summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp1891
1 files changed, 1891 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp b/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp
new file mode 100644
index 0000000..e69d3e4
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp
@@ -0,0 +1,1891 @@
+//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a simple register coalescing pass that attempts to
+// aggressively coalesce every register copy that it can.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regcoalescing"
+#include "SimpleRegisterCoalescing.h"
+#include "VirtRegMap.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterCoalescer.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(numJoins , "Number of interval joins performed");
+STATISTIC(numCrossRCs , "Number of cross class joins performed");
+STATISTIC(numCommutes , "Number of instruction commuting performed");
+STATISTIC(numExtends , "Number of copies extended");
+STATISTIC(NumReMats , "Number of instructions re-materialized");
+STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
+STATISTIC(numAborts , "Number of times interval joining aborted");
+STATISTIC(numDeadValNo, "Number of valno def marked dead");
+
+char SimpleRegisterCoalescing::ID = 0;
+static cl::opt<bool>
+EnableJoining("join-liveintervals",
+ cl::desc("Coalesce copies (default=true)"),
+ cl::init(true));
+
+static cl::opt<bool>
+DisableCrossClassJoin("disable-cross-class-join",
+ cl::desc("Avoid coalescing cross register class copies"),
+ cl::init(false), cl::Hidden);
+
+static RegisterPass<SimpleRegisterCoalescing>
+X("simple-register-coalescing", "Simple Register Coalescing");
+
+// Declare that we implement the RegisterCoalescer interface
+static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
+
+const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
+
+void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreservedID(MachineDominatorsID);
+ if (StrongPHIElim)
+ AU.addPreservedID(StrongPHIEliminationID);
+ else
+ AU.addPreservedID(PHIEliminationID);
+ AU.addPreservedID(TwoAddressInstructionPassID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
+/// being the source and IntB being the dest, thus this defines a value number
+/// in IntB. If the source value number (in IntA) is defined by a copy from B,
+/// see if we can merge these two pieces of B into a single value number,
+/// eliminating a copy. For example:
+///
+/// A3 = B0
+/// ...
+/// B1 = A3 <- this copy
+///
+/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
+/// value number to be replaced with B0 (which simplifies the B liveinterval).
+///
+/// This returns true if an interval was modified.
+///
+bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ // Bail if there is no dst interval - can happen when merging physical subreg
+ // operations.
+ if (!li_->hasInterval(CP.getDstReg()))
+ return false;
+
+ LiveInterval &IntA =
+ li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
+ if (BLR == IntB.end()) return false;
+ VNInfo *BValNo = BLR->valno;
+
+ // Get the location that B is defined at. Two options: either this value has
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // can't process it.
+ if (!BValNo->getCopy()) return false;
+ assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
+ LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
+ // The live range might not exist after fun with physreg coalescing.
+ if (ALR == IntA.end()) return false;
+ VNInfo *AValNo = ALR->valno;
+ // If it's re-defined by an early clobber somewhere in the live range, then
+ // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
+ // See PR3149:
+ // 172 %ECX<def> = MOV32rr %reg1039<kill>
+ // 180 INLINEASM <es:subl $5,$1
+ // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
+ // %EAX<kill>,
+ // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
+ // 188 %EAX<def> = MOV32rr %EAX<kill>
+ // 196 %ECX<def> = MOV32rr %ECX<kill>
+ // 204 %ECX<def> = MOV32rr %ECX<kill>
+ // 212 %EAX<def> = MOV32rr %EAX<kill>
+ // 220 %EAX<def> = MOV32rr %EAX
+ // 228 %reg1039<def> = MOV32rr %ECX<kill>
+ // The early clobber operand ties ECX input to the ECX def.
+ //
+ // The live interval of ECX is represented as this:
+ // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
+ // The coalescer has no idea there was a def in the middle of [174,230].
+ if (AValNo->hasRedefByEC())
+ return false;
+
+ // If AValNo is defined as a copy from IntB, we can potentially process this.
+ // Get the instruction that defines this value number.
+ if (!CP.isCoalescable(AValNo->getCopy()))
+ return false;
+
+ // Get the LiveRange in IntB that this value number starts with.
+ LiveInterval::iterator ValLR =
+ IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
+ if (ValLR == IntB.end())
+ return false;
+
+ // Make sure that the end of the live range is inside the same block as
+ // CopyMI.
+ MachineInstr *ValLREndInst =
+ li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
+ if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
+ return false;
+
+ // Okay, we now know that ValLR ends in the same block that the CopyMI
+ // live-range starts. If there are no intervening live ranges between them in
+ // IntB, we can merge them.
+ if (ValLR+1 != BLR) return false;
+
+ // If a live interval is a physical register, conservatively check if any
+ // of its sub-registers is overlapping the live interval of the virtual
+ // register. If so, do not coalesce.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
+ *tri_->getSubRegisters(IntB.reg)) {
+ for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
+ if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
+ });
+ return false;
+ }
+ }
+
+ DEBUG({
+ dbgs() << "Extending: ";
+ IntB.print(dbgs(), tri_);
+ });
+
+ SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
+ // We are about to delete CopyMI, so need to remove it as the 'instruction
+ // that defines this value #'. Update the valnum with the new defining
+ // instruction #.
+ BValNo->def = FillerStart;
+ BValNo->setCopy(0);
+
+ // Okay, we can merge them. We need to insert a new liverange:
+ // [ValLR.end, BLR.begin) of either value number, then we merge the
+ // two value numbers.
+ IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
+
+ // If the IntB live range is assigned to a physical register, and if that
+ // physreg has sub-registers, update their live intervals as well.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &SRLI = li_->getInterval(*SR);
+ SRLI.addRange(LiveRange(FillerStart, FillerEnd,
+ SRLI.getNextValue(FillerStart, 0, true,
+ li_->getVNInfoAllocator())));
+ }
+ }
+
+ // Okay, merge "B1" into the same value number as "B0".
+ if (BValNo != ValLR->valno) {
+ IntB.MergeValueNumberInto(BValNo, ValLR->valno);
+ }
+ DEBUG({
+ dbgs() << " result = ";
+ IntB.print(dbgs(), tri_);
+ dbgs() << "\n";
+ });
+
+ // If the source instruction was killing the source register before the
+ // merge, unset the isKill marker given the live range has been extended.
+ int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
+ if (UIdx != -1) {
+ ValLREndInst->getOperand(UIdx).setIsKill(false);
+ }
+
+ // If the copy instruction was killing the destination register before the
+ // merge, find the last use and trim the live range. That will also add the
+ // isKill marker.
+ if (ALR->end == CopyIdx)
+ TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
+
+ ++numExtends;
+ return true;
+}
+
+/// HasOtherReachingDefs - Return true if there are definitions of IntB
+/// other than BValNo val# that can reach uses of AValno val# of IntA.
+bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
+ LiveInterval &IntB,
+ VNInfo *AValNo,
+ VNInfo *BValNo) {
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ LiveInterval::Ranges::iterator BI =
+ std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
+ if (BI != IntB.ranges.begin())
+ --BI;
+ for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
+ if (BI->valno == BValNo)
+ continue;
+ // When BValNo is null, we're looking for a dummy clobber-value for a subreg.
+ if (!BValNo && !BI->valno->isDefAccurate() && !BI->valno->getCopy())
+ continue;
+ if (BI->start <= AI->start && BI->end > AI->start)
+ return true;
+ if (BI->start > AI->start && BI->start < AI->end)
+ return true;
+ }
+ }
+ return false;
+}
+
+static void
+TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) {
+ for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
+ i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit())
+ NewMI->addOperand(MO);
+ }
+}
+
+/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
+/// IntA being the source and IntB being the dest, thus this defines a value
+/// number in IntB. If the source value number (in IntA) is defined by a
+/// commutable instruction and its other operand is coalesced to the copy dest
+/// register, see if we can transform the copy into a noop by commuting the
+/// definition. For example,
+///
+/// A3 = op A2 B0<kill>
+/// ...
+/// B1 = A3 <- this copy
+/// ...
+/// = op A3 <- more uses
+///
+/// ==>
+///
+/// B2 = op B0 A2<kill>
+/// ...
+/// B1 = B2 <- now an identify copy
+/// ...
+/// = op B2 <- more uses
+///
+/// This returns true if an interval was modified.
+///
+bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ // FIXME: For now, only eliminate the copy by commuting its def when the
+ // source register is a virtual register. We want to guard against cases
+ // where the copy is a back edge copy and commuting the def lengthen the
+ // live interval of the source register to the entire loop.
+ if (CP.isPhys() && CP.isFlipped())
+ return false;
+
+ // Bail if there is no dst interval.
+ if (!li_->hasInterval(CP.getDstReg()))
+ return false;
+
+ SlotIndex CopyIdx =
+ li_->getInstructionIndex(CopyMI).getDefIndex();
+
+ LiveInterval &IntA =
+ li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
+ if (BLR == IntB.end()) return false;
+ VNInfo *BValNo = BLR->valno;
+
+ // Get the location that B is defined at. Two options: either this value has
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // can't process it.
+ if (!BValNo->getCopy()) return false;
+ assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ LiveInterval::iterator ALR =
+ IntA.FindLiveRangeContaining(CopyIdx.getUseIndex()); //
+
+ assert(ALR != IntA.end() && "Live range not found!");
+ VNInfo *AValNo = ALR->valno;
+ // If other defs can reach uses of this def, then it's not safe to perform
+ // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
+ // tested?
+ if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
+ AValNo->isUnused() || AValNo->hasPHIKill())
+ return false;
+ MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
+ if (!DefMI)
+ return false;
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ if (!TID.isCommutable())
+ return false;
+ // If DefMI is a two-address instruction then commuting it will change the
+ // destination register.
+ int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
+ assert(DefIdx != -1);
+ unsigned UseOpIdx;
+ if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
+ return false;
+ unsigned Op1, Op2, NewDstIdx;
+ if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
+ return false;
+ if (Op1 == UseOpIdx)
+ NewDstIdx = Op2;
+ else if (Op2 == UseOpIdx)
+ NewDstIdx = Op1;
+ else
+ return false;
+
+ MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+ unsigned NewReg = NewDstMO.getReg();
+ if (NewReg != IntB.reg || !NewDstMO.isKill())
+ return false;
+
+ // Make sure there are no other definitions of IntB that would reach the
+ // uses which the new definition can reach.
+ if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
+ return false;
+
+ bool BHasSubRegs = false;
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
+ BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
+
+ // Abort if the subregisters of IntB.reg have values that are not simply the
+ // clobbers from the superreg.
+ if (BHasSubRegs)
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
+ if (li_->hasInterval(*SR) &&
+ HasOtherReachingDefs(IntA, li_->getInterval(*SR), AValNo, 0))
+ return false;
+
+ // If some of the uses of IntA.reg is already coalesced away, return false.
+ // It's not possible to determine whether it's safe to perform the coalescing.
+ for (MachineRegisterInfo::use_nodbg_iterator UI =
+ mri_->use_nodbg_begin(IntA.reg),
+ UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end())
+ continue;
+ if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
+ return false;
+ }
+
+ // At this point we have decided that it is legal to do this
+ // transformation. Start by commuting the instruction.
+ MachineBasicBlock *MBB = DefMI->getParent();
+ MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
+ if (!NewMI)
+ return false;
+ if (NewMI != DefMI) {
+ li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
+ MBB->insert(DefMI, NewMI);
+ MBB->erase(DefMI);
+ }
+ unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
+ NewMI->getOperand(OpIdx).setIsKill();
+
+ bool BHasPHIKill = BValNo->hasPHIKill();
+ SmallVector<VNInfo*, 4> BDeadValNos;
+ std::map<SlotIndex, SlotIndex> BExtend;
+
+ // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
+ // A = or A, B
+ // ...
+ // B = A
+ // ...
+ // C = A<kill>
+ // ...
+ // = B
+ bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
+ if (Extended)
+ BExtend[ALR->end] = BLR->end;
+
+ // Update uses of IntA of the specific Val# with IntB.
+ for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
+ UE = mri_->use_end(); UI != UE;) {
+ MachineOperand &UseMO = UI.getOperand();
+ MachineInstr *UseMI = &*UI;
+ ++UI;
+ if (JoinedCopies.count(UseMI))
+ continue;
+ if (UseMI->isDebugValue()) {
+ // FIXME These don't have an instruction index. Not clear we have enough
+ // info to decide whether to do this replacement or not. For now do it.
+ UseMO.setReg(NewReg);
+ continue;
+ }
+ SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end() || ULR->valno != AValNo)
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(NewReg))
+ UseMO.substPhysReg(NewReg, *tri_);
+ else
+ UseMO.setReg(NewReg);
+ if (UseMI == CopyMI)
+ continue;
+ if (UseMO.isKill()) {
+ if (Extended)
+ UseMO.setIsKill(false);
+ }
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (UseMI->isCopy()) {
+ if (UseMI->getOperand(0).getReg() != IntB.reg ||
+ UseMI->getOperand(0).getSubReg())
+ continue;
+ } else if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
+ if (DstReg != IntB.reg || DstSubIdx)
+ continue;
+ } else
+ continue;
+ // This copy will become a noop. If it's defining a new val#,
+ // remove that val# as well. However this live range is being
+ // extended to the end of the existing live range defined by the copy.
+ SlotIndex DefIdx = UseIdx.getDefIndex();
+ const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
+ if (!DLR)
+ continue;
+ BHasPHIKill |= DLR->valno->hasPHIKill();
+ assert(DLR->valno->def == DefIdx);
+ BDeadValNos.push_back(DLR->valno);
+ BExtend[DLR->start] = DLR->end;
+ JoinedCopies.insert(UseMI);
+ }
+
+ // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
+ // simply extend BLR if CopyMI doesn't end the range.
+ DEBUG({
+ dbgs() << "Extending: ";
+ IntB.print(dbgs(), tri_);
+ });
+
+ // Remove val#'s defined by copies that will be coalesced away.
+ for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
+ VNInfo *DeadVNI = BDeadValNos[i];
+ if (BHasSubRegs) {
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &SRLI = li_->getInterval(*SR);
+ if (const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def))
+ SRLI.removeValNo(SRLR->valno);
+ }
+ }
+ IntB.removeValNo(BDeadValNos[i]);
+ }
+
+ // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
+ // is updated.
+ VNInfo *ValNo = BValNo;
+ ValNo->def = AValNo->def;
+ ValNo->setCopy(0);
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ SlotIndex End = AI->end;
+ std::map<SlotIndex, SlotIndex>::iterator
+ EI = BExtend.find(End);
+ if (EI != BExtend.end())
+ End = EI->second;
+ IntB.addRange(LiveRange(AI->start, End, ValNo));
+ }
+ ValNo->setHasPHIKill(BHasPHIKill);
+
+ DEBUG({
+ dbgs() << " result = ";
+ IntB.print(dbgs(), tri_);
+ dbgs() << "\nShortening: ";
+ IntA.print(dbgs(), tri_);
+ });
+
+ IntA.removeValNo(AValNo);
+
+ DEBUG({
+ dbgs() << " result = ";
+ IntA.print(dbgs(), tri_);
+ dbgs() << '\n';
+ });
+
+ ++numCommutes;
+ return true;
+}
+
+/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
+/// fallthoughs to SuccMBB.
+static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccMBB,
+ const TargetInstrInfo *tii_) {
+ if (MBB == SuccMBB)
+ return true;
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
+ MBB->isSuccessor(SuccMBB);
+}
+
+/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
+/// from a physical register live interval as well as from the live intervals
+/// of its sub-registers.
+static void removeRange(LiveInterval &li,
+ SlotIndex Start, SlotIndex End,
+ LiveIntervals *li_, const TargetRegisterInfo *tri_) {
+ li.removeRange(Start, End, true);
+ if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
+ for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &sli = li_->getInterval(*SR);
+ SlotIndex RemoveStart = Start;
+ SlotIndex RemoveEnd = Start;
+
+ while (RemoveEnd != End) {
+ LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
+ if (LR == sli.end())
+ break;
+ RemoveEnd = (LR->end < End) ? LR->end : End;
+ sli.removeRange(RemoveStart, RemoveEnd, true);
+ RemoveStart = RemoveEnd;
+ }
+ }
+ }
+}
+
+/// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
+/// as the copy instruction, trim the live interval to the last use and return
+/// true.
+bool
+SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
+ MachineBasicBlock *CopyMBB,
+ LiveInterval &li,
+ const LiveRange *LR) {
+ SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
+ SlotIndex LastUseIdx;
+ MachineOperand *LastUse =
+ lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
+ if (LastUse) {
+ MachineInstr *LastUseMI = LastUse->getParent();
+ if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
+ // r1024 = op
+ // ...
+ // BB1:
+ // = r1024
+ //
+ // BB2:
+ // r1025<dead> = r1024<kill>
+ if (MBBStart < LR->end)
+ removeRange(li, MBBStart, LR->end, li_, tri_);
+ return true;
+ }
+
+ // There are uses before the copy, just shorten the live range to the end
+ // of last use.
+ LastUse->setIsKill();
+ removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
+ if (LastUseMI->isCopy()) {
+ MachineOperand &DefMO = LastUseMI->getOperand(0);
+ if (DefMO.getReg() == li.reg && !DefMO.getSubReg())
+ DefMO.setIsDead();
+ }
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
+ DstReg == li.reg && DstSubIdx == 0) {
+ // Last use is itself an identity code.
+ int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg,
+ false, false, tri_);
+ LastUseMI->getOperand(DeadIdx).setIsDead();
+ }
+ return true;
+ }
+
+ // Is it livein?
+ if (LR->start <= MBBStart && LR->end > MBBStart) {
+ if (LR->start == li_->getZeroIndex()) {
+ assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
+ // Live-in to the function but dead. Remove it from entry live-in set.
+ mf_->begin()->removeLiveIn(li.reg);
+ }
+ // FIXME: Shorten intervals in BBs that reaches this BB.
+ }
+
+ return false;
+}
+
+/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
+/// computation, replace the copy by rematerialize the definition.
+bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
+ unsigned DstReg,
+ unsigned DstSubIdx,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
+ LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
+ assert(SrcLR != SrcInt.end() && "Live range not found!");
+ VNInfo *ValNo = SrcLR->valno;
+ // If other defs can reach uses of this def, then it's not safe to perform
+ // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
+ // tested?
+ if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
+ ValNo->isUnused() || ValNo->hasPHIKill())
+ return false;
+ MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
+ assert(DefMI && "Defining instruction disappeared");
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ if (!TID.isAsCheapAsAMove())
+ return false;
+ if (!tii_->isTriviallyReMaterializable(DefMI, AA))
+ return false;
+ bool SawStore = false;
+ if (!DefMI->isSafeToMove(tii_, AA, SawStore))
+ return false;
+ if (TID.getNumDefs() != 1)
+ return false;
+ if (!DefMI->isImplicitDef()) {
+ // Make sure the copy destination register class fits the instruction
+ // definition register class. The mismatch can happen as a result of earlier
+ // extract_subreg, insert_subreg, subreg_to_reg coalescing.
+ const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ if (mri_->getRegClass(DstReg) != RC)
+ return false;
+ } else if (!RC->contains(DstReg))
+ return false;
+ }
+
+ // If destination register has a sub-register index on it, make sure it mtches
+ // the instruction register class.
+ if (DstSubIdx) {
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ if (TID.getNumDefs() != 1)
+ return false;
+ const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
+ const TargetRegisterClass *DstSubRC =
+ DstRC->getSubRegisterRegClass(DstSubIdx);
+ const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
+ if (DefRC == DstRC)
+ DstSubIdx = 0;
+ else if (DefRC != DstSubRC)
+ return false;
+ }
+
+ RemoveCopyFlag(DstReg, CopyMI);
+
+ // If copy kills the source register, find the last use and propagate
+ // kill.
+ bool checkForDeadDef = false;
+ MachineBasicBlock *MBB = CopyMI->getParent();
+ if (SrcLR->end == CopyIdx.getDefIndex())
+ if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
+ checkForDeadDef = true;
+ }
+
+ MachineBasicBlock::iterator MII =
+ llvm::next(MachineBasicBlock::iterator(CopyMI));
+ tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
+ MachineInstr *NewMI = prior(MII);
+
+ if (checkForDeadDef) {
+ // PR4090 fix: Trim interval failed because there was no use of the
+ // source interval in this MBB. If the def is in this MBB too then we
+ // should mark it dead:
+ if (DefMI->getParent() == MBB) {
+ DefMI->addRegisterDead(SrcInt.reg, tri_);
+ SrcLR->end = SrcLR->start.getNextSlot();
+ }
+ }
+
+ // CopyMI may have implicit operands, transfer them over to the newly
+ // rematerialized instruction. And update implicit def interval valnos.
+ for (unsigned i = CopyMI->getDesc().getNumOperands(),
+ e = CopyMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = CopyMI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit())
+ NewMI->addOperand(MO);
+ if (MO.isDef())
+ RemoveCopyFlag(MO.getReg(), CopyMI);
+ }
+
+ TransferImplicitOps(CopyMI, NewMI);
+ li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
+ CopyMI->eraseFromParent();
+ ReMatCopies.insert(CopyMI);
+ ReMatDefs.insert(DefMI);
+ DEBUG(dbgs() << "Remat: " << *NewMI);
+ ++NumReMats;
+ return true;
+}
+
+/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+/// update the subregister number if it is not zero. If DstReg is a
+/// physical register and the existing subregister number of the def / use
+/// being updated is not zero, make sure to set it to the correct physical
+/// subregister.
+void
+SimpleRegisterCoalescing::UpdateRegDefsUses(const CoalescerPair &CP) {
+ bool DstIsPhys = CP.isPhys();
+ unsigned SrcReg = CP.getSrcReg();
+ unsigned DstReg = CP.getDstReg();
+ unsigned SubIdx = CP.getSubIdx();
+
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
+ MachineInstr *UseMI = I.skipInstruction();) {
+ // A PhysReg copy that won't be coalesced can perhaps be rematerialized
+ // instead.
+ if (DstIsPhys) {
+ unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
+ if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
+ CopySrcSubIdx, CopyDstSubIdx) &&
+ CopySrcSubIdx == 0 && CopyDstSubIdx == 0 &&
+ CopySrcReg != CopyDstReg && CopySrcReg == SrcReg &&
+ CopyDstReg != DstReg && !JoinedCopies.count(UseMI) &&
+ ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg, 0,
+ UseMI))
+ continue;
+
+ if (UseMI->isCopy() &&
+ !UseMI->getOperand(1).getSubReg() &&
+ !UseMI->getOperand(0).getSubReg() &&
+ UseMI->getOperand(1).getReg() == SrcReg &&
+ UseMI->getOperand(0).getReg() != SrcReg &&
+ UseMI->getOperand(0).getReg() != DstReg &&
+ !JoinedCopies.count(UseMI) &&
+ ReMaterializeTrivialDef(li_->getInterval(SrcReg),
+ UseMI->getOperand(0).getReg(), 0, UseMI))
+ continue;
+ }
+
+ SmallVector<unsigned,8> Ops;
+ bool Reads, Writes;
+ tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
+ bool Kills = false, Deads = false;
+
+ // Replace SrcReg with DstReg in all UseMI operands.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ MachineOperand &MO = UseMI->getOperand(Ops[i]);
+ Kills |= MO.isKill();
+ Deads |= MO.isDead();
+
+ if (DstIsPhys)
+ MO.substPhysReg(DstReg, *tri_);
+ else
+ MO.substVirtReg(DstReg, SubIdx, *tri_);
+ }
+
+ // This instruction is a copy that will be removed.
+ if (JoinedCopies.count(UseMI))
+ continue;
+
+ if (SubIdx) {
+ // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
+ // read-modify-write of DstReg.
+ if (Deads)
+ UseMI->addRegisterDead(DstReg, tri_);
+ else if (!Reads && Writes)
+ UseMI->addRegisterDefined(DstReg, tri_);
+
+ // Kill flags apply to the whole physical register.
+ if (DstIsPhys && Kills)
+ UseMI->addRegisterKilled(DstReg, tri_);
+ }
+
+ DEBUG({
+ dbgs() << "\t\tupdated: ";
+ if (!UseMI->isDebugValue())
+ dbgs() << li_->getInstructionIndex(UseMI) << "\t";
+ dbgs() << *UseMI;
+ });
+
+
+ // After updating the operand, check if the machine instruction has
+ // become a copy. If so, update its val# information.
+ const TargetInstrDesc &TID = UseMI->getDesc();
+ if (DstIsPhys || TID.getNumDefs() != 1 || TID.getNumOperands() <= 2)
+ continue;
+
+ unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
+ if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
+ CopySrcSubIdx, CopyDstSubIdx) &&
+ CopySrcReg != CopyDstReg &&
+ (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
+ allocatableRegs_[CopyDstReg])) {
+ LiveInterval &LI = li_->getInterval(CopyDstReg);
+ SlotIndex DefIdx =
+ li_->getInstructionIndex(UseMI).getDefIndex();
+ if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
+ if (DLR->valno->def == DefIdx)
+ DLR->valno->setCopy(UseMI);
+ }
+ }
+ }
+}
+
+/// removeIntervalIfEmpty - Check if the live interval of a physical register
+/// is empty, if so remove it and also remove the empty intervals of its
+/// sub-registers. Return true if live interval is removed.
+static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
+ const TargetRegisterInfo *tri_) {
+ if (li.empty()) {
+ if (TargetRegisterInfo::isPhysicalRegister(li.reg))
+ for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &sli = li_->getInterval(*SR);
+ if (sli.empty())
+ li_->removeInterval(*SR);
+ }
+ li_->removeInterval(li.reg);
+ return true;
+ }
+ return false;
+}
+
+/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
+/// Return true if live interval is removed.
+bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
+ LiveInterval::iterator MLR =
+ li.FindLiveRangeContaining(CopyIdx.getDefIndex());
+ if (MLR == li.end())
+ return false; // Already removed by ShortenDeadCopySrcLiveRange.
+ SlotIndex RemoveStart = MLR->start;
+ SlotIndex RemoveEnd = MLR->end;
+ SlotIndex DefIdx = CopyIdx.getDefIndex();
+ // Remove the liverange that's defined by this.
+ if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
+ removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
+ return removeIntervalIfEmpty(li, li_, tri_);
+ }
+ return false;
+}
+
+/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
+/// the val# it defines. If the live interval becomes empty, remove it as well.
+bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
+ MachineInstr *DefMI) {
+ SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
+ LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
+ if (DefIdx != MLR->valno->def)
+ return false;
+ li.removeValNo(MLR->valno);
+ return removeIntervalIfEmpty(li, li_, tri_);
+}
+
+void SimpleRegisterCoalescing::RemoveCopyFlag(unsigned DstReg,
+ const MachineInstr *CopyMI) {
+ SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
+ if (li_->hasInterval(DstReg)) {
+ LiveInterval &LI = li_->getInterval(DstReg);
+ if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
+ if (LR->valno->getCopy() == CopyMI)
+ LR->valno->setCopy(0);
+ }
+ if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
+ return;
+ for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
+ if (!li_->hasInterval(*AS))
+ continue;
+ LiveInterval &LI = li_->getInterval(*AS);
+ if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
+ if (LR->valno->getCopy() == CopyMI)
+ LR->valno->setCopy(0);
+ }
+}
+
+/// PropagateDeadness - Propagate the dead marker to the instruction which
+/// defines the val#.
+static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
+ SlotIndex &LRStart, LiveIntervals *li_,
+ const TargetRegisterInfo* tri_) {
+ MachineInstr *DefMI =
+ li_->getInstructionFromIndex(LRStart.getDefIndex());
+ if (DefMI && DefMI != CopyMI) {
+ int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg);
+ if (DeadIdx != -1)
+ DefMI->getOperand(DeadIdx).setIsDead();
+ else
+ DefMI->addOperand(MachineOperand::CreateReg(li.reg,
+ /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
+ LRStart = LRStart.getNextSlot();
+ }
+}
+
+/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
+/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
+/// ends the live range there. If there isn't another use, then this live range
+/// is dead. Return true if live interval is removed.
+bool
+SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
+ if (CopyIdx == SlotIndex()) {
+ // FIXME: special case: function live in. It can be a general case if the
+ // first instruction index starts at > 0 value.
+ assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
+ // Live-in to the function but dead. Remove it from entry live-in set.
+ if (mf_->begin()->isLiveIn(li.reg))
+ mf_->begin()->removeLiveIn(li.reg);
+ if (const LiveRange *LR = li.getLiveRangeContaining(CopyIdx))
+ removeRange(li, LR->start, LR->end, li_, tri_);
+ return removeIntervalIfEmpty(li, li_, tri_);
+ }
+
+ LiveInterval::iterator LR =
+ li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
+ if (LR == li.end())
+ // Livein but defined by a phi.
+ return false;
+
+ SlotIndex RemoveStart = LR->start;
+ SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
+ if (LR->end > RemoveEnd)
+ // More uses past this copy? Nothing to do.
+ return false;
+
+ // If there is a last use in the same bb, we can't remove the live range.
+ // Shorten the live interval and return.
+ MachineBasicBlock *CopyMBB = CopyMI->getParent();
+ if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
+ return false;
+
+ // There are other kills of the val#. Nothing to do.
+ if (!li.isOnlyLROfValNo(LR))
+ return false;
+
+ MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
+ if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
+ // If the live range starts in another mbb and the copy mbb is not a fall
+ // through mbb, then we can only cut the range from the beginning of the
+ // copy mbb.
+ RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();
+
+ if (LR->valno->def == RemoveStart) {
+ // If the def MI defines the val# and this copy is the only kill of the
+ // val#, then propagate the dead marker.
+ PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
+ ++numDeadValNo;
+ }
+
+ removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
+ return removeIntervalIfEmpty(li, li_, tri_);
+}
+
+
+/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
+/// two virtual registers from different register classes.
+bool
+SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
+ unsigned DstReg,
+ const TargetRegisterClass *SrcRC,
+ const TargetRegisterClass *DstRC,
+ const TargetRegisterClass *NewRC) {
+ unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
+ // This heuristics is good enough in practice, but it's obviously not *right*.
+ // 4 is a magic number that works well enough for x86, ARM, etc. It filter
+ // out all but the most restrictive register classes.
+ if (NewRCCount > 4 ||
+ // Early exit if the function is fairly small, coalesce aggressively if
+ // that's the case. For really special register classes with 3 or
+ // fewer registers, be a bit more careful.
+ (li_->getFuncInstructionCount() / NewRCCount) < 8)
+ return true;
+ LiveInterval &SrcInt = li_->getInterval(SrcReg);
+ LiveInterval &DstInt = li_->getInterval(DstReg);
+ unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
+ unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
+ if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
+ return true;
+ // Estimate *register use density*. If it doubles or more, abort.
+ unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
+ mri_->use_nodbg_end());
+ unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
+ mri_->use_nodbg_end());
+ unsigned NewUses = SrcUses + DstUses;
+ unsigned NewSize = SrcSize + DstSize;
+ if (SrcRC != NewRC && SrcSize > NewRCCount) {
+ unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
+ if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
+ return false;
+ }
+ if (DstRC != NewRC && DstSize > NewRCCount) {
+ unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
+ if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
+ return false;
+ }
+ return true;
+}
+
+
+/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+/// which are the src/dst of the copy instruction CopyMI. This returns true
+/// if the copy was successfully coalesced away. If it is not currently
+/// possible to coalesce this interval, but it may be possible if other
+/// things get coalesced, then it returns true by reference in 'Again'.
+bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
+ MachineInstr *CopyMI = TheCopy.MI;
+
+ Again = false;
+ if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
+ return false; // Already done.
+
+ DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
+
+ CoalescerPair CP(*tii_, *tri_);
+ if (!CP.setRegisters(CopyMI)) {
+ DEBUG(dbgs() << "\tNot coalescable.\n");
+ return false;
+ }
+
+ // If they are already joined we continue.
+ if (CP.getSrcReg() == CP.getDstReg()) {
+ DEBUG(dbgs() << "\tCopy already coalesced.\n");
+ return false; // Not coalescable.
+ }
+
+ DEBUG(dbgs() << "\tConsidering merging %reg" << CP.getSrcReg());
+
+ // Enforce policies.
+ if (CP.isPhys()) {
+ DEBUG(dbgs() <<" with physreg %" << tri_->getName(CP.getDstReg()) << "\n");
+ // Only coalesce to allocatable physreg.
+ if (!allocatableRegs_[CP.getDstReg()]) {
+ DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
+ return false; // Not coalescable.
+ }
+ } else {
+ DEBUG({
+ dbgs() << " with reg%" << CP.getDstReg();
+ if (CP.getSubIdx())
+ dbgs() << ":" << tri_->getSubRegIndexName(CP.getSubIdx());
+ dbgs() << " to " << CP.getNewRC()->getName() << "\n";
+ });
+
+ // Avoid constraining virtual register regclass too much.
+ if (CP.isCrossClass()) {
+ if (DisableCrossClassJoin) {
+ DEBUG(dbgs() << "\tCross-class joins disabled.\n");
+ return false;
+ }
+ if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
+ mri_->getRegClass(CP.getSrcReg()),
+ mri_->getRegClass(CP.getDstReg()),
+ CP.getNewRC())) {
+ DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
+ << CP.getNewRC()->getName() << ".\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ }
+
+ // When possible, let DstReg be the larger interval.
+ if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
+ li_->getInterval(CP.getDstReg()).ranges.size())
+ CP.flip();
+ }
+
+ // We need to be careful about coalescing a source physical register with a
+ // virtual register. Once the coalescing is done, it cannot be broken and
+ // these are not spillable! If the destination interval uses are far away,
+ // think twice about coalescing them!
+ // FIXME: Why are we skipping this test for partial copies?
+ // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
+ if (!CP.isPartial() && CP.isPhys()) {
+ LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
+
+ // Don't join with physregs that have a ridiculous number of live
+ // ranges. The data structure performance is really bad when that
+ // happens.
+ if (li_->hasInterval(CP.getDstReg()) &&
+ li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
+ mri_->setRegAllocationHint(CP.getSrcReg(), 0, CP.getDstReg());
+ ++numAborts;
+ DEBUG(dbgs()
+ << "\tPhysical register live interval too complicated, abort!\n");
+ return false;
+ }
+
+ const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
+ unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
+ unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
+ if (Length > Threshold &&
+ std::distance(mri_->use_nodbg_begin(CP.getSrcReg()),
+ mri_->use_nodbg_end()) * Threshold < Length) {
+ // Before giving up coalescing, if definition of source is defined by
+ // trivial computation, try rematerializing it.
+ if (!CP.isFlipped() &&
+ ReMaterializeTrivialDef(JoinVInt, CP.getDstReg(), 0, CopyMI))
+ return true;
+
+ mri_->setRegAllocationHint(CP.getSrcReg(), 0, CP.getDstReg());
+ ++numAborts;
+ DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ }
+
+ // Okay, attempt to join these two intervals. On failure, this returns false.
+ // Otherwise, if one of the intervals being joined is a physreg, this method
+ // always canonicalizes DstInt to be it. The output "SrcInt" will not have
+ // been modified, so we can use this information below to update aliases.
+ if (!JoinIntervals(CP)) {
+ // Coalescing failed.
+
+ // If definition of source is defined by trivial computation, try
+ // rematerializing it.
+ if (!CP.isFlipped() &&
+ ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()),
+ CP.getDstReg(), 0, CopyMI))
+ return true;
+
+ // If we can eliminate the copy without merging the live ranges, do so now.
+ if (!CP.isPartial()) {
+ if (AdjustCopiesBackFrom(CP, CopyMI) ||
+ RemoveCopyByCommutingDef(CP, CopyMI)) {
+ JoinedCopies.insert(CopyMI);
+ DEBUG(dbgs() << "\tTrivial!\n");
+ return true;
+ }
+ }
+
+ // Otherwise, we are unable to join the intervals.
+ DEBUG(dbgs() << "\tInterference!\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+
+ // Coalescing to a virtual register that is of a sub-register class of the
+ // other. Make sure the resulting register is set to the right register class.
+ if (CP.isCrossClass()) {
+ ++numCrossRCs;
+ mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
+ }
+
+ // Remember to delete the copy instruction.
+ JoinedCopies.insert(CopyMI);
+
+ UpdateRegDefsUses(CP);
+
+ // If we have extended the live range of a physical register, make sure we
+ // update live-in lists as well.
+ if (CP.isPhys()) {
+ SmallVector<MachineBasicBlock*, 16> BlockSeq;
+ // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
+ // ranges for this, and they are preserved.
+ LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
+ for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
+ I != E; ++I ) {
+ li_->findLiveInMBBs(I->start, I->end, BlockSeq);
+ for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
+ MachineBasicBlock &block = *BlockSeq[idx];
+ if (!block.isLiveIn(CP.getDstReg()))
+ block.addLiveIn(CP.getDstReg());
+ }
+ BlockSeq.clear();
+ }
+ }
+
+ // SrcReg is guarateed to be the register whose live interval that is
+ // being merged.
+ li_->removeInterval(CP.getSrcReg());
+
+ // Update regalloc hint.
+ tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
+
+ DEBUG({
+ LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
+ dbgs() << "\tJoined. Result = ";
+ DstInt.print(dbgs(), tri_);
+ dbgs() << "\n";
+ });
+
+ ++numJoins;
+ return true;
+}
+
+/// ComputeUltimateVN - Assuming we are going to join two live intervals,
+/// compute what the resultant value numbers for each value in the input two
+/// ranges will be. This is complicated by copies between the two which can
+/// and will commonly cause multiple value numbers to be merged into one.
+///
+/// VN is the value number that we're trying to resolve. InstDefiningValue
+/// keeps track of the new InstDefiningValue assignment for the result
+/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
+/// whether a value in this or other is a copy from the opposite set.
+/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
+/// already been assigned.
+///
+/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
+/// contains the value number the copy is from.
+///
+static unsigned ComputeUltimateVN(VNInfo *VNI,
+ SmallVector<VNInfo*, 16> &NewVNInfo,
+ DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
+ DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
+ SmallVector<int, 16> &ThisValNoAssignments,
+ SmallVector<int, 16> &OtherValNoAssignments) {
+ unsigned VN = VNI->id;
+
+ // If the VN has already been computed, just return it.
+ if (ThisValNoAssignments[VN] >= 0)
+ return ThisValNoAssignments[VN];
+ assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
+
+ // If this val is not a copy from the other val, then it must be a new value
+ // number in the destination.
+ DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
+ if (I == ThisFromOther.end()) {
+ NewVNInfo.push_back(VNI);
+ return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
+ }
+ VNInfo *OtherValNo = I->second;
+
+ // Otherwise, this *is* a copy from the RHS. If the other side has already
+ // been computed, return it.
+ if (OtherValNoAssignments[OtherValNo->id] >= 0)
+ return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
+
+ // Mark this value number as currently being computed, then ask what the
+ // ultimate value # of the other value is.
+ ThisValNoAssignments[VN] = -2;
+ unsigned UltimateVN =
+ ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
+ OtherValNoAssignments, ThisValNoAssignments);
+ return ThisValNoAssignments[VN] = UltimateVN;
+}
+
+/// JoinIntervals - Attempt to join these two intervals. On failure, this
+/// returns false.
+bool SimpleRegisterCoalescing::JoinIntervals(CoalescerPair &CP) {
+ LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
+ DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
+
+ // If a live interval is a physical register, check for interference with any
+ // aliases. The interference check implemented here is a bit more conservative
+ // than the full interfeence check below. We allow overlapping live ranges
+ // only when one is a copy of the other.
+ if (CP.isPhys()) {
+ for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
+ if (!li_->hasInterval(*AS))
+ continue;
+ const LiveInterval &LHS = li_->getInterval(*AS);
+ LiveInterval::const_iterator LI = LHS.begin();
+ for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
+ RI != RE; ++RI) {
+ LI = std::lower_bound(LI, LHS.end(), RI->start);
+ // Does LHS have an overlapping live range starting before RI?
+ if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
+ (RI->start != RI->valno->def ||
+ !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
+ DEBUG({
+ dbgs() << "\t\tInterference from alias: ";
+ LHS.print(dbgs(), tri_);
+ dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
+ });
+ return false;
+ }
+
+ // Check that LHS ranges beginning in this range are copies.
+ for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
+ if (LI->start != LI->valno->def ||
+ !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
+ DEBUG({
+ dbgs() << "\t\tInterference from alias: ";
+ LHS.print(dbgs(), tri_);
+ dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
+ });
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ // Compute the final value assignment, assuming that the live ranges can be
+ // coalesced.
+ SmallVector<int, 16> LHSValNoAssignments;
+ SmallVector<int, 16> RHSValNoAssignments;
+ DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
+ DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
+ SmallVector<VNInfo*, 16> NewVNInfo;
+
+ LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
+ DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
+
+ // Loop over the value numbers of the LHS, seeing if any are defined from
+ // the RHS.
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
+ continue;
+
+ // Never join with a register that has EarlyClobber redefs.
+ if (VNI->hasRedefByEC())
+ return false;
+
+ // DstReg is known to be a register in the LHS interval. If the src is
+ // from the RHS interval, we can use its value #.
+ if (!CP.isCoalescable(VNI->getCopy()))
+ continue;
+
+ // Figure out the value # from the RHS.
+ LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ // The copy could be to an aliased physreg.
+ if (!lr) continue;
+ LHSValsDefinedFromRHS[VNI] = lr->valno;
+ }
+
+ // Loop over the value numbers of the RHS, seeing if any are defined from
+ // the LHS.
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
+ continue;
+
+ // Never join with a register that has EarlyClobber redefs.
+ if (VNI->hasRedefByEC())
+ return false;
+
+ // DstReg is known to be a register in the RHS interval. If the src is
+ // from the LHS interval, we can use its value #.
+ if (!CP.isCoalescable(VNI->getCopy()))
+ continue;
+
+ // Figure out the value # from the LHS.
+ LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ // The copy could be to an aliased physreg.
+ if (!lr) continue;
+ RHSValsDefinedFromLHS[VNI] = lr->valno;
+ }
+
+ LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
+ RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
+ NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
+
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ ComputeUltimateVN(VNI, NewVNInfo,
+ LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
+ LHSValNoAssignments, RHSValNoAssignments);
+ }
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ // If this value number isn't a copy from the LHS, it's a new number.
+ if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
+ NewVNInfo.push_back(VNI);
+ RHSValNoAssignments[VN] = NewVNInfo.size()-1;
+ continue;
+ }
+
+ ComputeUltimateVN(VNI, NewVNInfo,
+ RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
+ RHSValNoAssignments, LHSValNoAssignments);
+ }
+
+ // Armed with the mappings of LHS/RHS values to ultimate values, walk the
+ // interval lists to see if these intervals are coalescable.
+ LiveInterval::const_iterator I = LHS.begin();
+ LiveInterval::const_iterator IE = LHS.end();
+ LiveInterval::const_iterator J = RHS.begin();
+ LiveInterval::const_iterator JE = RHS.end();
+
+ // Skip ahead until the first place of potential sharing.
+ if (I != IE && J != JE) {
+ if (I->start < J->start) {
+ I = std::upper_bound(I, IE, J->start);
+ if (I != LHS.begin()) --I;
+ } else if (J->start < I->start) {
+ J = std::upper_bound(J, JE, I->start);
+ if (J != RHS.begin()) --J;
+ }
+ }
+
+ while (I != IE && J != JE) {
+ // Determine if these two live ranges overlap.
+ bool Overlaps;
+ if (I->start < J->start) {
+ Overlaps = I->end > J->start;
+ } else {
+ Overlaps = J->end > I->start;
+ }
+
+ // If so, check value # info to determine if they are really different.
+ if (Overlaps) {
+ // If the live range overlap will map to the same value number in the
+ // result liverange, we can still coalesce them. If not, we can't.
+ if (LHSValNoAssignments[I->valno->id] !=
+ RHSValNoAssignments[J->valno->id])
+ return false;
+ // If it's re-defined by an early clobber somewhere in the live range,
+ // then conservatively abort coalescing.
+ if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
+ return false;
+ }
+
+ if (I->end < J->end)
+ ++I;
+ else
+ ++J;
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
+ E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned LHSValID = LHSValNoAssignments[VNI->id];
+ if (VNI->hasPHIKill())
+ NewVNInfo[LHSValID]->setHasPHIKill(true);
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
+ E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned RHSValID = RHSValNoAssignments[VNI->id];
+ if (VNI->hasPHIKill())
+ NewVNInfo[RHSValID]->setHasPHIKill(true);
+ }
+
+ if (LHSValNoAssignments.empty())
+ LHSValNoAssignments.push_back(-1);
+ if (RHSValNoAssignments.empty())
+ RHSValNoAssignments.push_back(-1);
+
+ // If we get here, we know that we can coalesce the live ranges. Ask the
+ // intervals to coalesce themselves now.
+ LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
+ mri_);
+ return true;
+}
+
+namespace {
+ // DepthMBBCompare - Comparison predicate that sort first based on the loop
+ // depth of the basic block (the unsigned), and then on the MBB number.
+ struct DepthMBBCompare {
+ typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
+ bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
+ // Deeper loops first
+ if (LHS.first != RHS.first)
+ return LHS.first > RHS.first;
+
+ // Prefer blocks that are more connected in the CFG. This takes care of
+ // the most difficult copies first while intervals are short.
+ unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
+ unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
+ if (cl != cr)
+ return cl > cr;
+
+ // As a last resort, sort by block number.
+ return LHS.second->getNumber() < RHS.second->getNumber();
+ }
+ };
+}
+
+void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
+ std::vector<CopyRec> &TryAgain) {
+ DEBUG(dbgs() << MBB->getName() << ":\n");
+
+ std::vector<CopyRec> VirtCopies;
+ std::vector<CopyRec> PhysCopies;
+ std::vector<CopyRec> ImpDefCopies;
+ for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
+ MII != E;) {
+ MachineInstr *Inst = MII++;
+
+ // If this isn't a copy nor a extract_subreg, we can't join intervals.
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ bool isInsUndef = false;
+ if (Inst->isCopy()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(1).getReg();
+ } else if (Inst->isSubregToReg()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(2).getReg();
+ } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
+ continue;
+
+ bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ if (isInsUndef ||
+ (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty()))
+ ImpDefCopies.push_back(CopyRec(Inst, 0));
+ else if (SrcIsPhys || DstIsPhys)
+ PhysCopies.push_back(CopyRec(Inst, 0));
+ else
+ VirtCopies.push_back(CopyRec(Inst, 0));
+ }
+
+ // Try coalescing implicit copies and insert_subreg <undef> first,
+ // followed by copies to / from physical registers, then finally copies
+ // from virtual registers to virtual registers.
+ for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
+ CopyRec &TheCopy = ImpDefCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
+ CopyRec &TheCopy = PhysCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
+ CopyRec &TheCopy = VirtCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+}
+
+void SimpleRegisterCoalescing::joinIntervals() {
+ DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
+
+ std::vector<CopyRec> TryAgainList;
+ if (loopInfo->empty()) {
+ // If there are no loops in the function, join intervals in function order.
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
+ I != E; ++I)
+ CopyCoalesceInMBB(I, TryAgainList);
+ } else {
+ // Otherwise, join intervals in inner loops before other intervals.
+ // Unfortunately we can't just iterate over loop hierarchy here because
+ // there may be more MBB's than BB's. Collect MBB's for sorting.
+
+ // Join intervals in the function prolog first. We want to join physical
+ // registers with virtual registers before the intervals got too long.
+ std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
+ MachineBasicBlock *MBB = I;
+ MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
+ }
+
+ // Sort by loop depth.
+ std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
+
+ // Finally, join intervals in loop nest order.
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
+ CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
+ }
+
+ // Joining intervals can allow other intervals to be joined. Iteratively join
+ // until we make no progress.
+ bool ProgressMade = true;
+ while (ProgressMade) {
+ ProgressMade = false;
+
+ for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
+ CopyRec &TheCopy = TryAgainList[i];
+ if (!TheCopy.MI)
+ continue;
+
+ bool Again = false;
+ bool Success = JoinCopy(TheCopy, Again);
+ if (Success || !Again) {
+ TheCopy.MI = 0; // Mark this one as done.
+ ProgressMade = true;
+ }
+ }
+ }
+}
+
+/// Return true if the two specified registers belong to different register
+/// classes. The registers may be either phys or virt regs.
+bool
+SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
+ unsigned RegB) const {
+ // Get the register classes for the first reg.
+ if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
+ assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
+ "Shouldn't consider two physregs!");
+ return !mri_->getRegClass(RegB)->contains(RegA);
+ }
+
+ // Compare against the regclass for the second reg.
+ const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
+ if (TargetRegisterInfo::isVirtualRegister(RegB)) {
+ const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
+ return RegClassA != RegClassB;
+ }
+ return !RegClassA->contains(RegB);
+}
+
+/// lastRegisterUse - Returns the last (non-debug) use of the specific register
+/// between cycles Start and End or NULL if there are no uses.
+MachineOperand *
+SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
+ SlotIndex End,
+ unsigned Reg,
+ SlotIndex &UseIdx) const{
+ UseIdx = SlotIndex();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ MachineOperand *LastUse = NULL;
+ for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
+ E = mri_->use_nodbg_end(); I != E; ++I) {
+ MachineOperand &Use = I.getOperand();
+ MachineInstr *UseMI = Use.getParent();
+ if (UseMI->isIdentityCopy())
+ continue;
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
+ SrcReg == DstReg && SrcSubIdx == DstSubIdx)
+ // Ignore identity copies.
+ continue;
+ SlotIndex Idx = li_->getInstructionIndex(UseMI);
+ // FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
+ // that compares higher than any other interval.
+ if (Idx >= Start && Idx < End && Idx >= UseIdx) {
+ LastUse = &Use;
+ UseIdx = Idx.getUseIndex();
+ }
+ }
+ return LastUse;
+ }
+
+ SlotIndex s = Start;
+ SlotIndex e = End.getPrevSlot().getBaseIndex();
+ while (e >= s) {
+ // Skip deleted instructions
+ MachineInstr *MI = li_->getInstructionFromIndex(e);
+ while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
+ e = e.getPrevIndex();
+ MI = li_->getInstructionFromIndex(e);
+ }
+ if (e < s || MI == NULL)
+ return NULL;
+
+ // Ignore identity copies.
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (!MI->isIdentityCopy() &&
+ !(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
+ SrcReg == DstReg && SrcSubIdx == DstSubIdx))
+ for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
+ MachineOperand &Use = MI->getOperand(i);
+ if (Use.isReg() && Use.isUse() && Use.getReg() &&
+ tri_->regsOverlap(Use.getReg(), Reg)) {
+ UseIdx = e.getUseIndex();
+ return &Use;
+ }
+ }
+
+ e = e.getPrevIndex();
+ }
+
+ return NULL;
+}
+
+void SimpleRegisterCoalescing::releaseMemory() {
+ JoinedCopies.clear();
+ ReMatCopies.clear();
+ ReMatDefs.clear();
+}
+
+bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ mri_ = &fn.getRegInfo();
+ tm_ = &fn.getTarget();
+ tri_ = tm_->getRegisterInfo();
+ tii_ = tm_->getInstrInfo();
+ li_ = &getAnalysis<LiveIntervals>();
+ AA = &getAnalysis<AliasAnalysis>();
+ loopInfo = &getAnalysis<MachineLoopInfo>();
+
+ DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
+
+ allocatableRegs_ = tri_->getAllocatableSet(fn);
+ for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
+ E = tri_->regclass_end(); I != E; ++I)
+ allocatableRCRegs_.insert(std::make_pair(*I,
+ tri_->getAllocatableSet(fn, *I)));
+
+ // Join (coalesce) intervals if requested.
+ if (EnableJoining) {
+ joinIntervals();
+ DEBUG({
+ dbgs() << "********** INTERVALS POST JOINING **********\n";
+ for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
+ I != E; ++I){
+ I->second->print(dbgs(), tri_);
+ dbgs() << "\n";
+ }
+ });
+ }
+
+ // Perform a final pass over the instructions and compute spill weights
+ // and remove identity moves.
+ SmallVector<unsigned, 4> DeadDefs;
+ for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+ mbbi != mbbe; ++mbbi) {
+ MachineBasicBlock* mbb = mbbi;
+ for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
+ mii != mie; ) {
+ MachineInstr *MI = mii;
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (JoinedCopies.count(MI)) {
+ // Delete all coalesced copies.
+ bool DoDelete = true;
+ if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
+ assert(MI->isCopyLike() && "Unrecognized copy instruction");
+ SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
+ // Do not delete extract_subreg, insert_subreg of physical
+ // registers unless the definition is dead. e.g.
+ // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
+ // or else the scavenger may complain. LowerSubregs will
+ // delete them later.
+ DoDelete = false;
+ }
+ if (MI->allDefsAreDead()) {
+ LiveInterval &li = li_->getInterval(SrcReg);
+ if (!ShortenDeadCopySrcLiveRange(li, MI))
+ ShortenDeadCopyLiveRange(li, MI);
+ DoDelete = true;
+ }
+ if (!DoDelete)
+ mii = llvm::next(mii);
+ else {
+ li_->RemoveMachineInstrFromMaps(MI);
+ mii = mbbi->erase(mii);
+ ++numPeep;
+ }
+ continue;
+ }
+
+ // Now check if this is a remat'ed def instruction which is now dead.
+ if (ReMatDefs.count(MI)) {
+ bool isDead = true;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ DeadDefs.push_back(Reg);
+ if (MO.isDead())
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !mri_->use_nodbg_empty(Reg)) {
+ isDead = false;
+ break;
+ }
+ }
+ if (isDead) {
+ while (!DeadDefs.empty()) {
+ unsigned DeadDef = DeadDefs.back();
+ DeadDefs.pop_back();
+ RemoveDeadDef(li_->getInterval(DeadDef), MI);
+ }
+ li_->RemoveMachineInstrFromMaps(mii);
+ mii = mbbi->erase(mii);
+ continue;
+ } else
+ DeadDefs.clear();
+ }
+
+ // If the move will be an identity move delete it
+ bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
+ if (MI->isIdentityCopy() ||
+ (isMove && SrcReg == DstReg && SrcSubIdx == DstSubIdx)) {
+ if (li_->hasInterval(SrcReg)) {
+ LiveInterval &RegInt = li_->getInterval(SrcReg);
+ // If def of this move instruction is dead, remove its live range
+ // from the destination register's live interval.
+ if (MI->allDefsAreDead()) {
+ if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
+ ShortenDeadCopyLiveRange(RegInt, MI);
+ }
+ }
+ li_->RemoveMachineInstrFromMaps(MI);
+ mii = mbbi->erase(mii);
+ ++numPeep;
+ continue;
+ }
+
+ ++mii;
+
+ // Check for now unnecessary kill flags.
+ if (li_->isNotInMIMap(MI)) continue;
+ SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isKill()) continue;
+ unsigned reg = MO.getReg();
+ if (!reg || !li_->hasInterval(reg)) continue;
+ if (!li_->getInterval(reg).killedAt(DefIdx))
+ MO.setIsKill(false);
+ }
+ }
+ }
+
+ DEBUG(dump());
+ return true;
+}
+
+/// print - Implement the dump method.
+void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
+ li_->print(O, m);
+}
+
+RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
+ return new SimpleRegisterCoalescing();
+}
+
+// Make sure that anything that uses RegisterCoalescer pulls in this file...
+DEFINING_FILE_FOR(SimpleRegisterCoalescing)
OpenPOWER on IntegriCloud