summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp2865
1 files changed, 2865 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp b/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp
new file mode 100644
index 0000000..ed3c243
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SimpleRegisterCoalescing.cpp
@@ -0,0 +1,2865 @@
+//===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a simple register coalescing pass that attempts to
+// aggressively coalesce every register copy that it can.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regcoalescing"
+#include "SimpleRegisterCoalescing.h"
+#include "VirtRegMap.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterCoalescer.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(numJoins , "Number of interval joins performed");
+STATISTIC(numCrossRCs , "Number of cross class joins performed");
+STATISTIC(numCommutes , "Number of instruction commuting performed");
+STATISTIC(numExtends , "Number of copies extended");
+STATISTIC(NumReMats , "Number of instructions re-materialized");
+STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
+STATISTIC(numAborts , "Number of times interval joining aborted");
+STATISTIC(numDeadValNo, "Number of valno def marked dead");
+
+char SimpleRegisterCoalescing::ID = 0;
+static cl::opt<bool>
+EnableJoining("join-liveintervals",
+ cl::desc("Coalesce copies (default=true)"),
+ cl::init(true));
+
+static cl::opt<bool>
+DisableCrossClassJoin("disable-cross-class-join",
+ cl::desc("Avoid coalescing cross register class copies"),
+ cl::init(false), cl::Hidden);
+
+static RegisterPass<SimpleRegisterCoalescing>
+X("simple-register-coalescing", "Simple Register Coalescing");
+
+// Declare that we implement the RegisterCoalescer interface
+static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
+
+const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
+
+void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreservedID(MachineDominatorsID);
+ if (StrongPHIElim)
+ AU.addPreservedID(StrongPHIEliminationID);
+ else
+ AU.addPreservedID(PHIEliminationID);
+ AU.addPreservedID(TwoAddressInstructionPassID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
+/// being the source and IntB being the dest, thus this defines a value number
+/// in IntB. If the source value number (in IntA) is defined by a copy from B,
+/// see if we can merge these two pieces of B into a single value number,
+/// eliminating a copy. For example:
+///
+/// A3 = B0
+/// ...
+/// B1 = A3 <- this copy
+///
+/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
+/// value number to be replaced with B0 (which simplifies the B liveinterval).
+///
+/// This returns true if an interval was modified.
+///
+bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
+ LiveInterval &IntB,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
+ assert(BLR != IntB.end() && "Live range not found!");
+ VNInfo *BValNo = BLR->valno;
+
+ // Get the location that B is defined at. Two options: either this value has
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // can't process it.
+ if (!BValNo->getCopy()) return false;
+ assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
+ LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
+ assert(ALR != IntA.end() && "Live range not found!");
+ VNInfo *AValNo = ALR->valno;
+ // If it's re-defined by an early clobber somewhere in the live range, then
+ // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
+ // See PR3149:
+ // 172 %ECX<def> = MOV32rr %reg1039<kill>
+ // 180 INLINEASM <es:subl $5,$1
+ // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
+ // %EAX<kill>,
+ // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
+ // 188 %EAX<def> = MOV32rr %EAX<kill>
+ // 196 %ECX<def> = MOV32rr %ECX<kill>
+ // 204 %ECX<def> = MOV32rr %ECX<kill>
+ // 212 %EAX<def> = MOV32rr %EAX<kill>
+ // 220 %EAX<def> = MOV32rr %EAX
+ // 228 %reg1039<def> = MOV32rr %ECX<kill>
+ // The early clobber operand ties ECX input to the ECX def.
+ //
+ // The live interval of ECX is represented as this:
+ // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
+ // The coalescer has no idea there was a def in the middle of [174,230].
+ if (AValNo->hasRedefByEC())
+ return false;
+
+ // If AValNo is defined as a copy from IntB, we can potentially process this.
+ // Get the instruction that defines this value number.
+ unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
+ if (!SrcReg) return false; // Not defined by a copy.
+
+ // If the value number is not defined by a copy instruction, ignore it.
+
+ // If the source register comes from an interval other than IntB, we can't
+ // handle this.
+ if (SrcReg != IntB.reg) return false;
+
+ // Get the LiveRange in IntB that this value number starts with.
+ LiveInterval::iterator ValLR =
+ IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
+ assert(ValLR != IntB.end() && "Live range not found!");
+
+ // Make sure that the end of the live range is inside the same block as
+ // CopyMI.
+ MachineInstr *ValLREndInst =
+ li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
+ if (!ValLREndInst ||
+ ValLREndInst->getParent() != CopyMI->getParent()) return false;
+
+ // Okay, we now know that ValLR ends in the same block that the CopyMI
+ // live-range starts. If there are no intervening live ranges between them in
+ // IntB, we can merge them.
+ if (ValLR+1 != BLR) return false;
+
+ // If a live interval is a physical register, conservatively check if any
+ // of its sub-registers is overlapping the live interval of the virtual
+ // register. If so, do not coalesce.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
+ *tri_->getSubRegisters(IntB.reg)) {
+ for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
+ if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
+ });
+ return false;
+ }
+ }
+
+ DEBUG({
+ dbgs() << "Extending: ";
+ IntB.print(dbgs(), tri_);
+ });
+
+ SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
+ // We are about to delete CopyMI, so need to remove it as the 'instruction
+ // that defines this value #'. Update the valnum with the new defining
+ // instruction #.
+ BValNo->def = FillerStart;
+ BValNo->setCopy(0);
+
+ // Okay, we can merge them. We need to insert a new liverange:
+ // [ValLR.end, BLR.begin) of either value number, then we merge the
+ // two value numbers.
+ IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
+
+ // If the IntB live range is assigned to a physical register, and if that
+ // physreg has sub-registers, update their live intervals as well.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
+ LiveInterval &SRLI = li_->getInterval(*SR);
+ SRLI.addRange(LiveRange(FillerStart, FillerEnd,
+ SRLI.getNextValue(FillerStart, 0, true,
+ li_->getVNInfoAllocator())));
+ }
+ }
+
+ // Okay, merge "B1" into the same value number as "B0".
+ if (BValNo != ValLR->valno) {
+ IntB.addKills(ValLR->valno, BValNo->kills);
+ IntB.MergeValueNumberInto(BValNo, ValLR->valno);
+ }
+ DEBUG({
+ dbgs() << " result = ";
+ IntB.print(dbgs(), tri_);
+ dbgs() << "\n";
+ });
+
+ // If the source instruction was killing the source register before the
+ // merge, unset the isKill marker given the live range has been extended.
+ int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
+ if (UIdx != -1) {
+ ValLREndInst->getOperand(UIdx).setIsKill(false);
+ ValLR->valno->removeKill(FillerStart);
+ }
+
+ // If the copy instruction was killing the destination register before the
+ // merge, find the last use and trim the live range. That will also add the
+ // isKill marker.
+ if (ALR->valno->isKill(CopyIdx))
+ TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
+
+ ++numExtends;
+ return true;
+}
+
+/// HasOtherReachingDefs - Return true if there are definitions of IntB
+/// other than BValNo val# that can reach uses of AValno val# of IntA.
+bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
+ LiveInterval &IntB,
+ VNInfo *AValNo,
+ VNInfo *BValNo) {
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ LiveInterval::Ranges::iterator BI =
+ std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
+ if (BI != IntB.ranges.begin())
+ --BI;
+ for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
+ if (BI->valno == BValNo)
+ continue;
+ // When BValNo is null, we're looking for a dummy clobber-value for a subreg.
+ if (!BValNo && !BI->valno->isDefAccurate() && !BI->valno->getCopy())
+ continue;
+ if (BI->start <= AI->start && BI->end > AI->start)
+ return true;
+ if (BI->start > AI->start && BI->start < AI->end)
+ return true;
+ }
+ }
+ return false;
+}
+
+static void
+TransferImplicitOps(MachineInstr *MI, MachineInstr *NewMI) {
+ for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
+ i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit())
+ NewMI->addOperand(MO);
+ }
+}
+
+/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
+/// IntA being the source and IntB being the dest, thus this defines a value
+/// number in IntB. If the source value number (in IntA) is defined by a
+/// commutable instruction and its other operand is coalesced to the copy dest
+/// register, see if we can transform the copy into a noop by commuting the
+/// definition. For example,
+///
+/// A3 = op A2 B0<kill>
+/// ...
+/// B1 = A3 <- this copy
+/// ...
+/// = op A3 <- more uses
+///
+/// ==>
+///
+/// B2 = op B0 A2<kill>
+/// ...
+/// B1 = B2 <- now an identify copy
+/// ...
+/// = op B2 <- more uses
+///
+/// This returns true if an interval was modified.
+///
+bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
+ LiveInterval &IntB,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx =
+ li_->getInstructionIndex(CopyMI).getDefIndex();
+
+ // FIXME: For now, only eliminate the copy by commuting its def when the
+ // source register is a virtual register. We want to guard against cases
+ // where the copy is a back edge copy and commuting the def lengthen the
+ // live interval of the source register to the entire loop.
+ if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
+ return false;
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
+ assert(BLR != IntB.end() && "Live range not found!");
+ VNInfo *BValNo = BLR->valno;
+
+ // Get the location that B is defined at. Two options: either this value has
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // can't process it.
+ if (!BValNo->getCopy()) return false;
+ assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ LiveInterval::iterator ALR =
+ IntA.FindLiveRangeContaining(CopyIdx.getUseIndex()); //
+
+ assert(ALR != IntA.end() && "Live range not found!");
+ VNInfo *AValNo = ALR->valno;
+ // If other defs can reach uses of this def, then it's not safe to perform
+ // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
+ // tested?
+ if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
+ AValNo->isUnused() || AValNo->hasPHIKill())
+ return false;
+ MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ if (!TID.isCommutable())
+ return false;
+ // If DefMI is a two-address instruction then commuting it will change the
+ // destination register.
+ int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
+ assert(DefIdx != -1);
+ unsigned UseOpIdx;
+ if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
+ return false;
+ unsigned Op1, Op2, NewDstIdx;
+ if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
+ return false;
+ if (Op1 == UseOpIdx)
+ NewDstIdx = Op2;
+ else if (Op2 == UseOpIdx)
+ NewDstIdx = Op1;
+ else
+ return false;
+
+ MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+ unsigned NewReg = NewDstMO.getReg();
+ if (NewReg != IntB.reg || !NewDstMO.isKill())
+ return false;
+
+ // Make sure there are no other definitions of IntB that would reach the
+ // uses which the new definition can reach.
+ if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
+ return false;
+
+ bool BHasSubRegs = false;
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
+ BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
+
+ // Abort if the subregisters of IntB.reg have values that are not simply the
+ // clobbers from the superreg.
+ if (BHasSubRegs)
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
+ if (HasOtherReachingDefs(IntA, li_->getInterval(*SR), AValNo, 0))
+ return false;
+
+ // If some of the uses of IntA.reg is already coalesced away, return false.
+ // It's not possible to determine whether it's safe to perform the coalescing.
+ for (MachineRegisterInfo::use_nodbg_iterator UI =
+ mri_->use_nodbg_begin(IntA.reg),
+ UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end())
+ continue;
+ if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
+ return false;
+ }
+
+ // At this point we have decided that it is legal to do this
+ // transformation. Start by commuting the instruction.
+ MachineBasicBlock *MBB = DefMI->getParent();
+ MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
+ if (!NewMI)
+ return false;
+ if (NewMI != DefMI) {
+ li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
+ MBB->insert(DefMI, NewMI);
+ MBB->erase(DefMI);
+ }
+ unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
+ NewMI->getOperand(OpIdx).setIsKill();
+
+ bool BHasPHIKill = BValNo->hasPHIKill();
+ SmallVector<VNInfo*, 4> BDeadValNos;
+ VNInfo::KillSet BKills;
+ std::map<SlotIndex, SlotIndex> BExtend;
+
+ // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
+ // A = or A, B
+ // ...
+ // B = A
+ // ...
+ // C = A<kill>
+ // ...
+ // = B
+ //
+ // then do not add kills of A to the newly created B interval.
+ bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
+ if (Extended)
+ BExtend[ALR->end] = BLR->end;
+
+ // Update uses of IntA of the specific Val# with IntB.
+ for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
+ UE = mri_->use_end(); UI != UE;) {
+ MachineOperand &UseMO = UI.getOperand();
+ MachineInstr *UseMI = &*UI;
+ ++UI;
+ if (JoinedCopies.count(UseMI))
+ continue;
+ if (UseMI->isDebugValue()) {
+ // FIXME These don't have an instruction index. Not clear we have enough
+ // info to decide whether to do this replacement or not. For now do it.
+ UseMO.setReg(NewReg);
+ continue;
+ }
+ SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end() || ULR->valno != AValNo)
+ continue;
+ UseMO.setReg(NewReg);
+ if (UseMI == CopyMI)
+ continue;
+ if (UseMO.isKill()) {
+ if (Extended)
+ UseMO.setIsKill(false);
+ else
+ BKills.push_back(UseIdx.getDefIndex());
+ }
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
+ continue;
+ if (DstReg == IntB.reg && DstSubIdx == 0) {
+ // This copy will become a noop. If it's defining a new val#,
+ // remove that val# as well. However this live range is being
+ // extended to the end of the existing live range defined by the copy.
+ SlotIndex DefIdx = UseIdx.getDefIndex();
+ const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
+ BHasPHIKill |= DLR->valno->hasPHIKill();
+ assert(DLR->valno->def == DefIdx);
+ BDeadValNos.push_back(DLR->valno);
+ BExtend[DLR->start] = DLR->end;
+ JoinedCopies.insert(UseMI);
+ // If this is a kill but it's going to be removed, the last use
+ // of the same val# is the new kill.
+ if (UseMO.isKill())
+ BKills.pop_back();
+ }
+ }
+
+ // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
+ // simply extend BLR if CopyMI doesn't end the range.
+ DEBUG({
+ dbgs() << "Extending: ";
+ IntB.print(dbgs(), tri_);
+ });
+
+ // Remove val#'s defined by copies that will be coalesced away.
+ for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
+ VNInfo *DeadVNI = BDeadValNos[i];
+ if (BHasSubRegs) {
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
+ LiveInterval &SRLI = li_->getInterval(*SR);
+ const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
+ SRLI.removeValNo(SRLR->valno);
+ }
+ }
+ IntB.removeValNo(BDeadValNos[i]);
+ }
+
+ // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
+ // is updated. Kills are also updated.
+ VNInfo *ValNo = BValNo;
+ ValNo->def = AValNo->def;
+ ValNo->setCopy(0);
+ for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
+ if (ValNo->kills[j] != BLR->end)
+ BKills.push_back(ValNo->kills[j]);
+ }
+ ValNo->kills.clear();
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ SlotIndex End = AI->end;
+ std::map<SlotIndex, SlotIndex>::iterator
+ EI = BExtend.find(End);
+ if (EI != BExtend.end())
+ End = EI->second;
+ IntB.addRange(LiveRange(AI->start, End, ValNo));
+
+ // If the IntB live range is assigned to a physical register, and if that
+ // physreg has sub-registers, update their live intervals as well.
+ if (BHasSubRegs) {
+ for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
+ LiveInterval &SRLI = li_->getInterval(*SR);
+ SRLI.MergeInClobberRange(*li_, AI->start, End,
+ li_->getVNInfoAllocator());
+ }
+ }
+ }
+ IntB.addKills(ValNo, BKills);
+ ValNo->setHasPHIKill(BHasPHIKill);
+
+ DEBUG({
+ dbgs() << " result = ";
+ IntB.print(dbgs(), tri_);
+ dbgs() << "\nShortening: ";
+ IntA.print(dbgs(), tri_);
+ });
+
+ IntA.removeValNo(AValNo);
+
+ DEBUG({
+ dbgs() << " result = ";
+ IntA.print(dbgs(), tri_);
+ dbgs() << '\n';
+ });
+
+ ++numCommutes;
+ return true;
+}
+
+/// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
+/// fallthoughs to SuccMBB.
+static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
+ MachineBasicBlock *SuccMBB,
+ const TargetInstrInfo *tii_) {
+ if (MBB == SuccMBB)
+ return true;
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
+ MBB->isSuccessor(SuccMBB);
+}
+
+/// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
+/// from a physical register live interval as well as from the live intervals
+/// of its sub-registers.
+static void removeRange(LiveInterval &li,
+ SlotIndex Start, SlotIndex End,
+ LiveIntervals *li_, const TargetRegisterInfo *tri_) {
+ li.removeRange(Start, End, true);
+ if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
+ for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &sli = li_->getInterval(*SR);
+ SlotIndex RemoveStart = Start;
+ SlotIndex RemoveEnd = Start;
+
+ while (RemoveEnd != End) {
+ LiveInterval::iterator LR = sli.FindLiveRangeContaining(RemoveStart);
+ if (LR == sli.end())
+ break;
+ RemoveEnd = (LR->end < End) ? LR->end : End;
+ sli.removeRange(RemoveStart, RemoveEnd, true);
+ RemoveStart = RemoveEnd;
+ }
+ }
+ }
+}
+
+/// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
+/// as the copy instruction, trim the live interval to the last use and return
+/// true.
+bool
+SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(SlotIndex CopyIdx,
+ MachineBasicBlock *CopyMBB,
+ LiveInterval &li,
+ const LiveRange *LR) {
+ SlotIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
+ SlotIndex LastUseIdx;
+ MachineOperand *LastUse =
+ lastRegisterUse(LR->start, CopyIdx.getPrevSlot(), li.reg, LastUseIdx);
+ if (LastUse) {
+ MachineInstr *LastUseMI = LastUse->getParent();
+ if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
+ // r1024 = op
+ // ...
+ // BB1:
+ // = r1024
+ //
+ // BB2:
+ // r1025<dead> = r1024<kill>
+ if (MBBStart < LR->end)
+ removeRange(li, MBBStart, LR->end, li_, tri_);
+ return true;
+ }
+
+ // There are uses before the copy, just shorten the live range to the end
+ // of last use.
+ LastUse->setIsKill();
+ removeRange(li, LastUseIdx.getDefIndex(), LR->end, li_, tri_);
+ LR->valno->addKill(LastUseIdx.getDefIndex());
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
+ DstReg == li.reg && DstSubIdx == 0) {
+ // Last use is itself an identity code.
+ int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg,
+ false, false, tri_);
+ LastUseMI->getOperand(DeadIdx).setIsDead();
+ }
+ return true;
+ }
+
+ // Is it livein?
+ if (LR->start <= MBBStart && LR->end > MBBStart) {
+ if (LR->start == li_->getZeroIndex()) {
+ assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
+ // Live-in to the function but dead. Remove it from entry live-in set.
+ mf_->begin()->removeLiveIn(li.reg);
+ }
+ // FIXME: Shorten intervals in BBs that reaches this BB.
+ }
+
+ return false;
+}
+
+/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
+/// computation, replace the copy by rematerialize the definition.
+bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
+ unsigned DstReg,
+ unsigned DstSubIdx,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
+ LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
+ assert(SrcLR != SrcInt.end() && "Live range not found!");
+ VNInfo *ValNo = SrcLR->valno;
+ // If other defs can reach uses of this def, then it's not safe to perform
+ // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
+ // tested?
+ if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
+ ValNo->isUnused() || ValNo->hasPHIKill())
+ return false;
+ MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ if (!TID.isAsCheapAsAMove())
+ return false;
+ if (!tii_->isTriviallyReMaterializable(DefMI, AA))
+ return false;
+ bool SawStore = false;
+ if (!DefMI->isSafeToMove(tii_, AA, SawStore))
+ return false;
+ if (TID.getNumDefs() != 1)
+ return false;
+ if (!DefMI->isImplicitDef()) {
+ // Make sure the copy destination register class fits the instruction
+ // definition register class. The mismatch can happen as a result of earlier
+ // extract_subreg, insert_subreg, subreg_to_reg coalescing.
+ const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ if (mri_->getRegClass(DstReg) != RC)
+ return false;
+ } else if (!RC->contains(DstReg))
+ return false;
+ }
+
+ // If destination register has a sub-register index on it, make sure it mtches
+ // the instruction register class.
+ if (DstSubIdx) {
+ const TargetInstrDesc &TID = DefMI->getDesc();
+ if (TID.getNumDefs() != 1)
+ return false;
+ const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
+ const TargetRegisterClass *DstSubRC =
+ DstRC->getSubRegisterRegClass(DstSubIdx);
+ const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
+ if (DefRC == DstRC)
+ DstSubIdx = 0;
+ else if (DefRC != DstSubRC)
+ return false;
+ }
+
+ SlotIndex DefIdx = CopyIdx.getDefIndex();
+ const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
+ DLR->valno->setCopy(0);
+ // Don't forget to update sub-register intervals.
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+ for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ const LiveRange *DLR =
+ li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
+ if (DLR && DLR->valno->getCopy() == CopyMI)
+ DLR->valno->setCopy(0);
+ }
+ }
+
+ // If copy kills the source register, find the last use and propagate
+ // kill.
+ bool checkForDeadDef = false;
+ MachineBasicBlock *MBB = CopyMI->getParent();
+ if (SrcLR->valno->isKill(DefIdx))
+ if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
+ checkForDeadDef = true;
+ }
+
+ MachineBasicBlock::iterator MII =
+ llvm::next(MachineBasicBlock::iterator(CopyMI));
+ tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, tri_);
+ MachineInstr *NewMI = prior(MII);
+
+ if (checkForDeadDef) {
+ // PR4090 fix: Trim interval failed because there was no use of the
+ // source interval in this MBB. If the def is in this MBB too then we
+ // should mark it dead:
+ if (DefMI->getParent() == MBB) {
+ DefMI->addRegisterDead(SrcInt.reg, tri_);
+ SrcLR->end = SrcLR->start.getNextSlot();
+ }
+ }
+
+ // CopyMI may have implicit operands, transfer them over to the newly
+ // rematerialized instruction. And update implicit def interval valnos.
+ for (unsigned i = CopyMI->getDesc().getNumOperands(),
+ e = CopyMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = CopyMI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit())
+ NewMI->addOperand(MO);
+ if (MO.isDef() && li_->hasInterval(MO.getReg())) {
+ unsigned Reg = MO.getReg();
+ const LiveRange *DLR =
+ li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
+ if (DLR && DLR->valno->getCopy() == CopyMI)
+ DLR->valno->setCopy(0);
+ // Handle subregs as well
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ for (const unsigned* SR = tri_->getSubRegisters(Reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ const LiveRange *DLR =
+ li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
+ if (DLR && DLR->valno->getCopy() == CopyMI)
+ DLR->valno->setCopy(0);
+ }
+ }
+ }
+ }
+
+ TransferImplicitOps(CopyMI, NewMI);
+ li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
+ CopyMI->eraseFromParent();
+ ReMatCopies.insert(CopyMI);
+ ReMatDefs.insert(DefMI);
+ DEBUG(dbgs() << "Remat: " << *NewMI);
+ ++NumReMats;
+ return true;
+}
+
+/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+/// update the subregister number if it is not zero. If DstReg is a
+/// physical register and the existing subregister number of the def / use
+/// being updated is not zero, make sure to set it to the correct physical
+/// subregister.
+void
+SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
+ unsigned SubIdx) {
+ bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ if (DstIsPhys && SubIdx) {
+ // Figure out the real physical register we are updating with.
+ DstReg = tri_->getSubReg(DstReg, SubIdx);
+ SubIdx = 0;
+ }
+
+ // Copy the register use-list before traversing it. We may be adding operands
+ // and invalidating pointers.
+ SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
+ E = mri_->reg_end(); I != E; ++I)
+ reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
+
+ for (unsigned N=0; N != reglist.size(); ++N) {
+ MachineInstr *UseMI = reglist[N].first;
+ MachineOperand &O = UseMI->getOperand(reglist[N].second);
+ unsigned OldSubIdx = O.getSubReg();
+ if (DstIsPhys) {
+ unsigned UseDstReg = DstReg;
+ if (OldSubIdx)
+ UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
+
+ unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
+ if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
+ CopySrcSubIdx, CopyDstSubIdx) &&
+ CopySrcSubIdx == 0 &&
+ CopyDstSubIdx == 0 &&
+ CopySrcReg != CopyDstReg &&
+ CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
+ // If the use is a copy and it won't be coalesced away, and its source
+ // is defined by a trivial computation, try to rematerialize it instead.
+ if (!JoinedCopies.count(UseMI) &&
+ ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
+ CopyDstSubIdx, UseMI))
+ continue;
+ }
+
+ O.setReg(UseDstReg);
+ O.setSubReg(0);
+ if (OldSubIdx) {
+ // Def and kill of subregister of a virtual register actually defs and
+ // kills the whole register. Add imp-defs and imp-kills as needed.
+ if (O.isDef()) {
+ if(O.isDead())
+ UseMI->addRegisterDead(DstReg, tri_, true);
+ else
+ UseMI->addRegisterDefined(DstReg, tri_);
+ } else if (!O.isUndef() &&
+ (O.isKill() ||
+ UseMI->isRegTiedToDefOperand(&O-&UseMI->getOperand(0))))
+ UseMI->addRegisterKilled(DstReg, tri_, true);
+ }
+
+ DEBUG({
+ dbgs() << "\t\tupdated: ";
+ if (!UseMI->isDebugValue())
+ dbgs() << li_->getInstructionIndex(UseMI) << "\t";
+ dbgs() << *UseMI;
+ });
+ continue;
+ }
+
+ // Sub-register indexes goes from small to large. e.g.
+ // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
+ // EAX: 1 -> AL, 2 -> AX
+ // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
+ // sub-register 2 is also AX.
+ //
+ // FIXME: Properly compose subreg indices for all targets.
+ //
+ if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
+ ;
+ else if (SubIdx)
+ O.setSubReg(SubIdx);
+ O.setReg(DstReg);
+
+ DEBUG({
+ dbgs() << "\t\tupdated: ";
+ if (!UseMI->isDebugValue())
+ dbgs() << li_->getInstructionIndex(UseMI) << "\t";
+ dbgs() << *UseMI;
+ });
+
+ // After updating the operand, check if the machine instruction has
+ // become a copy. If so, update its val# information.
+ if (JoinedCopies.count(UseMI))
+ continue;
+
+ const TargetInstrDesc &TID = UseMI->getDesc();
+ unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
+ if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
+ tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
+ CopySrcSubIdx, CopyDstSubIdx) &&
+ CopySrcReg != CopyDstReg &&
+ (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
+ allocatableRegs_[CopyDstReg])) {
+ LiveInterval &LI = li_->getInterval(CopyDstReg);
+ SlotIndex DefIdx =
+ li_->getInstructionIndex(UseMI).getDefIndex();
+ if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
+ if (DLR->valno->def == DefIdx)
+ DLR->valno->setCopy(UseMI);
+ }
+ }
+ }
+}
+
+/// removeIntervalIfEmpty - Check if the live interval of a physical register
+/// is empty, if so remove it and also remove the empty intervals of its
+/// sub-registers. Return true if live interval is removed.
+static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
+ const TargetRegisterInfo *tri_) {
+ if (li.empty()) {
+ if (TargetRegisterInfo::isPhysicalRegister(li.reg))
+ for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
+ if (!li_->hasInterval(*SR))
+ continue;
+ LiveInterval &sli = li_->getInterval(*SR);
+ if (sli.empty())
+ li_->removeInterval(*SR);
+ }
+ li_->removeInterval(li.reg);
+ return true;
+ }
+ return false;
+}
+
+/// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
+/// Return true if live interval is removed.
+bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
+ LiveInterval::iterator MLR =
+ li.FindLiveRangeContaining(CopyIdx.getDefIndex());
+ if (MLR == li.end())
+ return false; // Already removed by ShortenDeadCopySrcLiveRange.
+ SlotIndex RemoveStart = MLR->start;
+ SlotIndex RemoveEnd = MLR->end;
+ SlotIndex DefIdx = CopyIdx.getDefIndex();
+ // Remove the liverange that's defined by this.
+ if (RemoveStart == DefIdx && RemoveEnd == DefIdx.getStoreIndex()) {
+ removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
+ return removeIntervalIfEmpty(li, li_, tri_);
+ }
+ return false;
+}
+
+/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
+/// the val# it defines. If the live interval becomes empty, remove it as well.
+bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
+ MachineInstr *DefMI) {
+ SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
+ LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
+ if (DefIdx != MLR->valno->def)
+ return false;
+ li.removeValNo(MLR->valno);
+ return removeIntervalIfEmpty(li, li_, tri_);
+}
+
+/// PropagateDeadness - Propagate the dead marker to the instruction which
+/// defines the val#.
+static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
+ SlotIndex &LRStart, LiveIntervals *li_,
+ const TargetRegisterInfo* tri_) {
+ MachineInstr *DefMI =
+ li_->getInstructionFromIndex(LRStart.getDefIndex());
+ if (DefMI && DefMI != CopyMI) {
+ int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg);
+ if (DeadIdx != -1)
+ DefMI->getOperand(DeadIdx).setIsDead();
+ else
+ DefMI->addOperand(MachineOperand::CreateReg(li.reg,
+ /*def*/true, /*implicit*/true, /*kill*/false, /*dead*/true));
+ LRStart = LRStart.getNextSlot();
+ }
+}
+
+/// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
+/// extended by a dead copy. Mark the last use (if any) of the val# as kill as
+/// ends the live range there. If there isn't another use, then this live range
+/// is dead. Return true if live interval is removed.
+bool
+SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI);
+ if (CopyIdx == SlotIndex()) {
+ // FIXME: special case: function live in. It can be a general case if the
+ // first instruction index starts at > 0 value.
+ assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
+ // Live-in to the function but dead. Remove it from entry live-in set.
+ if (mf_->begin()->isLiveIn(li.reg))
+ mf_->begin()->removeLiveIn(li.reg);
+ const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
+ removeRange(li, LR->start, LR->end, li_, tri_);
+ return removeIntervalIfEmpty(li, li_, tri_);
+ }
+
+ LiveInterval::iterator LR =
+ li.FindLiveRangeContaining(CopyIdx.getPrevIndex().getStoreIndex());
+ if (LR == li.end())
+ // Livein but defined by a phi.
+ return false;
+
+ SlotIndex RemoveStart = LR->start;
+ SlotIndex RemoveEnd = CopyIdx.getStoreIndex();
+ if (LR->end > RemoveEnd)
+ // More uses past this copy? Nothing to do.
+ return false;
+
+ // If there is a last use in the same bb, we can't remove the live range.
+ // Shorten the live interval and return.
+ MachineBasicBlock *CopyMBB = CopyMI->getParent();
+ if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
+ return false;
+
+ // There are other kills of the val#. Nothing to do.
+ if (!li.isOnlyLROfValNo(LR))
+ return false;
+
+ MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
+ if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
+ // If the live range starts in another mbb and the copy mbb is not a fall
+ // through mbb, then we can only cut the range from the beginning of the
+ // copy mbb.
+ RemoveStart = li_->getMBBStartIdx(CopyMBB).getNextIndex().getBaseIndex();
+
+ if (LR->valno->def == RemoveStart) {
+ // If the def MI defines the val# and this copy is the only kill of the
+ // val#, then propagate the dead marker.
+ PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
+ ++numDeadValNo;
+
+ if (LR->valno->isKill(RemoveEnd))
+ LR->valno->removeKill(RemoveEnd);
+ }
+
+ removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
+ return removeIntervalIfEmpty(li, li_, tri_);
+}
+
+/// CanCoalesceWithImpDef - Returns true if the specified copy instruction
+/// from an implicit def to another register can be coalesced away.
+bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
+ LiveInterval &li,
+ LiveInterval &ImpLi) const{
+ if (!CopyMI->killsRegister(ImpLi.reg))
+ return false;
+ // Make sure this is the only use.
+ for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
+ UE = mri_->use_end(); UI != UE;) {
+ MachineInstr *UseMI = &*UI;
+ ++UI;
+ if (CopyMI == UseMI || JoinedCopies.count(UseMI))
+ continue;
+ return false;
+ }
+ return true;
+}
+
+
+/// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
+/// a virtual destination register with physical source register.
+bool
+SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
+ MachineBasicBlock *CopyMBB,
+ LiveInterval &DstInt,
+ LiveInterval &SrcInt) {
+ // If the virtual register live interval is long but it has low use desity,
+ // do not join them, instead mark the physical register as its allocation
+ // preference.
+ const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
+ unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
+ unsigned Length = li_->getApproximateInstructionCount(DstInt);
+ if (Length > Threshold &&
+ std::distance(mri_->use_nodbg_begin(DstInt.reg),
+ mri_->use_nodbg_end()) * Threshold < Length)
+ return false;
+
+ // If the virtual register live interval extends into a loop, turn down
+ // aggressiveness.
+ SlotIndex CopyIdx =
+ li_->getInstructionIndex(CopyMI).getDefIndex();
+ const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
+ if (!L) {
+ // Let's see if the virtual register live interval extends into the loop.
+ LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
+ assert(DLR != DstInt.end() && "Live range not found!");
+ DLR = DstInt.FindLiveRangeContaining(DLR->end.getNextSlot());
+ if (DLR != DstInt.end()) {
+ CopyMBB = li_->getMBBFromIndex(DLR->start);
+ L = loopInfo->getLoopFor(CopyMBB);
+ }
+ }
+
+ if (!L || Length <= Threshold)
+ return true;
+
+ SlotIndex UseIdx = CopyIdx.getUseIndex();
+ LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
+ MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
+ if (loopInfo->getLoopFor(SMBB) != L) {
+ if (!loopInfo->isLoopHeader(CopyMBB))
+ return false;
+ // If vr's live interval extends pass the loop header, do not join.
+ for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
+ SE = CopyMBB->succ_end(); SI != SE; ++SI) {
+ MachineBasicBlock *SuccMBB = *SI;
+ if (SuccMBB == CopyMBB)
+ continue;
+ if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
+ li_->getMBBEndIdx(SuccMBB)))
+ return false;
+ }
+ }
+ return true;
+}
+
+/// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
+/// copy from a virtual source register to a physical destination register.
+bool
+SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
+ MachineBasicBlock *CopyMBB,
+ LiveInterval &DstInt,
+ LiveInterval &SrcInt) {
+ // If the virtual register live interval is long but it has low use density,
+ // do not join them, instead mark the physical register as its allocation
+ // preference.
+ const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
+ unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
+ unsigned Length = li_->getApproximateInstructionCount(SrcInt);
+ if (Length > Threshold &&
+ std::distance(mri_->use_nodbg_begin(SrcInt.reg),
+ mri_->use_nodbg_end()) * Threshold < Length)
+ return false;
+
+ if (SrcInt.empty())
+ // Must be implicit_def.
+ return false;
+
+ // If the virtual register live interval is defined or cross a loop, turn
+ // down aggressiveness.
+ SlotIndex CopyIdx =
+ li_->getInstructionIndex(CopyMI).getDefIndex();
+ SlotIndex UseIdx = CopyIdx.getUseIndex();
+ LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
+ assert(SLR != SrcInt.end() && "Live range not found!");
+ SLR = SrcInt.FindLiveRangeContaining(SLR->start.getPrevSlot());
+ if (SLR == SrcInt.end())
+ return true;
+ MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
+ const MachineLoop *L = loopInfo->getLoopFor(SMBB);
+
+ if (!L || Length <= Threshold)
+ return true;
+
+ if (loopInfo->getLoopFor(CopyMBB) != L) {
+ if (SMBB != L->getLoopLatch())
+ return false;
+ // If vr's live interval is extended from before the loop latch, do not
+ // join.
+ for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
+ PE = SMBB->pred_end(); PI != PE; ++PI) {
+ MachineBasicBlock *PredMBB = *PI;
+ if (PredMBB == SMBB)
+ continue;
+ if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
+ li_->getMBBEndIdx(PredMBB)))
+ return false;
+ }
+ }
+ return true;
+}
+
+/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
+/// two virtual registers from different register classes.
+bool
+SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned SrcReg,
+ unsigned DstReg,
+ const TargetRegisterClass *SrcRC,
+ const TargetRegisterClass *DstRC,
+ const TargetRegisterClass *NewRC) {
+ unsigned NewRCCount = allocatableRCRegs_[NewRC].count();
+ // This heuristics is good enough in practice, but it's obviously not *right*.
+ // 4 is a magic number that works well enough for x86, ARM, etc. It filter
+ // out all but the most restrictive register classes.
+ if (NewRCCount > 4 ||
+ // Early exit if the function is fairly small, coalesce aggressively if
+ // that's the case. For really special register classes with 3 or
+ // fewer registers, be a bit more careful.
+ (li_->getFuncInstructionCount() / NewRCCount) < 8)
+ return true;
+ LiveInterval &SrcInt = li_->getInterval(SrcReg);
+ LiveInterval &DstInt = li_->getInterval(DstReg);
+ unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
+ unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
+ if (SrcSize <= NewRCCount && DstSize <= NewRCCount)
+ return true;
+ // Estimate *register use density*. If it doubles or more, abort.
+ unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
+ mri_->use_nodbg_end());
+ unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
+ mri_->use_nodbg_end());
+ unsigned NewUses = SrcUses + DstUses;
+ unsigned NewSize = SrcSize + DstSize;
+ if (SrcRC != NewRC && SrcSize > NewRCCount) {
+ unsigned SrcRCCount = allocatableRCRegs_[SrcRC].count();
+ if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
+ return false;
+ }
+ if (DstRC != NewRC && DstSize > NewRCCount) {
+ unsigned DstRCCount = allocatableRCRegs_[DstRC].count();
+ if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
+ return false;
+ }
+ return true;
+}
+
+/// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
+/// register with a physical register, check if any of the virtual register
+/// operand is a sub-register use or def. If so, make sure it won't result
+/// in an illegal extract_subreg or insert_subreg instruction. e.g.
+/// vr1024 = extract_subreg vr1025, 1
+/// ...
+/// vr1024 = mov8rr AH
+/// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
+/// AH does not have a super-reg whose sub-register 1 is AH.
+bool
+SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
+ unsigned VirtReg,
+ unsigned PhysReg) {
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
+ E = mri_->reg_end(); I != E; ++I) {
+ MachineOperand &O = I.getOperand();
+ if (O.isDebug())
+ continue;
+ MachineInstr *MI = &*I;
+ if (MI == CopyMI || JoinedCopies.count(MI))
+ continue;
+ unsigned SubIdx = O.getSubReg();
+ if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
+ return true;
+ if (MI->isExtractSubreg()) {
+ SubIdx = MI->getOperand(2).getImm();
+ if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
+ return true;
+ if (O.isDef()) {
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ const TargetRegisterClass *RC =
+ TargetRegisterInfo::isPhysicalRegister(SrcReg)
+ ? tri_->getPhysicalRegisterRegClass(SrcReg)
+ : mri_->getRegClass(SrcReg);
+ if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
+ return true;
+ }
+ }
+ if (MI->isInsertSubreg() || MI->isSubregToReg()) {
+ SubIdx = MI->getOperand(3).getImm();
+ if (VirtReg == MI->getOperand(0).getReg()) {
+ if (!tri_->getSubReg(PhysReg, SubIdx))
+ return true;
+ } else {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ const TargetRegisterClass *RC =
+ TargetRegisterInfo::isPhysicalRegister(DstReg)
+ ? tri_->getPhysicalRegisterRegClass(DstReg)
+ : mri_->getRegClass(DstReg);
+ if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+
+/// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
+/// an extract_subreg where dst is a physical register, e.g.
+/// cl = EXTRACT_SUBREG reg1024, 1
+bool
+SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
+ unsigned SrcReg, unsigned SubIdx,
+ unsigned &RealDstReg) {
+ const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
+ RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
+ if (!RealDstReg) {
+ DEBUG(dbgs() << "\tIncompatible source regclass: "
+ << "none of the super-registers of " << tri_->getName(DstReg)
+ << " are in " << RC->getName() << ".\n");
+ return false;
+ }
+
+ LiveInterval &RHS = li_->getInterval(SrcReg);
+ // For this type of EXTRACT_SUBREG, conservatively
+ // check if the live interval of the source register interfere with the
+ // actual super physical register we are trying to coalesce with.
+ if (li_->hasInterval(RealDstReg) &&
+ RHS.overlaps(li_->getInterval(RealDstReg))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with register ";
+ li_->getInterval(RealDstReg).print(dbgs(), tri_);
+ });
+ return false; // Not coalescable
+ }
+ for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
+ // Do not check DstReg or its sub-register. JoinIntervals() will take care
+ // of that.
+ if (*SR != DstReg &&
+ !tri_->isSubRegister(DstReg, *SR) &&
+ li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
+ });
+ return false; // Not coalescable
+ }
+ return true;
+}
+
+/// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
+/// an insert_subreg where src is a physical register, e.g.
+/// reg1024 = INSERT_SUBREG reg1024, c1, 0
+bool
+SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
+ unsigned SrcReg, unsigned SubIdx,
+ unsigned &RealSrcReg) {
+ const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
+ RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
+ if (!RealSrcReg) {
+ DEBUG(dbgs() << "\tIncompatible destination regclass: "
+ << "none of the super-registers of " << tri_->getName(SrcReg)
+ << " are in " << RC->getName() << ".\n");
+ return false;
+ }
+
+ LiveInterval &LHS = li_->getInterval(DstReg);
+ if (li_->hasInterval(RealSrcReg) &&
+ LHS.overlaps(li_->getInterval(RealSrcReg))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with register ";
+ li_->getInterval(RealSrcReg).print(dbgs(), tri_);
+ });
+ return false; // Not coalescable
+ }
+ for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
+ // Do not check SrcReg or its sub-register. JoinIntervals() will take care
+ // of that.
+ if (*SR != SrcReg &&
+ !tri_->isSubRegister(SrcReg, *SR) &&
+ li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
+ });
+ return false; // Not coalescable
+ }
+ return true;
+}
+
+/// getRegAllocPreference - Return register allocation preference register.
+///
+static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
+ MachineRegisterInfo *MRI,
+ const TargetRegisterInfo *TRI) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return 0;
+ std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
+ return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
+}
+
+/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+/// which are the src/dst of the copy instruction CopyMI. This returns true
+/// if the copy was successfully coalesced away. If it is not currently
+/// possible to coalesce this interval, but it may be possible if other
+/// things get coalesced, then it returns true by reference in 'Again'.
+bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
+ MachineInstr *CopyMI = TheCopy.MI;
+
+ Again = false;
+ if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
+ return false; // Already done.
+
+ DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
+
+ unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
+ bool isExtSubReg = CopyMI->isExtractSubreg();
+ bool isInsSubReg = CopyMI->isInsertSubreg();
+ bool isSubRegToReg = CopyMI->isSubregToReg();
+ unsigned SubIdx = 0;
+ if (isExtSubReg) {
+ DstReg = CopyMI->getOperand(0).getReg();
+ DstSubIdx = CopyMI->getOperand(0).getSubReg();
+ SrcReg = CopyMI->getOperand(1).getReg();
+ SrcSubIdx = CopyMI->getOperand(2).getImm();
+ } else if (isInsSubReg || isSubRegToReg) {
+ DstReg = CopyMI->getOperand(0).getReg();
+ DstSubIdx = CopyMI->getOperand(3).getImm();
+ SrcReg = CopyMI->getOperand(2).getReg();
+ SrcSubIdx = CopyMI->getOperand(2).getSubReg();
+ if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
+ // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
+ // coalesced to a larger register so the subreg indices cancel out.
+ DEBUG(dbgs() << "\tSource of insert_subreg or subreg_to_reg is already "
+ "coalesced to another register.\n");
+ return false; // Not coalescable.
+ }
+ } else if (tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
+ if (SrcSubIdx && DstSubIdx && SrcSubIdx != DstSubIdx) {
+ // e.g. %reg16404:1<def> = MOV8rr %reg16412:2<kill>
+ Again = true;
+ return false; // Not coalescable.
+ }
+ } else {
+ llvm_unreachable("Unrecognized copy instruction!");
+ }
+
+ // If they are already joined we continue.
+ if (SrcReg == DstReg) {
+ DEBUG(dbgs() << "\tCopy already coalesced.\n");
+ return false; // Not coalescable.
+ }
+
+ bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+
+ // If they are both physical registers, we cannot join them.
+ if (SrcIsPhys && DstIsPhys) {
+ DEBUG(dbgs() << "\tCan not coalesce physregs.\n");
+ return false; // Not coalescable.
+ }
+
+ // We only join virtual registers with allocatable physical registers.
+ if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
+ DEBUG(dbgs() << "\tSrc reg is unallocatable physreg.\n");
+ return false; // Not coalescable.
+ }
+ if (DstIsPhys && !allocatableRegs_[DstReg]) {
+ DEBUG(dbgs() << "\tDst reg is unallocatable physreg.\n");
+ return false; // Not coalescable.
+ }
+
+ // We cannot handle dual subreg indices and mismatched classes at the same
+ // time.
+ if (SrcSubIdx && DstSubIdx && differingRegisterClasses(SrcReg, DstReg)) {
+ DEBUG(dbgs() << "\tCannot handle subreg indices and mismatched classes.\n");
+ return false;
+ }
+
+ // Check that a physical source register is compatible with dst regclass
+ if (SrcIsPhys) {
+ unsigned SrcSubReg = SrcSubIdx ?
+ tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
+ const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
+ const TargetRegisterClass *DstSubRC = DstRC;
+ if (DstSubIdx)
+ DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
+ assert(DstSubRC && "Illegal subregister index");
+ if (!DstSubRC->contains(SrcSubReg)) {
+ DEBUG(dbgs() << "\tIncompatible destination regclass: "
+ << "none of the super-registers of "
+ << tri_->getName(SrcSubReg) << " are in "
+ << DstSubRC->getName() << ".\n");
+ return false; // Not coalescable.
+ }
+ }
+
+ // Check that a physical dst register is compatible with source regclass
+ if (DstIsPhys) {
+ unsigned DstSubReg = DstSubIdx ?
+ tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
+ const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
+ const TargetRegisterClass *SrcSubRC = SrcRC;
+ if (SrcSubIdx)
+ SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
+ assert(SrcSubRC && "Illegal subregister index");
+ if (!SrcSubRC->contains(DstSubReg)) {
+ DEBUG(dbgs() << "\tIncompatible source regclass: "
+ << "none of the super-registers of "
+ << tri_->getName(DstSubReg) << " are in "
+ << SrcSubRC->getName() << ".\n");
+ (void)DstSubReg;
+ return false; // Not coalescable.
+ }
+ }
+
+ // Should be non-null only when coalescing to a sub-register class.
+ bool CrossRC = false;
+ const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
+ const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
+ const TargetRegisterClass *NewRC = NULL;
+ unsigned RealDstReg = 0;
+ unsigned RealSrcReg = 0;
+ if (isExtSubReg || isInsSubReg || isSubRegToReg) {
+ SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
+ if (SrcIsPhys && isExtSubReg) {
+ // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
+ // coalesced with AX.
+ unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
+ if (DstSubIdx) {
+ // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
+ // coalesced to a larger register so the subreg indices cancel out.
+ if (DstSubIdx != SubIdx) {
+ DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
+ return false; // Not coalescable.
+ }
+ } else
+ SrcReg = tri_->getSubReg(SrcReg, SubIdx);
+ SubIdx = 0;
+ } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
+ // EAX = INSERT_SUBREG EAX, r1024, 0
+ unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
+ if (SrcSubIdx) {
+ // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
+ // coalesced to a larger register so the subreg indices cancel out.
+ if (SrcSubIdx != SubIdx) {
+ DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
+ return false; // Not coalescable.
+ }
+ } else
+ DstReg = tri_->getSubReg(DstReg, SubIdx);
+ SubIdx = 0;
+ } else if ((DstIsPhys && isExtSubReg) ||
+ (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
+ if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
+ DEBUG(dbgs() << "\tSrc of extract_subreg already coalesced with reg"
+ << " of a super-class.\n");
+ return false; // Not coalescable.
+ }
+
+ // FIXME: The following checks are somewhat conservative. Perhaps a better
+ // way to implement this is to treat this as coalescing a vr with the
+ // super physical register.
+ if (isExtSubReg) {
+ if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
+ return false; // Not coalescable
+ } else {
+ if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
+ return false; // Not coalescable
+ }
+ SubIdx = 0;
+ } else {
+ unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
+ : CopyMI->getOperand(2).getSubReg();
+ if (OldSubIdx) {
+ if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
+ // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
+ // coalesced to a larger register so the subreg indices cancel out.
+ // Also check if the other larger register is of the same register
+ // class as the would be resulting register.
+ SubIdx = 0;
+ else {
+ DEBUG(dbgs() << "\t Sub-register indices mismatch.\n");
+ return false; // Not coalescable.
+ }
+ }
+ if (SubIdx) {
+ if (!DstIsPhys && !SrcIsPhys) {
+ if (isInsSubReg || isSubRegToReg) {
+ NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
+ } else // extract_subreg {
+ NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
+ }
+ if (!NewRC) {
+ DEBUG(dbgs() << "\t Conflicting sub-register indices.\n");
+ return false; // Not coalescable
+ }
+
+ if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) {
+ DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
+ << SrcRC->getName() << "/"
+ << DstRC->getName() << " -> "
+ << NewRC->getName() << ".\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ }
+ }
+ } else if (differingRegisterClasses(SrcReg, DstReg)) {
+ if (DisableCrossClassJoin)
+ return false;
+ CrossRC = true;
+
+ // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
+ // with another? If it's the resulting destination register, then
+ // the subidx must be propagated to uses (but only those defined
+ // by the EXTRACT_SUBREG). If it's being coalesced into another
+ // register, it should be safe because register is assumed to have
+ // the register class of the super-register.
+
+ // Process moves where one of the registers have a sub-register index.
+ MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
+ MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
+ SubIdx = DstMO->getSubReg();
+ if (SubIdx) {
+ if (SrcMO->getSubReg())
+ // FIXME: can we handle this?
+ return false;
+ // This is not an insert_subreg but it looks like one.
+ // e.g. %reg1024:4 = MOV32rr %EAX
+ isInsSubReg = true;
+ if (SrcIsPhys) {
+ if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
+ return false; // Not coalescable
+ SubIdx = 0;
+ }
+ } else {
+ SubIdx = SrcMO->getSubReg();
+ if (SubIdx) {
+ // This is not a extract_subreg but it looks like one.
+ // e.g. %cl = MOV16rr %reg1024:1
+ isExtSubReg = true;
+ if (DstIsPhys) {
+ if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
+ return false; // Not coalescable
+ SubIdx = 0;
+ }
+ }
+ }
+
+ // Now determine the register class of the joined register.
+ if (!SrcIsPhys && !DstIsPhys) {
+ if (isExtSubReg) {
+ NewRC =
+ SubIdx ? tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx) : SrcRC;
+ } else if (isInsSubReg) {
+ NewRC =
+ SubIdx ? tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx) : DstRC;
+ } else {
+ NewRC = getCommonSubClass(SrcRC, DstRC);
+ }
+
+ if (!NewRC) {
+ DEBUG(dbgs() << "\tDisjoint regclasses: "
+ << SrcRC->getName() << ", "
+ << DstRC->getName() << ".\n");
+ return false; // Not coalescable.
+ }
+
+ // If we are joining two virtual registers and the resulting register
+ // class is more restrictive (fewer register, smaller size). Check if it's
+ // worth doing the merge.
+ if (!isWinToJoinCrossClass(SrcReg, DstReg, SrcRC, DstRC, NewRC)) {
+ DEBUG(dbgs() << "\tAvoid coalescing to constrained register class: "
+ << SrcRC->getName() << "/"
+ << DstRC->getName() << " -> "
+ << NewRC->getName() << ".\n");
+ // Allow the coalescer to try again in case either side gets coalesced to
+ // a physical register that's compatible with the other side. e.g.
+ // r1024 = MOV32to32_ r1025
+ // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ }
+ }
+
+ // Will it create illegal extract_subreg / insert_subreg?
+ if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
+ return false;
+ if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
+ return false;
+
+ LiveInterval &SrcInt = li_->getInterval(SrcReg);
+ LiveInterval &DstInt = li_->getInterval(DstReg);
+ assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
+ "Register mapping is horribly broken!");
+
+ DEBUG({
+ dbgs() << "\t\tInspecting ";
+ if (SrcRC) dbgs() << SrcRC->getName() << ": ";
+ SrcInt.print(dbgs(), tri_);
+ dbgs() << "\n\t\t and ";
+ if (DstRC) dbgs() << DstRC->getName() << ": ";
+ DstInt.print(dbgs(), tri_);
+ dbgs() << "\n";
+ });
+
+ // Save a copy of the virtual register live interval. We'll manually
+ // merge this into the "real" physical register live interval this is
+ // coalesced with.
+ OwningPtr<LiveInterval> SavedLI;
+ if (RealDstReg)
+ SavedLI.reset(li_->dupInterval(&SrcInt));
+ else if (RealSrcReg)
+ SavedLI.reset(li_->dupInterval(&DstInt));
+
+ if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
+ // Check if it is necessary to propagate "isDead" property.
+ MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
+ bool isDead = mopd->isDead();
+
+ // We need to be careful about coalescing a source physical register with a
+ // virtual register. Once the coalescing is done, it cannot be broken and
+ // these are not spillable! If the destination interval uses are far away,
+ // think twice about coalescing them!
+ if (!isDead && (SrcIsPhys || DstIsPhys)) {
+ // If the virtual register live interval is long but it has low use
+ // density, do not join them, instead mark the physical register as its
+ // allocation preference.
+ LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
+ LiveInterval &JoinPInt = SrcIsPhys ? SrcInt : DstInt;
+ unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
+ unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
+
+ // Don't join with physregs that have a ridiculous number of live
+ // ranges. The data structure performance is really bad when that
+ // happens.
+ if (JoinPInt.ranges.size() > 1000) {
+ mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
+ ++numAborts;
+ DEBUG(dbgs()
+ << "\tPhysical register live interval too complicated, abort!\n");
+ return false;
+ }
+
+ const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
+ unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
+ unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
+ if (Length > Threshold &&
+ std::distance(mri_->use_nodbg_begin(JoinVReg),
+ mri_->use_nodbg_end()) * Threshold < Length) {
+ // Before giving up coalescing, if definition of source is defined by
+ // trivial computation, try rematerializing it.
+ if (ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
+ return true;
+
+ mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
+ ++numAborts;
+ DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ }
+ }
+
+ // Okay, attempt to join these two intervals. On failure, this returns false.
+ // Otherwise, if one of the intervals being joined is a physreg, this method
+ // always canonicalizes DstInt to be it. The output "SrcInt" will not have
+ // been modified, so we can use this information below to update aliases.
+ bool Swapped = false;
+ // If SrcInt is implicitly defined, it's safe to coalesce.
+ if (SrcInt.empty()) {
+ if (!CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
+ // Only coalesce an empty interval (defined by implicit_def) with
+ // another interval which has a valno defined by the CopyMI and the CopyMI
+ // is a kill of the implicit def.
+ DEBUG(dbgs() << "\tNot profitable!\n");
+ return false;
+ }
+ } else if (!JoinIntervals(DstInt, SrcInt, Swapped)) {
+ // Coalescing failed.
+
+ // If definition of source is defined by trivial computation, try
+ // rematerializing it.
+ if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
+ ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
+ return true;
+
+ // If we can eliminate the copy without merging the live ranges, do so now.
+ if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
+ (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
+ RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
+ JoinedCopies.insert(CopyMI);
+ DEBUG(dbgs() << "\tTrivial!\n");
+ return true;
+ }
+
+ // Otherwise, we are unable to join the intervals.
+ DEBUG(dbgs() << "\tInterference!\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+
+ LiveInterval *ResSrcInt = &SrcInt;
+ LiveInterval *ResDstInt = &DstInt;
+ if (Swapped) {
+ std::swap(SrcReg, DstReg);
+ std::swap(ResSrcInt, ResDstInt);
+ }
+ assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ "LiveInterval::join didn't work right!");
+
+ // If we're about to merge live ranges into a physical register live interval,
+ // we have to update any aliased register's live ranges to indicate that they
+ // have clobbered values for this range.
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+ // If this is a extract_subreg where dst is a physical register, e.g.
+ // cl = EXTRACT_SUBREG reg1024, 1
+ // then create and update the actual physical register allocated to RHS.
+ if (RealDstReg || RealSrcReg) {
+ LiveInterval &RealInt =
+ li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
+ for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
+ E = SavedLI->vni_end(); I != E; ++I) {
+ const VNInfo *ValNo = *I;
+ VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
+ false, // updated at *
+ li_->getVNInfoAllocator());
+ NewValNo->setFlags(ValNo->getFlags()); // * updated here.
+ RealInt.addKills(NewValNo, ValNo->kills);
+ RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
+ }
+ RealInt.weight += SavedLI->weight;
+ DstReg = RealDstReg ? RealDstReg : RealSrcReg;
+ }
+
+ // Update the liveintervals of sub-registers.
+ for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
+ li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, *ResSrcInt,
+ li_->getVNInfoAllocator());
+ }
+
+ // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
+ // larger super-register.
+ if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
+ !SrcIsPhys && !DstIsPhys) {
+ if ((isExtSubReg && !Swapped) ||
+ ((isInsSubReg || isSubRegToReg) && Swapped)) {
+ ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
+ std::swap(SrcReg, DstReg);
+ std::swap(ResSrcInt, ResDstInt);
+ }
+ }
+
+ // Coalescing to a virtual register that is of a sub-register class of the
+ // other. Make sure the resulting register is set to the right register class.
+ if (CrossRC)
+ ++numCrossRCs;
+
+ // This may happen even if it's cross-rc coalescing. e.g.
+ // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
+ // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
+ // be allocate a register from GR64_ABCD.
+ if (NewRC)
+ mri_->setRegClass(DstReg, NewRC);
+
+ // Remember to delete the copy instruction.
+ JoinedCopies.insert(CopyMI);
+
+ UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
+
+ // If we have extended the live range of a physical register, make sure we
+ // update live-in lists as well.
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+ const LiveInterval &VRegInterval = li_->getInterval(SrcReg);
+ SmallVector<MachineBasicBlock*, 16> BlockSeq;
+ for (LiveInterval::const_iterator I = VRegInterval.begin(),
+ E = VRegInterval.end(); I != E; ++I ) {
+ li_->findLiveInMBBs(I->start, I->end, BlockSeq);
+ for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
+ MachineBasicBlock &block = *BlockSeq[idx];
+ if (!block.isLiveIn(DstReg))
+ block.addLiveIn(DstReg);
+ }
+ BlockSeq.clear();
+ }
+ }
+
+ // SrcReg is guarateed to be the register whose live interval that is
+ // being merged.
+ li_->removeInterval(SrcReg);
+
+ // Update regalloc hint.
+ tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);
+
+ // Manually deleted the live interval copy.
+ if (SavedLI) {
+ SavedLI->clear();
+ SavedLI.reset();
+ }
+
+ // If resulting interval has a preference that no longer fits because of subreg
+ // coalescing, just clear the preference.
+ unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
+ if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
+ TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
+ const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
+ if (!RC->contains(Preference))
+ mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
+ }
+
+ DEBUG({
+ dbgs() << "\t\tJoined. Result = ";
+ ResDstInt->print(dbgs(), tri_);
+ dbgs() << "\n";
+ });
+
+ ++numJoins;
+ return true;
+}
+
+/// ComputeUltimateVN - Assuming we are going to join two live intervals,
+/// compute what the resultant value numbers for each value in the input two
+/// ranges will be. This is complicated by copies between the two which can
+/// and will commonly cause multiple value numbers to be merged into one.
+///
+/// VN is the value number that we're trying to resolve. InstDefiningValue
+/// keeps track of the new InstDefiningValue assignment for the result
+/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
+/// whether a value in this or other is a copy from the opposite set.
+/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
+/// already been assigned.
+///
+/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
+/// contains the value number the copy is from.
+///
+static unsigned ComputeUltimateVN(VNInfo *VNI,
+ SmallVector<VNInfo*, 16> &NewVNInfo,
+ DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
+ DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
+ SmallVector<int, 16> &ThisValNoAssignments,
+ SmallVector<int, 16> &OtherValNoAssignments) {
+ unsigned VN = VNI->id;
+
+ // If the VN has already been computed, just return it.
+ if (ThisValNoAssignments[VN] >= 0)
+ return ThisValNoAssignments[VN];
+ assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
+
+ // If this val is not a copy from the other val, then it must be a new value
+ // number in the destination.
+ DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
+ if (I == ThisFromOther.end()) {
+ NewVNInfo.push_back(VNI);
+ return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
+ }
+ VNInfo *OtherValNo = I->second;
+
+ // Otherwise, this *is* a copy from the RHS. If the other side has already
+ // been computed, return it.
+ if (OtherValNoAssignments[OtherValNo->id] >= 0)
+ return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
+
+ // Mark this value number as currently being computed, then ask what the
+ // ultimate value # of the other value is.
+ ThisValNoAssignments[VN] = -2;
+ unsigned UltimateVN =
+ ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
+ OtherValNoAssignments, ThisValNoAssignments);
+ return ThisValNoAssignments[VN] = UltimateVN;
+}
+
+static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
+ return std::find(V.begin(), V.end(), Val) != V.end();
+}
+
+static bool isValNoDefMove(const MachineInstr *MI, unsigned DR, unsigned SR,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) {
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
+ ;
+ else if (MI->isExtractSubreg()) {
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ } else if (MI->isSubregToReg() ||
+ MI->isInsertSubreg()) {
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(2).getReg();
+ } else
+ return false;
+ return (SrcReg == SR || TRI->isSuperRegister(SR, SrcReg)) &&
+ (DstReg == DR || TRI->isSuperRegister(DR, DstReg));
+}
+
+/// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
+/// the specified live interval is defined by a copy from the specified
+/// register.
+bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
+ LiveRange *LR,
+ unsigned Reg) {
+ unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
+ if (SrcReg == Reg)
+ return true;
+ // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
+ if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
+ TargetRegisterInfo::isPhysicalRegister(li.reg) &&
+ *tri_->getSuperRegisters(li.reg)) {
+ // It's a sub-register live interval, we may not have precise information.
+ // Re-compute it.
+ MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
+ if (DefMI && isValNoDefMove(DefMI, li.reg, Reg, tii_, tri_)) {
+ // Cache computed info.
+ LR->valno->def = LR->start;
+ LR->valno->setCopy(DefMI);
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/// ValueLiveAt - Return true if the LiveRange pointed to by the given
+/// iterator, or any subsequent range with the same value number,
+/// is live at the given point.
+bool SimpleRegisterCoalescing::ValueLiveAt(LiveInterval::iterator LRItr,
+ LiveInterval::iterator LREnd,
+ SlotIndex defPoint) const {
+ for (const VNInfo *valno = LRItr->valno;
+ (LRItr != LREnd) && (LRItr->valno == valno); ++LRItr) {
+ if (LRItr->contains(defPoint))
+ return true;
+ }
+
+ return false;
+}
+
+
+/// SimpleJoin - Attempt to joint the specified interval into this one. The
+/// caller of this method must guarantee that the RHS only contains a single
+/// value number and that the RHS is not defined by a copy from this
+/// interval. This returns false if the intervals are not joinable, or it
+/// joins them and returns true.
+bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
+ assert(RHS.containsOneValue());
+
+ // Some number (potentially more than one) value numbers in the current
+ // interval may be defined as copies from the RHS. Scan the overlapping
+ // portions of the LHS and RHS, keeping track of this and looking for
+ // overlapping live ranges that are NOT defined as copies. If these exist, we
+ // cannot coalesce.
+
+ LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
+ LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
+
+ if (LHSIt->start < RHSIt->start) {
+ LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
+ if (LHSIt != LHS.begin()) --LHSIt;
+ } else if (RHSIt->start < LHSIt->start) {
+ RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
+ if (RHSIt != RHS.begin()) --RHSIt;
+ }
+
+ SmallVector<VNInfo*, 8> EliminatedLHSVals;
+
+ while (1) {
+ // Determine if these live intervals overlap.
+ bool Overlaps = false;
+ if (LHSIt->start <= RHSIt->start)
+ Overlaps = LHSIt->end > RHSIt->start;
+ else
+ Overlaps = RHSIt->end > LHSIt->start;
+
+ // If the live intervals overlap, there are two interesting cases: if the
+ // LHS interval is defined by a copy from the RHS, it's ok and we record
+ // that the LHS value # is the same as the RHS. If it's not, then we cannot
+ // coalesce these live ranges and we bail out.
+ if (Overlaps) {
+ // If we haven't already recorded that this value # is safe, check it.
+ if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
+ // If it's re-defined by an early clobber somewhere in the live range,
+ // then conservatively abort coalescing.
+ if (LHSIt->valno->hasRedefByEC())
+ return false;
+ // Copy from the RHS?
+ if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
+ return false; // Nope, bail out.
+
+ if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def))
+ // Here is an interesting situation:
+ // BB1:
+ // vr1025 = copy vr1024
+ // ..
+ // BB2:
+ // vr1024 = op
+ // = vr1025
+ // Even though vr1025 is copied from vr1024, it's not safe to
+ // coalesce them since the live range of vr1025 intersects the
+ // def of vr1024. This happens because vr1025 is assigned the
+ // value of the previous iteration of vr1024.
+ return false;
+ EliminatedLHSVals.push_back(LHSIt->valno);
+ }
+
+ // We know this entire LHS live range is okay, so skip it now.
+ if (++LHSIt == LHSEnd) break;
+ continue;
+ }
+
+ if (LHSIt->end < RHSIt->end) {
+ if (++LHSIt == LHSEnd) break;
+ } else {
+ // One interesting case to check here. It's possible that we have
+ // something like "X3 = Y" which defines a new value number in the LHS,
+ // and is the last use of this liverange of the RHS. In this case, we
+ // want to notice this copy (so that it gets coalesced away) even though
+ // the live ranges don't actually overlap.
+ if (LHSIt->start == RHSIt->end) {
+ if (InVector(LHSIt->valno, EliminatedLHSVals)) {
+ // We already know that this value number is going to be merged in
+ // if coalescing succeeds. Just skip the liverange.
+ if (++LHSIt == LHSEnd) break;
+ } else {
+ // If it's re-defined by an early clobber somewhere in the live range,
+ // then conservatively abort coalescing.
+ if (LHSIt->valno->hasRedefByEC())
+ return false;
+ // Otherwise, if this is a copy from the RHS, mark it as being merged
+ // in.
+ if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
+ if (ValueLiveAt(LHSIt, LHS.end(), RHSIt->valno->def))
+ // Here is an interesting situation:
+ // BB1:
+ // vr1025 = copy vr1024
+ // ..
+ // BB2:
+ // vr1024 = op
+ // = vr1025
+ // Even though vr1025 is copied from vr1024, it's not safe to
+ // coalesced them since live range of vr1025 intersects the
+ // def of vr1024. This happens because vr1025 is assigned the
+ // value of the previous iteration of vr1024.
+ return false;
+ EliminatedLHSVals.push_back(LHSIt->valno);
+
+ // We know this entire LHS live range is okay, so skip it now.
+ if (++LHSIt == LHSEnd) break;
+ }
+ }
+ }
+
+ if (++RHSIt == RHSEnd) break;
+ }
+ }
+
+ // If we got here, we know that the coalescing will be successful and that
+ // the value numbers in EliminatedLHSVals will all be merged together. Since
+ // the most common case is that EliminatedLHSVals has a single number, we
+ // optimize for it: if there is more than one value, we merge them all into
+ // the lowest numbered one, then handle the interval as if we were merging
+ // with one value number.
+ VNInfo *LHSValNo = NULL;
+ if (EliminatedLHSVals.size() > 1) {
+ // Loop through all the equal value numbers merging them into the smallest
+ // one.
+ VNInfo *Smallest = EliminatedLHSVals[0];
+ for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
+ if (EliminatedLHSVals[i]->id < Smallest->id) {
+ // Merge the current notion of the smallest into the smaller one.
+ LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
+ Smallest = EliminatedLHSVals[i];
+ } else {
+ // Merge into the smallest.
+ LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
+ }
+ }
+ LHSValNo = Smallest;
+ } else if (EliminatedLHSVals.empty()) {
+ if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
+ *tri_->getSuperRegisters(LHS.reg))
+ // Imprecise sub-register information. Can't handle it.
+ return false;
+ llvm_unreachable("No copies from the RHS?");
+ } else {
+ LHSValNo = EliminatedLHSVals[0];
+ }
+
+ // Okay, now that there is a single LHS value number that we're merging the
+ // RHS into, update the value number info for the LHS to indicate that the
+ // value number is defined where the RHS value number was.
+ const VNInfo *VNI = RHS.getValNumInfo(0);
+ LHSValNo->def = VNI->def;
+ LHSValNo->setCopy(VNI->getCopy());
+
+ // Okay, the final step is to loop over the RHS live intervals, adding them to
+ // the LHS.
+ if (VNI->hasPHIKill())
+ LHSValNo->setHasPHIKill(true);
+ LHS.addKills(LHSValNo, VNI->kills);
+ LHS.MergeRangesInAsValue(RHS, LHSValNo);
+
+ LHS.ComputeJoinedWeight(RHS);
+
+ // Update regalloc hint if both are virtual registers.
+ if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
+ TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
+ std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
+ std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
+ if (RHSPref != LHSPref)
+ mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
+ }
+
+ // Update the liveintervals of sub-registers.
+ if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
+ for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
+ li_->getOrCreateInterval(*AS).MergeInClobberRanges(*li_, LHS,
+ li_->getVNInfoAllocator());
+
+ return true;
+}
+
+/// JoinIntervals - Attempt to join these two intervals. On failure, this
+/// returns false. Otherwise, if one of the intervals being joined is a
+/// physreg, this method always canonicalizes LHS to be it. The output
+/// "RHS" will not have been modified, so we can use this information
+/// below to update aliases.
+bool
+SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
+ bool &Swapped) {
+ // Compute the final value assignment, assuming that the live ranges can be
+ // coalesced.
+ SmallVector<int, 16> LHSValNoAssignments;
+ SmallVector<int, 16> RHSValNoAssignments;
+ DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
+ DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
+ SmallVector<VNInfo*, 16> NewVNInfo;
+
+ // If a live interval is a physical register, conservatively check if any
+ // of its sub-registers is overlapping the live interval of the virtual
+ // register. If so, do not coalesce.
+ if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
+ *tri_->getSubRegisters(LHS.reg)) {
+ // If it's coalescing a virtual register to a physical register, estimate
+ // its live interval length. This is the *cost* of scanning an entire live
+ // interval. If the cost is low, we'll do an exhaustive check instead.
+
+ // If this is something like this:
+ // BB1:
+ // v1024 = op
+ // ...
+ // BB2:
+ // ...
+ // RAX = v1024
+ //
+ // That is, the live interval of v1024 crosses a bb. Then we can't rely on
+ // less conservative check. It's possible a sub-register is defined before
+ // v1024 (or live in) and live out of BB1.
+ if (RHS.containsOneValue() &&
+ li_->intervalIsInOneMBB(RHS) &&
+ li_->getApproximateInstructionCount(RHS) <= 10) {
+ // Perform a more exhaustive check for some common cases.
+ if (li_->conflictsWithSubPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
+ return false;
+ } else {
+ for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
+ if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
+ DEBUG({
+ dbgs() << "\tInterfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
+ });
+ return false;
+ }
+ }
+ } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
+ *tri_->getSubRegisters(RHS.reg)) {
+ if (LHS.containsOneValue() &&
+ li_->getApproximateInstructionCount(LHS) <= 10) {
+ // Perform a more exhaustive check for some common cases.
+ if (li_->conflictsWithSubPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
+ return false;
+ } else {
+ for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
+ if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
+ DEBUG({
+ dbgs() << "\tInterfere with sub-register ";
+ li_->getInterval(*SR).print(dbgs(), tri_);
+ });
+ return false;
+ }
+ }
+ }
+
+ // Compute ultimate value numbers for the LHS and RHS values.
+ if (RHS.containsOneValue()) {
+ // Copies from a liveinterval with a single value are simple to handle and
+ // very common, handle the special case here. This is important, because
+ // often RHS is small and LHS is large (e.g. a physreg).
+
+ // Find out if the RHS is defined as a copy from some value in the LHS.
+ int RHSVal0DefinedFromLHS = -1;
+ int RHSValID = -1;
+ VNInfo *RHSValNoInfo = NULL;
+ VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
+ unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
+ if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
+ // If RHS is not defined as a copy from the LHS, we can use simpler and
+ // faster checks to see if the live ranges are coalescable. This joiner
+ // can't swap the LHS/RHS intervals though.
+ if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
+ return SimpleJoin(LHS, RHS);
+ } else {
+ RHSValNoInfo = RHSValNoInfo0;
+ }
+ } else {
+ // It was defined as a copy from the LHS, find out what value # it is.
+ RHSValNoInfo =
+ LHS.getLiveRangeContaining(RHSValNoInfo0->def.getPrevSlot())->valno;
+ RHSValID = RHSValNoInfo->id;
+ RHSVal0DefinedFromLHS = RHSValID;
+ }
+
+ LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
+ RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
+ NewVNInfo.resize(LHS.getNumValNums(), NULL);
+
+ // Okay, *all* of the values in LHS that are defined as a copy from RHS
+ // should now get updated.
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
+ if (LHSSrcReg != RHS.reg) {
+ // If this is not a copy from the RHS, its value number will be
+ // unmodified by the coalescing.
+ NewVNInfo[VN] = VNI;
+ LHSValNoAssignments[VN] = VN;
+ } else if (RHSValID == -1) {
+ // Otherwise, it is a copy from the RHS, and we don't already have a
+ // value# for it. Keep the current value number, but remember it.
+ LHSValNoAssignments[VN] = RHSValID = VN;
+ NewVNInfo[VN] = RHSValNoInfo;
+ LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
+ } else {
+ // Otherwise, use the specified value #.
+ LHSValNoAssignments[VN] = RHSValID;
+ if (VN == (unsigned)RHSValID) { // Else this val# is dead.
+ NewVNInfo[VN] = RHSValNoInfo;
+ LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
+ }
+ }
+ } else {
+ NewVNInfo[VN] = VNI;
+ LHSValNoAssignments[VN] = VN;
+ }
+ }
+
+ assert(RHSValID != -1 && "Didn't find value #?");
+ RHSValNoAssignments[0] = RHSValID;
+ if (RHSVal0DefinedFromLHS != -1) {
+ // This path doesn't go through ComputeUltimateVN so just set
+ // it to anything.
+ RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
+ }
+ } else {
+ // Loop over the value numbers of the LHS, seeing if any are defined from
+ // the RHS.
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
+ continue;
+
+ // DstReg is known to be a register in the LHS interval. If the src is
+ // from the RHS interval, we can use its value #.
+ if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
+ continue;
+
+ // Figure out the value # from the RHS.
+ LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ assert(lr && "Cannot find live range");
+ LHSValsDefinedFromRHS[VNI] = lr->valno;
+ }
+
+ // Loop over the value numbers of the RHS, seeing if any are defined from
+ // the LHS.
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
+ continue;
+
+ // DstReg is known to be a register in the RHS interval. If the src is
+ // from the LHS interval, we can use its value #.
+ if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
+ continue;
+
+ // Figure out the value # from the LHS.
+ LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ assert(lr && "Cannot find live range");
+ RHSValsDefinedFromLHS[VNI] = lr->valno;
+ }
+
+ LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
+ RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
+ NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
+
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ ComputeUltimateVN(VNI, NewVNInfo,
+ LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
+ LHSValNoAssignments, RHSValNoAssignments);
+ }
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ // If this value number isn't a copy from the LHS, it's a new number.
+ if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
+ NewVNInfo.push_back(VNI);
+ RHSValNoAssignments[VN] = NewVNInfo.size()-1;
+ continue;
+ }
+
+ ComputeUltimateVN(VNI, NewVNInfo,
+ RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
+ RHSValNoAssignments, LHSValNoAssignments);
+ }
+ }
+
+ // Armed with the mappings of LHS/RHS values to ultimate values, walk the
+ // interval lists to see if these intervals are coalescable.
+ LiveInterval::const_iterator I = LHS.begin();
+ LiveInterval::const_iterator IE = LHS.end();
+ LiveInterval::const_iterator J = RHS.begin();
+ LiveInterval::const_iterator JE = RHS.end();
+
+ // Skip ahead until the first place of potential sharing.
+ if (I->start < J->start) {
+ I = std::upper_bound(I, IE, J->start);
+ if (I != LHS.begin()) --I;
+ } else if (J->start < I->start) {
+ J = std::upper_bound(J, JE, I->start);
+ if (J != RHS.begin()) --J;
+ }
+
+ while (1) {
+ // Determine if these two live ranges overlap.
+ bool Overlaps;
+ if (I->start < J->start) {
+ Overlaps = I->end > J->start;
+ } else {
+ Overlaps = J->end > I->start;
+ }
+
+ // If so, check value # info to determine if they are really different.
+ if (Overlaps) {
+ // If the live range overlap will map to the same value number in the
+ // result liverange, we can still coalesce them. If not, we can't.
+ if (LHSValNoAssignments[I->valno->id] !=
+ RHSValNoAssignments[J->valno->id])
+ return false;
+ // If it's re-defined by an early clobber somewhere in the live range,
+ // then conservatively abort coalescing.
+ if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
+ return false;
+ }
+
+ if (I->end < J->end) {
+ ++I;
+ if (I == IE) break;
+ } else {
+ ++J;
+ if (J == JE) break;
+ }
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
+ E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned LHSValID = LHSValNoAssignments[VNI->id];
+ NewVNInfo[LHSValID]->removeKill(VNI->def);
+ if (VNI->hasPHIKill())
+ NewVNInfo[LHSValID]->setHasPHIKill(true);
+ RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
+ E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned RHSValID = RHSValNoAssignments[VNI->id];
+ NewVNInfo[RHSValID]->removeKill(VNI->def);
+ if (VNI->hasPHIKill())
+ NewVNInfo[RHSValID]->setHasPHIKill(true);
+ LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
+ }
+
+ // If we get here, we know that we can coalesce the live ranges. Ask the
+ // intervals to coalesce themselves now.
+ if ((RHS.ranges.size() > LHS.ranges.size() &&
+ TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
+ TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
+ RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
+ mri_);
+ Swapped = true;
+ } else {
+ LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
+ mri_);
+ Swapped = false;
+ }
+ return true;
+}
+
+namespace {
+ // DepthMBBCompare - Comparison predicate that sort first based on the loop
+ // depth of the basic block (the unsigned), and then on the MBB number.
+ struct DepthMBBCompare {
+ typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
+ bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
+ // Deeper loops first
+ if (LHS.first != RHS.first)
+ return LHS.first > RHS.first;
+
+ // Prefer blocks that are more connected in the CFG. This takes care of
+ // the most difficult copies first while intervals are short.
+ unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
+ unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
+ if (cl != cr)
+ return cl > cr;
+
+ // As a last resort, sort by block number.
+ return LHS.second->getNumber() < RHS.second->getNumber();
+ }
+ };
+}
+
+void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
+ std::vector<CopyRec> &TryAgain) {
+ DEBUG(dbgs() << MBB->getName() << ":\n");
+
+ std::vector<CopyRec> VirtCopies;
+ std::vector<CopyRec> PhysCopies;
+ std::vector<CopyRec> ImpDefCopies;
+ for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
+ MII != E;) {
+ MachineInstr *Inst = MII++;
+
+ // If this isn't a copy nor a extract_subreg, we can't join intervals.
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ bool isInsUndef = false;
+ if (Inst->isExtractSubreg()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(1).getReg();
+ } else if (Inst->isInsertSubreg()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(2).getReg();
+ if (Inst->getOperand(1).isUndef())
+ isInsUndef = true;
+ } else if (Inst->isInsertSubreg() || Inst->isSubregToReg()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(2).getReg();
+ } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
+ continue;
+
+ bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ if (isInsUndef ||
+ (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty()))
+ ImpDefCopies.push_back(CopyRec(Inst, 0));
+ else if (SrcIsPhys || DstIsPhys)
+ PhysCopies.push_back(CopyRec(Inst, 0));
+ else
+ VirtCopies.push_back(CopyRec(Inst, 0));
+ }
+
+ // Try coalescing implicit copies and insert_subreg <undef> first,
+ // followed by copies to / from physical registers, then finally copies
+ // from virtual registers to virtual registers.
+ for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
+ CopyRec &TheCopy = ImpDefCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
+ CopyRec &TheCopy = PhysCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
+ CopyRec &TheCopy = VirtCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+}
+
+void SimpleRegisterCoalescing::joinIntervals() {
+ DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
+
+ std::vector<CopyRec> TryAgainList;
+ if (loopInfo->empty()) {
+ // If there are no loops in the function, join intervals in function order.
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
+ I != E; ++I)
+ CopyCoalesceInMBB(I, TryAgainList);
+ } else {
+ // Otherwise, join intervals in inner loops before other intervals.
+ // Unfortunately we can't just iterate over loop hierarchy here because
+ // there may be more MBB's than BB's. Collect MBB's for sorting.
+
+ // Join intervals in the function prolog first. We want to join physical
+ // registers with virtual registers before the intervals got too long.
+ std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
+ for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
+ MachineBasicBlock *MBB = I;
+ MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
+ }
+
+ // Sort by loop depth.
+ std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
+
+ // Finally, join intervals in loop nest order.
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
+ CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
+ }
+
+ // Joining intervals can allow other intervals to be joined. Iteratively join
+ // until we make no progress.
+ bool ProgressMade = true;
+ while (ProgressMade) {
+ ProgressMade = false;
+
+ for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
+ CopyRec &TheCopy = TryAgainList[i];
+ if (!TheCopy.MI)
+ continue;
+
+ bool Again = false;
+ bool Success = JoinCopy(TheCopy, Again);
+ if (Success || !Again) {
+ TheCopy.MI = 0; // Mark this one as done.
+ ProgressMade = true;
+ }
+ }
+ }
+}
+
+/// Return true if the two specified registers belong to different register
+/// classes. The registers may be either phys or virt regs.
+bool
+SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
+ unsigned RegB) const {
+ // Get the register classes for the first reg.
+ if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
+ assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
+ "Shouldn't consider two physregs!");
+ return !mri_->getRegClass(RegB)->contains(RegA);
+ }
+
+ // Compare against the regclass for the second reg.
+ const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
+ if (TargetRegisterInfo::isVirtualRegister(RegB)) {
+ const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
+ return RegClassA != RegClassB;
+ }
+ return !RegClassA->contains(RegB);
+}
+
+/// lastRegisterUse - Returns the last (non-debug) use of the specific register
+/// between cycles Start and End or NULL if there are no uses.
+MachineOperand *
+SimpleRegisterCoalescing::lastRegisterUse(SlotIndex Start,
+ SlotIndex End,
+ unsigned Reg,
+ SlotIndex &UseIdx) const{
+ UseIdx = SlotIndex();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ MachineOperand *LastUse = NULL;
+ for (MachineRegisterInfo::use_nodbg_iterator I = mri_->use_nodbg_begin(Reg),
+ E = mri_->use_nodbg_end(); I != E; ++I) {
+ MachineOperand &Use = I.getOperand();
+ MachineInstr *UseMI = Use.getParent();
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
+ SrcReg == DstReg && SrcSubIdx == DstSubIdx)
+ // Ignore identity copies.
+ continue;
+ SlotIndex Idx = li_->getInstructionIndex(UseMI);
+ // FIXME: Should this be Idx != UseIdx? SlotIndex() will return something
+ // that compares higher than any other interval.
+ if (Idx >= Start && Idx < End && Idx >= UseIdx) {
+ LastUse = &Use;
+ UseIdx = Idx.getUseIndex();
+ }
+ }
+ return LastUse;
+ }
+
+ SlotIndex s = Start;
+ SlotIndex e = End.getPrevSlot().getBaseIndex();
+ while (e >= s) {
+ // Skip deleted instructions
+ MachineInstr *MI = li_->getInstructionFromIndex(e);
+ while (e != SlotIndex() && e.getPrevIndex() >= s && !MI) {
+ e = e.getPrevIndex();
+ MI = li_->getInstructionFromIndex(e);
+ }
+ if (e < s || MI == NULL)
+ return NULL;
+
+ // Ignore identity copies.
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
+ SrcReg == DstReg && SrcSubIdx == DstSubIdx))
+ for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
+ MachineOperand &Use = MI->getOperand(i);
+ if (Use.isReg() && Use.isUse() && Use.getReg() &&
+ tri_->regsOverlap(Use.getReg(), Reg)) {
+ UseIdx = e.getUseIndex();
+ return &Use;
+ }
+ }
+
+ e = e.getPrevIndex();
+ }
+
+ return NULL;
+}
+
+void SimpleRegisterCoalescing::releaseMemory() {
+ JoinedCopies.clear();
+ ReMatCopies.clear();
+ ReMatDefs.clear();
+}
+
+bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ mri_ = &fn.getRegInfo();
+ tm_ = &fn.getTarget();
+ tri_ = tm_->getRegisterInfo();
+ tii_ = tm_->getInstrInfo();
+ li_ = &getAnalysis<LiveIntervals>();
+ AA = &getAnalysis<AliasAnalysis>();
+ loopInfo = &getAnalysis<MachineLoopInfo>();
+
+ DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
+ << "********** Function: "
+ << ((Value*)mf_->getFunction())->getName() << '\n');
+
+ allocatableRegs_ = tri_->getAllocatableSet(fn);
+ for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
+ E = tri_->regclass_end(); I != E; ++I)
+ allocatableRCRegs_.insert(std::make_pair(*I,
+ tri_->getAllocatableSet(fn, *I)));
+
+ // Join (coalesce) intervals if requested.
+ if (EnableJoining) {
+ joinIntervals();
+ DEBUG({
+ dbgs() << "********** INTERVALS POST JOINING **********\n";
+ for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
+ I != E; ++I){
+ I->second->print(dbgs(), tri_);
+ dbgs() << "\n";
+ }
+ });
+ }
+
+ // Perform a final pass over the instructions and compute spill weights
+ // and remove identity moves.
+ SmallVector<unsigned, 4> DeadDefs;
+ for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
+ mbbi != mbbe; ++mbbi) {
+ MachineBasicBlock* mbb = mbbi;
+ for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
+ mii != mie; ) {
+ MachineInstr *MI = mii;
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (JoinedCopies.count(MI)) {
+ // Delete all coalesced copies.
+ bool DoDelete = true;
+ if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
+ assert((MI->isExtractSubreg() || MI->isInsertSubreg() ||
+ MI->isSubregToReg()) && "Unrecognized copy instruction");
+ DstReg = MI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+ // Do not delete extract_subreg, insert_subreg of physical
+ // registers unless the definition is dead. e.g.
+ // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
+ // or else the scavenger may complain. LowerSubregs will
+ // delete them later.
+ DoDelete = false;
+ }
+ if (MI->allDefsAreDead()) {
+ LiveInterval &li = li_->getInterval(DstReg);
+ if (!ShortenDeadCopySrcLiveRange(li, MI))
+ ShortenDeadCopyLiveRange(li, MI);
+ DoDelete = true;
+ }
+ if (!DoDelete)
+ mii = llvm::next(mii);
+ else {
+ li_->RemoveMachineInstrFromMaps(MI);
+ mii = mbbi->erase(mii);
+ ++numPeep;
+ }
+ continue;
+ }
+
+ // Now check if this is a remat'ed def instruction which is now dead.
+ if (ReMatDefs.count(MI)) {
+ bool isDead = true;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ DeadDefs.push_back(Reg);
+ if (MO.isDead())
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !mri_->use_nodbg_empty(Reg)) {
+ isDead = false;
+ break;
+ }
+ }
+ if (isDead) {
+ while (!DeadDefs.empty()) {
+ unsigned DeadDef = DeadDefs.back();
+ DeadDefs.pop_back();
+ RemoveDeadDef(li_->getInterval(DeadDef), MI);
+ }
+ li_->RemoveMachineInstrFromMaps(mii);
+ mii = mbbi->erase(mii);
+ continue;
+ } else
+ DeadDefs.clear();
+ }
+
+ // If the move will be an identity move delete it
+ bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
+ if (isMove && SrcReg == DstReg && SrcSubIdx == DstSubIdx) {
+ if (li_->hasInterval(SrcReg)) {
+ LiveInterval &RegInt = li_->getInterval(SrcReg);
+ // If def of this move instruction is dead, remove its live range
+ // from the dstination register's live interval.
+ if (MI->registerDefIsDead(DstReg)) {
+ if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
+ ShortenDeadCopyLiveRange(RegInt, MI);
+ }
+ }
+ li_->RemoveMachineInstrFromMaps(MI);
+ mii = mbbi->erase(mii);
+ ++numPeep;
+ continue;
+ }
+
+ ++mii;
+
+ // Check for now unnecessary kill flags.
+ if (li_->isNotInMIMap(MI)) continue;
+ SlotIndex UseIdx = li_->getInstructionIndex(MI).getUseIndex();
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isKill()) continue;
+ unsigned reg = MO.getReg();
+ if (!reg || !li_->hasInterval(reg)) continue;
+ LiveInterval &LI = li_->getInterval(reg);
+ const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
+ if (!LR ||
+ (!LR->valno->isKill(UseIdx.getDefIndex()) &&
+ LR->valno->def != UseIdx.getDefIndex()))
+ MO.setIsKill(false);
+ }
+ }
+ }
+
+ DEBUG(dump());
+ return true;
+}
+
+/// print - Implement the dump method.
+void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
+ li_->print(O, m);
+}
+
+RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
+ return new SimpleRegisterCoalescing();
+}
+
+// Make sure that anything that uses RegisterCoalescer pulls in this file...
+DEFINING_FILE_FOR(SimpleRegisterCoalescing)
OpenPOWER on IntegriCloud