (!needPHI) { + for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + LiveOutPair Value = LiveOutCache[*PI]; + if (!Value.first || Value.first == IDomValue.first) + continue; + // This predecessor is carrying something other than IDomValue. + // It could be because IDomValue hasn't propagated yet, or it could be + // because MBB is in the dominance frontier of that value. + if (MDT.dominates(IDom, Value.second)) { + needPHI = true; + break; + } + } + } + + // Create a phi-def if required. + if (needPHI) { + ++Changes; + SlotIndex Start = LIS.getMBBStartIdx(MBB); + VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); + VNI->setIsPHIDef(true); + DEBUG(dbgs() << " - BB#" << MBB->getNumber() + << " phi-def #" << VNI->id << " at " << Start << '\n'); + // We no longer need LI to be live-in. + LiveIn.erase(LiveIn.begin()+(i-1)); + // Blocks in LiveIn are either IdxMBB, or have a value live-through. + if (MBB == IdxMBB) + IdxVNI = VNI; + // Check if we need to update live-out info. + LiveOutMap::iterator I = LiveOutCache.find(MBB); + if (I == LiveOutCache.end() || I->second.second == Node) { + // We already have a live-out defined in MBB, so this must be IdxMBB. + assert(MBB == IdxMBB && "Adding phi-def to known live-out"); + LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); + } else { + // This phi-def is also live-out, so color the whole block. + LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); + I->second = LiveOutPair(VNI, Node); + } + } else if (IDomValue.first) { + // No phi-def here. Remember incoming value for IdxMBB. + if (MBB == IdxMBB) + IdxVNI = IDomValue.first; + // Propagate IDomValue if needed: + // MBB is live-out and doesn't define its own value. + LiveOutMap::iterator I = LiveOutCache.find(MBB); + if (I != LiveOutCache.end() && I->second.second != Node && + I->second.first != IDomValue.first) { + ++Changes; + I->second = IDomValue; + DEBUG(dbgs() << " - BB#" << MBB->getNumber() + << " idom valno #" << IDomValue.first->id + << " from BB#" << IDom->getBlock()->getNumber() << '\n'); + } + } + } + DEBUG(dbgs() << " - made " << Changes << " changes.\n"); + } while (Changes); + + assert(IdxVNI && "Didn't find value for Idx"); + +#ifndef NDEBUG + // Check the LiveOutCache invariants. + for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); + I != E; ++I) { + assert(I->first && "Null MBB entry in cache"); + assert(I->second.first && "Null VNInfo in cache"); + assert(I->second.second && "Null DomTreeNode in cache"); + if (I->second.second->getBlock() == I->first) + continue; + for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), + PE = I->first->pred_end(); PI != PE; ++PI) + assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); + } +#endif + + // Since we went through the trouble of a full BFS visiting all reaching defs, + // the values in LiveIn are now accurate. No more phi-defs are needed + // for these blocks, so we can color the live ranges. + // This makes the next mapValue call much faster. + for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { + MachineBasicBlock *MBB = LiveIn[i]->getBlock(); + SlotIndex Start = LIS.getMBBStartIdx(MBB); + VNInfo *VNI = LiveOutCache.lookup(MBB).first; + + // Anything in LiveIn other than IdxMBB is live-through. + // In IdxMBB, we should stop at Idx unless the same value is live-out. + if (MBB == IdxMBB && IdxVNI != VNI) + LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); + else + LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); + } + + return IdxVNI; +} + +#ifndef NDEBUG +void LiveIntervalMap::dumpCache() { + for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); + I != E; ++I) { + assert(I->first && "Null MBB entry in cache"); + assert(I->second.first && "Null VNInfo in cache"); + assert(I->second.second && "Null DomTreeNode in cache"); + dbgs() << " cache: BB#" << I->first->getNumber() + << " has valno #" << I->second.first->id << " from BB#" + << I->second.second->getBlock()->getNumber() << ", preds"; + for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), + PE = I->first->pred_end(); PI != PE; ++PI) + dbgs() << " BB#" << (*PI)->getNumber(); + dbgs() << '\n'; + } + dbgs() << " cache: " << LiveOutCache.size() << " entries.\n"; +} +#endif + +// extendTo - Find the last LI value defined in MBB at or before Idx. The +// ParentLI is assumed to be live at Idx. Extend the live range to Idx. +// Return the found VNInfo, or NULL. +VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { + assert(LI && "call reset first"); + LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx); + if (I == LI->begin()) + return 0; + --I; + if (I->end <= LIS.getMBBStartIdx(MBB)) + return 0; + if (I->end <= Idx) + I->end = Idx.getNextSlot(); + return I->valno; +} + +// addSimpleRange - Add a simple range from ParentLI to LI. +// ParentVNI must be live in the [Start;End) interval. +void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, + const VNInfo *ParentVNI) { + assert(LI && "call reset first"); + bool simple; + VNInfo *VNI = mapValue(ParentVNI, Start, &simple); + // A simple mapping is easy. + if (simple) { + LI->addRange(LiveRange(Start, End, VNI)); + return; + } + + // ParentVNI is a complex value. We must map per MBB. + MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); + MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot()); + + if (MBB == MBBE) { + LI->addRange(LiveRange(Start, End, VNI)); + return; + } + + // First block. + LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); + + // Run sequence of full blocks. + for (++MBB; MBB != MBBE; ++MBB) { + Start = LIS.getMBBStartIdx(MBB); + LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), + mapValue(ParentVNI, Start))); + } + + // Final block. + Start = LIS.getMBBStartIdx(MBB); + if (Start != End) + LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); +} + +/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. +/// All needed values whose def is not inside [Start;End) must be defined +/// beforehand so mapValue will work. +void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { + assert(LI && "call reset first"); + LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end(); + LiveInterval::const_iterator I = std::lower_bound(B, E, Start); + + // Check if --I begins before Start and overlaps. + if (I != B) { + --I; + if (I->end > Start) + addSimpleRange(Start, std::min(End, I->end), I->valno); + ++I; + } + + // The remaining ranges begin after Start. + for (;I != E && I->start < End; ++I) + addSimpleRange(I->start, std::min(End, I->end), I->valno); +} + + +//===----------------------------------------------------------------------===// +// Split Editor +//===----------------------------------------------------------------------===// + +/// Create a new SplitEditor for editing the LiveInterval analyzed by SA. +SplitEditor::SplitEditor(SplitAnalysis &sa, + LiveIntervals &lis, + VirtRegMap &vrm, + MachineDominatorTree &mdt, + LiveRangeEdit &edit) + : SA(sa), LIS(lis), VRM(vrm), + MRI(vrm.getMachineFunction().getRegInfo()), + MDT(mdt), + TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), + TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), + Edit(edit), + OpenIdx(0), + RegAssign(Allocator) +{ + // We don't need an AliasAnalysis since we will only be performing + // cheap-as-a-copy remats anyway. + Edit.anyRematerializable(LIS, TII, 0); +} + +void SplitEditor::dump() const { + if (RegAssign.empty()) { + dbgs() << " empty\n"; + return; + } + + for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) + dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); + dbgs() << '\n'; +} + +VNInfo *SplitEditor::defFromParent(unsigned RegIdx, + VNInfo *ParentVNI, + SlotIndex UseIdx, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) { + MachineInstr *CopyMI = 0; + SlotIndex Def; + LiveInterval *LI = Edit.get(RegIdx); + + // Attempt cheap-as-a-copy rematerialization. + LiveRangeEdit::Remat RM(ParentVNI); + if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) { + Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); + } else { + // Can't remat, just insert a copy from parent. + CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) + .addReg(Edit.getReg()); + Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); + } + + // Define the value in Reg. + VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def); + VNI->setCopy(CopyMI); + + // Add minimal liveness for the new value. + Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); + return VNI; +} + +/// Create a new virtual register and live interval. +void SplitEditor::openIntv() { + assert(!OpenIdx && "Previous LI not closed before openIntv"); + + // Create the complement as index 0. + if (Edit.empty()) { + Edit.create(MRI, LIS, VRM); + LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); + LIMappers.back().reset(Edit.get(0)); + } + + // Create the open interval. + OpenIdx = Edit.size(); + Edit.create(MRI, LIS, VRM); + LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); + LIMappers[OpenIdx].reset(Edit.get(OpenIdx)); +} + +SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { + assert(OpenIdx && "openIntv not called before enterIntvBefore"); + DEBUG(dbgs() << " enterIntvBefore " << Idx); + Idx = Idx.getBaseIndex(); + VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); + return Idx; + } + DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); + MachineInstr *MI = LIS.getInstructionFromIndex(Idx); + assert(MI && "enterIntvBefore called with invalid index"); + + VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); + return VNI->def; +} + +SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { + assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); + SlotIndex End = LIS.getMBBEndIdx(&MBB); + SlotIndex Last = End.getPrevSlot(); + DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); + VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); + return End; + } + DEBUG(dbgs() << ": valno " << ParentVNI->id); + VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, + LIS.getLastSplitPoint(Edit.getParent(), &MBB)); + RegAssign.insert(VNI->def, End, OpenIdx); + DEBUG(dump()); + return VNI->def; +} + +/// useIntv - indicate that all instructions in MBB should use OpenLI. +void SplitEditor::useIntv(const MachineBasicBlock &MBB) { + useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); +} + +void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { + assert(OpenIdx && "openIntv not called before useIntv"); + DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); + RegAssign.insert(Start, End, OpenIdx); + DEBUG(dump()); +} + +SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { + assert(OpenIdx && "openIntv not called before leaveIntvAfter"); + DEBUG(dbgs() << " leaveIntvAfter " << Idx); + + // The interval must be live beyond the instruction at Idx. + Idx = Idx.getBoundaryIndex(); + VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); + return Idx.getNextSlot(); + } + DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); + + MachineInstr *MI = LIS.getInstructionFromIndex(Idx); + assert(MI && "No instruction at index"); + VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), + llvm::next(MachineBasicBlock::iterator(MI))); + return VNI->def; +} + +SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { + assert(OpenIdx && "openIntv not called before leaveIntvBefore"); + DEBUG(dbgs() << " leaveIntvBefore " << Idx); + + // The interval must be live into the instruction at Idx. + Idx = Idx.getBoundaryIndex(); + VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); + return Idx.getNextSlot(); + } + DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); + + MachineInstr *MI = LIS.getInstructionFromIndex(Idx); + assert(MI && "No instruction at index"); + VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); + return VNI->def; +} + +SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { + assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); + SlotIndex Start = LIS.getMBBStartIdx(&MBB); + DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); + + VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start); + if (!ParentVNI) { + DEBUG(dbgs() << ": not live\n"); + return Start; + } + + VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, + MBB.SkipPHIsAndLabels(MBB.begin())); + RegAssign.insert(Start, VNI->def, OpenIdx); + DEBUG(dump()); + return VNI->def; +} + +void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { + assert(OpenIdx && "openIntv not called before overlapIntv"); + assert(Edit.getParent().getVNInfoAt(Start) == + Edit.getParent().getVNInfoAt(End.getPrevSlot()) && + "Parent changes value in extended range"); + assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*"); + assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && + "Range cannot span basic blocks"); + + // Treat this as useIntv() for now. The complement interval will be extended + // as needed by mapValue(). + DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); + RegAssign.insert(Start, End, OpenIdx); + DEBUG(dump()); +} + +/// closeIntv - Indicate that we are done editing the currently open +/// LiveInterval, and ranges can be trimmed. +void SplitEditor::closeIntv() { + assert(OpenIdx && "openIntv not called before closeIntv"); + OpenIdx = 0; +} + +/// rewriteAssigned - Rewrite all uses of Edit.getReg(). +void SplitEditor::rewriteAssigned() { + for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()), + RE = MRI.reg_end(); RI != RE;) { + MachineOperand &MO = RI.getOperand(); + MachineInstr *MI = MO.getParent(); + ++RI; + // LiveDebugVariables should have handled all DBG_VALUE instructions. + if (MI->isDebugValue()) { + DEBUG(dbgs() << "Zapping " << *MI); + MO.setReg(0); + continue; + } + + // <undef> operands don't really read the register, so just assign them to + // the complement. + if (MO.isUse() && MO.isUndef()) { + MO.setReg(Edit.get(0)->reg); + continue; + } + + SlotIndex Idx = LIS.getInstructionIndex(MI); + Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); + + // Rewrite to the mapped register at Idx. + unsigned RegIdx = RegAssign.lookup(Idx); + MO.setReg(Edit.get(RegIdx)->reg); + DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' + << Idx << ':' << RegIdx << '\t' << *MI); + + // Extend liveness to Idx. + const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); + LIMappers[RegIdx].mapValue(ParentVNI, Idx); + } +} + +/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. +void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, + const ConnectedVNInfoEqClasses &ConEq) { + for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), + RE = MRI.reg_end(); RI != RE;) { + MachineOperand &MO = RI.getOperand(); + MachineInstr *MI = MO.getParent(); + ++RI; + if (MO.isUse() && MO.isUndef()) + continue; + // DBG_VALUE instructions should have been eliminated earlier. + SlotIndex Idx = LIS.getInstructionIndex(MI); + Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); + DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' + << Idx << ':'); + const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); + assert(VNI && "Interval not live at use."); + MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); + DEBUG(dbgs() << VNI->id << '\t' << *MI); + } +} + +void SplitEditor::finish() { + assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); + + // At this point, the live intervals in Edit contain VNInfos corresponding to + // the inserted copies. + + // Add the original defs from the parent interval. + for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), + E = Edit.getParent().vni_end(); I != E; ++I) { + const VNInfo *ParentVNI = *I; + if (ParentVNI->isUnused()) + continue; + LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)]; + VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def); + LIM.getLI()->addRange(LiveRange(ParentVNI->def, + ParentVNI->def.getNextSlot(), VNI)); + // Mark all values as complex to force liveness computation. + // This should really only be necessary for remat victims, but we are lazy. + LIM.markComplexMapped(ParentVNI); + } + +#ifndef NDEBUG + // Every new interval must have a def by now, otherwise the split is bogus. + for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) + assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); +#endif + + // FIXME: Don't recompute the liveness of all values, infer it from the + // overlaps between the parent live interval and RegAssign. + // The mapValue algorithm is only necessary when: + // - The parent value maps to multiple defs, and new phis are needed, or + // - The value has been rematerialized before some uses, and we want to + // minimize the live range so it only reaches the remaining uses. + // All other values have simple liveness that can be computed from RegAssign + // and the parent live interval. + + // Extend live ranges to be live-out for successor PHI values. + for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), + E = Edit.getParent().vni_end(); I != E; ++I) { + const VNInfo *PHIVNI = *I; + if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) + continue; + unsigned RegIdx = RegAssign.lookup(PHIVNI->def); + LiveIntervalMap &LIM = LIMappers[RegIdx]; + MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); + DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def + << " -> " << RegIdx << '\n'); + for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); + DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End); + // The predecessor may not have a live-out value. That is OK, like an + // undef PHI operand. + if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) { + DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n"); + assert(RegAssign.lookup(End) == RegIdx && + "Different register assignment in phi predecessor"); + LIM.mapValue(VNI, End); + } + else + DEBUG(dbgs() << " is not live-out\n"); + } + DEBUG(dbgs() << " " << *LIM.getLI() << '\n'); + } + + // Rewrite instructions. + rewriteAssigned(); + + // FIXME: Delete defs that were rematted everywhere. + + // Get rid of unused values and set phi-kill flags. + for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) + (*I)->RenumberValues(LIS); + + // Now check if any registers were separated into multiple components. + ConnectedVNInfoEqClasses ConEQ(LIS); + for (unsigned i = 0, e = Edit.size(); i != e; ++i) { + // Don't use iterators, they are invalidated by create() below. + LiveInterval *li = Edit.get(i); + unsigned NumComp = ConEQ.Classify(li); + if (NumComp <= 1) + continue; + DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); + SmallVector<LiveInterval*, 8> dups; + dups.push_back(li); + for (unsigned i = 1; i != NumComp; ++i) + dups.push_back(&Edit.create(MRI, LIS, VRM)); + rewriteComponents(dups, ConEQ); + ConEQ.Distribute(&dups[0]); + } + + // Calculate spill weight and allocation hints for new intervals. + VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); + for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){ + LiveInterval &li = **I; + vrai.CalculateRegClass(li.reg); + vrai.CalculateWeightAndHint(li); + DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() + << ":" << li << '\n'); + } +} + + +//===----------------------------------------------------------------------===// +// Single Block Splitting +//===----------------------------------------------------------------------===// + +/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it +/// may be an advantage to split CurLI for the duration of the block. +bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { + // If CurLI is local to one block, there is no point to splitting it. + if (LiveBlocks.size() <= 1) + return false; + // Add blocks with multiple uses. + for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { + const BlockInfo &BI = LiveBlocks[i]; + if (!BI.Uses) + continue; + unsigned Instrs = UsingBlocks.lookup(BI.MBB); + if (Instrs <= 1) + continue; + if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) + continue; + Blocks.insert(BI.MBB); + } + return !Blocks.empty(); +} + +/// splitSingleBlocks - Split CurLI into a separate live interval inside each +/// basic block in Blocks. +void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { + DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); + + for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { + const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; + if (!BI.Uses || !Blocks.count(BI.MBB)) + continue; + + openIntv(); + SlotIndex SegStart = enterIntvBefore(BI.FirstUse); + if (BI.LastUse < BI.LastSplitPoint) { + useIntv(SegStart, leaveIntvAfter(BI.LastUse)); + } else { + // THe last use os after tha last valid split point. + SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); + useIntv(SegStart, SegStop); + overlapIntv(SegStop, BI.LastUse); + } + closeIntv(); + } + finish(); +} + + +//===----------------------------------------------------------------------===// +// Sub Block Splitting +//===----------------------------------------------------------------------===// + +/// getBlockForInsideSplit - If CurLI is contained inside a single basic block, +/// and it wou pay to subdivide the interval inside that block, return it. +/// Otherwise return NULL. The returned block can be passed to +/// SplitEditor::splitInsideBlock. +const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { + // The interval must be exclusive to one block. + if (UsingBlocks.size() != 1) + return 0; + // Don't to this for less than 4 instructions. We want to be sure that + // splitting actually reduces the instruction count per interval. + if (UsingInstrs.size() < 4) + return 0; + return UsingBlocks.begin()->first; +} + +/// splitInsideBlock - Split CurLI into multiple intervals inside MBB. +void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { + SmallVector<SlotIndex, 32> Uses; + Uses.reserve(SA.UsingInstrs.size()); + for (SplitAnalysis::InstrPtrSet::const_iterator I = SA.UsingInstrs.begin(), + E = SA.UsingInstrs.end(); I != E; ++I) + if ((*I)->getParent() == MBB) + Uses.push_back(LIS.getInstructionIndex(*I)); + DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " + << Uses.size() << " instructions.\n"); + assert(Uses.size() >= 3 && "Need at least 3 instructions"); + array_pod_sort(Uses.begin(), Uses.end()); + + // Simple algorithm: Find the largest gap between uses as determined by slot + // indices. Create new intervals for instructions before the gap and after the + // gap. + unsigned bestPos = 0; + int bestGap = 0; + DEBUG(dbgs() << " dist (" << Uses[0]); + for (unsigned i = 1, e = Uses.size(); i != e; ++i) { + int g = Uses[i-1].distance(Uses[i]); + DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); + if (g > bestGap) + bestPos = i, bestGap = g; + } + DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); + + // bestPos points to the first use after the best gap. + assert(bestPos > 0 && "Invalid gap"); + + // FIXME: Don't create intervals for low densities. + + // First interval before the gap. Don't create single-instr intervals. + if (bestPos > 1) { + openIntv(); + useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1])); + closeIntv(); + } + + // Second interval after the gap. + if (bestPos < Uses.size()-1) { + openIntv(); + useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back())); + closeIntv(); + } + + finish(); +} |