summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SplitKit.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SplitKit.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.cpp1491
1 files changed, 712 insertions, 779 deletions
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.cpp b/contrib/llvm/lib/CodeGen/SplitKit.cpp
index 29474f0..5663936 100644
--- a/contrib/llvm/lib/CodeGen/SplitKit.cpp
+++ b/contrib/llvm/lib/CodeGen/SplitKit.cpp
@@ -12,13 +12,14 @@
//
//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "splitter"
+#define DEBUG_TYPE "regalloc"
#include "SplitKit.h"
+#include "LiveRangeEdit.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -36,371 +37,231 @@ AllowSplit("spiller-splits-edges",
// Split Analysis
//===----------------------------------------------------------------------===//
-SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
+SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
- : mf_(mf),
- lis_(lis),
- loops_(mli),
- tii_(*mf.getTarget().getInstrInfo()),
- curli_(0) {}
+ : MF(vrm.getMachineFunction()),
+ VRM(vrm),
+ LIS(lis),
+ Loops(mli),
+ TII(*MF.getTarget().getInstrInfo()),
+ CurLI(0) {}
void SplitAnalysis::clear() {
- usingInstrs_.clear();
- usingBlocks_.clear();
- usingLoops_.clear();
- curli_ = 0;
+ UseSlots.clear();
+ UsingInstrs.clear();
+ UsingBlocks.clear();
+ LiveBlocks.clear();
+ CurLI = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
- return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
+ return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}
-/// analyzeUses - Count instructions, basic blocks, and loops using curli.
+/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
void SplitAnalysis::analyzeUses() {
- const MachineRegisterInfo &MRI = mf_.getRegInfo();
- for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
- MachineInstr *MI = I.skipInstruction();) {
- if (MI->isDebugValue() || !usingInstrs_.insert(MI))
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg),
+ E = MRI.reg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ if (MO.isUse() && MO.isUndef())
continue;
- MachineBasicBlock *MBB = MI->getParent();
- if (usingBlocks_[MBB]++)
+ MachineInstr *MI = MO.getParent();
+ if (MI->isDebugValue() || !UsingInstrs.insert(MI))
continue;
- if (MachineLoop *Loop = loops_.getLoopFor(MBB))
- usingLoops_[Loop]++;
+ UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
+ MachineBasicBlock *MBB = MI->getParent();
+ UsingBlocks[MBB]++;
}
+ array_pod_sort(UseSlots.begin(), UseSlots.end());
+ calcLiveBlockInfo();
DEBUG(dbgs() << " counted "
- << usingInstrs_.size() << " instrs, "
- << usingBlocks_.size() << " blocks, "
- << usingLoops_.size() << " loops.\n");
+ << UsingInstrs.size() << " instrs, "
+ << UsingBlocks.size() << " blocks.\n");
}
-/// removeUse - Update statistics by noting that MI no longer uses curli.
-void SplitAnalysis::removeUse(const MachineInstr *MI) {
- if (!usingInstrs_.erase(MI))
+/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
+/// where CurLI is live.
+void SplitAnalysis::calcLiveBlockInfo() {
+ if (CurLI->empty())
return;
- // Decrement MBB count.
- const MachineBasicBlock *MBB = MI->getParent();
- BlockCountMap::iterator bi = usingBlocks_.find(MBB);
- assert(bi != usingBlocks_.end() && "MBB missing");
- assert(bi->second && "0 count in map");
- if (--bi->second)
- return;
- // No more uses in MBB.
- usingBlocks_.erase(bi);
+ LiveInterval::const_iterator LVI = CurLI->begin();
+ LiveInterval::const_iterator LVE = CurLI->end();
+
+ SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
+ UseI = UseSlots.begin();
+ UseE = UseSlots.end();
+
+ // Loop over basic blocks where CurLI is live.
+ MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
+ for (;;) {
+ BlockInfo BI;
+ BI.MBB = MFI;
+ SlotIndex Start, Stop;
+ tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ // The last split point is the latest possible insertion point that dominates
+ // all successor blocks. If interference reaches LastSplitPoint, it is not
+ // possible to insert a split or reload that makes CurLI live in the
+ // outgoing bundle.
+ MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB);
+ if (LSP == BI.MBB->end())
+ BI.LastSplitPoint = Stop;
+ else
+ BI.LastSplitPoint = LIS.getInstructionIndex(LSP);
+
+ // LVI is the first live segment overlapping MBB.
+ BI.LiveIn = LVI->start <= Start;
+ if (!BI.LiveIn)
+ BI.Def = LVI->start;
+
+ // Find the first and last uses in the block.
+ BI.Uses = hasUses(MFI);
+ if (BI.Uses && UseI != UseE) {
+ BI.FirstUse = *UseI;
+ assert(BI.FirstUse >= Start);
+ do ++UseI;
+ while (UseI != UseE && *UseI < Stop);
+ BI.LastUse = UseI[-1];
+ assert(BI.LastUse < Stop);
+ }
- // Decrement loop count.
- MachineLoop *Loop = loops_.getLoopFor(MBB);
- if (!Loop)
- return;
- LoopCountMap::iterator li = usingLoops_.find(Loop);
- assert(li != usingLoops_.end() && "Loop missing");
- assert(li->second && "0 count in map");
- if (--li->second)
- return;
- // No more blocks in Loop.
- usingLoops_.erase(li);
-}
+ // Look for gaps in the live range.
+ bool hasGap = false;
+ BI.LiveOut = true;
+ while (LVI->end < Stop) {
+ SlotIndex LastStop = LVI->end;
+ if (++LVI == LVE || LVI->start >= Stop) {
+ BI.Kill = LastStop;
+ BI.LiveOut = false;
+ break;
+ }
+ if (LastStop < LVI->start) {
+ hasGap = true;
+ BI.Kill = LastStop;
+ BI.Def = LVI->start;
+ }
+ }
-// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
-// predecessor blocks, and exit blocks.
-void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
- Blocks.clear();
-
- // Blocks in the loop.
- Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
-
- // Predecessor blocks.
- const MachineBasicBlock *Header = Loop->getHeader();
- for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
- E = Header->pred_end(); I != E; ++I)
- if (!Blocks.Loop.count(*I))
- Blocks.Preds.insert(*I);
-
- // Exit blocks.
- for (MachineLoop::block_iterator I = Loop->block_begin(),
- E = Loop->block_end(); I != E; ++I) {
- const MachineBasicBlock *MBB = *I;
- for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
- SE = MBB->succ_end(); SI != SE; ++SI)
- if (!Blocks.Loop.count(*SI))
- Blocks.Exits.insert(*SI);
- }
-}
+ // Don't set LiveThrough when the block has a gap.
+ BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut;
+ LiveBlocks.push_back(BI);
-/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
-/// and around the Loop.
-SplitAnalysis::LoopPeripheralUse SplitAnalysis::
-analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
- LoopPeripheralUse use = ContainedInLoop;
- for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
- I != E; ++I) {
- const MachineBasicBlock *MBB = I->first;
- // Is this a peripheral block?
- if (use < MultiPeripheral &&
- (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
- if (I->second > 1) use = MultiPeripheral;
- else use = SinglePeripheral;
- continue;
- }
- // Is it a loop block?
- if (Blocks.Loop.count(MBB))
- continue;
- // It must be an unrelated block.
- return OutsideLoop;
- }
- return use;
-}
+ // LVI is now at LVE or LVI->end >= Stop.
+ if (LVI == LVE)
+ break;
-/// getCriticalExits - It may be necessary to partially break critical edges
-/// leaving the loop if an exit block has phi uses of curli. Collect the exit
-/// blocks that need special treatment into CriticalExits.
-void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
- BlockPtrSet &CriticalExits) {
- CriticalExits.clear();
-
- // A critical exit block contains a phi def of curli, and has a predecessor
- // that is not in the loop nor a loop predecessor.
- // For such an exit block, the edges carrying the new variable must be moved
- // to a new pre-exit block.
- for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
- I != E; ++I) {
- const MachineBasicBlock *Succ = *I;
- SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
- VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
- // This exit may not have curli live in at all. No need to split.
- if (!SuccVNI)
- continue;
- // If this is not a PHI def, it is either using a value from before the
- // loop, or a value defined inside the loop. Both are safe.
- if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
- continue;
- // This exit block does have a PHI. Does it also have a predecessor that is
- // not a loop block or loop predecessor?
- for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
- PE = Succ->pred_end(); PI != PE; ++PI) {
- const MachineBasicBlock *Pred = *PI;
- if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
- continue;
- // This is a critical exit block, and we need to split the exit edge.
- CriticalExits.insert(Succ);
+ // Live segment ends exactly at Stop. Move to the next segment.
+ if (LVI->end == Stop && ++LVI == LVE)
break;
- }
+
+ // Pick the next basic block.
+ if (LVI->start < Stop)
+ ++MFI;
+ else
+ MFI = LIS.getMBBFromIndex(LVI->start);
}
}
-/// canSplitCriticalExits - Return true if it is possible to insert new exit
-/// blocks before the blocks in CriticalExits.
-bool
-SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
- BlockPtrSet &CriticalExits) {
- // If we don't allow critical edge splitting, require no critical exits.
- if (!AllowSplit)
- return CriticalExits.empty();
-
- for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
- I != E; ++I) {
- const MachineBasicBlock *Succ = *I;
- // We want to insert a new pre-exit MBB before Succ, and change all the
- // in-loop blocks to branch to the pre-exit instead of Succ.
- // Check that all the in-loop predecessors can be changed.
- for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
- PE = Succ->pred_end(); PI != PE; ++PI) {
- const MachineBasicBlock *Pred = *PI;
- // The external predecessors won't be altered.
- if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
- continue;
- if (!canAnalyzeBranch(Pred))
- return false;
- }
-
- // If Succ's layout predecessor falls through, that too must be analyzable.
- // We need to insert the pre-exit block in the gap.
- MachineFunction::const_iterator MFI = Succ;
- if (MFI == mf_.begin())
- continue;
- if (!canAnalyzeBranch(--MFI))
- return false;
+void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
+ for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
+ unsigned count = UsingBlocks.lookup(*I);
+ OS << " BB#" << (*I)->getNumber();
+ if (count)
+ OS << '(' << count << ')';
}
- // No problems found.
- return true;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
- curli_ = li;
+ CurLI = li;
analyzeUses();
}
-const MachineLoop *SplitAnalysis::getBestSplitLoop() {
- assert(curli_ && "Call analyze() before getBestSplitLoop");
- if (usingLoops_.empty())
- return 0;
-
- LoopPtrSet Loops, SecondLoops;
- LoopBlocks Blocks;
- BlockPtrSet CriticalExits;
-
- // Find first-class and second class candidate loops.
- // We prefer to split around loops where curli is used outside the periphery.
- for (LoopCountMap::const_iterator I = usingLoops_.begin(),
- E = usingLoops_.end(); I != E; ++I) {
- const MachineLoop *Loop = I->first;
- getLoopBlocks(Loop, Blocks);
-
- // FIXME: We need an SSA updater to properly handle multiple exit blocks.
- if (Blocks.Exits.size() > 1) {
- DEBUG(dbgs() << " multiple exits from " << *Loop);
- continue;
- }
-
- LoopPtrSet *LPS = 0;
- switch(analyzeLoopPeripheralUse(Blocks)) {
- case OutsideLoop:
- LPS = &Loops;
- break;
- case MultiPeripheral:
- LPS = &SecondLoops;
- break;
- case ContainedInLoop:
- DEBUG(dbgs() << " contained in " << *Loop);
- continue;
- case SinglePeripheral:
- DEBUG(dbgs() << " single peripheral use in " << *Loop);
- continue;
- }
- // Will it be possible to split around this loop?
- getCriticalExits(Blocks, CriticalExits);
- DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from "
- << *Loop);
- if (!canSplitCriticalExits(Blocks, CriticalExits))
- continue;
- // This is a possible split.
- assert(LPS);
- LPS->insert(Loop);
- }
-
- DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + "
- << SecondLoops.size() << " candidate loops.\n");
-
- // If there are no first class loops available, look at second class loops.
- if (Loops.empty())
- Loops = SecondLoops;
- if (Loops.empty())
- return 0;
+//===----------------------------------------------------------------------===//
+// LiveIntervalMap
+//===----------------------------------------------------------------------===//
- // Pick the earliest loop.
- // FIXME: Are there other heuristics to consider?
- const MachineLoop *Best = 0;
- SlotIndex BestIdx;
- for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
- ++I) {
- SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
- if (!Best || Idx < BestIdx)
- Best = *I, BestIdx = Idx;
- }
- DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
- return Best;
+// Work around the fact that the std::pair constructors are broken for pointer
+// pairs in some implementations. makeVV(x, 0) works.
+static inline std::pair<const VNInfo*, VNInfo*>
+makeVV(const VNInfo *a, VNInfo *b) {
+ return std::make_pair(a, b);
}
-/// getMultiUseBlocks - if curli has more than one use in a basic block, it
-/// may be an advantage to split curli for the duration of the block.
-bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
- // If curli is local to one block, there is no point to splitting it.
- if (usingBlocks_.size() <= 1)
- return false;
- // Add blocks with multiple uses.
- for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
- I != E; ++I)
- switch (I->second) {
- case 0:
- case 1:
- continue;
- case 2: {
- // It doesn't pay to split a 2-instr block if it redefines curli.
- VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
- VNInfo *VN2 =
- curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
- // live-in and live-out with a different value.
- if (VN1 && VN2 && VN1 != VN2)
- continue;
- } // Fall through.
- default:
- Blocks.insert(I->first);
- }
- return !Blocks.empty();
+void LiveIntervalMap::reset(LiveInterval *li) {
+ LI = li;
+ Values.clear();
+ LiveOutCache.clear();
}
-//===----------------------------------------------------------------------===//
-// LiveIntervalMap
-//===----------------------------------------------------------------------===//
+bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
+ ValueMap::const_iterator i = Values.find(ParentVNI);
+ return i != Values.end() && i->second == 0;
+}
-// defValue - Introduce a li_ def for ParentVNI that could be later than
+// defValue - Introduce a LI def for ParentVNI that could be later than
// ParentVNI->def.
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
+ assert(LI && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
- assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
-
- // Is this a simple 1-1 mapping? Not likely.
- if (Idx == ParentVNI->def)
- return mapValue(ParentVNI, Idx);
-
- // This is a complex def. Mark with a NULL in valueMap.
- VNInfo *OldVNI =
- valueMap_.insert(
- ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0))).first->second;
- // The static_cast<VNInfo *> is only needed to work around a bug in an
- // old version of the C++0x standard which the following compilers
- // implemented and have yet to fix:
- //
- // Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel
- // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01
- //
- // If/When we move to C++0x, this can be replaced by nullptr.
- (void)OldVNI;
- assert(OldVNI == 0 && "Simple/Complex values mixed");
-
- // Should we insert a minimal snippet of VNI LiveRange, or can we count on
- // callers to do that? We need it for lookups of complex values.
- VNInfo *VNI = li_.getNextValue(Idx, 0, true, lis_.getVNInfoAllocator());
+ assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
+
+ // Create a new value.
+ VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
+
+ // Preserve the PHIDef bit.
+ if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
+ VNI->setIsPHIDef(true);
+
+ // Use insert for lookup, so we can add missing values with a second lookup.
+ std::pair<ValueMap::iterator,bool> InsP =
+ Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
+
+ // This is now a complex def. Mark with a NULL in valueMap.
+ if (!InsP.second)
+ InsP.first->second = 0;
+
return VNI;
}
+
// mapValue - Find the mapped value for ParentVNI at Idx.
// Potentially create phi-def values.
-VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) {
+VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
+ bool *simple) {
+ assert(LI && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
- assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
+ assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
- valueMap_.insert(ValueMap::value_type(ParentVNI, static_cast<VNInfo *>(0)));
- // The static_cast<VNInfo *> is only needed to work around a bug in an
- // old version of the C++0x standard which the following compilers
- // implemented and have yet to fix:
- //
- // Microsoft Visual Studio 2010 Version 10.0.30319.1 RTMRel
- // Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.30319.01
- //
- // If/When we move to C++0x, this can be replaced by nullptr.
+ Values.insert(makeVV(ParentVNI, 0));
// This was an unknown value. Create a simple mapping.
- if (InsP.second)
- return InsP.first->second = li_.createValueCopy(ParentVNI,
- lis_.getVNInfoAllocator());
+ if (InsP.second) {
+ if (simple) *simple = true;
+ return InsP.first->second = LI->createValueCopy(ParentVNI,
+ LIS.getVNInfoAllocator());
+ }
+
// This was a simple mapped value.
- if (InsP.first->second)
+ if (InsP.first->second) {
+ if (simple) *simple = true;
return InsP.first->second;
+ }
// This is a complex mapped value. There may be multiple defs, and we may need
// to create phi-defs.
- MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
+ if (simple) *simple = false;
+ MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
// Is there a def in the same MBB we can extend?
@@ -409,157 +270,260 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) {
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
- // Perform a depth-first search for predecessor blocks where we know the
- // dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
-
- // Track MBBs where we have created or learned the dominating value.
- // This may change during the DFS as we create new phi-defs.
- typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
- MBBValueMap DomValue;
-
- for (idf_iterator<MachineBasicBlock*>
- IDFI = idf_begin(IdxMBB),
- IDFE = idf_end(IdxMBB); IDFI != IDFE;) {
- MachineBasicBlock *MBB = *IDFI;
- SlotIndex End = lis_.getMBBEndIdx(MBB);
-
- // We are operating on the restricted CFG where ParentVNI is live.
- if (parentli_.getVNInfoAt(End.getPrevSlot()) != ParentVNI) {
- IDFI.skipChildren();
- continue;
- }
-
- // Do we have a dominating value in this block?
- VNInfo *VNI = extendTo(MBB, End);
- if (!VNI) {
- ++IDFI;
- continue;
+ // Perform a search for all predecessor blocks where we know the dominating
+ // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
+ DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
+ << " at " << Idx << " in " << *LI << '\n');
+
+ // Blocks where LI should be live-in.
+ SmallVector<MachineDomTreeNode*, 16> LiveIn;
+ LiveIn.push_back(MDT[IdxMBB]);
+
+ // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
+ for (unsigned i = 0; i != LiveIn.size(); ++i) {
+ MachineBasicBlock *MBB = LiveIn[i]->getBlock();
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ MachineBasicBlock *Pred = *PI;
+ // Is this a known live-out block?
+ std::pair<LiveOutMap::iterator,bool> LOIP =
+ LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
+ // Yes, we have been here before.
+ if (!LOIP.second) {
+ DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
+ dbgs() << " known valno #" << VNI->id
+ << " at BB#" << Pred->getNumber() << '\n');
+ continue;
+ }
+
+ // Does Pred provide a live-out value?
+ SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
+ if (VNInfo *VNI = extendTo(Pred, Last)) {
+ MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
+ DEBUG(dbgs() << " found valno #" << VNI->id
+ << " from BB#" << DefMBB->getNumber()
+ << " at BB#" << Pred->getNumber() << '\n');
+ LiveOutPair &LOP = LOIP.first->second;
+ LOP.first = VNI;
+ LOP.second = MDT[DefMBB];
+ continue;
+ }
+ // No, we need a live-in value for Pred as well
+ if (Pred != IdxMBB)
+ LiveIn.push_back(MDT[Pred]);
}
+ }
- // Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs
- // as needed along the way.
- for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
- // Start from MBB's immediate successor. End at IdxMBB.
- MachineBasicBlock *Succ = IDFI.getPath(PI-1);
- std::pair<MBBValueMap::iterator, bool> InsP =
- DomValue.insert(MBBValueMap::value_type(Succ, VNI));
-
- // This is the first time we backtrack to Succ.
- if (InsP.second)
- continue;
-
- // We reached Succ again with the same VNI. Nothing is going to change.
- VNInfo *OVNI = InsP.first->second;
- if (OVNI == VNI)
- break;
+ // We may need to add phi-def values to preserve the SSA form.
+ // This is essentially the same iterative algorithm that SSAUpdater uses,
+ // except we already have a dominator tree, so we don't have to recompute it.
+ VNInfo *IdxVNI = 0;
+ unsigned Changes;
+ do {
+ Changes = 0;
+ DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n");
+ // Propagate live-out values down the dominator tree, inserting phi-defs when
+ // necessary. Since LiveIn was created by a BFS, going backwards makes it more
+ // likely for us to visit immediate dominators before their children.
+ for (unsigned i = LiveIn.size(); i; --i) {
+ MachineDomTreeNode *Node = LiveIn[i-1];
+ MachineBasicBlock *MBB = Node->getBlock();
+ MachineDomTreeNode *IDom = Node->getIDom();
+ LiveOutPair IDomValue;
+ // We need a live-in value to a block with no immediate dominator?
+ // This is probably an unreachable block that has survived somehow.
+ bool needPHI = !IDom;
+
+ // Get the IDom live-out value.
+ if (!needPHI) {
+ LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
+ if (I != LiveOutCache.end())
+ IDomValue = I->second;
+ else
+ // If IDom is outside our set of live-out blocks, there must be new
+ // defs, and we need a phi-def here.
+ needPHI = true;
+ }
- // Succ already has a phi-def. No need to continue.
- SlotIndex Start = lis_.getMBBStartIdx(Succ);
- if (OVNI->def == Start)
- break;
+ // IDom dominates all of our predecessors, but it may not be the immediate
+ // dominator. Check if any of them have live-out values that are properly
+ // dominated by IDom. If so, we need a phi-def here.
+ if (!needPHI) {
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ LiveOutPair Value = LiveOutCache[*PI];
+ if (!Value.first || Value.first == IDomValue.first)
+ continue;
+ // This predecessor is carrying something other than IDomValue.
+ // It could be because IDomValue hasn't propagated yet, or it could be
+ // because MBB is in the dominance frontier of that value.
+ if (MDT.dominates(IDom, Value.second)) {
+ needPHI = true;
+ break;
+ }
+ }
+ }
- // We have a collision between the old and new VNI at Succ. That means
- // neither dominates and we need a new phi-def.
- VNI = li_.getNextValue(Start, 0, true, lis_.getVNInfoAllocator());
- VNI->setIsPHIDef(true);
- InsP.first->second = VNI;
-
- // Replace OVNI with VNI in the remaining path.
- for (; PI > 1 ; --PI) {
- MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
- if (I == DomValue.end() || I->second != OVNI)
- break;
- I->second = VNI;
+ // Create a phi-def if required.
+ if (needPHI) {
+ ++Changes;
+ SlotIndex Start = LIS.getMBBStartIdx(MBB);
+ VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
+ VNI->setIsPHIDef(true);
+ DEBUG(dbgs() << " - BB#" << MBB->getNumber()
+ << " phi-def #" << VNI->id << " at " << Start << '\n');
+ // We no longer need LI to be live-in.
+ LiveIn.erase(LiveIn.begin()+(i-1));
+ // Blocks in LiveIn are either IdxMBB, or have a value live-through.
+ if (MBB == IdxMBB)
+ IdxVNI = VNI;
+ // Check if we need to update live-out info.
+ LiveOutMap::iterator I = LiveOutCache.find(MBB);
+ if (I == LiveOutCache.end() || I->second.second == Node) {
+ // We already have a live-out defined in MBB, so this must be IdxMBB.
+ assert(MBB == IdxMBB && "Adding phi-def to known live-out");
+ LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
+ } else {
+ // This phi-def is also live-out, so color the whole block.
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
+ I->second = LiveOutPair(VNI, Node);
+ }
+ } else if (IDomValue.first) {
+ // No phi-def here. Remember incoming value for IdxMBB.
+ if (MBB == IdxMBB)
+ IdxVNI = IDomValue.first;
+ // Propagate IDomValue if needed:
+ // MBB is live-out and doesn't define its own value.
+ LiveOutMap::iterator I = LiveOutCache.find(MBB);
+ if (I != LiveOutCache.end() && I->second.second != Node &&
+ I->second.first != IDomValue.first) {
+ ++Changes;
+ I->second = IDomValue;
+ DEBUG(dbgs() << " - BB#" << MBB->getNumber()
+ << " idom valno #" << IDomValue.first->id
+ << " from BB#" << IDom->getBlock()->getNumber() << '\n');
+ }
}
}
+ DEBUG(dbgs() << " - made " << Changes << " changes.\n");
+ } while (Changes);
- // No need to search the children, we found a dominating value.
- IDFI.skipChildren();
- }
+ assert(IdxVNI && "Didn't find value for Idx");
- // The search should at least find a dominating value for IdxMBB.
- assert(!DomValue.empty() && "Couldn't find a reaching definition");
+#ifndef NDEBUG
+ // Check the LiveOutCache invariants.
+ for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
+ I != E; ++I) {
+ assert(I->first && "Null MBB entry in cache");
+ assert(I->second.first && "Null VNInfo in cache");
+ assert(I->second.second && "Null DomTreeNode in cache");
+ if (I->second.second->getBlock() == I->first)
+ continue;
+ for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
+ PE = I->first->pred_end(); PI != PE; ++PI)
+ assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
+ }
+#endif
- // Since we went through the trouble of a full DFS visiting all reaching defs,
- // the values in DomValue are now accurate. No more phi-defs are needed for
- // these blocks, so we can color the live ranges.
+ // Since we went through the trouble of a full BFS visiting all reaching defs,
+ // the values in LiveIn are now accurate. No more phi-defs are needed
+ // for these blocks, so we can color the live ranges.
// This makes the next mapValue call much faster.
- VNInfo *IdxVNI = 0;
- for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
- ++I) {
- MachineBasicBlock *MBB = I->first;
- VNInfo *VNI = I->second;
- SlotIndex Start = lis_.getMBBStartIdx(MBB);
- if (MBB == IdxMBB) {
- // Don't add full liveness to IdxMBB, stop at Idx.
- if (Start != Idx)
- li_.addRange(LiveRange(Start, Idx, VNI));
- // The caller had better add some liveness to IdxVNI, or it leaks.
- IdxVNI = VNI;
- } else
- li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
+ for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = LiveIn[i]->getBlock();
+ SlotIndex Start = LIS.getMBBStartIdx(MBB);
+ VNInfo *VNI = LiveOutCache.lookup(MBB).first;
+
+ // Anything in LiveIn other than IdxMBB is live-through.
+ // In IdxMBB, we should stop at Idx unless the same value is live-out.
+ if (MBB == IdxMBB && IdxVNI != VNI)
+ LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
+ else
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
}
- assert(IdxVNI && "Didn't find value for Idx");
return IdxVNI;
}
-// extendTo - Find the last li_ value defined in MBB at or before Idx. The
-// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
+#ifndef NDEBUG
+void LiveIntervalMap::dumpCache() {
+ for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
+ I != E; ++I) {
+ assert(I->first && "Null MBB entry in cache");
+ assert(I->second.first && "Null VNInfo in cache");
+ assert(I->second.second && "Null DomTreeNode in cache");
+ dbgs() << " cache: BB#" << I->first->getNumber()
+ << " has valno #" << I->second.first->id << " from BB#"
+ << I->second.second->getBlock()->getNumber() << ", preds";
+ for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
+ PE = I->first->pred_end(); PI != PE; ++PI)
+ dbgs() << " BB#" << (*PI)->getNumber();
+ dbgs() << '\n';
+ }
+ dbgs() << " cache: " << LiveOutCache.size() << " entries.\n";
+}
+#endif
+
+// extendTo - Find the last LI value defined in MBB at or before Idx. The
+// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
// Return the found VNInfo, or NULL.
-VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
- LiveInterval::iterator I = std::upper_bound(li_.begin(), li_.end(), Idx);
- if (I == li_.begin())
+VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
+ assert(LI && "call reset first");
+ LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
+ if (I == LI->begin())
return 0;
--I;
- if (I->start < lis_.getMBBStartIdx(MBB))
+ if (I->end <= LIS.getMBBStartIdx(MBB))
return 0;
- if (I->end < Idx)
- I->end = Idx;
+ if (I->end <= Idx)
+ I->end = Idx.getNextSlot();
return I->valno;
}
-// addSimpleRange - Add a simple range from parentli_ to li_.
+// addSimpleRange - Add a simple range from ParentLI to LI.
// ParentVNI must be live in the [Start;End) interval.
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
const VNInfo *ParentVNI) {
- VNInfo *VNI = mapValue(ParentVNI, Start);
- // A simple mappoing is easy.
- if (VNI->def == ParentVNI->def) {
- li_.addRange(LiveRange(Start, End, VNI));
+ assert(LI && "call reset first");
+ bool simple;
+ VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
+ // A simple mapping is easy.
+ if (simple) {
+ LI->addRange(LiveRange(Start, End, VNI));
return;
}
// ParentVNI is a complex value. We must map per MBB.
- MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
- MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End);
+ MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
+ MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
if (MBB == MBBE) {
- li_.addRange(LiveRange(Start, End, VNI));
+ LI->addRange(LiveRange(Start, End, VNI));
return;
}
// First block.
- li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
// Run sequence of full blocks.
for (++MBB; MBB != MBBE; ++MBB) {
- Start = lis_.getMBBStartIdx(MBB);
- li_.addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
- mapValue(ParentVNI, Start)));
+ Start = LIS.getMBBStartIdx(MBB);
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
+ mapValue(ParentVNI, Start)));
}
// Final block.
- Start = lis_.getMBBStartIdx(MBB);
+ Start = LIS.getMBBStartIdx(MBB);
if (Start != End)
- li_.addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
+ LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
}
-/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
+/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
- LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
+ assert(LI && "call reset first");
+ LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
// Check if --I begins before Start and overlaps.
@@ -575,403 +539,374 @@ void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
addSimpleRange(I->start, std::min(End, I->end), I->valno);
}
+
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
-SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
- SmallVectorImpl<LiveInterval*> &intervals)
- : sa_(sa), lis_(lis), vrm_(vrm),
- mri_(vrm.getMachineFunction().getRegInfo()),
- tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
- curli_(sa_.getCurLI()),
- dupli_(0), openli_(0),
- intervals_(intervals),
- firstInterval(intervals_.size())
+SplitEditor::SplitEditor(SplitAnalysis &sa,
+ LiveIntervals &lis,
+ VirtRegMap &vrm,
+ MachineDominatorTree &mdt,
+ LiveRangeEdit &edit)
+ : SA(sa), LIS(lis), VRM(vrm),
+ MRI(vrm.getMachineFunction().getRegInfo()),
+ MDT(mdt),
+ TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
+ TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
+ Edit(edit),
+ OpenIdx(0),
+ RegAssign(Allocator)
{
- assert(curli_ && "SplitEditor created from empty SplitAnalysis");
-
- // Make sure curli_ is assigned a stack slot, so all our intervals get the
- // same slot as curli_.
- if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT)
- vrm_.assignVirt2StackSlot(curli_->reg);
-
+ // We don't need an AliasAnalysis since we will only be performing
+ // cheap-as-a-copy remats anyway.
+ Edit.anyRematerializable(LIS, TII, 0);
}
-LiveInterval *SplitEditor::createInterval() {
- unsigned curli = sa_.getCurLI()->reg;
- unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli));
- LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
- vrm_.grow();
- vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli));
- return &Intv;
+void SplitEditor::dump() const {
+ if (RegAssign.empty()) {
+ dbgs() << " empty\n";
+ return;
+ }
+
+ for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
+ dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
+ dbgs() << '\n';
}
-LiveInterval *SplitEditor::getDupLI() {
- if (!dupli_) {
- // Create an interval for dupli that is a copy of curli.
- dupli_ = createInterval();
- dupli_->Copy(*curli_, &mri_, lis_.getVNInfoAllocator());
+VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
+ VNInfo *ParentVNI,
+ SlotIndex UseIdx,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ MachineInstr *CopyMI = 0;
+ SlotIndex Def;
+ LiveInterval *LI = Edit.get(RegIdx);
+
+ // Attempt cheap-as-a-copy rematerialization.
+ LiveRangeEdit::Remat RM(ParentVNI);
+ if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
+ Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
+ } else {
+ // Can't remat, just insert a copy from parent.
+ CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
+ .addReg(Edit.getReg());
+ Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
}
- return dupli_;
-}
-VNInfo *SplitEditor::mapValue(const VNInfo *curliVNI) {
- VNInfo *&VNI = valueMap_[curliVNI];
- if (!VNI)
- VNI = openli_->createValueCopy(curliVNI, lis_.getVNInfoAllocator());
- return VNI;
-}
+ // Define the value in Reg.
+ VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def);
+ VNI->setCopy(CopyMI);
-/// Insert a COPY instruction curli -> li. Allocate a new value from li
-/// defined by the COPY. Note that rewrite() will deal with the curli
-/// register, so this function can be used to copy from any interval - openli,
-/// curli, or dupli.
-VNInfo *SplitEditor::insertCopy(LiveInterval &LI,
- MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I) {
- MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
- LI.reg).addReg(curli_->reg);
- SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
- return LI.getNextValue(DefIdx, MI, true, lis_.getVNInfoAllocator());
+ // Add minimal liveness for the new value.
+ Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
+ return VNI;
}
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
- assert(!openli_ && "Previous LI not closed before openIntv");
- openli_ = createInterval();
- intervals_.push_back(openli_);
- liveThrough_ = false;
-}
+ assert(!OpenIdx && "Previous LI not closed before openIntv");
-/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
-/// not live before Idx, a COPY is not inserted.
-void SplitEditor::enterIntvBefore(SlotIndex Idx) {
- assert(openli_ && "openIntv not called before enterIntvBefore");
-
- // Copy from curli_ if it is live.
- if (VNInfo *CurVNI = curli_->getVNInfoAt(Idx.getUseIndex())) {
- MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
- assert(MI && "enterIntvBefore called with invalid index");
- VNInfo *VNI = insertCopy(*openli_, *MI->getParent(), MI);
- openli_->addRange(LiveRange(VNI->def, Idx.getDefIndex(), VNI));
-
- // Make sure CurVNI is properly mapped.
- VNInfo *&mapVNI = valueMap_[CurVNI];
- // We dont have SSA update yet, so only one entry per value is allowed.
- assert(!mapVNI && "enterIntvBefore called more than once for the same value");
- mapVNI = VNI;
+ // Create the complement as index 0.
+ if (Edit.empty()) {
+ Edit.create(MRI, LIS, VRM);
+ LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
+ LIMappers.back().reset(Edit.get(0));
}
- DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_ << '\n');
-}
-/// enterIntvAtEnd - Enter openli at the end of MBB.
-/// PhiMBB is a successor inside openli where a PHI value is created.
-/// Currently, all entries must share the same PhiMBB.
-void SplitEditor::enterIntvAtEnd(MachineBasicBlock &A, MachineBasicBlock &B) {
- assert(openli_ && "openIntv not called before enterIntvAtEnd");
-
- SlotIndex EndA = lis_.getMBBEndIdx(&A);
- VNInfo *CurVNIA = curli_->getVNInfoAt(EndA.getPrevIndex());
- if (!CurVNIA) {
- DEBUG(dbgs() << " enterIntvAtEnd, curli not live out of BB#"
- << A.getNumber() << ".\n");
- return;
- }
+ // Create the open interval.
+ OpenIdx = Edit.size();
+ Edit.create(MRI, LIS, VRM);
+ LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
+ LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
+}
- // Add a phi kill value and live range out of A.
- VNInfo *VNIA = insertCopy(*openli_, A, A.getFirstTerminator());
- openli_->addRange(LiveRange(VNIA->def, EndA, VNIA));
-
- // FIXME: If this is the only entry edge, we don't need the extra PHI value.
- // FIXME: If there are multiple entry blocks (so not a loop), we need proper
- // SSA update.
-
- // Now look at the start of B.
- SlotIndex StartB = lis_.getMBBStartIdx(&B);
- SlotIndex EndB = lis_.getMBBEndIdx(&B);
- const LiveRange *CurB = curli_->getLiveRangeContaining(StartB);
- if (!CurB) {
- DEBUG(dbgs() << " enterIntvAtEnd: curli not live in to BB#"
- << B.getNumber() << ".\n");
- return;
+SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before enterIntvBefore");
+ DEBUG(dbgs() << " enterIntvBefore " << Idx);
+ Idx = Idx.getBaseIndex();
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx;
}
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "enterIntvBefore called with invalid index");
- VNInfo *VNIB = openli_->getVNInfoAt(StartB);
- if (!VNIB) {
- // Create a phi value.
- VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false,
- lis_.getVNInfoAllocator());
- VNIB->setIsPHIDef(true);
- VNInfo *&mapVNI = valueMap_[CurB->valno];
- if (mapVNI) {
- // Multiple copies - must create PHI value.
- abort();
- } else {
- // This is the first copy of dupLR. Mark the mapping.
- mapVNI = VNIB;
- }
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
+}
+SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
+ SlotIndex End = LIS.getMBBEndIdx(&MBB);
+ SlotIndex Last = End.getPrevSlot();
+ DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return End;
}
-
- DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_ << '\n');
+ DEBUG(dbgs() << ": valno " << ParentVNI->id);
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
+ LIS.getLastSplitPoint(Edit.getParent(), &MBB));
+ RegAssign.insert(VNI->def, End, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
}
-/// useIntv - indicate that all instructions in MBB should use openli.
+/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
- useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
+ useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
- assert(openli_ && "openIntv not called before useIntv");
+ assert(OpenIdx && "openIntv not called before useIntv");
+ DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
+}
- // Map the curli values from the interval into openli_
- LiveInterval::const_iterator B = curli_->begin(), E = curli_->end();
- LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
+SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAfter");
+ DEBUG(dbgs() << " leaveIntvAfter " << Idx);
- if (I != B) {
- --I;
- // I begins before Start, but overlaps.
- if (I->end > Start)
- openli_->addRange(LiveRange(Start, std::min(End, I->end),
- mapValue(I->valno)));
- ++I;
+ // The interval must be live beyond the instruction at Idx.
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx.getNextSlot();
}
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
- // The remaining ranges begin after Start.
- for (;I != E && I->start < End; ++I)
- openli_->addRange(LiveRange(I->start, std::min(End, I->end),
- mapValue(I->valno)));
- DEBUG(dbgs() << " use [" << Start << ';' << End << "): " << *openli_
- << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "No instruction at index");
+ VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
+ llvm::next(MachineBasicBlock::iterator(MI)));
+ return VNI->def;
}
-/// leaveIntvAfter - Leave openli after the instruction at Idx.
-void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
- assert(openli_ && "openIntv not called before leaveIntvAfter");
+SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvBefore");
+ DEBUG(dbgs() << " leaveIntvBefore " << Idx);
- const LiveRange *CurLR = curli_->getLiveRangeContaining(Idx.getDefIndex());
- if (!CurLR || CurLR->end <= Idx.getBoundaryIndex()) {
- DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n");
- return;
+ // The interval must be live into the instruction at Idx.
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx.getNextSlot();
}
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
- // Was this value of curli live through openli?
- if (!openli_->liveAt(CurLR->valno->def)) {
- DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": using external value\n");
- liveThrough_ = true;
- return;
- }
-
- // We are going to insert a back copy, so we must have a dupli_.
- LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Idx.getDefIndex());
- assert(DupLR && "dupli not live into black, but curli is?");
-
- // Insert the COPY instruction.
- MachineBasicBlock::iterator I = lis_.getInstructionFromIndex(Idx);
- MachineInstr *MI = BuildMI(*I->getParent(), llvm::next(I), I->getDebugLoc(),
- tii_.get(TargetOpcode::COPY), dupli_->reg)
- .addReg(openli_->reg);
- SlotIndex CopyIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
- openli_->addRange(LiveRange(Idx.getDefIndex(), CopyIdx,
- mapValue(CurLR->valno)));
- DupLR->valno->def = CopyIdx;
- DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_ << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "No instruction at index");
+ VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
}
-/// leaveIntvAtTop - Leave the interval at the top of MBB.
-/// Currently, only one value can leave the interval.
-void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
- assert(openli_ && "openIntv not called before leaveIntvAtTop");
-
- SlotIndex Start = lis_.getMBBStartIdx(&MBB);
- const LiveRange *CurLR = curli_->getLiveRangeContaining(Start);
-
- // Is curli even live-in to MBB?
- if (!CurLR) {
- DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n");
- return;
- }
-
- // Is curli defined by PHI at the beginning of MBB?
- bool isPHIDef = CurLR->valno->isPHIDef() &&
- CurLR->valno->def.getBaseIndex() == Start;
+SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
+ SlotIndex Start = LIS.getMBBStartIdx(&MBB);
+ DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
- // If MBB is using a value of curli that was defined outside the openli range,
- // we don't want to copy it back here.
- if (!isPHIDef && !openli_->liveAt(CurLR->valno->def)) {
- DEBUG(dbgs() << " leaveIntvAtTop at " << Start
- << ": using external value\n");
- liveThrough_ = true;
- return;
+ VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Start;
}
- // We are going to insert a back copy, so we must have a dupli_.
- LiveRange *DupLR = getDupLI()->getLiveRangeContaining(Start);
- assert(DupLR && "dupli not live into black, but curli is?");
-
- // Insert the COPY instruction.
- MachineInstr *MI = BuildMI(MBB, MBB.begin(), DebugLoc(),
- tii_.get(TargetOpcode::COPY), dupli_->reg)
- .addReg(openli_->reg);
- SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
-
- // Adjust dupli and openli values.
- if (isPHIDef) {
- // dupli was already a PHI on entry to MBB. Simply insert an openli PHI,
- // and shift the dupli def down to the COPY.
- VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
- lis_.getVNInfoAllocator());
- VNI->setIsPHIDef(true);
- openli_->addRange(LiveRange(VNI->def, Idx, VNI));
-
- dupli_->removeRange(Start, Idx);
- DupLR->valno->def = Idx;
- DupLR->valno->setIsPHIDef(false);
- } else {
- // The dupli value was defined somewhere inside the openli range.
- DEBUG(dbgs() << " leaveIntvAtTop source value defined at "
- << DupLR->valno->def << "\n");
- // FIXME: We may not need a PHI here if all predecessors have the same
- // value.
- VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
- lis_.getVNInfoAllocator());
- VNI->setIsPHIDef(true);
- openli_->addRange(LiveRange(VNI->def, Idx, VNI));
-
- // FIXME: What if DupLR->valno is used by multiple exits? SSA Update.
-
- // closeIntv is going to remove the superfluous live ranges.
- DupLR->valno->def = Idx;
- DupLR->valno->setIsPHIDef(false);
- }
+ VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
+ MBB.SkipPHIsAndLabels(MBB.begin()));
+ RegAssign.insert(Start, VNI->def, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
+}
- DEBUG(dbgs() << " leaveIntvAtTop at " << Idx << ": " << *openli_ << '\n');
+void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
+ assert(OpenIdx && "openIntv not called before overlapIntv");
+ assert(Edit.getParent().getVNInfoAt(Start) ==
+ Edit.getParent().getVNInfoAt(End.getPrevSlot()) &&
+ "Parent changes value in extended range");
+ assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*");
+ assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
+ "Range cannot span basic blocks");
+
+ // Treat this as useIntv() for now. The complement interval will be extended
+ // as needed by mapValue().
+ DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
}
/// closeIntv - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeIntv() {
- assert(openli_ && "openIntv not called before closeIntv");
-
- DEBUG(dbgs() << " closeIntv cleaning up\n");
- DEBUG(dbgs() << " open " << *openli_ << '\n');
-
- if (liveThrough_) {
- DEBUG(dbgs() << " value live through region, leaving dupli as is.\n");
- } else {
- // live out with copies inserted, or killed by region. Either way we need to
- // remove the overlapping region from dupli.
- getDupLI();
- for (LiveInterval::iterator I = openli_->begin(), E = openli_->end();
- I != E; ++I) {
- dupli_->removeRange(I->start, I->end);
- }
- // FIXME: A block branching to the entry block may also branch elsewhere
- // curli is live. We need both openli and curli to be live in that case.
- DEBUG(dbgs() << " dup2 " << *dupli_ << '\n');
- }
- openli_ = 0;
- valueMap_.clear();
+ assert(OpenIdx && "openIntv not called before closeIntv");
+ OpenIdx = 0;
}
-/// rewrite - after all the new live ranges have been created, rewrite
-/// instructions using curli to use the new intervals.
-void SplitEditor::rewrite() {
- assert(!openli_ && "Previous LI not closed before rewrite");
- const LiveInterval *curli = sa_.getCurLI();
- for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg),
- RE = mri_.reg_end(); RI != RE;) {
+/// rewriteAssigned - Rewrite all uses of Edit.getReg().
+void SplitEditor::rewriteAssigned() {
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
+ RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
+ // LiveDebugVariables should have handled all DBG_VALUE instructions.
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
- // FIXME: We can do much better with debug values.
MO.setReg(0);
continue;
}
- SlotIndex Idx = lis_.getInstructionIndex(MI);
- Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
- LiveInterval *LI = dupli_;
- for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
- LiveInterval *testli = intervals_[i];
- if (testli->liveAt(Idx)) {
- LI = testli;
- break;
- }
- }
- if (LI) {
- MO.setReg(LI->reg);
- sa_.removeUse(MI);
- DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI);
- }
- }
- // dupli_ goes in last, after rewriting.
- if (dupli_) {
- if (dupli_->empty()) {
- DEBUG(dbgs() << " dupli became empty?\n");
- lis_.removeInterval(dupli_->reg);
- dupli_ = 0;
- } else {
- dupli_->RenumberValues(lis_);
- intervals_.push_back(dupli_);
+ // <undef> operands don't really read the register, so just assign them to
+ // the complement.
+ if (MO.isUse() && MO.isUndef()) {
+ MO.setReg(Edit.get(0)->reg);
+ continue;
}
+
+ SlotIndex Idx = LIS.getInstructionIndex(MI);
+ Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
+
+ // Rewrite to the mapped register at Idx.
+ unsigned RegIdx = RegAssign.lookup(Idx);
+ MO.setReg(Edit.get(RegIdx)->reg);
+ DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
+ << Idx << ':' << RegIdx << '\t' << *MI);
+
+ // Extend liveness to Idx.
+ const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
+ LIMappers[RegIdx].mapValue(ParentVNI, Idx);
}
+}
- // Calculate spill weight and allocation hints for new intervals.
- VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
- for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
- LiveInterval &li = *intervals_[i];
- vrai.CalculateRegClass(li.reg);
- vrai.CalculateWeightAndHint(li);
- DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName()
- << ":" << li << '\n');
+/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
+void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
+ const ConnectedVNInfoEqClasses &ConEq) {
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
+ RE = MRI.reg_end(); RI != RE;) {
+ MachineOperand &MO = RI.getOperand();
+ MachineInstr *MI = MO.getParent();
+ ++RI;
+ if (MO.isUse() && MO.isUndef())
+ continue;
+ // DBG_VALUE instructions should have been eliminated earlier.
+ SlotIndex Idx = LIS.getInstructionIndex(MI);
+ Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
+ DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
+ << Idx << ':');
+ const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
+ assert(VNI && "Interval not live at use.");
+ MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
+ DEBUG(dbgs() << VNI->id << '\t' << *MI);
}
}
+void SplitEditor::finish() {
+ assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
-//===----------------------------------------------------------------------===//
-// Loop Splitting
-//===----------------------------------------------------------------------===//
+ // At this point, the live intervals in Edit contain VNInfos corresponding to
+ // the inserted copies.
-bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
- SplitAnalysis::LoopBlocks Blocks;
- sa_.getLoopBlocks(Loop, Blocks);
+ // Add the original defs from the parent interval.
+ for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
+ E = Edit.getParent().vni_end(); I != E; ++I) {
+ const VNInfo *ParentVNI = *I;
+ if (ParentVNI->isUnused())
+ continue;
+ LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)];
+ VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def);
+ LIM.getLI()->addRange(LiveRange(ParentVNI->def,
+ ParentVNI->def.getNextSlot(), VNI));
+ // Mark all values as complex to force liveness computation.
+ // This should really only be necessary for remat victims, but we are lazy.
+ LIM.markComplexMapped(ParentVNI);
+ }
- // Break critical edges as needed.
- SplitAnalysis::BlockPtrSet CriticalExits;
- sa_.getCriticalExits(Blocks, CriticalExits);
- assert(CriticalExits.empty() && "Cannot break critical exits yet");
+#ifndef NDEBUG
+ // Every new interval must have a def by now, otherwise the split is bogus.
+ for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
+ assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
+#endif
+
+ // FIXME: Don't recompute the liveness of all values, infer it from the
+ // overlaps between the parent live interval and RegAssign.
+ // The mapValue algorithm is only necessary when:
+ // - The parent value maps to multiple defs, and new phis are needed, or
+ // - The value has been rematerialized before some uses, and we want to
+ // minimize the live range so it only reaches the remaining uses.
+ // All other values have simple liveness that can be computed from RegAssign
+ // and the parent live interval.
+
+ // Extend live ranges to be live-out for successor PHI values.
+ for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
+ E = Edit.getParent().vni_end(); I != E; ++I) {
+ const VNInfo *PHIVNI = *I;
+ if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
+ continue;
+ unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
+ LiveIntervalMap &LIM = LIMappers[RegIdx];
+ MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
+ DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def
+ << " -> " << RegIdx << '\n');
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
+ DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End);
+ // The predecessor may not have a live-out value. That is OK, like an
+ // undef PHI operand.
+ if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) {
+ DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n");
+ assert(RegAssign.lookup(End) == RegIdx &&
+ "Different register assignment in phi predecessor");
+ LIM.mapValue(VNI, End);
+ }
+ else
+ DEBUG(dbgs() << " is not live-out\n");
+ }
+ DEBUG(dbgs() << " " << *LIM.getLI() << '\n');
+ }
- // Create new live interval for the loop.
- openIntv();
+ // Rewrite instructions.
+ rewriteAssigned();
- // Insert copies in the predecessors.
- for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
- E = Blocks.Preds.end(); I != E; ++I) {
- MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
- enterIntvAtEnd(MBB, *Loop->getHeader());
- }
+ // FIXME: Delete defs that were rematted everywhere.
- // Switch all loop blocks.
- for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
- E = Blocks.Loop.end(); I != E; ++I)
- useIntv(**I);
+ // Get rid of unused values and set phi-kill flags.
+ for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
+ (*I)->RenumberValues(LIS);
- // Insert back copies in the exit blocks.
- for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
- E = Blocks.Exits.end(); I != E; ++I) {
- MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
- leaveIntvAtTop(MBB);
+ // Now check if any registers were separated into multiple components.
+ ConnectedVNInfoEqClasses ConEQ(LIS);
+ for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
+ // Don't use iterators, they are invalidated by create() below.
+ LiveInterval *li = Edit.get(i);
+ unsigned NumComp = ConEQ.Classify(li);
+ if (NumComp <= 1)
+ continue;
+ DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
+ SmallVector<LiveInterval*, 8> dups;
+ dups.push_back(li);
+ for (unsigned i = 1; i != NumComp; ++i)
+ dups.push_back(&Edit.create(MRI, LIS, VRM));
+ rewriteComponents(dups, ConEQ);
+ ConEQ.Distribute(&dups[0]);
}
- // Done.
- closeIntv();
- rewrite();
- return dupli_;
+ // Calculate spill weight and allocation hints for new intervals.
+ VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops);
+ for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
+ LiveInterval &li = **I;
+ vrai.CalculateRegClass(li.reg);
+ vrai.CalculateWeightAndHint(li);
+ DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName()
+ << ":" << li << '\n');
+ }
}
@@ -979,45 +914,50 @@ bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
// Single Block Splitting
//===----------------------------------------------------------------------===//
-/// splitSingleBlocks - Split curli into a separate live interval inside each
-/// basic block in Blocks. Return true if curli has been completely replaced,
-/// false if curli is still intact, and needs to be spilled or split further.
-bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
- DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
- // Determine the first and last instruction using curli in each block.
- typedef std::pair<SlotIndex,SlotIndex> IndexPair;
- typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
- IndexPairMap MBBRange;
- for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
- E = sa_.usingInstrs_.end(); I != E; ++I) {
- const MachineBasicBlock *MBB = (*I)->getParent();
- if (!Blocks.count(MBB))
+/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
+/// may be an advantage to split CurLI for the duration of the block.
+bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
+ // If CurLI is local to one block, there is no point to splitting it.
+ if (LiveBlocks.size() <= 1)
+ return false;
+ // Add blocks with multiple uses.
+ for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
+ const BlockInfo &BI = LiveBlocks[i];
+ if (!BI.Uses)
continue;
- SlotIndex Idx = lis_.getInstructionIndex(*I);
- DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
- IndexPair &IP = MBBRange[MBB];
- if (!IP.first.isValid() || Idx < IP.first)
- IP.first = Idx;
- if (!IP.second.isValid() || Idx > IP.second)
- IP.second = Idx;
+ unsigned Instrs = UsingBlocks.lookup(BI.MBB);
+ if (Instrs <= 1)
+ continue;
+ if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough)
+ continue;
+ Blocks.insert(BI.MBB);
}
+ return !Blocks.empty();
+}
+
+/// splitSingleBlocks - Split CurLI into a separate live interval inside each
+/// basic block in Blocks.
+void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
+ DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
- // Create a new interval for each block.
- for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
- E = Blocks.end(); I != E; ++I) {
- IndexPair &IP = MBBRange[*I];
- DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": ["
- << IP.first << ';' << IP.second << ")\n");
- assert(IP.first.isValid() && IP.second.isValid());
+ for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) {
+ const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i];
+ if (!BI.Uses || !Blocks.count(BI.MBB))
+ continue;
openIntv();
- enterIntvBefore(IP.first);
- useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
- leaveIntvAfter(IP.second);
+ SlotIndex SegStart = enterIntvBefore(BI.FirstUse);
+ if (BI.LastUse < BI.LastSplitPoint) {
+ useIntv(SegStart, leaveIntvAfter(BI.LastUse));
+ } else {
+ // THe last use os after tha last valid split point.
+ SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint);
+ useIntv(SegStart, SegStop);
+ overlapIntv(SegStop, BI.LastUse);
+ }
closeIntv();
}
- rewrite();
- return dupli_;
+ finish();
}
@@ -1025,31 +965,29 @@ bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
// Sub Block Splitting
//===----------------------------------------------------------------------===//
-/// getBlockForInsideSplit - If curli is contained inside a single basic block,
+/// getBlockForInsideSplit - If CurLI is contained inside a single basic block,
/// and it wou pay to subdivide the interval inside that block, return it.
/// Otherwise return NULL. The returned block can be passed to
/// SplitEditor::splitInsideBlock.
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
// The interval must be exclusive to one block.
- if (usingBlocks_.size() != 1)
+ if (UsingBlocks.size() != 1)
return 0;
// Don't to this for less than 4 instructions. We want to be sure that
// splitting actually reduces the instruction count per interval.
- if (usingInstrs_.size() < 4)
+ if (UsingInstrs.size() < 4)
return 0;
- return usingBlocks_.begin()->first;
+ return UsingBlocks.begin()->first;
}
-/// splitInsideBlock - Split curli into multiple intervals inside MBB. Return
-/// true if curli has been completely replaced, false if curli is still
-/// intact, and needs to be spilled or split further.
-bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
+/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
+void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
SmallVector<SlotIndex, 32> Uses;
- Uses.reserve(sa_.usingInstrs_.size());
- for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
- E = sa_.usingInstrs_.end(); I != E; ++I)
+ Uses.reserve(SA.UsingInstrs.size());
+ for (SplitAnalysis::InstrPtrSet::const_iterator I = SA.UsingInstrs.begin(),
+ E = SA.UsingInstrs.end(); I != E; ++I)
if ((*I)->getParent() == MBB)
- Uses.push_back(lis_.getInstructionIndex(*I));
+ Uses.push_back(LIS.getInstructionIndex(*I));
DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
<< Uses.size() << " instructions.\n");
assert(Uses.size() >= 3 && "Need at least 3 instructions");
@@ -1077,21 +1015,16 @@ bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
// First interval before the gap. Don't create single-instr intervals.
if (bestPos > 1) {
openIntv();
- enterIntvBefore(Uses.front());
- useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
- leaveIntvAfter(Uses[bestPos-1]);
+ useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1]));
closeIntv();
}
// Second interval after the gap.
if (bestPos < Uses.size()-1) {
openIntv();
- enterIntvBefore(Uses[bestPos]);
- useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
- leaveIntvAfter(Uses.back());
+ useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back()));
closeIntv();
}
- rewrite();
- return dupli_;
+ finish();
}
OpenPOWER on IntegriCloud