summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SplitKit.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SplitKit.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SplitKit.cpp1386
1 files changed, 1386 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SplitKit.cpp b/contrib/llvm/lib/CodeGen/SplitKit.cpp
new file mode 100644
index 0000000..761cab7
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SplitKit.cpp
@@ -0,0 +1,1386 @@
+//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SplitAnalysis class as well as mutator functions for
+// live range splitting.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "SplitKit.h"
+#include "LiveRangeEdit.h"
+#include "VirtRegMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+
+using namespace llvm;
+
+STATISTIC(NumFinished, "Number of splits finished");
+STATISTIC(NumSimple, "Number of splits that were simple");
+STATISTIC(NumCopies, "Number of copies inserted for splitting");
+STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
+STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
+
+//===----------------------------------------------------------------------===//
+// Split Analysis
+//===----------------------------------------------------------------------===//
+
+SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
+ const LiveIntervals &lis,
+ const MachineLoopInfo &mli)
+ : MF(vrm.getMachineFunction()),
+ VRM(vrm),
+ LIS(lis),
+ Loops(mli),
+ TII(*MF.getTarget().getInstrInfo()),
+ CurLI(0),
+ LastSplitPoint(MF.getNumBlockIDs()) {}
+
+void SplitAnalysis::clear() {
+ UseSlots.clear();
+ UseBlocks.clear();
+ ThroughBlocks.clear();
+ CurLI = 0;
+ DidRepairRange = false;
+}
+
+SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
+ const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
+ const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
+ std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
+
+ // Compute split points on the first call. The pair is independent of the
+ // current live interval.
+ if (!LSP.first.isValid()) {
+ MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
+ if (FirstTerm == MBB->end())
+ LSP.first = LIS.getMBBEndIdx(MBB);
+ else
+ LSP.first = LIS.getInstructionIndex(FirstTerm);
+
+ // If there is a landing pad successor, also find the call instruction.
+ if (!LPad)
+ return LSP.first;
+ // There may not be a call instruction (?) in which case we ignore LPad.
+ LSP.second = LSP.first;
+ for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
+ I != E;) {
+ --I;
+ if (I->getDesc().isCall()) {
+ LSP.second = LIS.getInstructionIndex(I);
+ break;
+ }
+ }
+ }
+
+ // If CurLI is live into a landing pad successor, move the last split point
+ // back to the call that may throw.
+ if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
+ return LSP.second;
+ else
+ return LSP.first;
+}
+
+/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
+void SplitAnalysis::analyzeUses() {
+ assert(UseSlots.empty() && "Call clear first");
+
+ // First get all the defs from the interval values. This provides the correct
+ // slots for early clobbers.
+ for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
+ E = CurLI->vni_end(); I != E; ++I)
+ if (!(*I)->isPHIDef() && !(*I)->isUnused())
+ UseSlots.push_back((*I)->def);
+
+ // Get use slots form the use-def chain.
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ for (MachineRegisterInfo::use_nodbg_iterator
+ I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
+ ++I)
+ if (!I.getOperand().isUndef())
+ UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
+
+ array_pod_sort(UseSlots.begin(), UseSlots.end());
+
+ // Remove duplicates, keeping the smaller slot for each instruction.
+ // That is what we want for early clobbers.
+ UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
+ SlotIndex::isSameInstr),
+ UseSlots.end());
+
+ // Compute per-live block info.
+ if (!calcLiveBlockInfo()) {
+ // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
+ // I am looking at you, RegisterCoalescer!
+ DidRepairRange = true;
+ ++NumRepairs;
+ DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
+ const_cast<LiveIntervals&>(LIS)
+ .shrinkToUses(const_cast<LiveInterval*>(CurLI));
+ UseBlocks.clear();
+ ThroughBlocks.clear();
+ bool fixed = calcLiveBlockInfo();
+ (void)fixed;
+ assert(fixed && "Couldn't fix broken live interval");
+ }
+
+ DEBUG(dbgs() << "Analyze counted "
+ << UseSlots.size() << " instrs in "
+ << UseBlocks.size() << " blocks, through "
+ << NumThroughBlocks << " blocks.\n");
+}
+
+/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
+/// where CurLI is live.
+bool SplitAnalysis::calcLiveBlockInfo() {
+ ThroughBlocks.resize(MF.getNumBlockIDs());
+ NumThroughBlocks = NumGapBlocks = 0;
+ if (CurLI->empty())
+ return true;
+
+ LiveInterval::const_iterator LVI = CurLI->begin();
+ LiveInterval::const_iterator LVE = CurLI->end();
+
+ SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
+ UseI = UseSlots.begin();
+ UseE = UseSlots.end();
+
+ // Loop over basic blocks where CurLI is live.
+ MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
+ for (;;) {
+ BlockInfo BI;
+ BI.MBB = MFI;
+ SlotIndex Start, Stop;
+ tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ // If the block contains no uses, the range must be live through. At one
+ // point, RegisterCoalescer could create dangling ranges that ended
+ // mid-block.
+ if (UseI == UseE || *UseI >= Stop) {
+ ++NumThroughBlocks;
+ ThroughBlocks.set(BI.MBB->getNumber());
+ // The range shouldn't end mid-block if there are no uses. This shouldn't
+ // happen.
+ if (LVI->end < Stop)
+ return false;
+ } else {
+ // This block has uses. Find the first and last uses in the block.
+ BI.FirstUse = *UseI;
+ assert(BI.FirstUse >= Start);
+ do ++UseI;
+ while (UseI != UseE && *UseI < Stop);
+ BI.LastUse = UseI[-1];
+ assert(BI.LastUse < Stop);
+
+ // LVI is the first live segment overlapping MBB.
+ BI.LiveIn = LVI->start <= Start;
+
+ // Look for gaps in the live range.
+ BI.LiveOut = true;
+ while (LVI->end < Stop) {
+ SlotIndex LastStop = LVI->end;
+ if (++LVI == LVE || LVI->start >= Stop) {
+ BI.LiveOut = false;
+ BI.LastUse = LastStop;
+ break;
+ }
+ if (LastStop < LVI->start) {
+ // There is a gap in the live range. Create duplicate entries for the
+ // live-in snippet and the live-out snippet.
+ ++NumGapBlocks;
+
+ // Push the Live-in part.
+ BI.LiveThrough = false;
+ BI.LiveOut = false;
+ UseBlocks.push_back(BI);
+ UseBlocks.back().LastUse = LastStop;
+
+ // Set up BI for the live-out part.
+ BI.LiveIn = false;
+ BI.LiveOut = true;
+ BI.FirstUse = LVI->start;
+ }
+ }
+
+ // Don't set LiveThrough when the block has a gap.
+ BI.LiveThrough = BI.LiveIn && BI.LiveOut;
+ UseBlocks.push_back(BI);
+
+ // LVI is now at LVE or LVI->end >= Stop.
+ if (LVI == LVE)
+ break;
+ }
+
+ // Live segment ends exactly at Stop. Move to the next segment.
+ if (LVI->end == Stop && ++LVI == LVE)
+ break;
+
+ // Pick the next basic block.
+ if (LVI->start < Stop)
+ ++MFI;
+ else
+ MFI = LIS.getMBBFromIndex(LVI->start);
+ }
+
+ assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
+ return true;
+}
+
+unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
+ if (cli->empty())
+ return 0;
+ LiveInterval *li = const_cast<LiveInterval*>(cli);
+ LiveInterval::iterator LVI = li->begin();
+ LiveInterval::iterator LVE = li->end();
+ unsigned Count = 0;
+
+ // Loop over basic blocks where li is live.
+ MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
+ SlotIndex Stop = LIS.getMBBEndIdx(MFI);
+ for (;;) {
+ ++Count;
+ LVI = li->advanceTo(LVI, Stop);
+ if (LVI == LVE)
+ return Count;
+ do {
+ ++MFI;
+ Stop = LIS.getMBBEndIdx(MFI);
+ } while (Stop <= LVI->start);
+ }
+}
+
+bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
+ unsigned OrigReg = VRM.getOriginal(CurLI->reg);
+ const LiveInterval &Orig = LIS.getInterval(OrigReg);
+ assert(!Orig.empty() && "Splitting empty interval?");
+ LiveInterval::const_iterator I = Orig.find(Idx);
+
+ // Range containing Idx should begin at Idx.
+ if (I != Orig.end() && I->start <= Idx)
+ return I->start == Idx;
+
+ // Range does not contain Idx, previous must end at Idx.
+ return I != Orig.begin() && (--I)->end == Idx;
+}
+
+void SplitAnalysis::analyze(const LiveInterval *li) {
+ clear();
+ CurLI = li;
+ analyzeUses();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Split Editor
+//===----------------------------------------------------------------------===//
+
+/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
+SplitEditor::SplitEditor(SplitAnalysis &sa,
+ LiveIntervals &lis,
+ VirtRegMap &vrm,
+ MachineDominatorTree &mdt)
+ : SA(sa), LIS(lis), VRM(vrm),
+ MRI(vrm.getMachineFunction().getRegInfo()),
+ MDT(mdt),
+ TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
+ TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
+ Edit(0),
+ OpenIdx(0),
+ RegAssign(Allocator)
+{}
+
+void SplitEditor::reset(LiveRangeEdit &lre) {
+ Edit = &lre;
+ OpenIdx = 0;
+ RegAssign.clear();
+ Values.clear();
+
+ // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
+ LiveOutSeen.clear();
+
+ // We don't need an AliasAnalysis since we will only be performing
+ // cheap-as-a-copy remats anyway.
+ Edit->anyRematerializable(LIS, TII, 0);
+}
+
+void SplitEditor::dump() const {
+ if (RegAssign.empty()) {
+ dbgs() << " empty\n";
+ return;
+ }
+
+ for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
+ dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
+ dbgs() << '\n';
+}
+
+VNInfo *SplitEditor::defValue(unsigned RegIdx,
+ const VNInfo *ParentVNI,
+ SlotIndex Idx) {
+ assert(ParentVNI && "Mapping NULL value");
+ assert(Idx.isValid() && "Invalid SlotIndex");
+ assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
+ LiveInterval *LI = Edit->get(RegIdx);
+
+ // Create a new value.
+ VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
+
+ // Use insert for lookup, so we can add missing values with a second lookup.
+ std::pair<ValueMap::iterator, bool> InsP =
+ Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
+
+ // This was the first time (RegIdx, ParentVNI) was mapped.
+ // Keep it as a simple def without any liveness.
+ if (InsP.second)
+ return VNI;
+
+ // If the previous value was a simple mapping, add liveness for it now.
+ if (VNInfo *OldVNI = InsP.first->second) {
+ SlotIndex Def = OldVNI->def;
+ LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
+ // No longer a simple mapping.
+ InsP.first->second = 0;
+ }
+
+ // This is a complex mapping, add liveness for VNI
+ SlotIndex Def = VNI->def;
+ LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
+
+ return VNI;
+}
+
+void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
+ assert(ParentVNI && "Mapping NULL value");
+ VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
+
+ // ParentVNI was either unmapped or already complex mapped. Either way.
+ if (!VNI)
+ return;
+
+ // This was previously a single mapping. Make sure the old def is represented
+ // by a trivial live range.
+ SlotIndex Def = VNI->def;
+ Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
+ VNI = 0;
+}
+
+// extendRange - Extend the live range to reach Idx.
+// Potentially create phi-def values.
+void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
+ assert(Idx.isValid() && "Invalid SlotIndex");
+ MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
+ assert(IdxMBB && "No MBB at Idx");
+ LiveInterval *LI = Edit->get(RegIdx);
+
+ // Is there a def in the same MBB we can extend?
+ if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
+ return;
+
+ // Now for the fun part. We know that ParentVNI potentially has multiple defs,
+ // and we may need to create even more phi-defs to preserve VNInfo SSA form.
+ // Perform a search for all predecessor blocks where we know the dominating
+ // VNInfo.
+ VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
+
+ // When there were multiple different values, we may need new PHIs.
+ if (!VNI)
+ return updateSSA();
+
+ // Poor man's SSA update for the single-value case.
+ LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
+ for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
+ E = LiveInBlocks.end(); I != E; ++I) {
+ MachineBasicBlock *MBB = I->DomNode->getBlock();
+ SlotIndex Start = LIS.getMBBStartIdx(MBB);
+ if (I->Kill.isValid())
+ LI->addRange(LiveRange(Start, I->Kill, VNI));
+ else {
+ LiveOutCache[MBB] = LOP;
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
+ }
+ }
+}
+
+/// findReachingDefs - Search the CFG for known live-out values.
+/// Add required live-in blocks to LiveInBlocks.
+VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
+ MachineBasicBlock *KillMBB,
+ SlotIndex Kill) {
+ // Initialize the live-out cache the first time it is needed.
+ if (LiveOutSeen.empty()) {
+ unsigned N = VRM.getMachineFunction().getNumBlockIDs();
+ LiveOutSeen.resize(N);
+ LiveOutCache.resize(N);
+ }
+
+ // Blocks where LI should be live-in.
+ SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
+
+ // Remember if we have seen more than one value.
+ bool UniqueVNI = true;
+ VNInfo *TheVNI = 0;
+
+ // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
+ for (unsigned i = 0; i != WorkList.size(); ++i) {
+ MachineBasicBlock *MBB = WorkList[i];
+ assert(!MBB->pred_empty() && "Value live-in to entry block?");
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ MachineBasicBlock *Pred = *PI;
+ LiveOutPair &LOP = LiveOutCache[Pred];
+
+ // Is this a known live-out block?
+ if (LiveOutSeen.test(Pred->getNumber())) {
+ if (VNInfo *VNI = LOP.first) {
+ if (TheVNI && TheVNI != VNI)
+ UniqueVNI = false;
+ TheVNI = VNI;
+ }
+ continue;
+ }
+
+ // First time. LOP is garbage and must be cleared below.
+ LiveOutSeen.set(Pred->getNumber());
+
+ // Does Pred provide a live-out value?
+ SlotIndex Start, Last;
+ tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
+ Last = Last.getPrevSlot();
+ VNInfo *VNI = LI->extendInBlock(Start, Last);
+ LOP.first = VNI;
+ if (VNI) {
+ LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
+ if (TheVNI && TheVNI != VNI)
+ UniqueVNI = false;
+ TheVNI = VNI;
+ continue;
+ }
+ LOP.second = 0;
+
+ // No, we need a live-in value for Pred as well
+ if (Pred != KillMBB)
+ WorkList.push_back(Pred);
+ else
+ // Loopback to KillMBB, so value is really live through.
+ Kill = SlotIndex();
+ }
+ }
+
+ // Transfer WorkList to LiveInBlocks in reverse order.
+ // This ordering works best with updateSSA().
+ LiveInBlocks.clear();
+ LiveInBlocks.reserve(WorkList.size());
+ while(!WorkList.empty())
+ LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
+
+ // The kill block may not be live-through.
+ assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
+ LiveInBlocks.back().Kill = Kill;
+
+ return UniqueVNI ? TheVNI : 0;
+}
+
+void SplitEditor::updateSSA() {
+ // This is essentially the same iterative algorithm that SSAUpdater uses,
+ // except we already have a dominator tree, so we don't have to recompute it.
+ unsigned Changes;
+ do {
+ Changes = 0;
+ // Propagate live-out values down the dominator tree, inserting phi-defs
+ // when necessary.
+ for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
+ E = LiveInBlocks.end(); I != E; ++I) {
+ MachineDomTreeNode *Node = I->DomNode;
+ // Skip block if the live-in value has already been determined.
+ if (!Node)
+ continue;
+ MachineBasicBlock *MBB = Node->getBlock();
+ MachineDomTreeNode *IDom = Node->getIDom();
+ LiveOutPair IDomValue;
+
+ // We need a live-in value to a block with no immediate dominator?
+ // This is probably an unreachable block that has survived somehow.
+ bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
+
+ // IDom dominates all of our predecessors, but it may not be their
+ // immediate dominator. Check if any of them have live-out values that are
+ // properly dominated by IDom. If so, we need a phi-def here.
+ if (!needPHI) {
+ IDomValue = LiveOutCache[IDom->getBlock()];
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ LiveOutPair Value = LiveOutCache[*PI];
+ if (!Value.first || Value.first == IDomValue.first)
+ continue;
+ // This predecessor is carrying something other than IDomValue.
+ // It could be because IDomValue hasn't propagated yet, or it could be
+ // because MBB is in the dominance frontier of that value.
+ if (MDT.dominates(IDom, Value.second)) {
+ needPHI = true;
+ break;
+ }
+ }
+ }
+
+ // The value may be live-through even if Kill is set, as can happen when
+ // we are called from extendRange. In that case LiveOutSeen is true, and
+ // LiveOutCache indicates a foreign or missing value.
+ LiveOutPair &LOP = LiveOutCache[MBB];
+
+ // Create a phi-def if required.
+ if (needPHI) {
+ ++Changes;
+ SlotIndex Start = LIS.getMBBStartIdx(MBB);
+ unsigned RegIdx = RegAssign.lookup(Start);
+ LiveInterval *LI = Edit->get(RegIdx);
+ VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
+ VNI->setIsPHIDef(true);
+ I->Value = VNI;
+ // This block is done, we know the final value.
+ I->DomNode = 0;
+ if (I->Kill.isValid())
+ LI->addRange(LiveRange(Start, I->Kill, VNI));
+ else {
+ LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
+ LOP = LiveOutPair(VNI, Node);
+ }
+ } else if (IDomValue.first) {
+ // No phi-def here. Remember incoming value.
+ I->Value = IDomValue.first;
+ if (I->Kill.isValid())
+ continue;
+ // Propagate IDomValue if needed:
+ // MBB is live-out and doesn't define its own value.
+ if (LOP.second != Node && LOP.first != IDomValue.first) {
+ ++Changes;
+ LOP = IDomValue;
+ }
+ }
+ }
+ } while (Changes);
+
+ // The values in LiveInBlocks are now accurate. No more phi-defs are needed
+ // for these blocks, so we can color the live ranges.
+ for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
+ E = LiveInBlocks.end(); I != E; ++I) {
+ if (!I->DomNode)
+ continue;
+ assert(I->Value && "No live-in value found");
+ MachineBasicBlock *MBB = I->DomNode->getBlock();
+ SlotIndex Start = LIS.getMBBStartIdx(MBB);
+ unsigned RegIdx = RegAssign.lookup(Start);
+ LiveInterval *LI = Edit->get(RegIdx);
+ LI->addRange(LiveRange(Start, I->Kill.isValid() ?
+ I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
+ }
+}
+
+VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
+ VNInfo *ParentVNI,
+ SlotIndex UseIdx,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ MachineInstr *CopyMI = 0;
+ SlotIndex Def;
+ LiveInterval *LI = Edit->get(RegIdx);
+
+ // We may be trying to avoid interference that ends at a deleted instruction,
+ // so always begin RegIdx 0 early and all others late.
+ bool Late = RegIdx != 0;
+
+ // Attempt cheap-as-a-copy rematerialization.
+ LiveRangeEdit::Remat RM(ParentVNI);
+ if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
+ Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
+ ++NumRemats;
+ } else {
+ // Can't remat, just insert a copy from parent.
+ CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
+ .addReg(Edit->getReg());
+ Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
+ .getDefIndex();
+ ++NumCopies;
+ }
+
+ // Define the value in Reg.
+ VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
+ VNI->setCopy(CopyMI);
+ return VNI;
+}
+
+/// Create a new virtual register and live interval.
+unsigned SplitEditor::openIntv() {
+ // Create the complement as index 0.
+ if (Edit->empty())
+ Edit->create(LIS, VRM);
+
+ // Create the open interval.
+ OpenIdx = Edit->size();
+ Edit->create(LIS, VRM);
+ return OpenIdx;
+}
+
+void SplitEditor::selectIntv(unsigned Idx) {
+ assert(Idx != 0 && "Cannot select the complement interval");
+ assert(Idx < Edit->size() && "Can only select previously opened interval");
+ DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
+ OpenIdx = Idx;
+}
+
+SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before enterIntvBefore");
+ DEBUG(dbgs() << " enterIntvBefore " << Idx);
+ Idx = Idx.getBaseIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "enterIntvBefore called with invalid index");
+
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before enterIntvAfter");
+ DEBUG(dbgs() << " enterIntvAfter " << Idx);
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "enterIntvAfter called with invalid index");
+
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
+ llvm::next(MachineBasicBlock::iterator(MI)));
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
+ SlotIndex End = LIS.getMBBEndIdx(&MBB);
+ SlotIndex Last = End.getPrevSlot();
+ DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return End;
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id);
+ VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
+ LIS.getLastSplitPoint(Edit->getParent(), &MBB));
+ RegAssign.insert(VNI->def, End, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
+}
+
+/// useIntv - indicate that all instructions in MBB should use OpenLI.
+void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
+ useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
+}
+
+void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
+ assert(OpenIdx && "openIntv not called before useIntv");
+ DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
+}
+
+SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAfter");
+ DEBUG(dbgs() << " leaveIntvAfter " << Idx);
+
+ // The interval must be live beyond the instruction at Idx.
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx.getNextSlot();
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "No instruction at index");
+ VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
+ llvm::next(MachineBasicBlock::iterator(MI)));
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
+ assert(OpenIdx && "openIntv not called before leaveIntvBefore");
+ DEBUG(dbgs() << " leaveIntvBefore " << Idx);
+
+ // The interval must be live into the instruction at Idx.
+ Idx = Idx.getBoundaryIndex();
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Idx.getNextSlot();
+ }
+ DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
+
+ MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
+ assert(MI && "No instruction at index");
+ VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
+ return VNI->def;
+}
+
+SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
+ assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
+ SlotIndex Start = LIS.getMBBStartIdx(&MBB);
+ DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
+
+ VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
+ if (!ParentVNI) {
+ DEBUG(dbgs() << ": not live\n");
+ return Start;
+ }
+
+ VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
+ MBB.SkipPHIsAndLabels(MBB.begin()));
+ RegAssign.insert(Start, VNI->def, OpenIdx);
+ DEBUG(dump());
+ return VNI->def;
+}
+
+void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
+ assert(OpenIdx && "openIntv not called before overlapIntv");
+ const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
+ assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
+ "Parent changes value in extended range");
+ assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
+ "Range cannot span basic blocks");
+
+ // The complement interval will be extended as needed by extendRange().
+ if (ParentVNI)
+ markComplexMapped(0, ParentVNI);
+ DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
+ RegAssign.insert(Start, End, OpenIdx);
+ DEBUG(dump());
+}
+
+/// transferValues - Transfer all possible values to the new live ranges.
+/// Values that were rematerialized are left alone, they need extendRange().
+bool SplitEditor::transferValues() {
+ bool Skipped = false;
+ LiveInBlocks.clear();
+ RegAssignMap::const_iterator AssignI = RegAssign.begin();
+ for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
+ ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
+ DEBUG(dbgs() << " blit " << *ParentI << ':');
+ VNInfo *ParentVNI = ParentI->valno;
+ // RegAssign has holes where RegIdx 0 should be used.
+ SlotIndex Start = ParentI->start;
+ AssignI.advanceTo(Start);
+ do {
+ unsigned RegIdx;
+ SlotIndex End = ParentI->end;
+ if (!AssignI.valid()) {
+ RegIdx = 0;
+ } else if (AssignI.start() <= Start) {
+ RegIdx = AssignI.value();
+ if (AssignI.stop() < End) {
+ End = AssignI.stop();
+ ++AssignI;
+ }
+ } else {
+ RegIdx = 0;
+ End = std::min(End, AssignI.start());
+ }
+
+ // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
+ DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
+ LiveInterval *LI = Edit->get(RegIdx);
+
+ // Check for a simply defined value that can be blitted directly.
+ if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
+ DEBUG(dbgs() << ':' << VNI->id);
+ LI->addRange(LiveRange(Start, End, VNI));
+ Start = End;
+ continue;
+ }
+
+ // Skip rematerialized values, we need to use extendRange() and
+ // extendPHIKillRanges() to completely recompute the live ranges.
+ if (Edit->didRematerialize(ParentVNI)) {
+ DEBUG(dbgs() << "(remat)");
+ Skipped = true;
+ Start = End;
+ continue;
+ }
+
+ // Initialize the live-out cache the first time it is needed.
+ if (LiveOutSeen.empty()) {
+ unsigned N = VRM.getMachineFunction().getNumBlockIDs();
+ LiveOutSeen.resize(N);
+ LiveOutCache.resize(N);
+ }
+
+ // This value has multiple defs in RegIdx, but it wasn't rematerialized,
+ // so the live range is accurate. Add live-in blocks in [Start;End) to the
+ // LiveInBlocks.
+ MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
+ SlotIndex BlockStart, BlockEnd;
+ tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
+
+ // The first block may be live-in, or it may have its own def.
+ if (Start != BlockStart) {
+ VNInfo *VNI = LI->extendInBlock(BlockStart,
+ std::min(BlockEnd, End).getPrevSlot());
+ assert(VNI && "Missing def for complex mapped value");
+ DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
+ // MBB has its own def. Is it also live-out?
+ if (BlockEnd <= End) {
+ LiveOutSeen.set(MBB->getNumber());
+ LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
+ }
+ // Skip to the next block for live-in.
+ ++MBB;
+ BlockStart = BlockEnd;
+ }
+
+ // Handle the live-in blocks covered by [Start;End).
+ assert(Start <= BlockStart && "Expected live-in block");
+ while (BlockStart < End) {
+ DEBUG(dbgs() << ">BB#" << MBB->getNumber());
+ BlockEnd = LIS.getMBBEndIdx(MBB);
+ if (BlockStart == ParentVNI->def) {
+ // This block has the def of a parent PHI, so it isn't live-in.
+ assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
+ VNInfo *VNI = LI->extendInBlock(BlockStart,
+ std::min(BlockEnd, End).getPrevSlot());
+ assert(VNI && "Missing def for complex mapped parent PHI");
+ if (End >= BlockEnd) {
+ // Live-out as well.
+ LiveOutSeen.set(MBB->getNumber());
+ LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
+ }
+ } else {
+ // This block needs a live-in value.
+ LiveInBlocks.push_back(MDT[MBB]);
+ // The last block covered may not be live-out.
+ if (End < BlockEnd)
+ LiveInBlocks.back().Kill = End;
+ else {
+ // Live-out, but we need updateSSA to tell us the value.
+ LiveOutSeen.set(MBB->getNumber());
+ LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
+ (MachineDomTreeNode*)0);
+ }
+ }
+ BlockStart = BlockEnd;
+ ++MBB;
+ }
+ Start = End;
+ } while (Start != ParentI->end);
+ DEBUG(dbgs() << '\n');
+ }
+
+ if (!LiveInBlocks.empty())
+ updateSSA();
+
+ return Skipped;
+}
+
+void SplitEditor::extendPHIKillRanges() {
+ // Extend live ranges to be live-out for successor PHI values.
+ for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
+ E = Edit->getParent().vni_end(); I != E; ++I) {
+ const VNInfo *PHIVNI = *I;
+ if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
+ continue;
+ unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
+ MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
+ // The predecessor may not have a live-out value. That is OK, like an
+ // undef PHI operand.
+ if (Edit->getParent().liveAt(End)) {
+ assert(RegAssign.lookup(End) == RegIdx &&
+ "Different register assignment in phi predecessor");
+ extendRange(RegIdx, End);
+ }
+ }
+ }
+}
+
+/// rewriteAssigned - Rewrite all uses of Edit->getReg().
+void SplitEditor::rewriteAssigned(bool ExtendRanges) {
+ for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
+ RE = MRI.reg_end(); RI != RE;) {
+ MachineOperand &MO = RI.getOperand();
+ MachineInstr *MI = MO.getParent();
+ ++RI;
+ // LiveDebugVariables should have handled all DBG_VALUE instructions.
+ if (MI->isDebugValue()) {
+ DEBUG(dbgs() << "Zapping " << *MI);
+ MO.setReg(0);
+ continue;
+ }
+
+ // <undef> operands don't really read the register, so just assign them to
+ // the complement.
+ if (MO.isUse() && MO.isUndef()) {
+ MO.setReg(Edit->get(0)->reg);
+ continue;
+ }
+
+ SlotIndex Idx = LIS.getInstructionIndex(MI);
+ if (MO.isDef())
+ Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
+
+ // Rewrite to the mapped register at Idx.
+ unsigned RegIdx = RegAssign.lookup(Idx);
+ MO.setReg(Edit->get(RegIdx)->reg);
+ DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
+ << Idx << ':' << RegIdx << '\t' << *MI);
+
+ // Extend liveness to Idx if the instruction reads reg.
+ if (!ExtendRanges)
+ continue;
+
+ // Skip instructions that don't read Reg.
+ if (MO.isDef()) {
+ if (!MO.getSubReg() && !MO.isEarlyClobber())
+ continue;
+ // We may wan't to extend a live range for a partial redef, or for a use
+ // tied to an early clobber.
+ Idx = Idx.getPrevSlot();
+ if (!Edit->getParent().liveAt(Idx))
+ continue;
+ } else
+ Idx = Idx.getUseIndex();
+
+ extendRange(RegIdx, Idx);
+ }
+}
+
+void SplitEditor::deleteRematVictims() {
+ SmallVector<MachineInstr*, 8> Dead;
+ for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
+ LiveInterval *LI = *I;
+ for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
+ LII != LIE; ++LII) {
+ // Dead defs end at the store slot.
+ if (LII->end != LII->valno->def.getNextSlot())
+ continue;
+ MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
+ assert(MI && "Missing instruction for dead def");
+ MI->addRegisterDead(LI->reg, &TRI);
+
+ if (!MI->allDefsAreDead())
+ continue;
+
+ DEBUG(dbgs() << "All defs dead: " << *MI);
+ Dead.push_back(MI);
+ }
+ }
+
+ if (Dead.empty())
+ return;
+
+ Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
+}
+
+void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
+ ++NumFinished;
+
+ // At this point, the live intervals in Edit contain VNInfos corresponding to
+ // the inserted copies.
+
+ // Add the original defs from the parent interval.
+ for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
+ E = Edit->getParent().vni_end(); I != E; ++I) {
+ const VNInfo *ParentVNI = *I;
+ if (ParentVNI->isUnused())
+ continue;
+ unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
+ VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
+ VNI->setIsPHIDef(ParentVNI->isPHIDef());
+ VNI->setCopy(ParentVNI->getCopy());
+
+ // Mark rematted values as complex everywhere to force liveness computation.
+ // The new live ranges may be truncated.
+ if (Edit->didRematerialize(ParentVNI))
+ for (unsigned i = 0, e = Edit->size(); i != e; ++i)
+ markComplexMapped(i, ParentVNI);
+ }
+
+ // Transfer the simply mapped values, check if any are skipped.
+ bool Skipped = transferValues();
+ if (Skipped)
+ extendPHIKillRanges();
+ else
+ ++NumSimple;
+
+ // Rewrite virtual registers, possibly extending ranges.
+ rewriteAssigned(Skipped);
+
+ // Delete defs that were rematted everywhere.
+ if (Skipped)
+ deleteRematVictims();
+
+ // Get rid of unused values and set phi-kill flags.
+ for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
+ (*I)->RenumberValues(LIS);
+
+ // Provide a reverse mapping from original indices to Edit ranges.
+ if (LRMap) {
+ LRMap->clear();
+ for (unsigned i = 0, e = Edit->size(); i != e; ++i)
+ LRMap->push_back(i);
+ }
+
+ // Now check if any registers were separated into multiple components.
+ ConnectedVNInfoEqClasses ConEQ(LIS);
+ for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
+ // Don't use iterators, they are invalidated by create() below.
+ LiveInterval *li = Edit->get(i);
+ unsigned NumComp = ConEQ.Classify(li);
+ if (NumComp <= 1)
+ continue;
+ DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
+ SmallVector<LiveInterval*, 8> dups;
+ dups.push_back(li);
+ for (unsigned j = 1; j != NumComp; ++j)
+ dups.push_back(&Edit->create(LIS, VRM));
+ ConEQ.Distribute(&dups[0], MRI);
+ // The new intervals all map back to i.
+ if (LRMap)
+ LRMap->resize(Edit->size(), i);
+ }
+
+ // Calculate spill weight and allocation hints for new intervals.
+ Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
+
+ assert(!LRMap || LRMap->size() == Edit->size());
+}
+
+
+//===----------------------------------------------------------------------===//
+// Single Block Splitting
+//===----------------------------------------------------------------------===//
+
+/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
+/// may be an advantage to split CurLI for the duration of the block.
+bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
+ // If CurLI is local to one block, there is no point to splitting it.
+ if (UseBlocks.size() <= 1)
+ return false;
+ // Add blocks with multiple uses.
+ for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
+ const BlockInfo &BI = UseBlocks[i];
+ if (BI.FirstUse == BI.LastUse)
+ continue;
+ Blocks.insert(BI.MBB);
+ }
+ return !Blocks.empty();
+}
+
+void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
+ openIntv();
+ SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
+ SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
+ LastSplitPoint));
+ if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
+ useIntv(SegStart, leaveIntvAfter(BI.LastUse));
+ } else {
+ // The last use is after the last valid split point.
+ SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
+ useIntv(SegStart, SegStop);
+ overlapIntv(SegStop, BI.LastUse);
+ }
+}
+
+/// splitSingleBlocks - Split CurLI into a separate live interval inside each
+/// basic block in Blocks.
+void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
+ DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
+ ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
+ for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+ const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+ if (Blocks.count(BI.MBB))
+ splitSingleBlock(BI);
+ }
+ finish();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Global Live Range Splitting Support
+//===----------------------------------------------------------------------===//
+
+// These methods support a method of global live range splitting that uses a
+// global algorithm to decide intervals for CFG edges. They will insert split
+// points and color intervals in basic blocks while avoiding interference.
+//
+// Note that splitSingleBlock is also useful for blocks where both CFG edges
+// are on the stack.
+
+void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
+ unsigned IntvIn, SlotIndex LeaveBefore,
+ unsigned IntvOut, SlotIndex EnterAfter){
+ SlotIndex Start, Stop;
+ tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
+
+ DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
+ << ") intf " << LeaveBefore << '-' << EnterAfter
+ << ", live-through " << IntvIn << " -> " << IntvOut);
+
+ assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
+
+ if (!IntvOut) {
+ DEBUG(dbgs() << ", spill on entry.\n");
+ //
+ // <<<<<<<<< Possible LeaveBefore interference.
+ // |-----------| Live through.
+ // -____________ Spill on entry.
+ //
+ selectIntv(IntvIn);
+ MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
+ SlotIndex Idx = leaveIntvAtTop(*MBB);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ (void)Idx;
+ return;
+ }
+
+ if (!IntvIn) {
+ DEBUG(dbgs() << ", reload on exit.\n");
+ //
+ // >>>>>>> Possible EnterAfter interference.
+ // |-----------| Live through.
+ // ___________-- Reload on exit.
+ //
+ selectIntv(IntvOut);
+ MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
+ SlotIndex Idx = enterIntvAtEnd(*MBB);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+ (void)Idx;
+ return;
+ }
+
+ if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
+ DEBUG(dbgs() << ", straight through.\n");
+ //
+ // |-----------| Live through.
+ // ------------- Straight through, same intv, no interference.
+ //
+ selectIntv(IntvOut);
+ useIntv(Start, Stop);
+ return;
+ }
+
+ // We cannot legally insert splits after LSP.
+ SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
+
+ if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
+ LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
+ DEBUG(dbgs() << ", switch avoiding interference.\n");
+ //
+ // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
+ // |-----------| Live through.
+ // ------======= Switch intervals between interference.
+ //
+ SlotIndex Cut = (LeaveBefore && LeaveBefore < LSP) ? LeaveBefore : LSP;
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvBefore(Cut);
+ useIntv(Idx, Stop);
+ selectIntv(IntvIn);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+ return;
+ }
+
+ DEBUG(dbgs() << ", create local intv for interference.\n");
+ //
+ // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
+ // |-----------| Live through.
+ // ==---------== Switch intervals before/after interference.
+ //
+ assert(LeaveBefore <= EnterAfter && "Missed case");
+
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvAfter(EnterAfter);
+ useIntv(Idx, Stop);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+
+ selectIntv(IntvIn);
+ Idx = leaveIntvBefore(LeaveBefore);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+}
+
+
+void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
+ unsigned IntvIn, SlotIndex LeaveBefore) {
+ SlotIndex Start, Stop;
+ tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
+ << "), uses " << BI.FirstUse << '-' << BI.LastUse
+ << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
+ << (BI.LiveOut ? ", stack-out" : ", killed in block"));
+
+ assert(IntvIn && "Must have register in");
+ assert(BI.LiveIn && "Must be live-in");
+ assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
+
+ if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastUse)) {
+ DEBUG(dbgs() << " before interference.\n");
+ //
+ // <<< Interference after kill.
+ // |---o---x | Killed in block.
+ // ========= Use IntvIn everywhere.
+ //
+ selectIntv(IntvIn);
+ useIntv(Start, BI.LastUse);
+ return;
+ }
+
+ SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
+
+ if (!LeaveBefore || LeaveBefore > BI.LastUse.getBoundaryIndex()) {
+ //
+ // <<< Possible interference after last use.
+ // |---o---o---| Live-out on stack.
+ // =========____ Leave IntvIn after last use.
+ //
+ // < Interference after last use.
+ // |---o---o--o| Live-out on stack, late last use.
+ // ============ Copy to stack after LSP, overlap IntvIn.
+ // \_____ Stack interval is live-out.
+ //
+ if (BI.LastUse < LSP) {
+ DEBUG(dbgs() << ", spill after last use before interference.\n");
+ selectIntv(IntvIn);
+ SlotIndex Idx = leaveIntvAfter(BI.LastUse);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ } else {
+ DEBUG(dbgs() << ", spill before last split point.\n");
+ selectIntv(IntvIn);
+ SlotIndex Idx = leaveIntvBefore(LSP);
+ overlapIntv(Idx, BI.LastUse);
+ useIntv(Start, Idx);
+ assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
+ }
+ return;
+ }
+
+ // The interference is overlapping somewhere we wanted to use IntvIn. That
+ // means we need to create a local interval that can be allocated a
+ // different register.
+ unsigned LocalIntv = openIntv();
+ (void)LocalIntv;
+ DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
+
+ if (!BI.LiveOut || BI.LastUse < LSP) {
+ //
+ // <<<<<<< Interference overlapping uses.
+ // |---o---o---| Live-out on stack.
+ // =====----____ Leave IntvIn before interference, then spill.
+ //
+ SlotIndex To = leaveIntvAfter(BI.LastUse);
+ SlotIndex From = enterIntvBefore(LeaveBefore);
+ useIntv(From, To);
+ selectIntv(IntvIn);
+ useIntv(Start, From);
+ assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
+ return;
+ }
+
+ // <<<<<<< Interference overlapping uses.
+ // |---o---o--o| Live-out on stack, late last use.
+ // =====------- Copy to stack before LSP, overlap LocalIntv.
+ // \_____ Stack interval is live-out.
+ //
+ SlotIndex To = leaveIntvBefore(LSP);
+ overlapIntv(To, BI.LastUse);
+ SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
+ useIntv(From, To);
+ selectIntv(IntvIn);
+ useIntv(Start, From);
+ assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
+}
+
+void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
+ unsigned IntvOut, SlotIndex EnterAfter) {
+ SlotIndex Start, Stop;
+ tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
+
+ DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
+ << "), uses " << BI.FirstUse << '-' << BI.LastUse
+ << ", reg-out " << IntvOut << ", enter after " << EnterAfter
+ << (BI.LiveIn ? ", stack-in" : ", defined in block"));
+
+ SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
+
+ assert(IntvOut && "Must have register out");
+ assert(BI.LiveOut && "Must be live-out");
+ assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
+
+ if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstUse)) {
+ DEBUG(dbgs() << " after interference.\n");
+ //
+ // >>>> Interference before def.
+ // | o---o---| Defined in block.
+ // ========= Use IntvOut everywhere.
+ //
+ selectIntv(IntvOut);
+ useIntv(BI.FirstUse, Stop);
+ return;
+ }
+
+ if (!EnterAfter || EnterAfter < BI.FirstUse.getBaseIndex()) {
+ DEBUG(dbgs() << ", reload after interference.\n");
+ //
+ // >>>> Interference before def.
+ // |---o---o---| Live-through, stack-in.
+ // ____========= Enter IntvOut before first use.
+ //
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstUse));
+ useIntv(Idx, Stop);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+ return;
+ }
+
+ // The interference is overlapping somewhere we wanted to use IntvOut. That
+ // means we need to create a local interval that can be allocated a
+ // different register.
+ DEBUG(dbgs() << ", interference overlaps uses.\n");
+ //
+ // >>>>>>> Interference overlapping uses.
+ // |---o---o---| Live-through, stack-in.
+ // ____---====== Create local interval for interference range.
+ //
+ selectIntv(IntvOut);
+ SlotIndex Idx = enterIntvAfter(EnterAfter);
+ useIntv(Idx, Stop);
+ assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
+
+ openIntv();
+ SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstUse));
+ useIntv(From, Idx);
+}
OpenPOWER on IntegriCloud